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Abstract  

This paper uses data from thirty-three on-farm experiments to explore the use of electrical 
conductivity (EC) for defining seeding and nitrogen rates for corn production. We estimate the 
yield response to nitrogen and seeding rates, including an interaction term with EC for each 
of the trial years. We then determine the optimal uniform and variables rates and compare 
the profits. If EC can be used on different fields and years, then the correlation between EC 
and the optimal rates should be consistent across fields and years. We find that the optimal 
variables rates do not produce profits above $5 an acre for the majority of the fields. 
Additionally, in different years on the same field, the high EC areas may require more or less 
of the inputs. The inconsistency of the relationship between EC and the optimal rates does 
not enable EC to be accurately used for variable rate applications across different growing 
years. While EC will continue to be important in detecting salt affected soils and can be 
calibrated for detection of specific soil elements, the use of EC for variable-rate input 
management is not recommended.  
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Introduction 

Today precision agriculture technology (PAT) and variable-rate technology (VRT) are widely 
available, and many commercial algorithms or crop consultants will provide prescriptions to 
farmers. However, there is not sufficient evidence that the prescriptions are profitable (Sozzi 
et al 2021; Colaco and Bramley 2018). Consequently, producers do not have confidence in the 
quality of commercial prescriptions (Bullock et al. 2020; Gardner et al. 2021). The 
methodologies to produce these prescriptions are also trying to replace or reduce the need 
for expensive data collection, such as soil sampling, with remote sensing, yield potential, or 
electrical conductivity. The methods used to collect soil characteristics are labour intensive, 
resulting in high costs for producers. Thus, farmers collect this data every few years rather 
than annually and a scale of one sample per acre. Electrical conductivity (EC) is a more 
reasonably priced alternative to soil sampling, is measured on a finer scale, and is related to 
soil characteristics that describe soil texture and are known to affect nitrogen response, such 
as clay content and organic matter (Heege 2013).  

EC measures the soil’s ability to conduct electrical current measured in miliseimens per meter 
and can be used for a variety of purposes depending on the collection area and calibration. EC 
can locate permafrost, gravel deposits, pollution plumes in groundwater, pipes, and other 
features. The many uses of EC highlight the importance of knowing what EC is being used for 
in a specific area before data collection. In agronomy and soil science, EC is used to locate salt 
affected soils and for soil mapping (McNeill 1980). While there is an existing literature the 
relationship between EC and crop yield, it is not clear if and how EC can be used in crop 
management decisions. For EC to impact the optimal management, it must be shown that EC 
changes the marginal response of yield to seed or nitrogen applications. If a consistent 
relationship can be defined between the yield response to nitrogen or seed and EC, this would 
be an important contribution in the PA literature. Specifically, this knowledge benefits small 
farmers who are unable to conduct on-farm experiments or those who are deciding whether 
to invest in VR equipment.  

This paper investigates: (1) the suitability of EC as a characteristic for VR management of seed 
and nitrogen application and (2) the relationship between EC and field characteristics such as 
soil type and topography. In order for EC to be a suitable characteristic for defining VR 
management, there are two criteria. First, the estimated VR economically optimal input rates 
(EOIR) from EC result in profit increases over the uniform EOIR. Second, the relationship 
between EC and the EONR can be consistently explained so that the results can be used on 
different fields.  

We use data from 33 maize trials to estimate the yield response functions using a shape-
constrained additive model (SCAM) with smoothing functions for the nitrogen and seed 
treatments and interaction terms between seed, nitrogen, and EC. For each field trial, we 
present the profits from VR application using EC and the relationship between the estimated 
optimal input rates (EOIR) and EC. The results from this research show that using EC to define 
VR management does not increase profits in most of the fields. Further, the relationship 
between EC and the EOIR is not consistent across the different fields. Therefore, for most 
fields, EC maps are not sufficient for defining VR management of seed or nitrogen. 
Additionally, future literature may want to move away from VR application on homogenous 
fields such as these. On fields with more variation in the soil and topology, EC may describe 
nitrogen or seed response where we are unable to capture it in this research.  
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Electrical Conductivity and Management Zones 

There are two types of EC sensors used in the agronomic literature. Direct sensing is the older 
method which uses four or more electrodes that maintain contact with the soil. Originally, 
these sensors were made to be carried across the field; today, this is the method used by the 
Veris machine that can be driven across a field rather than carried. The second is the 
electromagnetic method which uses two coils, one sending and one receiving, to measure 
resistivity of the soil without contact; the sensor is a bar that needs to be made portable 
through a sled and vehicle for transportation. Figure 1 contains two pictures from Sudduth et 
al. (2003) depicting the two EC sensors being implemented in the field. This is the method 
employed by the EM38 machine. Early trials in the DIFM project used an EM38 measurement, 
and later trials used a Veris machine. Thus, it is important to understand differences between 
these measurement methods.  

 

Figure 1 Comparison of the electromagnetic and contact-based EC sensors in the field. (Left) 
Electromagnetic Geonics EM38 sensor (Right) Veris 3100 contact EC sensor. Source: 
(Sudduth et al., 2003). 

Sudduth et al. 2003 give an extended theoretical description and empirical comparison of the 
two EC sensors. Their analysis discusses the benefits of each of the sensors and also the 
differences between the EC reported. For example, the Veris sensor is not prone to 
interference from humidity and temperature and does not need to be calibrated at each use. 
However, on rocky soils, the Veris machine can lose contact with the soil, resulting in clear 
outliers in the measurements. Apparent electrical conductivity is a weighted average of the 
conductivity over the soil profiles reached by the sensors. The weights for the different soil 
depths are described in figure 2 from Sudduth et al. 2003. Intuitively, comparing the shallow 
and deep readings from the Veris machine shows that the deep reading is more responsive to 
deeper soils than the shallow reading. On the other hand, the EM38 vertical mode is more 
responsive to deeper soils than Veris shallow or deep readings. Consequently, while Sudduth 
et al. (2003) find that EC maps taken with different sensors are similar, the differences 
between the sensors are more apparent with more layered soils where variation in EC may be 
better measured by one sensor than another. But overall, the EC reading correlated well with 
the clay content and CEC from analysed soil samples on the four fields included in their 
research (Sudduth et al. 2003). The authors emphasize that choosing the right sensor will 
depend on the intended use and location.  
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Figure 2 Response of electrical conductivity sensors as a function of soil depth Source: 
(Sudduth et al., 2003). 

Literature on EC highlights the ambiguity of this measure; EC is correlated with clay, water, 
organic matter, salts, and the interactions between these variables (Heege 2013). While salt 
detection is not as likely in humid climates, the other variables play important roles, 
particularly clay and water (Heege 2013). EC and clay are highly correlated, and clay impacts 
yield response to nitrogen application through organic matter. Clay content and organic 
matter both increase yield potential; however, heavy rainfall may alter the nature of the 
relationship between EC and the marginal response to nitrogen. While increased organic 
matter can reduce the economically optimal nitrogen rate, heavy rainfall can also lead to 
nitrogen losses. The nitrogen losses will be higher in clay soils, which will likely have a higher 
EONR. These two scenarios make the relationship between EC harder to establish.  As noted 
by Heege (2013), there is a level of clay content where the yields may decrease due to 
waterlogging or dense soil texture. 

As expected, past research indicates both positive and negative relationships between the 
variable and yield (Kitchen et al. 2003; Kravchenko et al. 2003). Kravchenko et al. find that EC 
had a negative effect on yield when there was high March precipitation; this result is 
consistent with high EC values in Illinois being associated with high levels of clay, water 
content, and poor drainage. Soil type can also explain the relationship between EC and yield 
because soils contain different types of salts with different relationships to crop yield (King et 
al. 2005). Miao et al. (2018) compare using EC zones to soil zones for one field, finding EC 
zones perform better, but zones combining soil and EC perform best in terms of profits. Most 
recently, da Silva et al. conducted experiments on three fields in two years, finding EC and clay 
content to best describe yield response to seeing rate (2022). However, the derived seeding 
maps were designed to maximize yield rather than profits, and the second-year analysis was 
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performed by applying the prescription, not a trial, to confirm the previous year results (da 
Silva et al. 2022).  

This research contributes to a large literature on VR management of nitrogen and seeding 
rates and literature on the use of EC for VR management. Early work used soil tests to measure 
soil properties such as organic matter, phosphorous, and in-soil nitrogen (Carr et al. 1991; 
Ferguson et al. 1996; Mausbach et al. 1993). The cost of soil sampling is high due to the 
physical labor of taking the samples and the lab analysis; thus, early research tried to 
understand how much the sampling density could be reduced while maintaining profitable 
management zones. Ferguson et al. (2016) found low density soils maps could produce VR 
applications resulting resulted in higher profits than a single-rate application.  (Ferguson et al. 
1996). However, homogenous Midwest fields may not benefit from VR application of inputs 
as noted by Bullock et al. 1998 and Bullock et al. 2020.   

Yield maps are a low-cost alternative to soil zones, and as stated previously, many researchers 
believe that yield potential is essential for determining EOIR. Unlike a soil map that may be 
used for a few years, one year of yield will not be representative due to weather fluctuations. 
Thus, research evaluating yield zones use multiple years of past yield data to delineate 
management zones (Ferguson et al. 1996; King et al. 2005; Hörbe et al. 2013;). The zones 
attempt to identify areas of the field with consistently high yield, low yield, or mixed yields. 
Some studies have shown profits from yield zones (Hörbe et al. 2013), but generally the 
relationship between yield level and EOIR appears to be weak (Bachmeir et al. 2009; Scharf et 
al. 2006). However, this has not dissuaded the use of yield zones or the evaluation of 
management zones by looking at their yield prediction. Beyond defining management zones, 
King identifies yield maps as a way to assess field variability and, thus, suitability for VR 
application (King et al. 2005). Rather than soil zones or yield zones, this paper focuses on EC; 
the collection of EC is cheaper than soil sampling and captures underlying soil properties and 
texture more directly than yield maps. The use of EC in zoning does not require multiple years 
of data, although it can help remove the variation due to weather.  

There are several limitations and gaps in the existing literature. First, the previous literature 
on EC and management zones lacks economic evaluation. Many of the papers delineate 
management zones without assigning optimal input rates and evaluating the profits compared 
to an optimal uniform rate (Cillis et al. 2018; Colaco and Bramley 2018; Velasco 2020; Kayad 
2021; da Silva et al. 2022). Much of the literature evaluates management zones based on yield 
prediction or profit comparison to the farmer’s chosen rate, which may be far from the 
optimal uniform rate. Given recent work by Bullock et al. (2020) which indicates that the 
largest profit gains from agronomic trials may be from a better estimation of the optimal 
uniform rate, these studies are likely overestimating the profitability of the management 
zones. Second, the papers evaluating the use of EC for nitrogen management have limited 
data, from one to four fields (Cillis et al. 2018; Miao 2018; da Silva et al. 2022). This paper is 
unique in its access to trial data from 33 different whole-field randomized trials where EC 
maps are available. 

Data 

These data come from thirty-three completely randomized seed and nitrogen trials from 2016 
to 2021 with the Data Intensive Farm Management project at the University of Illinois in 
Urbana-Champaign. Most trials had four nitrogen rates and four seed rates for 16 treatments. 
The fields differ in the nitrogen types, including UAN32, UAN28, and urea. Some fields 
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included a base application in the fall or a preplant application. The treatment rates for 
nitrogen and seed are designed around the farms’ status quo rates for each field; thus, the 
rates are not centred around the same values in each trial, nor is the range of rates the same 
across fields.  

The trial plot dimensions are also different across fields based on the farms’ equipment size. 
The trial plot width ensures accurate application of inputs and collection of yield in each plot. 
Many of these farms have a 30-foot harvester and 60-foot applicators; thus, the most common 
plot width is 60 feet. Additionally, the plot length is designed for enough data after eliminating 
the observations around the transition zone from one plot to the next, where the yield 
monitor is likely to have errors as it moves across plots with different treatments and mean 
yields. The exact length needed for accurate yield is not known and depends on the field’s 
yield response and the yield monitor used. This is a difficult area of research due to ongoing 
improvements in the technology, making old results inapplicable to new yield monitors. 
However, recent research by Gauci et al. (2022) suggests that at a length of 200 feet the yield 
monitor is able to identify a change in harvest level; however, they say that a length of 397 
feet may be necessary if the yield monitor is not properly calibrated. The plot length for the 
trials was around 280 feet given the constraints mentioned.  

The trial is designed assuming the operator will drive through the middle each plot, 
maintaining a steady speed. However, in practice, they will take breaks, slow down and speed 
up, and will likely veer from the centre of the plot. All of these events cause errors in the data 
reported and points where they occur are removed from the final datasets. The first step in 
data processing is removing the headlands and sidelands of each trial. When the trials are 
designed, plots on the edges of the field and partial plots are assigned the rate the farmer 
would normally use, and these plots are not included in the analysis. There are too few 
observations in small plots, and the driving patterns and sun or wind exposure on the edge of 
the field result in unreliable data.  After removing the bordering plots on the field, the yield 
and as applied data are cleaned removing observations outside of three standard deviations 
from the mean.  

Rather than using the original trial plots, the yield observations are the “building blocks” for 
the final units of observation, where they are aggregated into groups after going through a 
screening to identify treatment mixing. The general steps are as follows: 

1. Polygonise the yield and treatment points and intersect all polygons 
2. Calculate the area-weighted deviation from the mean of the treatment rates inside each 

yield polygon 
3. Remove yield polygons with an area-weighted deviation greater than 40 pounds of 

nitrogen or 20 thousand seed per acre 
4. Group the yield polygons sequentially, allowing a group to continue if the treatment does 

not change by an amount greater than 20 pounds of nitrogen or 10 thousand seed 
5. Define subgroups for each group to reach a length of at least 30 feet 
6. Define polygon around each subgroup and aggregate all data into this new unit of 

observation 

Table 1 reports the soil and field characteristics of each field. Fields 1 and 2 have low yields 
for multiple trial years, with average yield as low as 138 and 148 bushels per acre. Field 14 has 
consistently high average yields, ranging from 220 to 254 bushels per acre. In general, the high 
yield fields tend to have low variation while the low yielding fields have high variation in yields. 
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The high variation in Fields 1 and 2 may be a result of distinct but generally poor growing 
conditions, driven by texture or rooting depth. On the other hand, Field 14 appears to have 
homogenously good growing conditions across the field. As is common in Central and 
Northern Illinois, these fields have low variation in elevation. This may lead to results similar 
to those found in the past literature indicating VR applications are not profitable for this field 
type (Bullock et al. 1998, Thrikwala et al. 1999, Isik et al. 2001). There are differences in the 
soil texture due to weathering, specifically Fields 2 and 9 are on highly weathered soils. 

Table 1: Table of Field Characteristics 

Field Year 
Yield 

(bu/ac) 
(Mean/SD) 

ECS 
(Mean/SD) 

Elevation 
(Mean/SD) 

N (lbs/ac) 
(Mean/SD) 

S (k/ac) 
(Mean/SD) 

EC Clay 
Correlation 
(Mean/SD) 

1 

2016 
138.11  

36.52 

28.06  

7.53 

175.03  

0.35 

180  

0 

33.3  

4.06 
0.16*** 

2018 
173.96  

36.31 

27.55  

7.45 

175.04  

0.3 

156.89  

0 

31.33  

2.7 
0.17*** 

2020 
143.6  

40.35 

27.66  

7.48 

175.08  

0.31 

185.92  

0 

27.63  

6.23 
0.21*** 

2 

2016 
128.97  

34.12 

31.65  

6.7 

175.37  

0.17 

198.47  

0 

33.18  

4.06 
-0.25*** 

2018 
205.27  

25.12 

32.32  

8.34 

175.18  

0.36 

170.98  

0 

31.15  

2.6 
-0.45*** 

2020 
143.81  

39.21 

31.94  

7.86 

175.33  

0.24 

193.18  

0 

26.47  

6.26 
-0.35*** 

3 2017 
172.56  

29.5 

21.5  

6.81 

174.86  

0.57 

199.71  

0 

33.05  

3.84 
-0.1*** 

4 2018 
249.61  

9.15 

45.17  

7.22 

204.44  

0.41 

200.94  

0 

32.45  

2.79 
-0.04* 

5 

2017 
234.88  

13.39 

27.48  

6.36 

210.14  

0.58 

223.46  

0 

35.22  

2.8 
0.64*** 

2019 
206.78  

11.12 
27.2  
6.53 

688.49  
2.52 

236.55  
0 

32.69  
5.4 

0.69*** 

6 

2017 
233.4  
14.22 

10.69  
5.07 

309.03  
1.15 

199.76  
0 

34.06  
2.29 

0.52*** 

2019 
185.52  

16.66 
10.22  

4.55 
309.06  

1.07 
183.28  

0 
34.8  
2.51 

0.38*** 

2021 
213.84  

22.61 
10.42  

4.85 
309  
1.05 

194.39  
0 

33.14  
5.91 

0.17*** 

7 

2017 
345.36  

25.31 
11.35  

6.19 
265.72  

0.86 
194.87  

0 
34.5  
3.33 

0.15*** 

2019 
200.47  

17.49 

10.94  

6.29 

265.78  

0.93 
NA 

35.38  

3.78 
0.2*** 

8 

2018 
239.96  

29.57 

37.94  

8.8 
NA 

229.95  

0 

33.54  

4.05 
0.37*** 

2021 
220.97  

26.62 

37.92  

8.49 
NA NA 

35.5  

5.3 
0.39*** 

9 

2017 
261.99  

20.91 

27.1  

7.52 

205.53  

4.17 

209.91  

0 

33.66  

2.55 
0.44*** 

2021 
223.72  

23.24 

28.29  

7.22 

204.04  

0.27 

123.9  

0 

30.6  

3.96 
0.65*** 

10 2018 
240.07  

16.23 

34.12  

10.36 

209.66  

4.28 

108.27  

0 

32.58  

2.9 
0.43*** 
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2020 
222.49  

21.32 
34.43  

10.8 
209.8  

4.46 
187.22  

0 
26.64  

4.38 
0.5*** 

11 2017 
229.17  

11.89 

82.73  

6.3 

233.3  

0.85 

153.13  

0 

33.88  

2.59 
0.12*** 

12 2018 
217.35  

30.17 

48.88  

6.5 

204.25  

0.7 

209.23  

0 

36.2  

0.09 
-0.66*** 

13 2016 
228.91  

12.67 

27.05  

5.98 

205.81  

0.53 

198.45  

0 

34.33  

3.79 
0.24*** 

14 

2016 
220.5  

16.73 

31.59  

8.39 

193.43  

0.75 

160  

0 

33.95  

4.13 
-0.03 

2018 
254.42 

19.49 

31.42  

8.46 

193.48  

0.78 

209.89  

0 

32.82  

2.46 
-0.06*** 

2020 
244.96 

11.32 

23.69  

9.12 

194.19  

0.62 

188.19  

0 

32.55  

6.11 
-0.34*** 

15 

2017 
224.67 

13.69 

54.18  

9.6 

192.23  

0.61 

252.97  

0 

33.74  

3.23 
-0.39*** 

2021 
237.54 

25.72 

54.44  

10.34 

192.25  

0.83 

139.81  

0 

33.04  

5.25 
-0.05*** 

16 

2017 
230.3 
15.09 

29.36  
5.75 

191.48  
0.38 

218.31  
0 

32.19  
3.5 

0.04 

2019 
205.29 

28.91 
28.93  

5.33 
191.47  

0.41 
237.58  

0 
33.31  

4.14 
0.06** 

17 2018 
235.77 

21.96 
31.12  

8.32 
191.37  

0.6 
160.37  

0 
32.36  

3.72 
0.04 

 

Because EC is not a direct measure of a particular soil property, the literature has emphasized 
the importance of understanding what EC is capturing on a field before defining a 
management strategy. Past research focused on this question of what soil characteristics are 
being captured by EC, finding clay, CEC, and Ca to be common elements associated with high 
EC measurements (King et al. 2005). The fields in this research do not have soil testing; thus, 
the SSURGO database is utilized to look at EC measurements within the different soil types 
and characteristics such as the drainage class. Box plots compare the EC data in each of the 
map units and drainage classes. For most fields, the poorly drained areas of the fields had 
higher EC values than well-drained or moderately drained soils. This result follows from the 
fact that EC increases with soil moisture and clay content. If EC is a profitable investment, it 
should provide more information than the publicly available SSURGO maps; thus, the fields 
where the SSURGO information does not explain EC are of particular interest.  

Weather data is collected from the Daymet database by ORNL, and key weather measures are 
calculated for each field trial.  Past research highlights the importance of weather not just 
impacting yield but also the nitrogen dynamics on the field that influence the yield response 
to nitrogen (Bean et al 2021; King et al. 2005; Tremblay et al 2012). We calculate measures 
over the whole growing season and during critical periods in the maize development. The 
estimated growing degree days to pollination and maturity (black layer) is often found on the 
breeders’ websites. Combining this information with the hybrid, planting date, and daily 
weather data from DaymetR, we estimate the date of pollination and maturity for each trial. 
Then, we calculate the precipitation and temperature during a two-week period around 
pollination and the grain fill period from pollination until maturity. Thus, we can examine how 
weather around the critical growth stages impacts the potential use of EC for VR management. 
An additional weather measure used in the literature is the Shannon Diversity Index (SDI); the 
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index was intended for use in species diversity across locations (Bronikowski and Webb 1996). 
However, several papers have adapted this measure to capture the evenness of the rainfall 
distribution throughout a growing season (Bean et al. 2021; Bronikowski and Webb 1996; 
Tremblay et al. 2012). The calculation of SDI is in equation 1 where Raini is the rainfall on day 
i and N is the number of days in the calculation period. 

𝑆𝐷𝐼 =  (− ∑
𝑅𝑎𝑖𝑛𝑖

∑ 𝑅𝑎𝑖𝑛𝑖

𝑁

𝑖

∗ ln (
𝑅𝑎𝑖𝑛𝑖

∑ 𝑅𝑎𝑖𝑛𝑖
)) ln (𝑁)⁄      (1) 

The SDI calculations range between 0 (completely uneven) and 1 (completely even). When the 
rainfall is perfectly even across the days, SDI = 1; when all rainfall occurs on one day, SDI = 0. 

Table 2 reports the rainfall and temperature measures during the growing season and critical 
growth stages. However, we present the total season precipitation, precipitation during 
pollination, precipitation during gran fill, SDI, temperature during pollination, and 
temperature during grain fill. Eight of the fields received less than the 45 centimetres of rain 
in the growing season, which is ideal for the region. Fields 1 and 2 had less than an inch of 
rainfall during pollination combined with an average temperature of 78, resulting in an 
increased variation in the yields for the 2020 trial year. 

Table 2: Trial Weather Data for the Season and Critical Growth Stages 

Field Year 
Prec Poll 

(in.) 
Prec GF 

(in.) 
SDI Season Prec (in.) Temp Poll (F) Temp GF (F) 

1 

2016 4.88 12.34 0.72 22.11 74.94 77.88 

2018 3.51 8.91 0.68 19.10 77.61 76.57 

2020 0.40 11.49 0.68 19.41 78.80 75.36 

2 

2016 4.88 12.34 0.72 22.11 74.94 77.88 

2018 3.51 8.91 0.68 19.10 77.61 76.57 

2020 0.40 11.49 0.68 19.41 78.80 75.36 

3 2017 0.75 4.86 0.63 16.22 78.33 74.49 

4 2018 1.42 6.75 0.67 14.10 77.06 74.48 

5 
2017 2.88 4.46 0.66 18.95 77.04 71.19 

2019 0.34 6.68 0.69 19.42 78.37 73.56 

6 

2017 4.53 5.34 0.72 22.89 74.59 68.89 

2019 2.19 5.02 0.70 17.37 75.55 70.89 

2021 5.58 9.58 0.74 22.59 73.97 73.07 

7 
2017 6.25 8.61 0.67 21.26 71.51 66.92 

2019 1.70 16.84 0.76 33.58 75.78 67.46 

8 
2018 1.10 8.02 0.68 23.70 73.03 71.10 

2021 1.78 3.84 0.66 13.75 69.73 72.00 

9 
2017 3.51 3.03 0.61 12.63 74.31 67.99 

2021 3.71 5.86 0.69 22.51 71.63 73.70 

10 
2018 0.72 7.09 0.69 16.46 75.74 73.65 

2020 1.10 4.64 0.70 23.35 78.50 74.30 

11 2017 1.39 5.40 0.66 22.36 75.17 73.55 

12 2018 1.72 7.46 0.69 19.03 76.55 74.00 

13 2016 5.10 10.04 0.72 22.07 74.68 75.38 

14 

2016 4.50 10.69 0.70 21.36 76.83 76.19 

2018 1.62 5.23 0.67 15.08 76.64 74.39 

2020 2.25 3.57 0.60 9.18 74.81 70.40 

15 
2017 2.19 4.03 0.66 11.50 76.75 70.51 

2021 3.26 5.75 0.72 18.70 72.72 74.43 
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Field Year 
Prec Poll 

(in.) 
Prec GF 

(in.) 
SDI Season Prec (in.) Temp Poll (F) Temp GF (F) 

16 
2017 1.74 4.50 0.62 22.03 77.67 73.04 

2019 0.88 9.75 0.69 24.23 79.29 74.40 

17 2018 2.15 11.14 0.66 21.57 77.48 75.95 

Methods 

We estimate the yield response to nitrogen and seeding rate, including an interaction with EC 
for both inputs. There is existing literature examining potential functional forms of yield’s 
response to inputs. Popular forms include quadratic, quadratic plateau, linear plateau, von 
Leibig, and the Misterlich-Baule form. The last three are nonlinear forms that allow for non-
substitutability between inputs, consistent with Leibig’s Law of the Minimum (Llewelyn and 
Featherstone 1997). Studies comparing functional forms have consistently found that the 
quadratic form overestimates the maximum yield, resulting in over-estimating economically 
optimal nitrogen rates (Llewelyn and Featherstone 1997).  

Another estimation method used in the ecology literature for predicting yield is GAM (Chen, 
O’Leary, and Evans 2019; Estes et al. 2013; Yee and Mitchell 1991). GAM allows flexibility in 
the estimated yield response and less sensitivity to outliers by introducing smoothing 
functions. One way of thinking about the model is that it is “data driven rather than model 
driven”; there is no need to specify the model before estimation (Yee and Mitchell 1991). 
Rather than a symmetric quadratic yield response curve, GAM can estimate a quadratic 
plateau if the data indicate such a response. More recently, Pya and Wood (2014) proposed a 
shape-constrained additive model (SCAM) that allows constraints such as concavity or 
monotonicity on the smoothing functions; they show that SCAM results in more efficient 
estimations than the more flexible GAM (Gardner et al. 2021). Here we use a SCAM estimation 
with zone i specific smoothing functions for seed and nitrogen rates and linear functions for 
field characteristics. The nitrogen function is constrained to be concave and monotonically 
increasing while the seed function is concave but can decrease if the seeding rate is too high. 
Equations (2) to (4) describe this process. First, yield is estimated as a function of nitrogen (N), 
seed (S), and other characteristics in the field (denoted by the vector X_C), such as topography 
variables. 

𝑦 = 𝛽0 + 𝑠𝑁(𝑁) + 𝑠𝑆(𝑆) +  𝛽𝑒𝑐𝑒𝑐 +  𝛽𝑒𝑐𝑁𝑁𝑒𝑐 +  𝛽𝑒𝑐𝑆𝑆𝑒𝑐 +  𝛽𝑆𝑁𝑆𝑁   (2) 

We estimate the optimal uniform input rate (𝐸𝑂𝐼�̂�), and optimal variable input rate (𝐸𝑂𝑁�̂�𝑖), 
with subscript VR, and compare the profits in equations 2 and 3. 

𝜋𝑉𝑅 = max
(𝑛,𝑠)

𝑦𝑖𝑒𝑙𝑑(𝑛, 𝑠, 𝑒𝑐) − 𝒑(𝑛, 𝑠) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑗 (3) 

𝜋𝑈𝑅 = max
(𝑛,𝑠)

∑ 𝑦𝑖𝑒𝑙𝑑𝑖,𝑗(𝑛, 𝑠, 𝑒𝑐) − 𝒑(𝑛, 𝑠) (4)

𝑁

𝑖

 

Where 𝒑 is the price vector, and j is the observation. If 𝜋𝑉𝑅 > 𝜋𝑈𝑅 , then the variable rate 
application produces additional value beyond improving the uniform management rates. 

Further, if there is a consistent relationship between 𝐸𝑂𝑁�̂�  and 𝐸𝐶 , then we should see 

clear differences in the change in 𝐸𝑂𝑁�̂�𝑖  between high EC and low EC zones, and any outliers 
should be explained by weather or observable soil characteristics. For robustness, we also 
include results from an estimation with a spatial error model with a quadratic functional form. 
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Results 

Table 3 presents the results of the yield estimation for each field. The results include the 
estimated uniform rate, the range of estimated optimal variable rates, the correlation 
between EC and the optimal seed and nitrogen rates, and the estimated profit difference 
between VR and UR application. The profit differences are below $5 per acre for all but two 
of the thirty-three fields analysed. Thus, the profit differences do not cover the cost of EC 
collection on the majority of fields. For field 8 which has the highest profit difference of $28 
per acre, EC does not appear to be related to the soil types or the drainage class as seen in the 
box plots, and the correlation between EC and clay content from SSURGO is 0.37. A better 
understanding of what soil characteristics EC is correlated with on this field is necessary for 
the use of EC; note that the next year VR from EC does not induce additional profits. Similarly, 
field 6 has modest profits of $5.89 and $3.71 in two years but no VR estimates or profits in the 
last trial year.  

Twenty-two trials have VR seeding although some of ranges are very narrow; thirteen fields 
indicate that low EC areas should receive lower seeding rates. Eighteen trials have VR nitrogen, 
with fifteen of those trial indicating high EC areas should receive higher nitrogen rates. The 
relationship between EC and seeding rate appears to be less consistent, changing across fields 
and between years in a single field. The three trials with a negative relationship between VR 
N and EC are not easily explained by field characteristics or weather; fields 1 and 2 are adjacent 
with similar soil and weather. Field 1 has a negative relationship between VR N for two trial 
years while field 2 displays a positive relationship for two trial years. Field 10 received very 
low rainfall during pollination and also shows a negative relationship between EC and N. The 
boxplots of EC and soil characteristics for this field show that EC increases in poorly drained 
fields and decreases in the eroded areas of the field. Combining the profit results and the 
consistency of the estimated relationship between EC and VR application, there is not an 
indication that a general management strategy could be defined from an EC map. 

Table 3 Estimation Results from Analysis with EC Interaction with Seed and Nitrogen 

Field Year UR VR S VR N S Corr. N Corr. Profit ($/ac) 

1 
2016 27, 192 27 - 39 140 - 196 (+) (-) 1.49 
2018 36, 197 30 - 36 NA (-)  0.86 
2020 17, 288 NA 194 - 288  (-) 1.61 

2 
2016 39, 185 NA 181 - 197  (+) 0.06 
2018 36, 199 27 - 36 151 - 199 (-) (+) 0.45 
2020 39, 264 NA NA   0.00 

3 2017 27, 236 NA NA   0.00 
4 2018 35, 163 35 - 37 149 - 225 (+) (+) 0.92 

5 
2017 31, 202 31 - 39 168 - 230 (-) (+) 0.50 
2019 33, 196 33 - 34 160 - 238 (-) (+) 1.50 

6 
2017 30, 167 30 - 38 167 - 213 (+) (+) 5.89 
2019 30, 218 30 - 39 210 - 252 (+) (+) 3.71 
2021 42, 281 NA NA   0.00 

7 
2017 34, 211 32 - 38 NA (-)  0.51 
2019 35 34 - 36  (-)  0.02 

8 
2018 32, 167 32 - 34 167 - 231 (+) (+) 28.79 
2021 27 NA    0.00 
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Field Year UR VR S VR N S Corr. N Corr. Profit ($/ac) 

9 
2017 29, 146 NA 146 - 212  (+) 0.40 

2021 25, 237 MA 183 - 239  (+) 1.22 

10 
2018 33, 114 32 - 33 110 - 152 (-) (-) 0.31 
2020 29, 231 27 - 35 NA (+)  0.78 

11 2017 33, 200 32 - 35 NA (+)  0.74 
12 2018 36, 231 NA 193 - 231  (+) 1.57 
13 2016 31, 216 30 - 32 160 - 216 (-) (+) 0.35 

14 
2016 28, 160 NA 160 - 220  (+) 0.00 
2018 36, 219 28 - 36 NA (+)  0.04 
2020 29, 257 28 - 29 193 - 257 (-) (+) 1.83 

15 
2017 29, 218 29 - 31 NA (-)  0.01 
2021 30, 216 29 - 32 214 - 218 (-) (+) 0.09 

16 
2017 37, 228 31 - 37 NA (-)  0.03 
2019 38, 267 37 - 38 NA (+)  0.01 

17 2018 35, 174 34 - 35 NA (-)  0.06 

Conclusion  

This research highlights the difficulty when using a measure like EC that is a proxy for many 
unobservable soil characteristics. While data collection may be profitable in some areas with 
distinct growing conditions, this is not true for the majority of fields presented here. Further, 
the relationship between EC and the optimal variable rates is not easily established for use 
across fields or years. This is a challenge faced in the management zone literature and may 
explain the prevalence of papers that establish management zones without defining seed or 
nitrogen prescriptions on the zones. EC is an important tool for mapping and detecting a 
variety of soil conditions for use in agriculture and other industries, but we do not find it to be 
promising for broad use in VRA.  
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