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One of today's dominant environmental 
concerns is the changing climate. In 
particular, two publicized and popularized 

concerns are the greenhouse effect (which is due to 
the increase of carbon dioxide in the atmosphere) 
and increased ultraviolet radiation (due to a dimin- 
ished ozone layer). The question of whether or not 
climatic changes are detectable in historical 
records is still somewhat controversial. This 
controversy diminishes the motivation for formu- 
lating and implementing programs for environ- 
mental protection. 

Time-series analysis of historical records is a 
longstanding, vast, and complex topic. To some 
degree, interest in this topic dates from the time 
people first began making systematic observations 
and keeping records. In any new study, one cannot 
hope to treat such a subject exhaustively; one can 
only suggest methodology for specific and limited 
purposes. Briefly, historical series are analyzed in 
order to find some information structure in the 
record. If such structure—usually a cycle or a 
trend—is found, it is hoped that it can be used to 
improve the prediction of future items in the series. 

Examples of current interest in cycles and predict- 
ability are easily found. The cover of Eos (1989) 
shows daily sunspot numbers from January 8, 
1818, to December 31, 1988. Í/.5. News & World 
Report (Budiansky 1989) contains an article that 
reports the finding of linkage between solar energy 
and climate. A Reader's Digest article contains a 
popularized discussion of some controversial 
aspects (Bidinotto 1990). In Eos Supplement 
(1995), the American Geophysical Union lists the 
Committee on Global Environmental Change as 
one of several in its currently recognized research 
programs. Articles on methodology, case studies, 
and predictability for planning can be found in 
many journals in meteorology, water resources, 
and environmental sciences. 

The responsibility and interest of the U.S. Depart- 
ment of Agriculture (USDA) were outlined in 1990 
with the development of a strategic plan for the 
various affected agencies (USDA 1990). The 
objective of the plan was to establish a long-term 
strategy for research, education, technology trans- 

fer, extension activities, and policy analysis to 
assist in sustaining U.S. agriculture and forestry 
that are compatible with future global change. The 
Agricultural Research Service (ARS) followed 
USDA's lead by presenting its climate and hydrol- 
ogy research component of the global-change 
research program (USDA 1992). ARS targeted key 
areas of research within the hydrologie community 
where significant knowledge gaps still exist—gaps 
that must be filled before answers to specific 
global-change questions can be determined. 

The end product of time-series inquiry—success- 
ful predictability—must depend on either finding a 
link to terrestrial or extraterrestrial events that are 
predictable, or finding predictable information in 
the series itself. In either case, successful predic- 
tion in the practical sense means that stochastic 
variability of the future series is kept significantly 
smaller than if the events in the series were purely 
random. The predominant methodology in time 
series is a composite of autoregressive and mov- 
ing-average techniques, which are mostly depen- 
dent on the work of Box and Jenkins (1976). An 
overview of time-series analysis can be found in 
Hipel (1985), Yevjevich and Harmancioglu (1985), 
and Lewis (1985). An earlier work by Fiering and 
Jackson (1971) remains a readily understandable 
and practical introductory analysis and simulation 
approach. Snyder (1976b) modified this approach 
by the use of sliding polynomials to produce free- 
form seasonal patterns of the autoregression 
coefficients. 

The first step in the development of a time-series 
predictive system is the identification of usable 
information in historical records of the series. As 
stated earlier, such information normally consists 
of cycles or trends in the data. It seems advanta- 
geous, then, to have a number of data-processing 
models, each of which can screen the record in 
varying ways, searching for varying forms of 
information. Present needs in prediction are not 
limited to simple simulation of possible future 
series of the events. Such simulation does provide 
the basis for planning for resource conservation 
and development. 



But researchers may have other needs. For ex- 
ample, when field data were obtained on soil- 
plant-water relationships, was the climate repre- 
sentative or were the data biased by some climatic 
extreme? When climatic generators of input to 
crop yield-erosion models are calibrated, are the 
parameters affected by abnormalities in existing 
climate records? Can the results of time-series 
analysis be transported to other places and times? 
Can quantified parameters from the analysis be 
associated with regional physical processes? 

Thomas and Snyder (1984) addressed questions 
like these. They developed a probability index 
through simulation that can be used to judge the 
climatic representativeness of short periods such as 
the duration of a field research project. 

Objective 

It is the objective of this publication to screen 
climatic records with three different data-process- 
ing models. The purpose of such screening is to 
test in various ways for cycles and trends in cli- 
matic data—in ways that would be useful in 
appraisal of and prediction with results from field 
research. Such an objective has some obvious 
overlap with climate-change modeling. Records of 
about 50-100 years are used because this length is 
considered representative of the bulk of climate 
records, and the screening objective is intended for 
testing with such representative record length. 

Screening Models Used 

One of the screening models used is the well- 
known ARIMA model of Box and Jenkins (1976). 
The other two are special-purpose models devel- 
oped and programmed for this study. It is hoped 
that the demonstration of model concepts other 
than ARIMA will stimulate additional special- 
purpose modeling and provide useful alternatives 
in time-series analysis. Description of the two 
special-purpose models follows. 

CYCLES Model 

The CYCLES model was developed to screen a 
record for trends and cycles. Thus two separate 

traces are extracted: a trend line and a cycle pat- 
tern. Cycles of varying length are identified and 
extracted to describe the shape of the cycle as a 
free-form sliding polynomial function (Snyder 
1976a). The time-trend line is extracted simulta- 
neously from the data. The structure and operation 
of the model are shown schematically in figure 1. 

Four nodes are used to define a segmented time 
trend (see figure 1, part a). The nodes are placed at 
the quarter points of the record length. The values 
of these nodes are derived by least squares. Myriad 
patterns of time trend are possible; two are shown 
for illustration in figure 1, part a. A true trend may 
be found, or long cycles may be found. The short- 
est detectable cycle would be one-half the record 
length. 

A varying number of nodes are used to define a 
free-form cycle in the data. The number of nodes 
is increased during successive sweeps through the 
data. The first three sweeps are shown in figure 1, 
part b. The smallest number of cycle nodes is two. 
They are placed 2 years apart, beginning with year 
1 of the record. As shown, the pattern of the two 
nodes repeats through the full record. The four 
time-trend nodes and the two cycle nodes are 
evaluated simultaneously by least squares. The 
optimization process always uses all years of the 
record, not just the years where the nodes are 
located. Sweep 1 defines a cycle with a length of 4 
years. 

On the second sweep, the number of cycle nodes is 
increased to three, and this pattern repeats through 
the entire record. The four time-trend nodes and 
the three cycle nodes are evaluated simultaneously. 
Sweep 2 defines a cycle with a length of 6 years. 
Note that the derived nodal values give the shape 
of the cycle. 

On the third sweep, the number of cycle nodes is 
increased to four. Optimization by least squares 
yields simultaneous values of the four trend nodes 
and the four cycle nodes. Sweep 3 defines a cycle 
with a length of 8 years. 

The sweeps through the record are continued 
through a cycle based on 12 nodes plus the time 



trend of 4 nodes. All cycle lengths from 4 years to 
24 years in steps of 2 years are thus evaluated. 
Note that a 22-year cycle can also express two 11- 
year cycles. The computer program implementing 
the model performs the 11 sweeps without opera- 
tor intervention. On each sweep the statistics of the 
fit are evaluated, and the best fit can be selected. 
Obviously, operating parameters other than those 
described here can be chosen. This first-generation 
program was designed primarily for detection of 
whole-year cycles. Cycles with fractional year 
lengths can be investigated with some modification 
because, for example, an 11-year cycle can actu- 
ally be two 5 1/2-year cycles. 

FFAUTO Model 

FFAUTO is a model based on free-form 
autoregression. In conventional autoregression, the 
relationship of each item in a time series is fixed 
with respect to the preceding items. FFAUTO 
allows each individual item to have its own 
autoregression function, and this function is 
dependent on the average value of a number of 
antecedent items in the series. A time trend is 
included so that processing a record with FFAUTO 
evaluates simultaneously a time trend and a free- 
form autoregression function. 

The FFAUTO model is expressed as follows: 

x(t) = ic. (t)r+b^*x (t-1) +1 b a,xp *x (t-j),      (1) 

where 
X   = an individual item of the series, 
t   = time, 

T.   = a time-trend node, 
c.(t)   = a linear interpolating coefficient between 

nodes adjacent to t, 
bj   = first autoregression coefficient, and 

b(j,x.) = free-form autoregression coefficient with 
dependence on lag time j and antecedent 
average of x,x., shown in figure 2. 

Basically, b(j,x.) is given as a set of two-dimen- 
sional sliding polynomial contours in the j- x. 
space. The contours are defined on eight nodes, of 
which nodes 1 and 5 are required to be zero to 
make the autoregression function go to zero at a 
15-year lag time. The spacing of nodes in j scale is 

a simple exponential transform. Values of x. are a 
backward-growing average. When j = 2, then x. = 
x(t-l). When j = 3, then x. = {x(t-l) + x(t-2)}/2' 
When j = 4, then x. = {x(t-l) + x(t-2) + x(t-3)}/3, 
and so on. 

The rationale behind equation 1 is as follows: Item 
x(t) in a series can have a serial dependence on x(t- 
1); hence we have the term b^ x(t-l) in equation 1. 
Now item x(t) can also have serial dependence on 
x(t-2). However, this dependence might depend on 
the intervening value x(t-l). Perhaps persistence 
patterns develop in a series so that high values tend 
to beget a string of high values. Then h^ {2,x^) 
would be large for large X2. 

Such persistence can be expressed by the moving- 
average part of an ARIMA model, but in such a 
model it is a simple linear additive to the 
autoregression function. FFAUTO allows an 
interactively nonlinear expression of the possible 
persistence patterns. Evaluation of the FFAUTO 
parameters consists of obtaining optimized values 
of the four time-trend nodes T., the regression 
coefficient b^, and the six non-zero nodes in figure 
2. The structure is linear in all the parameters; 
therefore, least squares was attempted as the 
optimizing technique. But it was discovered that 
the intercorrelations of the coefficients of the six 
non-zero nodes of figure 2 were so high that the 
multivariate technique of components regression 
had to be used. 

CYCLES Program Testing 

Prior to its use in screening climatic records, the 
CYCLES program was tested on monthly rainfall 
and runoff records from two research watersheds. 
Thus the response of the model to the known 
seasonal cycle of 12 months could be observed. 
Such testing also helped to ehminate errors in the 
computer program. The two test watersheds were 
White Hollow in eastern Tennessee (TVA 1961) 
and Pine Tree Branch in westem Tennessee (TVA 
1962). 

The records of monthly rainfall and runoff for 
White Hollow are shown in figure 3, and those for 
Pine Tree Branch are shown in figure 4. Superim- 



posed on all the records are the monthly values of 
the fitted CYCLES model with a 12-month cycle. 
The monthly rainfall values are moderately cyclic 
whereas the runoff values are strongly cyclic. The 
residual error standard deviations for the 11 
sweeps through the data are plotted in figure 5. It 
is clear from these plots that the sweep search does 
identify the natural 12-month cycle by minimum 
residual error. The 24-month cycle also identifies 
the natural 12-month cycle. 

Some goodness-of-fit statistics for the four test 
data sets are given in table 1. The standard devia- 
tions of the errors residual to fitting the CYCLES 
model with a cycle length of 12 months are com- 
pared with the standard deviations of the data. It 
should be noted that the reduction in the standard 
deviation is small, amounting to only 7-10 percent 
for monthly rainfall and 22-27 percent for 
monthly runoff. Such small reduction indicates 
that simulation of future series with a CYCLES 
model plus randomization with the standard 
deviation of the residuals will yield a series with 
little less scatter than purely stochastic simulation. 
This in turn means that large uncertainties will 
remain when such simulated future series are used 
in planning. Stated another way, the precise detec- 
tion of cyclicity in a series will not automatically 
yield a good predictor for this series. 

Figure 6 shows the seasonal cycles of rainfall and 
runoff identified by sweeping the data with the 
CYCLES model. These cyclic patterns are similar 
to—^but not identical with—simple arithmetic 
monthly averages since they are derived by 
smoothing. Also, they are influenced by the time 
trend simultaneously identified. Pine Tree Branch 
cyclic runoff shows some negative values, but 
again, these must be balanced with the identified 
time trend. The predicted runoff values in figure 4 
do show a few negative values, and these must be 
judged a failure of the model. In practical work, 
such values are set to zero (Fiering and Jackson 
1971). 

The time trends of rainfall and runoff for the two 
test watersheds are shown in figure 7. The fitting 
of the model produced similar trends for rainfall 
and runoff for White Hollow and for Pine Tree. 

The trends are all measured relative to zero at the 
beginning of the record. The Pine Tree record 
starts during a period of low rainfall during the 
early 1940's. Therefore, its time trends are posi- 
tive relative to these initial values. Both watersheds 
show a peak in the middle to late 1940's, with an 
essentially downward trend to the end of the 
record. 

Both White Hollow and Pine Tree Branch were 
research watersheds operated for inquiry into 
forest-streamflow relationships. Both watersheds 
received conservation treatment consisting mainly 
of gully control and tree planting (TVA 1961, 
1962). The time of the treatments is shown in 
figure 7. The CYCLES model does not reveal any 
shift in the relationship of the rainfall-runoff time 
trends with developing forest following treatment. 
The magnitudes of the time trends are generally 
less than the standard deviations of data shown in 
table 1. 

In summary for this section, we conclude that the 
computer program of the CYCLES model is 
functioning properly. The model identifies the 
known seasonal cycle of monthly rainfall and 
runoff data. Time trends identify major shifts in 
rainfall. The four independently derived time 
trends are mutually supportive. 

FFAUTO Program Testing 

The FFAUTO program was tested on three syn- 
thetic data sets. These data sets are shown in 
figures 8-10. Also shown in these figures are the 
results of fitting the FFAUTO model. For compari- 
son, the CYCLES model was fitted to the three 
synthetic sequences, and these results are also 
plotted. 

Synthetic set no. 1 was generated with an 11-year 
cycle plus a time trend. Set no. 2 was a modifica- 
tion of set no. 1, consisting of broadening valleys 
and peaks in an arbitrary fashion to enforce a 
slight persistence on the data. Variability of the 
data was also reduced slightly. Set no. 3 was 
constructed with broad plateaus imposed on a 
major, irregular cycle to enforce a larger degree of 
persistence in the time sequence of the numbers. 



Both the CYCLES and FFAUTO models fit the 
data reasonably well in figures 8 and 9. However, 
in the highly persistent sequence in figure 10, the 
FFAUTO model is a noticeably better fit. 

The statistics of fitting the two models to the three 
synthetic data sets are given in table 2. The stan- 
dard deviations of the original data are not greatly 
different. However, the performance of the two 
models is different. In data set no. 1, which has no 
pattem of persistence built in, CYCLES fits better 
than FFAUTO, with a reduction of standard devia- 
tion of 54 percent versus 41 percent. In set no. 3, 
with a significant amount of persistence, FFAUTO 
fits much better than CYCLES, with a 75 percent 
reduction in standard deviation versus 44 percent. 
For data set no. 2 with only slight persistence in 
the data, there is little difference in model perfor- 
mance. 

In the FFAUTO model, each item in the series 
after the second item has its own individual 
autoregression function. As shown schematically 
in figure 2, the autoregression coefficients b(j,x.) 
are a function of lag number] and the average of 
antecedent numbers in the series, x.. Selected 
autoregression functions for the three synthetic test 
data sets are shown in figure 11. The functions 
with the highest and the lowest regression coeffi- 
cients for lag no. 2 are plotted. All other autore- 
gression functions in the respective data sets will 
lie between these two. Remember that coefficient 
number one is the same for all autoregression 
functions in a set. 

Set no. 1 with its essentially cyclic structure shows 
the largest amplitude of cyclic structure in the 
autoregression function in figure 11. The cycle 
length is 10 lags. Note in figure 8 that the lag 
distance between peaks or troughs is not always 
exactly 11 as built into the data set. Rather, it 
varies slightly due to the included stochastic 
component. The autoregression function in figure 
11 predicts cyclic lengths of 10, 11, or 12, from 
peak to peak. The autoregression functions for set 
no. 2 in figure 11 show less cyclic amplitude than 
those for set no. 1, except that the fixed coefficient 
for lag no. 1 is much larger. Also the difference 
between the highest and lowest coefficient for lag 

no. 2 is much greater for set no. 2. These results 
are consistent with the structure of the synthetic 
data set no. 2. This set has some persistence 
structure in its broader valleys and peaks compared 
to set no. 1. The purely cyclic content of the data is 
thus reduced. The autoregression functions vary 
through the data set. In synthetic data set no. 3 
with the large amount of imposed persistence, the 
difference between the regression coefficients for 
lag no. 2 is large. The autoregression functions will 
vary greatly through data as the antecedent aver- 
age, X., in figure 2 varies greatly due to the long 
sequences of high or low values of the sequential 
items X. 

The positions of the autoregression functions with 
highest and lowest regression coefficients number 
two are marked in figures 8-10. Generally, they 
occur with the highest and lowest data values 
except as they are modified by the time-trend 
component of the model. In figure 10, the highest 
and lowest b(2,X2) are the same for successive 
times with plateaus of equal values of x. 

Figure 12 displays the time trends derived from the 
three synthetic data sets by application of the two 
models. The time trend incorporated in data set no. 
1 is shown for comparison. This time trend is also 
present in data set no. 2, since set no. 2 was a 
persistence modification of set no. 1. However, no 
attempt was made to ensure that these modifica- 
tions did not corrupt the trend incorporated in set 
no. 1. No attempt was made to incorporate or to 
exclude a trend in set no. 3. 

Caution is necessary in how time trends are visual- 
ized. If data are not highly variable, then any time 
trend present should be readily found during data 
processing. If data are highly variable, then a trend 
may be difficult to quantify. The true trend may be 
a small shift in mean value. However, the derived 
analytical trend may be conditioned by the acci- 
dental occurrence of a few extreme events with 
large errors residual to model fitting. In table 2, the 
greatest reduction in standard deviation occurred 
with FFAUTO applied to set no. 3. The time trend 
in figure 12 for this model is small. The time trend 
for CYCLES applied to this set is large, and 
considering the fit in figure 10 is probably not as 



reliable. The second greatest reduction in standard 
deviation in table 2 resulted from processing data 
set no. 1 with CYCLES. The time trend shown for 
this fitting in figure 12 agrees reasonably well with 
the time trend incorporated in the data. The third 
greatest reduction in table 2 is for FFAUTO ap- 
plied to set no. 2. This produced the very small 
time trend in figure 12. CYCLES applied to set no. 
2 achieved nearly as great a reduction in standard 
deviation, yet produced a different time trend 
shown in figure 12. This difference illustrates the 
caution needed in interpretation of a weak time 
trend. 

The time trends plotted in figure 12 have variations 
that are about the same magnitude as the standard 
deviations of the residuals given in table 2. The 
exception is the time trend for CYCLES applied to 
data set no. 3. This exception needs explanation to 
achieve confidence in the FFAUTO model and 
program and confidence in its comparison with the 
CYCLES model. Figures 13 and 14 were prepared 
to provide this explanation. 

The cycles derived from the CYCLES program 
applied to the three data sets are shown in figure 
13 for the "best fit" of the successive sweeps 
through the data. For sets 1 and 2, the cycles are 
pronounced. Although the cycle width is 22 peri- 
ods, these cycles are actually composed of two 11- 
period half-cycles, in agreement with the construc- 
tion of the synthetic data sets. The derived cycle in 
figure 13 for data set no. 3 is much less pro- 
nounced. The cycle amplitude is only about one 
and one-half units. Therefore, the reduction in 
standard deviation of 44 percent in table 2 must be 
due to the time trend rather than the cyclic compo- 
nent of the model, which is confirmed by the plots 
of residual error in figure 14. 

The residual errors for synthetic data set no. 1 in 
figure 14 have uniform variability throughout the 
length of the series of data. No residual cycling 
appears. No relationship exists between the errors 
and the location of the nodes of the time-trend 
function. The residual errors from fitting FFAUTO 
to set no. 3 are relatively small and also have no 
relationship to the location of the nodes of the 
time-trend function. However, the errors residual 

to fitting CYCLES to set no. 3 are large and are 
highly related to the time-trend nodes. With this 
perception it is possible to see in figure 10 that the 
fitted CYCLES is actually a very small cyclic 
function superimposed on the segmented time 
trend. 

In summary, the free-form autoregression model, 
FFAUTO, tested satisfactorily when applied to 
synthetic data sets designed with varying amounts 
of tendency toward persistence of high or low 
values in a time series. Comparison with the 
previously tested CYCLES program produced 
rational and explainable differences. The derived 
time trends of both models must be carefully 
examined. The piecewise time trends may actually 
represent long-wave cycling. 

Processing of Historical Records 

Four data sets were processed in the search for 
cycles and trends in natural or environmental data. 
These four data sets were examined using the 
CYCLES, FFAUTO, and ARIMA models. 

The data sets are described briefly in table 3. 
Annual totals of rainfall and annual average 
temperatures were studied at Watkinsville in the 
Georgia Piedmont and at Tifton in the Georgia 
Coastal Plain. The record lengths varied from 52 to 
104 years. The last year of record was 1988 for all 
four stations. Figures 15-18 display the four data 
sets. Superimposed on the data are the results of 
fitting the CYCLES and FFAUTO models. 

Figures 15 and 16 both show a major pattern of 
temperature variation. Temperatures were high 
from 1940 to 1950, were low from 1960 to 1970, 
and rose again following 1970. The rise from the 
1970 low was more pronounced at Watkinsville 
than at Tifton. Because the temperature records 
contain only the one incomplete wave, no conclu- 
sions can be drawn about cycles or wavelengths. 

Figure 17 shows no major shifts in rainfall at 
Watkinsville. The only outstanding feature is the 
four successive years of low rainfall ending in 
1988, which is the only such occurrence in the 
104-year record. Therefore, littie reliance can be 
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placed on the predictability of such events in the 
future. Figure 18 shows that little shift has oc- 
curred in annual rainfall at Tifton, but a pro- 
nounced change in variability of rain may be 
noted. From the beginning of record until about 
1965, wide swings of rainfall occurred. Excep- 
tional high and low values were recorded, superfi- 
cially—much the same as at Watkinsville. From 
1965 to 1988, however, no exceptionally high or 
low values occurred. 

A brief statistical summary of results of fitting the 
three models to the four data sets is given in table 
4. Generally, all three models follow the same 
pattern of results. Significant reduction of standard 
deviation resulted for all models for the Tifton 
temperature record, but little reduction for the 
Watkinsville rainfall record. The ARIMA model 
had the least reduction in standard deviation except 
for the Tifton rainfall. 

FFAUTO Model 

Figures 15-18 show that the FFAUTO model tends 
to follow a smoothed average value of the data. It 
does not predict well the high and low swings of 
the data. This means that the adjustments of 
variability shown in table 4 are due more to the 
time-trend portion of the model, rather than to any 
autoregressive structure. The derived time trends, 
which are straight-line segments by quarters of the 
record length, are shown as solid lines for the 
temperature data in figure 19 and for the rainfall 
data in figure 20. 

The time trends shown for FFAUTO analysis of 
temperature in figure 19 do not show definitive 
structure. A slight tendency is shown for low 
values in the middle of the records and for higher 
values toward the end of the record, but the overall 
correspondence with the clearly visible partial 
wave in figures 15 and 16 is not good. The time 
trends for rainfall in figure 20 are more under- 
standable. No significant time trend is visible in 
figure 17, and the trend line in figure 20 
correspondingly shows little change. The high 
values of time trend for Tifton rainfall at 1972 in 
figure 20 is not inconsistent with the absence of 
years with very deficient rainfall beginning around 

1955. Also, the years following 1970 tend toward 
lower amounts except for the year 1983. 

Examples of the free-form autoregression func- 
tions are shown in figure 21 for annual tempera- 
tures and in figure 22 for annual rainfall. The 
regression functions shown are those with the 
highest and the lowest regression coefficient at lag 
2. The separation of these functions indicates that 
some persistence is present in the record. Also, for 
Tifton, the regression functions show a tendency to 
cycle at a 9-year lag. However, the coefficients are 
small, and no visible cycles are generated in the 
FFAUTO curves superimposed on the data in 
figures 15-18. 

CYCLES Model 

The results of smoothing with the CYCLES 
program (figs. 15-18) show that the CYCLES 
model predicts with wider swings than does the 
FFAUTO model. The exception is the Tifton 
annual rainfall in figure 18, where the FFAUTO 
model also has wide swings of predicted values. It 
should be noted again that for this data set the 
FFAUTO model produced a significant reduction 
in standard deviation, whereas the CYCLES model 
did not (table 4). 

The residual standard deviations for all cycle 
searches for the four data sets are shown in table 5. 
Noted in this table are the cycles with minimum 
residual standard deviation as shown in table 4. In 
table 5, there are no clear and distinct "best" cycle 
lengths such as shown for the test of monthly data 
shown in figure 5. For example, the range from 
high to low residual standard deviations for Tifton 
rainfall (10.188-9.576 = 0.612 inch) is very small 
compared to the 10.267 inches for the original 
data. 

The nodal values for increasing cycle length are 
shown in table 6 for Tifton annual temperature. 
Very little change of amplitude, or wave form, can 
be found here. The position of the largest and 
smallest nodes in the cycle move in a haphazard 
manner with changing cycle length. 

The minimum residual error for Tifton annual 
temperature was found with the 24-year cycle 



length (table 5). The nodes for the solution are 
plotted in figure 23. This figure clearly illustrates 
the lack of any definitive cycling of temperatures. 

The time-trend portions of the CYCLES model are 
shown with the FFAUTO trends in figures 19 and 
20. In figure 19 the temperature trends for the 
CYCLES model for Watkinsville and Tifton are in 
agreement, as the FFAUTO runs for the two 
locations were in agreement. In general, all four 
temperature analyses tend to outline the long 
cycles of temperature shown in figures 15 and 16. 
Differences are due to the different record lengths 
and to the happenstance way in which quarters of 
the record length can correspond to the long-cycle 
shape. 

In figure 20 the CYCLES time trends tend to 
match the FFAUTO time trends for the two loca- 
tions. Little trend is noted for the long Watkinsville 
rainfall record. A high-rainfall period is noted for 
the early 1970's for Tifton annual rainfall. 

None of the derived time trends indicate a clear 
single-directional shift in either annual tempera- 
ture or rainfall. 

ARIMA Model 

The integrated, autoregression, moving-average 
analyses were performed using commercial soft- 
ware that follows Box and Jenkins (1976). It is 
difficult to make direct comparisons between the 
ARIMA results and the FFAUTO and CYCLE 
results. The ARIMA approach appears to be more 
concemed with forecasting future occurrences over 
some lead time and to be less concerned with 
abstracting structural information from a data set 
to test a physical hypothesis. For example, ARIMA 
does not incorporate a specific time-trend structure 
to parallel a direct relationship between succeeding 
elements in a series. Rather, one must construct 
differences between the elements in the series and 
then correlate the differences. Specifically then, 
one is studying the series of differences, not the 
series of events. The integration of the difference 
structure yields a single linear time trend. 

ARIMA analysis is performed in three steps: 
identification, estimation, and forecasting. Step 1 

is identification. In this step, autocorrelation of the 
original series is used to decide on the model 
structure. This means deciding how many 
autoregression coefficients to use, and whether to 
use the original series of elements or difference of 
the elements. One also decides whether "seasonal" 
coefficients should be used. Rules of model selec- 
tion are given by Box and Jenkins (1976). 

Step 2 in analysis is estimation of the parameters 
of the model selected in step 1. Step 3 is forecast- 
ing future elements of the series for some specified 
lead time. 

In the identification step, it was determined that 
differencing should be used on the temperature 
data for both Watkinsville and Tifton in order to 
express a time trend. The need for differencing 
was not indicated for the annual rainfall data. 
Consequently, ARIMA was used for temperature 
data, but the simpler ARMA was used for rainfall. 
The autocorrelation structure indicated that two 
autoregression coefficients and two moving- 
average coefficients should be used for the 
Watkinsville temperature data. One autoregression 
coefficient and one moving-average coefficient 
were selected as the model for the other three data 
sets. 

The results of analysis of the four data sets are 
given in table 7. No clear and definitive pattern is 
evident in the results. For example, in the identifi- 
cation step it appeared that differencing should be 
used for the temperature data, yet the constants of 
the model are far from significant. Autoregression 
coefficients are significant only for Watkinsville 
temperature, while moving-average coefficients 
are significant for temperature but not for rainfall. 
It was mentioned earlier that the residual standard 
deviations in table 4 are highest for the ARIMA 
model except for Tifton rainfall. In contrast to this, 
the autocorrelation of the residual errors are lowest 
for the ARIMA model (shown in figs. 24-27). 
These figures show that the ARIMA model is the 
best of the three at reducing the residuals to pure 
noise. The coefficients for the ARIMA model are 
well within the error limits of 2 standard devia- 
tions. The FFAUTO and CYCLES coefficients lie 
mainly within the error limits. An occasional value 
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does lie outside the limits, but a consistent pattern 
to these larger values is not evident. 

Figure 27 requires separate consideration. Most of 
the autocorrelation coefficients for the CYCLES 
model lie outside the error limits. However, these 
larger values simply oscillate with each unit 
change of lag. It is noted in table 4 that the Tifton 
rainfall data cannot be represented by the 
CYCLES model; standard deviations were reduced 
by only 7 percent. The annual oscillation of the 
coefficients in figure 27 does not have a rational 
basis, and because of the nonconformance of data 
and model, it is judged to be statistical nonsense. 

Time trends for the ARIMA models are not explic- 
itly expressed. Therefore, forecasts for a lead time 
of 20 periods were prepared. These forecasts 
contain little information. For the two rainfall 
records, the forecasts are essentially 20 repetitions 
of the average rainfall. Watkinsville temperatures 
are forecast to decline from 65.8 °F to 65.1 "" in the 
20 years following 1988. Tifton temperatures are 
forecast to decline from 61.2° to 60.4° in 20 years. 
The slightly shifting temperatures are, of course, 
the result of performing autocorrelations on the 
first differences of the temperature data. Therefore, 
ARIMA yields a decline of temperature of 0.07° 
per year through the record for Watkinsville and 
0.08° per year through the record for Tifton. The 
acceptability for these simple linear trends must be 
judged against the cyclic appearance of the data in 
figures 15 and 16. 

Summary 

Four data sets were screened for the detection of 
possible cycles and trends. Three different models 
were used. Two models were developed for this 
study. The third was the conventional ARIMA 
model of Box and Jenkins (1976). 

The two models developed for this study were first 
tested against natural and synthetic data to assure 
that they would perform properly in known condi- 
tions. This testing was successful in deriving 
known cycles and trends in the data. 

Processing of the four data sets by the three mod- 
els did not produce sufficient consistency of results 
to support any conclusion that predictable cycles 
and trends had been detected. It is evident that 
some long-term shifts in mean value or a change of 
variability does exist. Such can be seen in simple 
plots of the data. But it has not been possible to 
demonstrate that any regular cyclicity exists, and 
obviously, irregular cyclicity cannot be used to 
improve predictability. It was also not possible to 
demonstrate that consistent time trends are present, 
since the noted shifts cannot be separated into true 
trend or portions of long irregular cycles. 

The inability to demonstrate conclusively the 
presence of cycles or trends in the data sets ana- 
lyzed cannot be used as an argument that such do 
not exist. Rather, this result should be considered a 
demonstration of the complexity of the problem. 
Natural data are highly variable, and the derived 
cycles and trends contribute only a small amount 
to this variability and hence contribute little to 
improved prediction. It is hoped that the demon- 
stration of model concepts other than ARIMA will 
stimulate additional special-purpose modeling and 
in the future will provide useful alternatives in 
time-trend analysis. 

An announcement in the New York Times, Decem- 
ber 20, 1994, stated that new satellite data showed 
that the sea level had risen about 6 millimeters 
over the previous 2 years. This was based on 
measurements at 500,000 places per day. Such 
data, compared to the results in this study, likely 
indicate that climate change may not be readily 
detectable in single-site analysis. Additional 
research should focus on multisite analyses and 
further improvement in model structure. 



References 

American Geophysical Union. 1989. Eos, Trans- 
actions, American Geophysical Union 70:32. 

American Geophysical Union. 1995. Eos supple- 
ment, AGU handbook. American Geophysical 
Union 76:5. 

Bidinotto, R.J. 1990. What is the truth about 
global warming? Reader's Digest, February 
1990, p. 814. 

Box, G.E.R, and G.M. Jenkins. 1976. Time series 
analysis: Forecasting and control. Holden-Day, 
Oakland, CA. 

Budiansky, S. 1989. Sunny weather (literally). A 
long-sought link between the sunspot cycle and 
climate. U.S. News & World Report, March 6, 
1989, pp. 52-54. 

Fiering, M.B., and B.B. Jackson. 1971. Synthetic 
streamflows. American Geophysical Union, 
Water Resources Monograph 1, Washington, DC. 

Hipel, K.W. 1985. Time series analysis in per- 
spective. In Time Series Analysis in Water Re- 
sources, pp. 609-624. American Water Resources 
Association Monograph Series No. 4, Bethesda, 
MD. 

Lewis, RA.W. 1985. Some simple models for 
continuous variate time series. In Time Series 
Analysis in Water Resources, pp. 635-644. 
American Water Resources Association Mono- 
graph Series No. 4, Bethesda, MD. 

Snyder, W.M. 1976a. Interpolation and smooth- 
ing of experimental data with sliding polynomi- 
als. Agricultural Research Service, U.S. Depart- 
ment of Agriculture, ARS-S-83. 

Snyder, W.M. 1976b. Time series data analysis 
and synthesis for research watersheds. Agricul- 
tural Research Service, U.S. Department of 
Agriculture, ARS-S-76. 

Tennessee Valley Authority. 1961. Forest cover 
improvement influences upon hydrologie 
characteristics of White Hollow watershed 
1935-1958. Tennessee Valley Authority, Knox- 
ville. 

Tennessee Valley Authority. 1962. Reforestation 
and erosion control influences upon the hydrol- 
ogy for the Pine Tree Branch watershed 1941- 
1960. Tennessee Valley Authority, Knoxville. 

Thomas, A.W., and W.M. Snyder. 1984. Testing 
the climatic representativeness of short-period 
records through simulation. Transactions of 
ASAE 27:1027-1033. 

U.S. Department of Agriculture. 1990. USDA 
global change strategic plan. 

U.S. Department of Agriculture, Agricultural 
Research Service. 1992. Global change, water 
resources and agriculture. NWRC 92-3. 

Yevjevich, V, and N.B. Harmancioglu. 1985. 
Past and future of analysis of water resources 
time series. In Time Series Analysis in Water 
Resources, pp. 625-634. American Water 
Resources Association Monograph Series No. 
4, Bethesda, MD. 

10 



Table 1. Statistics of fit for monthly rainfall and runoff 

Standard Standard Reduction 
deviation deviation in standard 
of data of residuals deviation Percent 

Data set (inches) (inches) (inches) reduction 

White Hollow rainfall 2.304 2.150 0.154 7 

Pine Tree rainfall 2.563 2.298 .265 10 

White Hollow runoff 1.553 1.127 .426 27 

Pine Tree runoff 0.963 0.749 .214 ?? 

Table 2. Statistics of fit for synthetic data sets 

Data Residuals Reduction Percent 
Data set (Standard deviation units) reduction 

FFAUTO 

1 2.113 1.257 0.856 41 

2 2.034 1.152 .882 43 

3 2.149 0.531 1.618 75 

CYCLES 

1 2.113 .980 1.133 54 

2 2.034 1.200 .834 41 

3 2.149 1.198 .951 44 
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Table 3. Data sets analyzed for cycles and trends 

Set 
number Location Data 

Record 
length (years) 

1 Watkinsville, GA Average annual 
temperature 

52 

2 Tifton, GA Average annual 
temperature 

64 

3 Watkinsville, GA Average annual 
rainfall 

104 

4 Tifton, GA Annual total 
rainfall 

64 

Note: 1988 is last year for all records. 

Table 4. Statistical summary of fittings 

Standard Standard 
deviation deviation Percent 

Data set of data of residuals Reduction reduction 

FFAUTO 
1 1.138 °F 0.940° F 0.198°F 17 
2 1.494°F .891 °F .603 °F 40 
3 8.814 inches 8.353 inches .461 inch 5 
4 10.267 inches 7.919 inches 2.348 inches 23 

CYCLES 
1 1.138 °F .917 °F .221 ^f 19 
2 1.494°F .898 °F .596 "F 40 
3 8.814 inches 8.559 inches .255 inch 3 
4 10.267 inches 9.576 inches .691 inch 7 

ARIMA 

1 1.138 °F .957 °F .181 «F 16 
2 1.494 "F .999 "F .495 "F 33 
3 8.814 inches 8.700 inches .114 inch 1 
4 10.267 inches -    8.373 inches 1.894 inches 18 
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Table 5. Variation of residuai standard deviation witii cycie iengtïi 

Residual standard deviation 

Temperature f F) Rainfall (inches) 

Cycle Watkinsville Tifton Watkinsville Tifton 

4 0.976 0.949 8.890 9.582 

6 .975 .928 8.871 9.651 

8 .978 .964 8.969 9.576* 

10 .992 .909 9.007 9.735 

12 .981 .911 8.896 9.790 

14 .992 .955 8.594 9.929 

16 .928 .938 9.034 9.651 

18 .926 .920 8.559* 10.037 

20 .920 .902 8.939 10.140 

22 .917* .980 8.921 10.143 

24 .946 .898* 8.908 10.188 

Minimum residual standard deviations are shown in table 4. 
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Table 7.  Results of ARiMA analysis 

Standard 
Data set Coefficient Value error T-ratIo 

Watkinsville Constant -0.074 0.110 -0.677 

temperature AR1* -1.051 0.176 -5.980 

AR2* -0.260 0.157 -1.654 

MAIt -0.410 0.139 -2.947 

MA2t 0.600 0.150 3.966 

Tifton Constant -0.037 0.039 -0.968 

temperature AR1 0.020 0.179 0.111 

MAI 0.700 0.127 5.497 

Watkinsville Constant 59.083 48.808 1.210 

rainfall AR1 -0.200 0.991 -0.202 

MAI -0.291 0.968 -0.301 

Tifton Constant 89.804 38.594 2,327 

rainfall AR1 -0.890 0.811 -1.097 

MAI -0.876 0.856 -1.024 

*AR1 and AR2 are lag 1 and lag 2 autoregresslon coefficients. 
♦ MAI and MA2 are lag 1 and lag 2 moving average coefficients. 
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Figure 1. Schematic of CYCLES model 
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Figure 2. Schematic for evaluation of b(j, x.) 
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Figure 3. White Hollow monthly rainfall and runoff 
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Figure 4. Pine Tree Brancli montlily rainfall and runoff 
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Figure 5. Residual errors versus length of cycle 

2.8 

CO 
0) 

■5   2.4 
c 

o 

*co 
Q) 

2.0 - 

O   1.6 - 
c 
o 

> 
Q) 

T3 
1.2 - 

O 

?   0.8 
O 

-M 
O) 

0.4 

Pine Tree rain 

White Hollow  rain 
A-—-< ^—-^ 

s 

White Hollow  runoff 
o. 

Pine Tree runoff 

1 

4 

-L _L _L _L J_ _L X _L _L 
8 10    11 2      3      4      5      6- 

Sweep 
6      8     10    12    14    16    18    20    22    24 

Cycle  length  in  nnonths 

20 



Figure 6. Seasonal cycles of rainfall and runoff 
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Figure 7. Time trends of rainfall and runoff 
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Figure 10. Synthetic data set number 3 
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Figure 11. Autoregression functions 
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Figure 12. Time trends in syntlietic data 
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Figure 13. Cycles derived from synthetic data sets 
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Figure 14, Residual errors for synthetic data sets 1 and 3 
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Figure 15. Watkinsville average annual temperature 
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Figure 16. Tifton average annual temperature 
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Figure 17. Watkinsville annual rainfall 
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Figure 18. Tifton annual rainfall 
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Figure 19. Time trends for temperature from fitted models 
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Figure 20. Time trends for rainfall from fitted models 
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Figure 21. Free-form autoregression functions for temperature 
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Figure 22. Free-form autoregression functions for rainfall 
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Figure 23. Best-fit free-form cycle of Tifton temperature 
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Figure 24. Autocorrelation of residuals for Watkinsville temperature 
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Figure 25. Autocorrelation of residuals for Tifton temperature 
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Figure 26. Autocorrelation of residuals for Watkinsville rainfall 
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Figure 27. Autocorrelation of residuals for Tifton rainfall 
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