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Abstract

Contamination of drinking water with PFAS poses a significant public health threat. We
examine the spatial distribution of PFAS in the US public water systems (PWS) and explore
the relationship between PFAS contamination, PWS characteristics, and socioeconomic and
industrial attributes of the affected communities. Using data from the third Unregulated
Contaminant Rule (UCMR3), the Census Bureau of Statistics, and the Bureau of Labor
Statistics (BLS), we identify spatial contamination hot spots and find that PFAS
contamination is correlated with PWSs size, non-surface water sources, population, and
housing density. We also find that non-white communities have lower PFAS in drinking
water. Finally, we detect some evidence of PFAS contamination being associated with

regional industrial structure.

Key Word: Per-and polyfluoroalkyl substances (PFAS), Public Water Supply system (PWS),
Drinking water, Income, Demographics



Introduction

Per- and Polyfluoroalkyl Substances (PFAS) cause a range of serious health problems,
including cancer, hyperlipidemia, thyroid disease, immunodeficiency, ulcerative colitis,
chronic kidney disease, coronary artery disease, hypertension, and reduced fertility (CDC,
2022; EPA, 2022; Andersson et al., 2019; Steenland et al., 2010). Prior studies show that 95%
of US adolescents and adults are exposed to PFAS, primarily through drinking water (Kato et
al., 2011; De Silva et al., 2021). Between 16 and 270 million people in the US rely on PFAS-
contaminated drinking water daily, which suggests the need for a better understanding of the
incidence and distribution of PFAS in public water systems (PWS) (Hu et al., 2016; Andrews

and Naidenko, 2020).

To develop effective public health policies aimed at mitigating the impact of PFAS
contamination a comprehensive analysis addressing several fundamental questions is
imperative. First, how pervasive is PFAS in drinking water, and are there regional clusters of
contamination? Second, does PFAS contamination depend on PWS characteristics like size
and water sources? Third, are some communities more vulnerable than others? Finally, is
PFAS drinking water contamination driven more by industrial production or by final

consumption?

PFAS are a group of 9000 synthetic chemicals widely used in industrial processes and
consumer goods for their stain, grease, water, and heat-resistant properties (Cordner et al.,
2019; National Institute of Environmental Health Science (NIH), 2019; Gluge et al., 2020).

The use and production of PFAS dated back to more than 70 years ago when it was used for



uranium separation in the Manhattan Project (Department of Energy (DOE), 2022)*. Since
then, these substances have become ubiquitous due to their widespread use, bioaccumulation,
resistance to degradation, water insolubility, and the ability to translocate easily from one
system to another through biological or physical means (De Silva et al., 2021). Close to 180
PFAS have been identified as toxic and added to the Toxic Release Inventory list under the

National Defense Authorization Act (EPA 2022a).

Detrimental health impacts of PFAS have not been well understood, documented and
recognized until recently. It wasn't until the EPA's Health Advisories were revised in 2022
that the safe levels of PFOA, PFOS, and other PFAS were significantly reduced, suggesting
that even low exposure can have detrimental health impacts (Federal Register, 2022; Federal
Register, 2016). The 2016 health advisories for PFOA and PFOS indicated that less than 70
ppt (Part Per Trillion) posed no health risks, while the 2022 advisory lowered the threshold to
0.004 and 0.02 ppt, respectively. The addition of GenX (Hexafluoropropylene Oxide Dimer
Acid and its Ammonium Salt) and PFBS to the list of hazardous PFAS further highlights the
growing recognition of the danger that these chemicals pose. As more research is conducted
and the risks associated with PFAS become better understood, it is critical that an appropriate
public policy is developed to minimize exposure and prevent further contamination of the

environment and drinking water sources.

11n 2021, the Department of Energy (DOE) issued a Departmental policy which aimed to reduce or
eliminate PFAS release from departmental operations (DOE, 2022). Part of the DOE’s objectives is to
identify and quantify Cold War era sources of PFAS including uranium processing operations going
back to the Manhattan Project.



In response to growing public concerns, the EPA has announced a PFAS strategic
Roadmap in October 2021 (EPA, 2021). The roadmap outlines the agency's plans to protect
the public and the environment from PFAS contaminants by minimizing their discharge into
the environment, identifying and removing them from ecosystems, and designating PFOA and
PFOS as hazardous compounds under Comprehensive Environmental Response,
Compensation, and Liability Act (CERCLA) (EPA, 2021). The EPA has also committed to
conducting environmental and health toxicity assessments for additional PFAS, including
PFBA, PFGxA, PFGXS (Perfluorohexanesulfonic acid), and PFDA (Perfluorodecanoic Acid)
(EPA, 2021). Additionally, the roadmap includes provisions to ensure that disadvantaged
communities have access to PFAS mitigation solutions. To make progress towards these
goals, one must understand the distribution of exposure to PFAS via drinking water, including
regional contamination clusters, differences across large and small public water systems,
vulnerability of certain communities, and socioeconomic factors associated with

contamination.

Protecting drinking water from PFAS contamination is a complex challenge. First,
PFAS substances are unregulated under the Safe Drinking Water Act (SWDA), which means
that PWSs are not required to monitor and control PFAS in the water they supply. Second,
there are no effective technological solutions for removing PFAS from drinking water. Third,
the sources of contamination are not well understood, making it challenging to prevent future
contamination. Although research is ongoing, and some technological solutions are emerging,
there is currently no available technology for the effective removal of PFAS from drinking

water (Trang et al., 2022). Fourth, PFAS substances are persistent, bioaccumulative, and do



not break down easily, increasing the risk of exposure and making it more challenging to

remove them from the environment.

Environmental Protection Agency (EPA) uses the Unregulated Contaminant
Monitoring Rule (UCMR) to assess the presence of contaminants that do not have health-
based standards under the Safe Drinking Water Act (SDWA). Every five years, the EPA
identifies 30 potentially harmful but unregulated contaminants under the UCMR program and
tests all large Public Water Systems (PWSs) that serve more than ten thousand people, as well
as a subsample of smaller facilities. In the UCMR3 program, the EPA tested six per- and
polyfluoroalkyl substances (PFAS): perfluorooctanesulfonic acid (PFOS), perfluorooctanoic
acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHXxS),
perfluoroheptanoic acid (PFHpA), and perfluorobutanesulfonic acid (PFBS) in 2014-2016.
Water samples were collected at the entry points to the distribution system by PWS operators
and sent to an EPA-approved lab to test for the presence of each PFAS (EPA, 2012; EPA,

2017).

PWSs deliver drinking water to 95% of the US population (EPA, 2023a) and the
UCMR3 program tested PWSs that serve 75% of the US population (EPA, 2016). UCMR3
tested 4,120 large PWSs that serve more than 10,000 consumers and randomly selected 800
representative small PWSs that serve 10,000 or fewer consumers in USA and its territories
(EPA, 2017). Cumulatively, this sample represents 79% of the U.S. PWS consumer base.
Many PWSs have more than one water supply facility, and UCMRS3 tested all 15,195 facilities

within the selected PWSs in the USA and its territories.



The EPA established minimum reporting levels (MRLs) for various types of PFAS,
ranging from 10 to 90 ng/L (EPA, 2017)2. PFAS detection below the MRL is not reported to
the EPA and is considered a "no detection™. Total of 1152 detections were reported from 33
US states and three territories. PFBS (n=19) and PFNA (n=19), which is a replacement
chemical for PFOS, only accounted for 3% (n=38) of the cases, while PFOA (n=379) and
PFOS (n=292) accounted for 58% (n=671) of detections. PFHpA (n=236) and PFHxS
(n=207) accounted for the remaining 39% (EPA, 2017). Although the recent Health Advisory
(HA) by the EPA (EPA, 2022) included PFOA, PFAS, PFBS, and GenX
(Hexafluoropropylene Oxide Dimer Acid and its Ammonium Salt), UCMR3 did not have

enough positive data on PFBS and did not collect any data on GenX in UCMR3.

Several studies have utilized the UCMR3 PFAS data (Cadwallader et al. 2022;
Andrews & Naidenko, 2020; Guelfo & Adamson, 2018; Hu et al., 2016). Hu et al. (2016) and
Andrews and Naidenko (2020) estimated the population exposed to PFAS. Hu et al. (2016)
estimated 16.5 million people are exposed to PFAS via drinking water. Andrews and
Naidenko (2020) used UCMR3 and state level data from Colorado, Kentucky, Michigan, New
Hampshire, New Jersey, North Carolina and Rhode Island. Their state level data had lower
MRL than UCMR data, which enabled them to augment the population exposure estimates
from UCMR. They also included private wells contamination data from Michigan and New
Jersey. Extrapolating their findings from the states in their sample to all states in the US, they
estimated the exposure rate of between 18 and 80 million people if the MRL was 10 ng/L and

higher, and over 200 million if the MRL was at or above 1 ng/L. These estimates are

2The MRLs are 10 ng/L for PFHpA, 20 ng/L for PFOA and PFNA, 30 ng/L for PFHXxS, 40
ng/L for PFQOS, and 90 ng/L for PFBS.



significantly higher than the estimates based on UCMR3 data. Their study did not explore the

relationship between contamination and community characteristics.

Guelfo & Adamson (2018) used the UCMR3 data and investigated the co-occurrence
of different types of PFAS and relationship between PWS characteristics and contamination.
They found six co-occurring PFAS pairs (PFOS/PFOA, PFOS/PFHXS, PFOS/PFHpA,
PFOA/PFHXS, PFOA/PFHpA, and PFBS/PFHpA). PFHpA, PFOA, and PFNA were
dominant in surface water whereas PFOS, PFHxS, and PFBS were dominant in groundwater.
Large PWSs were more vulnerable to contamination than small ones. However, it is important
to note that this study was limited only to the UCMR3 data and did not include other variables
that may have an impact on contamination. To address this limitation, we expand on this
study by including different socioeconomic and industrial variables from various data sources.
This gives us a more comprehensive view of the factors that may contribute to PFAS

contamination in drinking water.

Some of the potential sources of PFAS contamination in UCMR3 data are examined in
Hu et al. (2016). Using 8-digit HUC (Hydrologic Unit Code) level data, they examined the
spatial correlation between presence of Major industrial site, MFTAs (Military Fire Training
Area), AFFF (Aqueous Film Forming Foam) use certified airports, Wastewater Treatment
Plants (WWTPs) and concentration of PFOA, PFAS, PFHpA, and PFHXS in the PWSs. They
found that military fire training sites (MFTAS) were strong predictors of PFOS and PFHXS,
and wastewater treatment plants (WWTPs) predicted a modest increase in PFOA, PFOS, and
PFHXS concentrations. However, none of the factors they examined predicted PFHpA

concentration. Their spatial autocorrelation analysis only included 16 industrial sites in the



USA that participated in the EPA’s 2010/2015 PFOA Stewardship program. Hence, the
industrial contribution to PFAS contamination is examined using a limited set of industrial
sites that participated in the PFOA stewardship. We contribute by examining the association
with broader industrial categories using county scale GDP proportions. We also extend Hu et

al. (2016) analysis by identifying contamination hotspots.

Cadwallader et al. (2022) assessed the impact of limitations in UCMR3 data, including
the MRL and limited inclusion of small PWS. Using UCMR3 and state-level PFAS test data
from 17 states with lower MRLs requirement, they found that for most PFAS except PFHXS
and PFHpA, incomplete representation of small PWSs and higher MRL in UCMR3 had no

impact on contamination predictions-

We contribute to previous literature with an examination of the relationship between
PFAS contamination and PWS characteristics, socioeconomic factors, and regional industrial
composition. Using publicly available data from UCMR3, Bureau of Labor Statistics (BLS),
and American Community Survey (ACS) 5-year estimate, we identify geographic
contamination hotspots and socioeconomic and industrial characteristics that are correlated

with PFAS detection.

Data

County data on population, non-white population, per capita income, poverty, and
housing density were collected from the American Community Survey 5-year estimates (US

Census Bureau (USCBS), 2023). Poverty percentage is the share of poor? relative to total

3 A household is deemed poor if income, adjusted by family size, falls below the threshold set by the US Census
Bureau (Creamer et al., 2022). For instance, if a household consists of one person under 65 years of age and their
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people in the county. Non-white population is the difference between county total population
and Caucasian (white) population. Number of non-white poor individuals is estimated by
subtracting the number of white poor individuals from the total number of poor individuals.
Finally, non-white poverty rate is the share of non-white poor individuals relative to total non-
white population in the county. On an average there are 23% non-white people in the county
which ranges from 1% to 84%. Overall poverty is 16% (4 — 44%), with 13% (3 to 39%) for

white population and 24% (0 — 66%) in for nonwhite population (Table 1).

The county Gross Domestic Product (GDP) and shares of GDP from Agriculture,
Forestry, Fishing and Hunting; non-durable and durable goods manufacturing; Health Care
and Social Assistance; Accommodation and Food Services; and government enterprise were
obtained from the U.S. Bureau of Labor Statistics (BLS). Sectoral contribution (in the
percentage) is calculated by dividing the total GDP from the selected sectors by total GDP of
the county. On an average Government enterprise has a highest contribution to the county
GDP (14%) followed by health care (8%) durable good manufacturing (7%), non-durable

good manufacturing (6%), food and accommodation (3%), and agriculture (2%) (Table 1).

National PFAS contamination data was retrieved from the US EPA's National
Contaminant Occurrence Database (NCOD), which was collected by the UCMR3 program
from 2013 to 2016. UCMR3 is considered the most comprehensive national data source on
PFAS contamination in Public Water Systems (PWS). Our study focuses on the 48 lower US

states, excluding Washington DC. In the lower USA total of 35,589 water samples were

annual income is less than $14,097, then they are considered below the poverty line. However, if the household
consists of three people, the threshold increases to $21,559, and this threshold gradually rises as the number of
individuals in the household increases.



collected from 1,616 counties, 4,782 PWSs, and 14,607 water supply facilities at the entry
point to the distribution system. The selected PWSs were tested quarterly or bi-annually for a
year based on their intake water source (EPA, 2016). PWSs that rely on Ground Water (GW)
were sampled twice, with a 5- or 7-month interval, while those that use Surface Water (SW),
Mixed Water (MX), or Mixed but dominated by Ground Water (GU) were sampled four
times, once in each consecutive quarter. Multiple water supply facilities may be present at
each PWS, and water samples were collected from each facility as described above. The
collected samples were analyzed at an EPA-approved laboratory. UCMRS3 database includes
detailed information on the PWSs' characteristics, including county, zip code, PWS ID/name,
Water Supply Facility ID/name, PWS size, water source, sample point name, sample 1D,

sampling date, and analytical results for six types of PFAS.

In the lower USA, out of the six PFAS tested, at least one PFAS is detected in 33
states (68.7%), 121 counties (7.49%), 193 PWS (4.04%), and 345 PWS-Facilities (2.36%).
Overall, 1107 water samples were found to be contaminated with PFAS which is 0.52% of
total sample tested (Figure 1). The highest frequency of contamination was observed for
PFOA (n = 377) followed by PFOS (n = 275), PFHpA (n = 228), PFHXS (n = 191), PFNA (n
=19), and PFBS (n = 17). PFOA, PFOS, PFHpA, PFHpX, PFNA and PFBS were detected in
27, 24,22, 22, 4 and 7 states, respectively affecting around 16 million people in total (5.07%
of the contiguous US population). Add The detailed summary statistics of different PFAS

detected in the lower USA are presented in Appendix Table Al.

PFAS contamination seems to depend on water sources (Figure 1). Each Public Water

Systems (PWS) can have multiple water supply facilities, each with separate water sources. In
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the lower USA, there are 14,706 water supply facilities and 4,782 PWS. Of these facilities,
according to UCMRS3 data, 22% rely on surface water (SW), 75.8% on groundwater (GW),
1.4% on mixed water (MX), and 0.8% on mixed water dominated by groundwater (GU). The
UCMR3 data show that PFOA, PFOS, PFHXS, and PFNA contamination is higher if the
water source includes groundwater (i.e., GW, MX, or GU) (Figure 1 and Appendix Table

A2), which is consistent with Guelfo and Adamson (2018) and Hu et al (2016) findings.

PFAS contamination differs depending on the size of PWSs (Figure 2). The larger
PWSs, which serve more than 10,000 people, are more likely to be contaminated than smaller
PWSs. Specifically, 4.7% of large PWSs showed contamination with at least one PFAS, as
opposed to the 0.8% of small PWSs (Appendix Table A 2). These findings corroborate the
results obtained by Guelfo and Adamson (2018) and underscore the importance of PWS size

in assessing the vulnerability to PFAS contamination.
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Figure 1: Contaminated samples by water source
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Figure 2: Proportion of the contaminated large and small PWSs
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Table 1: Description and summary statistics of the variable used in the regression analysis.

Water System Level variables Description Mean SD Min Max
Dependent Variable
Concentration of Contaminants, measured in mug/L
PFBS | Perfluorobutane sulfonic acid 0.0001 0.0044 0 0.3700
PFHpA | Perfluoroheptanoic acid 0.0001 0.0022 0 0.0869
PFHxS | Perfluorohexanesulfonic acid 0.0007 0.0137 0 0.7300
PENA | Perfluorononanoic acid 0.0000 0.0009 0 0.0559
PFOA | Perfluorooctanoic acid 0.0004 0.0058 0 0.3490
PFOS | Perfluorooctanesulfonic acid 0.0010 0.0209 0 1.8000
PFAS | Sum of concentration of all above six PFAS tested 0.0024 0.0381 0 2.7000
Indicator dependent variables
PFBS | Dummy variable=1, if water system has PFBS in at least one sample 0.0005 0.0219 0 1
PFHpA | Dummy variable=1, if water system has PFHpA in at least one sample 0.0064 0.0798 0 1
PFHxS | Dummy variable=1, if water system has PFHXS in at least one sample 0.0054 0.0731 0 1
PENA | Dummy variable=1, if water system has PENA in at least one sample 0.0005 0.0231 0 1
PFOA | Dummy variable=1, if water system has PFOA in at least one sample 0.0106 0.1024 0 1
PFOS | Dummy variable=1, if water system has PFOS in at least one sample 0.0077 0.0876 0 1
PFAS | Dummy variable=1, if water system has PFNA in at least one sample 0.0162 0.1264 0 1
Independent Indicator Variables
PWS Characteristics
PWS size: Small | Dummy variable=1, if water system has less than or equal to 10000 consumer 0.0894 0.2853 0 1
Water Source: Surface | Dummy variable=1, if water source to the water system is surface water 0.3549 0.4785 0 1
Water Source: Mixed | Dummy variable=1, if water source to the water system is mixed water 0.0226 0.1488 0 1
Water Source: Mixed but dominated | Dummy variable=1, if water source to the water system is mixed but is 0.0121 0.1095 0 1
by Ground | dominated by ground water
Population Total people in the county in which PWS is located 970036.9 | 1786044.0 1966 10100000.0
Non-White Population percentage %age of other than White people in the county 23.5673 13.8934 | 0.983753 83.6226
Total Poverty (%) %age of the poor people out of the total people sampled 15.4980 5.8766 3.629071 43.9371
White Poverty %age of Poor white people out of total white sampled 12.9859 5.2090 2.9086 39.3748
Non-white Poverty %age of Poor non-white people out of total non-white sampled 23.5673 13.8934 0.9838 83.6226
Housing density Number of housing unit per square mile 286.4846 392.1819 0.5 4832.06
Contribution (%) to the GDP from
Agriculture 2.2385 5.1479 0 51.6102
Durable goods manufacturing 7.1686 6.4819 0 56.7367
Non-durable good manufacture 5.9150 6.8593 0 94.5604
Healthcare and social assistance 7.7165 3.3096 0 41.9700
Food and accommodation 2.8936 1.8789 0.000 33.5084
Government enterprise 14.0270 7.7341 1.115 75.3341
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To provide a visual representation of PFAS spatial distribution, we show cumulative

county scale contamination across six PFAS per PWS in Figure 3. We divided the aggregate

number of positive samples in each county by the number of PWS in each county. Next, we
used the Jenks natural breaks classification method (Jenks, 1967) to classify counties into

groups based on contamination per PWS and county. Figure 3 shows that PFAS

contaminations are more prevalent in Eastern than in western US counties. Some of the most

contaminated counties per PWS are in Colorado, Alabama, Georgia, Delaware, New Jersey,
and North Carolina. Appendix Figure Al shows contamination per PWS in each county for

PFOA, PFOS, PFHpA, and PFHXS individually.

# PFAS Contamination per PWS in the County :
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Figure 3. Number of PFAS contaminated water samples per PWS and-ckounty.
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Methods

Hot Spot analysis

Spatial autocorrelation analysis is used to identify county-scale hot spots for PFOA,
PFOS, PFHpA, PFHXS individually and all PFAS cumulatively (Kondo et al., 2016; Ord and
Getis, 1995; Getis and Ord, 1992). This analysis is not provided for PFBS and PFNA because
of limited number of positive samples. Getis-Ord (G; (d)) z- statistic is used to identify the
spatial clusters. The intuition of this method is that a county is in a statistically significant hot
spot if it has higher contamination and is surrounded by other contaminated counties. Higher
z-values indicate more intense clustering. Counties with z-value at or above 2.58 and 1.96 are
in hot spots at 1%, and 5% level of significance, respectively. Following Getis and Ord
(1992) and Ord and Getis (1995) the Getis-Ord G; (d) statistic (z-value) for PFAS

contamination per PWS in county i is estimated as

G (d) = 2 wij ()x; — Wi'x 7 e (1)
s(D) {[nS;; — W;?]/(n — 1)}

where, x; is number of contaminated samples per PWS in the county i, n is the number of
counties, and w;;(d) is the symmetric one/zero spatial weight matrix with ones for all links

defined as being within the distance of given i; all other links are zero. d is the threshold

distance between county i and j. w;;(d) is 1 if bilateral distance between county i and county j

d;; is less than the threshold distance d and 0 otherwise. We use d=146.2 km threshold
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distance following Allaire et al. (2018), such that each county has at least one neighbor. Other

term in the equation (1) is defined as;

Where, ¥ ; x; is summation of all x; within d of i.

§2(i) = % (8

Win—-1-w) [s@®]
(m—-12mn-2)" |x@)]

Var(G;) = (5)

For the details of G; (d) derivation, please see Getis and Ord (1992) and Ord and Getis

(1995).
Regression analysis

We examine the relationship between drinking water PFAS contamination and various
physical, socioeconomic, and industrial characteristics of PWS and surrounding communities
using Probit and Tobit models. The UCMRS3 dataset limitation is the non-reporting of results
below the Minimum Reporting Level (MRL) (Cadwallader et al., 2022). Test results below
the MRL are reported as zero, which implies data censoring. None of the earlier studies
considered this censoring in previous statistical analysis. Therefore, extending prior literature,

we use a Tobit limited dependent variable model to deal with the censoring limitation of

16



UCMRS3 PFAS data* (Sigelman & Zeng, 1999; Greene, 2018).

The left-censored Tobit Model (Carson & Sun, 2007; Cameron & Trivedi, 2005;

Sigelman & Zeng, 1999) is formulated as follows:
Vit = Bo+ +B1Cuit + B Emic + Xi + Sy + Tp + pys

where, y;; is the latent variable for concentration of PFAS in the county i (i= 1..n) and
year t, (X; is the vector of PWS characteristics of county i, Cy;; is the nt*j matrix of
socioeconomic characteristics j (j = population, nonwhite population, poverty, nonwhite
poverty, and housing density) for county i in year t, and B, is the vector of coefficient of
socioeconomic characteristics. Ey;; is the nt*k matrix of share of county GDP from k sectors
(k = Agriculture, forestry and fisheries; durable goods manufacturing, on durable goods
manufacturing; health care and social assistance; food and accommodation; government
enterprise) and f,, is the vector of coefficient of all sectors that contribute to the county GDP.
Indicator variables - state dummies (S;), and year dummies (T;), were included to account for

state year invariant factors. Population and housing density data are log transformed.

Since our data is left censored,

o {)’i*t if yie> MRL}
Y =V Lif  y;, < MRL

where, MRL is a nonstochastic constant and y;" is missing when it is less than MRL.

4 Ordinary Least Squares (OLS) regression produces biased results in the presence of data censoring. Therefore,
we do not present the OLS results but have those, along with Heckman two step model results, available upon
request.
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We also use Probit regression to examine contamination vulnerability (likelihood of

contamination) as follows.
Pr (yir = 1|X) = ®(Bo + +B1Cui¢ + Bm Emic + Xi + Su + Tp)

where, Pr(y;, = 1|X) is the probability of observing a PFAS-positive sample for i PWS in

year t and @ is a cumulative density function of normal distribution.
Results
Hot Spot of Contamination

We identified four PFAS contamination hot spots (Figure 3). We also identified hot
spots of PFOA, PFOS, PFHpA, and PFHXS contaminations individually (Appendix Figure
A2). A list of states and counties in Hot spots along with the z-scores are reported in the

Appendix Tables A3 -A7.

Four prominent PFAS hotspots encompassing 10 states and 149 counties have been
identified (Figure 4). The largest hotspot spans across Alabama, Georgia, and Tennessee,
encompassing 31 counties in Georgia, 18 counties in Alabama, and 17 counties in Tennessee.
The second largest hotspot resides in the Northeast USA, with 20 counties in New Jersey, 14
counties in Pennsylvania, 10 counties in New York, and 2 counties each in Delaware and
Connecticut. The third largest hotspot is situated on the border of North and South Carolina,
comprising 25 counties in North Carolina and 2 counties in South Carolina. The smallest

hotspot is in 10 counties in Colorado.
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Hotspots exhibit either prevalence of PFAS manufacturing plants or PFAS industrial
use sites, or densely populated sites or combination of them. For instance, the hotspot
extending to the northeast states (NY, DE, NJ, PA, and CT) is predominantly situated in a
densely populated region which indicates the contamination related to consumption of PFAS
containing goods and its leakage to the water bodies. The Colorado hotspot includes highly
populated counties which also have international and regional airports, along with defense and

space infrastructure.

The hotspot in Georgia, Tennessee, and Alabama can be attributed to PFAS
production and industrial use in this area and the subsequent leakage of PFAS into waterbody
there, thereby contaminating the PWSs reliant on this water system (AP NEWS, 2019; de
Amorim et al., 2019). Notably, de Amorim et al. (2019) highlight the carpet industry in
Georgia as a major source of PFAS contamination in drinking water. The PFAS chemicals
used during carpet production have been found to leach into water sources, resulting in the
contamination of the drinking water supply. Furthermore, a striking example of PFAS
contamination is evident in the Tennessee River, which subsequently led to the contamination
of downstream drinking water in Alabama. A PFAS-producing plant in close proximity to the
river was the source of this pollution and pay $98 million to compensate the damage it causes
(AP NEWS, 2019). These cases emphasize the role of PFAS production and use activity in
creating the contamination hotspot in this area. Similarly, the hotspot in the North and South
Carolina can be linked to industrial production and the presence of a substantial consumer

base in major cities.
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Overall, these hotspots highlight the complex interplay between industrial activities,
consumer sites, and population centers, underscoring the geographical concentration of PFAS

contamination in specific regions.

B

Figure 3. Hot spots of PFAS contamination. Legend intervals in the map represent significant
PFAS contamination hot spots based on z-values obtained from standardized Getis Ord
statistics. Counties with z-values ranging between 1.96 (-1.96) to 2.576 (-2.56) indicate hot
spots (cold spots) at a 5% significance level, while z-values of 2.576 (-2.576) and higher

(lower) signify hot spots with even greater significance at 1% level.
Regression results

The combined PFAS results from the Left Censored Tobit and Probit models are
presented in table 2. The corresponding PFOA, PFOS, PFHpA, and PFHXS results are
provided in the appendix Table A8 -A10. Tobit model shows correlations between cumulative
PFAS at PWS scale and the corresponding independent variables, while the Probit model

considers the likelihood of a PWS showing a positive PFAS sample. The results show that the
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Tobit model provides a better model fit than Probit based on Akaike’s Information Criteria
(AIC) and Bayesian Information Criteria (BIC) values. However, we present both sets of

results because they provide qualitatively similar but technically different interpretations.

PFAS contamination and PWS characteristics

PFAS contamination is less likely in small PWSs. On average, small PWSs have 0.145
ng/L (0.000145ug/L*1000 = 0.145 ng/L) less PFAS than large PWSs. This result is consistent
with previous PFAS studies (Hu et al., 2016; Guelfo & Adamson,2018). The result is also
consistent with Rahman et al. (2010) who found more SDWA regulated contaminant
violations by large PWSs than by small ones in Arizona. However, many other studies on
SWDA regulated contaminant violations found small PWSs to have more violations (Allaire

et al., 2018; Michielssen et al., 2020; Acquah & Allaire, 2023; Anica and Elbakidze, 2023).

PWSs that rely on surface water sources are less likely to experience PFAS
contamination compared to those that depend on ground water. PWSs that use surface water
have 0.163 ng/L less PFAS concentration compared to the PFAS that uses GW. This finding
is in line with PFAS contamination study by Guelfo and Adamson (2018) but contradicts the
SDWA regulated contamination study (Allaire et al., 2018). Hence, surface water may pose
greater risk for some of the SDWA regulated contaminants, while groundwater may pose

greater risk in terms of PFAS contaminants.

The discrepancy in concentrations between SDWA-regulated contaminants and PFAS
in groundwater sheds light on the contrasting behaviors exhibited during the percolation
process. The diminished levels of SDWA-regulated contaminants in the ground water as

compared to the surface water suggest that they undergo effective filtration through natural
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processes as they journey through the Earth's surface and reach the aquifer. This natural
filtration mechanism acts as a safeguard, reducing the risk associated with these contaminants.
However, in stark contrast, the absence of such filtration becomes apparent when considering
PFAS. The substantial presence of PFAS in groundwater is a clear indication that these
persistent compounds resist degradation through natural processes. Instead, they persist and
accumulate wherever they settle, posing an ongoing concern for the quality and safety of

groundwater resources.

Contamination and Socioeconomic Characteristics

PFAS contamination is more likely in PWSs located in populous and densely housed
areas. For every 1% increase in population, PFAS concentration increases by 0.00057 ng/L
(0.00005740ug/L*1000 = 0.0574 ng/L. Since independent variable population is in log,
0.0574/100 = 0.00057 ng/L per 1% increase in population). Similarly, PFAS increases by
0.00085 ng/L for every 1% increase in housing density. The positive effect of population and
housing density may be associated to greater consumption of goods that contain PFAS. PFAS
from goods such as detergents, cleaning agents, clothes, and others wind up in sewage system
and eventually drain into water bodies that serve as sources for PWSs. Since PWSs and
wastewater treatment systems lack the capacity to filter PFAS, PWSs in areas with greater

population and housing density can experience elevated levels of PFAS.

PFAS contamination is a negatively correlated with non-white populations.
Specifically, we find that for every 1% increase in non-white population and poverty, the
concentration of PFAS decreases by 0.0063 ng/L (it is 0.2507 n/L in probit estimation). The

overall poverty and poverty of disadvantaged community (non-white) has no impact on PFAS
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concentration. These findings are opposite from what is observed in the case of SDWA
regulated contaminants (Allaire et al., 2018; McDonalds and Johns, 2018). In SDWA
regulated contamination studies, greater numbers of violations are observed in disadvantaged
communities and in areas with higher poverty. PWSs in disadvantaged communities have
limited access to financial and other resources, resulting in poorer infrastructure and
maintenance, which leads to water quality violations (Elbakidze and Beeson 2021). In the
case of PFAS contamination, however, lack of financial resources does not seem to be
associated with contamination. One reason for this result may be that no PFAS filtration
technology exists to remove these compounds from drinking water. Therefore, affordability
does not play a role. Instead, PFAS in drinking water seems to be correlated with some of the
characteristics of the surrounding community. Wealthier communities have higher purchasing
power and consume more goods, including those that contain PFAS, which can lead to greater
PFAS leaching into water bodies that serve as sources for local PWSs. Conversely,
disadvantaged communities have lower purchasing power, consume fewer goods, and

generate less PFAS leaching into local water bodies.

Contamination and Industrial composition

PWSs situated in areas where agriculture, forestry, and fishery sectors are significant
components of the local economy are less prone to contamination. A 1% increase in the share
of agriculture, forestry, and fishery in the county GDP results in a 0.01 ng/L decline in PFAS
concentration. This trend prevails notably in rural regions of the United States, where
agriculture holds a prominent economic position (USDA, 2022). There is no evidence of

PFAS use of in agricultural production. The occurrence of PFAS contamination through
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agriculture arises solely when municipal biosolids are employed as fertilizer, and such cases
are infrequently reported within the country (MCDCP (Maine Department of Agriculture,
Conservation and Forestry), 2023; Kim Lazcano et al., 2020 Choi et al., 2019). Moreover, the
lower demand for consumer products in sparsely populated agriculturally dominant rural areas
reinforces the validity of these findings. Consequently, the relative risk of PFAS

contamination in PWSs within agriculturally driven communities remains low

The correlation between county GDP from non-durable goods manufacturing industry
and PFAS contamination in local PWSs is positive and statistically significant. A1% increase
in the share of GDP from non-durable goods manufacturing leads to a 0.01 ng/L increase in
drinking water PFAS concentration. Non-durable goods, which have an average life of less
than three years, include a wide range of products such as textiles, food packaging material,
carpet, clothing, cosmetics, hygiene products and more. The manufacturing of these goods
often involves the use of various PFAS compounds (EPA, 2023b), which may explain the
positive correlation between elevated contamination and the prominence of non-durable

goods manufacturing industry in the local economy.

The healthcare and social assistance industry exhibits a notable positive correlation
with PFAS contamination. With each 1% increase in the healthcare and social assistance
industry's share of the county GDP, there is a corresponding 0.01 ng/L increase in PFAS
concentration. Numerous products utilized in hospitals and healthcare facilities, including
MRI imaging, ultrasound, positron emission tomography (PET), cell abnormality tests,

medicines, surgical gowns, drapes, flooring, and walls, contain PFAS (3M, 2019).

Ensuring a contaminant-free environment is crucial in hospitals and care facilities to
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prevent infections, necessitating specific cleaning protocols. PFAS are incorporated into the
construction of these establishments and product manufacturing (e.g. surgical gown) due to
their resistance to heat, water, and chemical degradation which facilitate rigorous cleaning
procedures. Moreover, PFAS are commonly employed in medical implants and devices such
as vascular grafts, surgical meshes, catheter tubes, filters, needle retrieval systems,
tracheostomies, inhalers, catheter guide wires, and imaging products (Gaines, 2022). The
consistent positive correlation between PFAS concentration and the proportion of the health
sector in the local economy suggests that the healthcare industry serves as a significant user

and emitter of PFAS into the environment.

We observe that PFAS contamination is more likely for PWSs located in counties with
greater role of government enterprises in the local economy. For every 1% increase in the
government enterprises’ share of county GDP PFAS concentration increases by 0.0073 ng/L
PFAS. Government enterprises such as military, firefighting, and government-operated
airports have been found to use firefighting foams and heat-resistant equipment that contain
PFAS (Hu et al., 2016). Additionally, federal and state-owned or partnered hospitals also use
PFAS-containing products, which could contribute to the elevated levels of PFAS in the

surrounding environment.

25



Table 2: PWS characteristics and socioeconomic factors affecting the overall PFAS contamination in the USA.

Model
Tobit Probit
Marginal effect | Marginal effect Likelihood Marginal
) for Censored effect
Sample (y)
PWS size (1=small, 0= large) -0.203*** -0.00014550*** | -0.513*** | -0.0070471***
(0.0508) (0.00002710) (0.120) (0.000989)
Water source (Surface water =1) -0.131%*** -0.00016320*** -0.272*** | -0.0060083***
(0.0208) (0.00003360) (0.0468) (0.0010733)
Water source (Mixed=1) -0.0452 -0.00005630 -0.0736 -0.0016275
(0.0560) (0.00007000) (0.127) (0.002817)
Water source (Mix but dominated by 0.0792 0.00009870 0.259* 0.0057402**
Ground water =1) (0.0614) (0.00007750) (0.139) (0.0030902)
Population (log) 0.0461*** 0.00005740*** 0.0776** 0.0017164**
(0.0145) (0.00001930) (0.0331) (0.0007303)
Non-White population (%) -0.00503*** -0.00000626*** | -0.0113*** | -0.0002507***
(0.00118) (0.00000168) (0.00267) (0.0000596)
Poverty (%) -0.00515 -0.00000642 -0.0118 -0.0002619
(0.00434) (0.00000545) (0.00993) (0.0002196)
Nonwhite Poverty (%) 0.00213 0.00000265 0.00666 0.0001473
(0.00227) (0.00000283) (0.00523) (0.0001157)
Log Housing density (house/sq mil) 0.0679*** 0.00008460*** 0.182*** 0.0040218***
(0.0150) (0.00002150) (0.0339) (0.0007697)
Percentage Contribution to the GDP from
Agriculture -0.00882** -0.00001100** -0.0224** -0.0004947**
(0.00405) (0.00000512) (0.00934) (0.0002042)
Durable goods manufacturing -0.00592*** -0.00000737** | -0.0150*** | -0.0003328***
(0.00227) (0.00000298) (0.00518) (0.0001142)
Non-durable good manufacture 0.0105*** 0.00001300*** 0.0237*** 0.0005242***
(0.00161) (0.00000249) (0.00359) (0.0000789)
Healthcare and social assistance 0.00820*** 0.00001020** 0.0158** 0.0003494
(0.00308) (0.00000403) (0.00717) (0.0001585)
Food and accommodation 0.00628 0.00000783 0.0125 0.0002766
(0.00433) (0.00000546) (0.00999) (0.0002204)
Government enterprise 0.00592*** 0.00000738*** 0.0116*** 0.0002577
(0.00134) (0.00000188) (0.00312) (0.0000694)
Constant -1.569*** -3.312%**
(0.181) (0.400)
Sigma 4345775
.0151659
Observations 35,589 30,777
Log likelihood -1995.8965 -2464.5555
LR chi2(44) 997.68 811.01

Standard errors in parentheses

**% p<0.01, ** p<0.05, * p<0.1
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Discussion

Understanding the socio-economic and industrial factors associated with PFAS
contamination in PWS is critical for developing effective mitigation strategies. Hot spot
analysis identifying regional clusters of contamination helps pinpoint vulnerable communities
and prioritize mitigation efforts to contain and eliminate PFAS from the water system. In this
study, intense hot spots of PFOA, PFOS, and overall PFAS have been identified in the
southeastern US, including - Alabama, Georgia, and North Carolina; western US in Colorado;

and northeast US, including New Jersey, New York, and Massachusetts.

The finding that large PWSs have more PFAS is consistent with the results of previous
PFAS studies (Hu et al., 2016; Guelfo & Adamson, 2018). This result differs from non-PFAS-
SWDA regulated contaminant literature. Allaire et al. (2018) found that the majority of
violations were occurring in small PWS which is also supported by many other studies

including Switzer and Teodoro (2018), Michielssen et al. (2020), and Smith et al. (2023).

We find that PWSs that rely on groundwater intake experience greater PFAS
contamination. This result is consistent with all PWS-PFAS contamination studies. The
inferiority of groundwater in terms of PFAS contamination is in stark difference relative to
the SWDA-regulated contaminants. Allaire et al. (2018), for instance, found that violations of
water quality regulations were significantly higher for PWSs that rely on surface water. The
rationale is that groundwater goes through natural filtration processes before being pumped
for treatment and delivery as drinking water. However, since PFAS do not biodegrade and are
much more persistent (Cousins et al., 2020; Saez et al., 2008), the groundwater filtration

processes may not be effective in removing these compounds. Furthermore, since PFAS can
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bioaccumulate, groundwater can actually contain more PFAS than free flowing surface water.
Hence, particular focus on aquifers may be justified in terms of remediating PFAS in drinking

water.

PFAS concentration is greater in PWSs that are located in more densely populated
counties. This result is likely due to the greater consumption of PFAS-containing goods in
densely populated regions (Glige et al., 2020). PFAS can leach from everyday products like
detergents, cleaning agents, and clothing, ultimately making their way into the wastewater
treatment system and contaminating water sources (Stoiber et al., 2020). Since drinking water
treatment facilities lack the capability to remove PFAS from drinking water, more PFAS
contaminated intake implies more PFAS in drinking water. Hence, unless appropriate
technology is developed and deployed to remove PFAS from drinking water, remedying

drinking water PFAS will require addressing PFAS leakage from consumer goods.

In general, larger PWS in wealthier counties have a higher credit rating and better
financial and technical capabilities (Anica and Elbakidze 2023; EPA, 2001). However, we do
not observe a significant relationship between PFAS contamination and poverty. We also do
not find a statistically significant effect of nonwhite poverty in contrast to Beeson and
Elbakidze (2021) who find that SDWA violations are more common in communities with
poor nonwhite residents and other studies that document disproportionate SDWA violations in
disadvantaged communities with, which often lack access to policymaking processes or
federal and state funding (Allaire, Wu, and Lall, 2018; McDonalds and Johns, 2018; EPA,
2001). These limitations put minority communities at greater risk of contamination as they

have limited access to necessary technology or funding for proper water treatment. Our results
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show that limited access to resources and lack of representation in decision-making are not
the primary reasons for PFAS contamination. Instead, our results actually show that non-
white communities experience statistically less PFAS in drinking water than their white
counterparts. These results support our previous interpretation that the PFAS in drinking
water does not depend on community wealth or representation in government environmental
initiatives because no technology is currently available to remove PFAS from drinking water.
Instead, drinking water PFAS contamination seems to depend on population and housing
density. Greater population implies greater consumption of consumer goods that contain
PFAS, which can leak into local waterways. If PWSs source water from contaminated
waterbodies and are unable to remove PFAS from water, then areas with greater populations

will experience greater PFAS in drinking water.

PFAS in drinking water also depends on the surrounding area’s industrial
composition. The observed negative correlation between PFAS in drinking water and the
agriculture, forestry, and fishery sector may be due to the limited or no use of PFAS-
containing production inputs in these industries. Counties where these industries represent a
significant share of local economy also tend to be rural with lower population densities
(USDA, 2022) and lower demand for goods that contribute to PFAS in waterways. On the
other hand, significantly higher concentration of PFAS is observed in counties with non-
durable goods manufacturing industry. Non-durable goods, which have an average life of less
than three years, include a wide range of products including textiles, shoes, food packaging
material, carpet, clothing, cosmetics, hygiene, and more (BEA, 2023; EPA, 2023b). The

nondurable goods manufacturing often involves the use of various PFAS compounds (EPA,
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2023c), which may explain the observed positive correlation between PFAS contamination

the non-durable goods manufacturing.

The healthcare and social assistance industry is also positively associated with PFAS
contamination. Many hospital/health care products such as surgical gowns, drapes, flooring,
and walls, contain PFAS. PFAS are also commonly used in medical implants and devices
such as vascular grafts, surgical meshes, catheter tubes etc. to enhance longevity (Gaines,
2022). As a result, the health industry may be a significant source of PFAS in local
waterbodies. We also observe a positive correlation between PFAS and government
enterprises including military, firefighting, and government-operated airports. These
government operations often use fire-retardants that contain significant quantities of PFAS.
This finding is consistent with Hu et al. (2016) how detect higher PFAS levels in areas

surrounding AFFF-certified airports and military bases.

Conclusion

We examine PFAS geographical distribution across the US PWSs, document several
regional hotspots, and investigate potential communities and PWS attributes that may be
correlated with elevated PFAS in drinking water. Major findings are that large PWSs that are
located in densely populated areas and rely on groundwater as intake source have greater
PFAS concentrations. Drinking water PFAS contamination is also correlated with non-durable
goods manufacturing, healthcare and social assistance, and government enterprises.
Conversely, we find lower PFAS contamination in communities with more non-white

populations and in areas with larger agricultural industry.
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Cumulatively, these results suggest a strong association between PFAS contamination
and some industrial activities and consumption. Hence, drinking water PFAS contamination is
a negative externality of production as well as consumption. Densely populated areas
consume greater quantities of goods like textiles, detergents, personal care products, paints,
and food packaging materials that contain PFAS. Inadequate post consumption handling,
disposal, and recycling methods and facilities may be contributing to PFAS contamination in

these regions.

Hence, our results suggest that future PFAS mitigation efforts ought to pay particular
attention to not only industrial production activities but also to consumption as a source of
PFAS. Until appropriate technologies are developed to remove PFAS from drinking water,

policies and programs may be needed to address PFAS leakage from consumption.
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Table Al: PFAS in the US PWS

APPENDIX

Total Detected
Sampled | PFBS | PFHpA | PFHxS | PFNA PFOA PFOS At least
(n) one
PFAS
States (n) 48 4(8.33) | 22(45.83) | 22(45.83) | 7(14.58) | 27(56.25) | 24(50.0) | 33(68.75)
Counties 1616 7(0.43) | 61(3.77) | 43(2.66) | 12(0.74) | 78(4.83) | 60(3.71) | 121(7.49)
(n)
PWSs (n) 4782 7(0.15) | 82(1.71) | 52(1.09) | 14(0.29) | 116(2.43) | 91(1.90) | 193(4.04)
Facilities 14,607 | 9(0.06) | 136(0.93) | 107(0.73) | 14(0.10) | 227(1.55) | 165(1.13) | 345(2.36)
(n)
Samples (n) | 35,589 | 17(0.05) | 228(0.64) | 191(0.54) | 19(0.05) | 377(1.06) | 275(0.77) | 578(1.62)
Population, 314.38 0.28 8.76 5.50 0.52 7.73 10.28 15.95
10° (n) (0.09) (2.79) (1.75) (0.17) (2.46) (3.27) (5.07)
Note: figures in the parenthesis indicate the percentages of the total(n)
Table A2: PFAS contamination by large and small PWSs and by intake water source.
Attributes Total Count Contamination (n(%))
(n) PFBS | PFHpA | PFHxS | PFNA | PFOA PFOS At least
one
PFAS
PWSs 4782 7 82(1.71) | 52(1.09) | 14(0.29) | 116(2.43) | 91(1.90) | 193(4.40)
(0.15)
Large 4008 7(0.17) | 80(2.00)) | 50(1.25) | 13(0.32) | 114(2.84) | 87(2.17) | 187(4.67)
(83.81)
Small | 774 (16.19) | 0(0.0) | 2(0.26) | 2(0.26) | 1(0.13) | 2(0.26) | 4(0.52) | 6(0.78)
Source of water to the Water supply facility
Facility 14607 9(0.06) 136 107(0.73) | 14(0.10) | 227(1.55) 165 345(2.36)
((0.93) (1.13)
SW | 3213(22.0) | 5(0.16) | 44(1.37) | 7(0.22) | 1(0.03) | 46(1.43) | 27(0.84) | 74(2.30)
GW | 11074(75.8) | 4(0.04) | 88(0.79) | 95(0.86) | 13(0.12) | 173(1.56) | 130(1.17) | 258(2.33)
MX | 210(1.4) | 0(0.00) | 3(1.44) | 2(0.95) | 0(0.00) | 5(2.38) | 5(2.38) | 6(2.86)
GU | 110(0.8) | 0(0.00) | 1(0.91) | 3(2.73) | 0(0.00) | 3(2.73) | 4(3.64) | 7(6.36)

Note: figures in the parenthesis indicate the percentages of the total(n)
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Table A3: Hot spots of PFOA Contamination

Hot Spots

state

County

1

Alabama [18]

Etowah (9.53), DeKalb (9.02), Jackson (8.90), Marshall (8.81),
Cherokee (8.02), Calhoun (7.89), Blount (7.03), Madison (7.00),
St. Clair (6.89), Cullman (6.76), Morgan (5.78), Winston (5.27),
Lawrence (5.06), Limestone (4.94), Walker (4.49), Talladega
(4.36), Jefferson (3.83), Shelby (2.86)

Georgia
[33]

Chattooga (7.62), Floyd (7.38), Catoosa (7.38), Haralson (7.38),
Walker (7.30), Whitfield (7.28), Dade (7.21), Gordon (7.19), Polk
(7.19), Bartow (7.19), Paulding (6.93), Murray (6.85), Carroll
(6.21), Cobb (5.80), Douglas (5.65), Cherokee (5.65), Gilmer
(5.03), Coweta (4.66), Gwinnett (4.36), DeKalb (4.29), Hall (4.23),
Forsyth (4.17), Fulton (4.17), Union (4.00), Dawson (4.00),
Rockdale (3.15), Barrow (3.09), Fayette (3.04), Habersham (2.86),
Stephens (2.61), Jackson (2.35), Henry (2.30), Walton (2.30)

Tennessee
[16]

Franklin (9.36), Marion (7.75), Hamilton (5.80), Meigs (5.70),
McMinn (5.61), Lincoln (5.46), Bradley (5.46), Bledsoe (4.72),
Rhea (4.65), Coffee (2.87), Lawrence (2.84), Giles (2.72), Monroe
(2.65), Warren (2.40), Marshall (2.36), Maury (2.17)

New Jersey (18]

Ocean (7.42), Burlington (6.88), Mercer (6.72), Monmouth (6.72),
Middlesex (6.72), Atlantic (6.43), Somerset (6.43), Hunterdon
(6.08), Union (5.72), Hudson (5.71), Passaic (5.66), Bergen (5.66),
Essex (5.62), Camden (5.39), Morris (5.37), Gloucester (5.21),
Warren (4.92), Cape May (2.25), Marion (1.97)

Pennsylvania
[13]

Philadelphia (6.50), Bucks (6.29), Montgomery (6.01), Lehigh
(5.90), Northampton (5.89), Lackawanna (5.44), Pike (5.28),
Carbon (5.19), Monroe (5.12), Delaware (5.03), Wayne (4.67),
Chester (4.39), Berks (4.16)

New York [10]

Suffolk (6.26), Nassau (6.02), Queens (6.00), Rockland (5.48),
Orange (5.10), Westchester (5.09), Putnam (5.00), Dutchess (4.95),
Ulster (4.86), Sullivan (4.72)

Connecticut [2] | New Haven (3.00), Fairfield (2.97)
3 West Virginia Kanawha (2.47), Mason (2.33), Putnam (2.33), Cabell (2.16),
[9] Wood (2.10), Wayne (2.10), Lewis (2.05), Taylor (2.05)
Ohio [3] Meigs (2.16), Washington (2.10), Athens (2.00)
4 Colorado [10] Pueblo (8.76), Fremont (6.79), El Paso (5.99), Arapahoe (5.39),
Adams (4.93), Douglas (4.93), Denver (4.93), Broomfield (4.93),
Jefferson (4.72), Gilpin (4.72),
5 Arizona [3] Gila (3.73), Pinal (3.13), Graham (2.77)

Value in [ ] indicates number of counties that fall in the hot spot in respective states.

Value in () indicates the z-score of Standardized Getis Ord statistics.
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Table A4: Hot spots of PFOS Contamination

Hotspot

state

county

1

Alabama
[23]

Etowah (8.50), DeKalb (8.03), Jackson (7.92), Blount (7.13),
Madison (6.79), Cherokee (6.56), St. Clair (6.46), Marshall
(6.38),

Cullman (6.29), Winston (6.16), Lawrence (5.92), Limestone
(5.70), Morgan (5.60), Walker (5.26), Calhoun (4.18), Jefferson
(4.00), Lamar (3.70), Talladega (3.49), Colbert (3.34), Franklin
(3.18), Lauderdale (3.11), Tuscaloosa (2.57), Shelby (2.42),

Georgia [27]

Chattooga (6.22), Walker (5.56), Dade (5.49), Floyd (5.39),
Catoosa (5.39), Haralson (5.39), Whitfield (5.31), Gordon (5.24),
Polk (5.24), Bartow (5.24), Murray (5.17), Paulding (5.03),
Carroll (4.32), Cobb (4.20), Douglas (4.08), Cherokee (4.08),
Gilmer (3.77), Rockdale (3.22), Barrow (3.16), Gwinnett (3.11),
DeKalb (3.06), Hall (3.00), Forsyth (2.95), Fulton (2.95), Union
(2.81), Dawson (2.81), Stephens (2.06)

Mississippi [3]

Lee (2.34), Alcorn (2.20), Prentiss (2.08)

Tennessee [18]

Franklin (8.60), Marion (5.88), Lincoln (5.22), Meigs (4.32),
McMinn (4.25), Hamilton (4.18), Bradley (4.12), Lawrence
(4.06),

Giles (3.91), Maury (3.29), Coffee (3.16), Marshall (3.16),
Bledsoe (2.87), Rhea (2.82), Warren (2.72), Bedford (2.44),
Hardin (2.14), McNairy (2.08)

Colorado [10]

Pueblo (8.76), Fremont (6.79), El Paso (5.99), Arapahoe (5.39),
Adams (4.93), Douglas (4.93), Denver (4.93), Broomfield (4.93),
Jefferson (4.72), Gilpin (4.72),

Florida [5]

Monroe (4.79), Miami-Dade (4.32), Broward (3.43), Collier
(3.43), Hendry (2.76),

New Jersey [4]

Middlesex (2.45), Monmouth (2.45), Atlantic (2.05), Union
(2.00)

New York [1]

Queens (2.02)

5

California [3]

Orange (2.46), San Diego (2.12), Los Angeles (2.06),

6

Wisconsin [2]

Chippewa (2.28), Eau Claire (2.09)

7

Minnesota [1]

Beltrami (2.36),

Value in [ ] indicates number of counties that fall in the hot spot in respective states.

Value in () indicates the z-score of Standardized Getis Ord statistics.
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Table A5: Hot spots of PFHpA Contamination

Hot Spot

state

County

1

Alabama [25]

St. Clair (11.09), Blount (8.99), Cullman (8.41), Madison
(8.28), Calhoun (8.09), Etowah (7.98), Marshall (7.92),
Talladega (7.79), DeKalb (7.59), Jackson (7.49), Morgan
(7.18), Cherokee (6.96), Winston (6.30), Jefferson (6.30),
Lawrence (5.93), Shelby (5.75), Limestone (5.72), Walker
(4.66), Chambers (4.41), Tallapoosa (4.01), Butler (2.81),
Tuscaloosa (2.55), Perry (2.29), Dallas (2.29), Chilton (2.05)

Georgia [25]

Floyd (6.98), Haralson (6.83), Polk (6.81), Bartow (6.81),
Paulding (6.56), Chattooga (6.50), Gordon (6.50), Catoosa
(6.36), Walker (6.35), Whitfield (6.27), Dade (6.26), Murray
(5.51), Carroll (4.88), Coweta (4.26), Cherokee (4.17), Cobb
(4.14), Douglas (4.03), Gilmer (3.68), Forsyth (2.31), Gwinnett
(2.28), Fayette (2.28), DeKalb (2.24), Hall (2.19), Dawson
(2.19), Fulton (2.15)

Tennessee [16]

Franklin (7.70), Lincoln (6.78), Marion (6.69), Hamilton (4.40),
Meigs (3.88), McMinn (3.82), Bradley (3.70), Coffee (3.28),
Lawrence (3.21), Giles (3.08), Marshall (2.90) Bedford (2.85),
Bledsoe (2.53), Rhea (2.48), Warren (2.39), Maury (2.30)

North Carolina
[42]

Robeson (8.95), Cumberland (7.98), Bladen (7.88), Scotland
(7.53), Sampson (7.44), Hoke (7.41), Wayne (7.18), Lenoir
(6.84), Alamance (6.23), Pender (6.20), Orange (6.12), Harnett
(6.12), Chatham (5.83), Lee (5.74), Moore (5.66), Randolph
(5.57), Guilford (5.57), Richmond (5.49), Montgomery (5.41),
Franklin (5.28), Granville (5.28), Anson (5.11), Wake (4.98),
Johnston (4.89), Durham (4.89), Stanly (4.81), Rockingham
(4.80), New Hanover (4.79), Onslow (4.62), Brunswick (4.46),
Nash (4.32), Davidson (4.27), Wilson (4.05), Person (3.52), Pitt
(3.45), Warren (2.67), Stokes (2.27), Forsyth (2.22), Davie
(2.22), Cabarrus (2.21), Union (2.16), Rowan (2.09),

South Carolina

[7]

Dillon (8.81), Marlboro (7.18), Chesterfield (5.27), Marion
(5.02), Horry (4.18), Darlington (4.17), Florence (3.84)

Colorado [10]

Pueblo (8.80), Fremont (6.83), El Paso (6.03), Arapahoe (5.43),
Adams (4.96), Douglas (4.96), Denver (4.96), Broomfield
(4.96), Jefferson (4.76), Gilpin (4.76)

New Jersey [6]

Atlantic (2.39), Monmouth (2.37), Middlesex (2.37), Ocean
(2.11), Mercer (2.07), Cape May (2.02),

Pennsylvania

[1]

Bucks (1.99)

Value in [ ] indicates number of counties that fall in the hot spot in respective states.

Value in () indicates the z-score of Standardized Getis Ord statistics.
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Table A6: Hot spots of PFHXS Contamination

Hot Spot | state county
1 New Jersey Atlantic (3.26), Monmouth (3.22), Middlesex (3.22), Mercer
[18] (2.72), Ocean (2.69), Union (2.68), Somerset (2.58), Cape
May (2.50), Camden (2.47), Burlington (2.42), Hunterdon
(2.41), Gloucester (2.37), Passaic (2.35), Bergen (2.35),
Hudson (2.30), Essex (2.25), Morris (2.13), Cumberland
(2.03)
Pennsylvania Bucks (2.69), York (2.61), Delaware (2.48), Chester (2.32),
[8] Philadelphia (2.28), Montgomery (2.28), Northampton (2.17),
Lehigh (2.17)
Maryland [1] Baltimore (2.01)
New York [1] | Queens (2.49)
2 Colorado [10] | Pueblo (13.96), Fremont (10.94), El Paso (9.73), Arapahoe
(8.83), Adams (8.12), Douglas (8.12), Denver (8.12),
Broomfield (8.12), Jefferson (7.82), Gilpin (7.82)
3 Wisconsin [7] | Oneida (3.94), Wood (3.21), Portage (2.97), Marinette (2.87),
Marathon (2.87), Shawano (2.49), Waupaca (2.04)
4 Minnesota [3] | Beltrami (3.04), Itasca (2.26), Polk (2.26)
5 South Dakota Mellette (3.04), Hughes (3.04)
[2]
6 Kansas [2] Ellis (2.02), Ford (2.02)
7 Texas [2] Tom Green (2.02), Jones (2.02)

Value in [ ] indicates number of counties that fall in the hot spot in respective states.

Value in () indicates the z-score of Standardized Getis Ord statistics.
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Table A7: Hot spots of PFAS Contamination

Hot Spot

state

county

1

Georgia [31]

Chattooga (7.77), Floyd (7.63), Haralson (7.58), Catoosa (7.45), Polk
(7.43), Walker (7.43), Bartow (7.43), Whitfield (7.35), Gordon (7.34),
Dade (7.33), Paulding (7.15), Murray (6.89), Carroll (6.09), Cobb (5.65),
Cherokee (5.55), Douglas (5.50), Gilmer (5.18), Coweta (4.42), Gwinnett
(4.26), DeKalb (4.20), Hall (4.13), Forsyth (4.11), Fulton (4.07), Dawson
(3.93), Union (3.76), Rockdale (3.31), Barrow (3.26), Fayette (2.84),
Henry (2.27), Habersham (2.27), Stephens (2.10)

Alabama [18]

Etowah (9.74), DeKalb (9.22), Jackson (9.09), Marshall (8.83), Cherokee
(8.23), St. Clair (8.15), Calhoun (7.96), Blount (7.75), Madison (7.61),
Cullman (6.89), Morgan (5.93), Winston (5.66), Lawrence (5.39),
Limestone (5.21), Talladega (5.18), Walker (4.44),

Jefferson (4.29), Shelby (3.34)

Tennessee [17]

Franklin (9.55), Marion (7.86), Hamilton (5.92), Meigs (5.81), McMinn
(5.72), Lincoln (5.56), Bradley (5.55), Bledsoe (4.27), Rhea (4.20),
Lawrence (3.15), Coffee (3.07), Giles (3.01), Marshall (2.62), Warren
(2.51), Maury (2.42), Bedford (2.19), Monroe (2.04)

New Jersey
[20]

Middlesex (5.00), Monmouth (5.00), Ocean (5.00), Atlantic (4.85),
Mercer (4.67), Burlington (4.56), Somerset (4.43), Hunterdon (4.15),
Union (3.96), Camden (3.88), Hudson (3.86), Essex (3.78), Gloucester
(3.73), Bergen (3.64), Passaic (3.64), Morris (3.58), Warren (2.92), Cape
May (2.80), Cumberland (2.32), Salem (1.98)

Pennsylvania
[14]

Bucks (4.48), Philadelphia (4.28), Montgomery (4.09), Northampton
(4.09), Lehigh (4.09), Delaware (3.77), Carbon (3.36), Chester (3.33),
Lackawanna (3.21), Monroe (3.16), Berks (3.11), Pike (3.05), York
(2.07), Wayne (2.02)

New York [10]

Queens (3.92), Nassau (3.52), Suffolk (3.45), Rockland (3.16), Orange
(2.92), Westchester (2.69), Putnam (2.63), Dutchess (2.62), Ulster (2.20),
Sullivan (2.04)

Connecticut [2]

New Haven (3.00), Fairfield (2.97)

Delaware [2]

New Castle (2.10), Kent (2.04)

North Carolina
[25]

Cumberland (3.19), Robeson (3.00), Scotland (2.96), Hoke (2.90),
Sampson (2.86), Bladen (2.79), Wayne (2.72), Harnett (2.67), Alamance
(2.66), Franklin (2.65), Granville (2.65), Orange (2.60), Wake (2.45),
Chatham (2.43), Johnston (2.39), Durham (2.39), Lee (2.38), Moore
(2.23), Guilford (2.18), Randolph (2.18), Rockingham (2.16) Lenoir
(2.15), Richmond (2.13), Montgomery (2.09), Person (1.97),

South Carolina

(2]

Dillon (2.90), Marlboro (2.29)

Colorado [10]

Pueblo (10.61), Fremont (8.23), El Paso (7.27), Arapahoe (6.55), Adams
(5.98), Douglas (5.98), Denver (5.98),
Broomfield (5.98), Jefferson (5.74), Gilpin (5.74)

Value in [ ] indicates number of counties that fall in the hot spot in respective states.

Value in () indicates the z-score of Standardized Getis Ord statistics.
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TableA8: PWS characteristics and socioeconomic factor affecting the PFOA contamination in the USA.

VARIABLES - PFOA Models
Tobit Probit
Marginal Marginal effect Likelihood Marginal effect
effect (y") for Censored
Sample (y)
Size of the PWS — Small (1=small, 0= | -0.0668*** | -0.0000093*** -0.725%** -0.0045854***
large) (0.0173) (0.0000024) (0.181) (0.0006519)
Source of water to the PWS- Surface -0.0301*** | -0.0000092*** -0.293*** -0.0037098***
(W) (0.00580) (0.0000028) (0.0567) (0.0007919)
Source of water to the PWS- Mixed 0.00437 0.0000013 0.0592 0.0007486
(MX) (0.0144) (0.0000044) (0.143) (0.001814)
Source of water to the PWS- Mix but -0.00704 -0.0000022 -0.0306 -0.0003867
dominated by Ground water (GU) (0.0186) (0.0000057) (0.184) (0.0023285)
Population log 0.00522 0.0000016 0.0537 0.0006792
(0.00404) (0.0000013) (0.0404) (0.0005107)
Non-White population (%) -0.00120*** | -0.0000004*** -0.0120*** | -0.0001513***
(0.000328) (0.0000001) (0.00323) (0.0000425)
Poverty (%) 0.00115 0.0000004 0.00787 0.0000996
(0.00123) (0.0000004) (0.0124) (0.0001565)
Nonwhite Poverty (%) -0.00102 -0.0000003 -0.00577 -0.000073
(0.000647) (0.0000002) (0.00656) (0.0000832)
Log Housing density (house/sq mil) 0.0194*** | 0.0000059*** 0.204*** 0.0025839***
(0.00421) (0.0000019) (0.0410) (0.0005679)
Percentage Contribution to the GDP
from
Agriculture -0.00244* | -0.0000007** -0.0223* -0.0002824**
(0.00126) (0.0000004) (0.0123) (0.0001537)
Durable goods manufacturing -0.000480 | -0.0000001 -0.00395 -0.00005
(0.000621) (0.0000002) (0.00619) (0.0000784)
Non-durable good manufacture 0.00276*** | 0.0000008*** 0.0275*** 0.0003479***
(0.000459) (0.0000002) (0.00448) (0.0000597)
Healthcare and social assistance 0.00184** | 0.0000006* 0.0184** 0.0002333**
(0.000853) (0.0000003) (0.00872) (0.0001113)
Food and accommodation 0.000494 0.0000002 0.00396 0.0000501
(0.00120) (0.0000004) (0.0120) (0.0001514)
Government enterprise 0.00145*** | 0.0000004*** 0.0146*** 0.0001847***
(0.000388) (0.0000002) (0.00385) (0.0000508)
Constant -0.336*** -3.472%**
(0.0514) (0.496)
Sigma .1009417
(.0046164)
Observations 35,589 28,908
Log likelihood -825.49792 -1657.6946
LR chi2(44) 866.11 705.75
Prob > chi2 0 0
Pseudo R2 0.3441 0.1755
AlIC 1740.996 3403.389
BIC 2122.586 3767.352

Standard errors in parentheses

s p<0_01’ *%k p<0_05, * p<0.1
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Table A9: PWS characteristics and socioeconomic factors affecting the PFOS contamination in the USA.

VARIABLES - PFOS Models
Tobit Probit
Marginal Marginal effect | Likelihood Marginal
effect (y") for Censored effect
Sample (y)
Size of the PWS — Small (1=small, 0= -0.126** -0.000009** -0.328** -0.00244***
large) (0.0571) (0.00000376) (0.148) (0.0007582)
Source of water to the PWS- Surface -0.151%** -0.000018*** -0.382*** -0.00404***
(W) (0.0277) (0.00000629) (0.0690) (0.0007939)
Source of water to the PWS- Mixed (MX) -0.0159 -0.000002 -0.00229 -0.00002
(0.0567) (0.00000669) (0.143) (0.00151)
Source of water to the PWS- Mix but 0.138** 0.000016* 0.397** 0.00419**
dominated by Ground water (GU) (0.0685) (0.00000951) (0.173) (0.0018761)
Population (log) 0.103*** 0.000012*** 0.277*** 0.00293***
(0.0194) (0.00000424) (0.0485) (0.0005201)
Non-White population (%) - -0.000001*** - -0.00022***
0.00751*** (3.32E-07) 0.0204*** | (0.0000455)
(0.00171) (0.00429)
Poverty (%) -0.00377 -4.44E-07 -0.0103 -0.00011
(0.00537) (6.43E-07) (0.0138) (0.0001452)
Nonwhite Poverty (%) -0.000242 -2.85E-08 0.000405 0.00000
(0.00275) (3.24E-07) (0.00711) (0.0000751)
Log Housing density (house/sq mil) 0.0534*** 0.000006** 0.146*** 0.00154***
(0.0179) (0.00000282) (0.0450) (0.0004776)
Percentage Contribution to the GDP from
Agriculture -0.00138 -1.63E-07 -0.00314 -0.00003
(0.00430) (5.08E-07) (0.0110) (0.0001161)
Durable goods manufacturing -0.00179 -2.11E-07 -0.00338 -0.00004
(0.00292) (3.51E-07) (0.00752) (0.0000792)
Non-durable good manufacture 0.0117%** 0.000001*** 0.0325*** 0.00034***
(0.00214) (4.78E-07) (0.00527) (0.0000575)
Healthcare and social assistance 0.0172*** 0.000002*** 0.0471*** 0.00050***
(0.00360) (7.43E-07) (0.00903) (0.0000997)
Food and accommodation 0.0266*** 0.000003*** 0.0728*** 0.00077***
(0.00497) (0.00000111) (0.0122) (0.0001371)
Government enterprise 0.00814*** 0.000001*** 0.0231*** | 0.00024****
(0.00177) (3.53E-07) (0.00444) (0.0000484)
Constant -2.316*** -6.199***
(0.261) (0.604)
Sigma (0.3881836
(0.0202158)
Observations 35,589 27,667
Log likelihood -1051.62 -1315.18
LR chi2(44) 587.53 453.07
Prob > chi2 0 0
Pseudo R2 0.2184 0.1469
AlIC 2187.249 2712.366
BIC 2543.401 3049.714

Standard errors in parentheses

s p<0_01’ *%k p<0_05, * p<0.1
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Table A10: PWS characteristics and socioeconomic factors affecting the PFHpA contamination in the USA.

VARIABLES - PFHPA Model
Tobit Probit
Marginal Marginal effect for | Likelihood | Marginal effect
effect (y") Censored Sample
v)
Size of the PWS — Small (1=small, 0= | -0.0277*** -0.00000060** -0.576*** -0.00251***
large) (0.00943) (0.00000028) (0.184) (0.0004785)
Source of water to the PWS- Surface 0.00383 0.00000017 0.0813 0.00065
(W) (0.00348) (0.00000017) (0.0658) (0.0005254)
Source of water to the PWS- Mixed 0.00342 0.00000015 0.0992 0.00079
(MX) (0.0110) (0.00000049) (0.204) (0.001628)
Source of water to the PWS- Mix but -0.0211 -0.00000093 -0.391 -0.00312
dominated by Ground water (GU) (0.0185) (0.00000090) (0.347) (0.0027917)
Population (log) 0.0167*** 0.00000074** 0.314*** 0.00251***
(0.00319) (0.00000034) (0.0581) (0.0004814)
Non-White population (%) - -0.00000004** -0.0183*** | -0.00015***
0.000967*** (0.00000002) (0.00406) (0.0000336)
(0.000221)
Poverty (%) 0.000120 0.00000001 0.000150 0.000001
(0.000782) (0.00000003) (0.0148) (0.0001182)
Nonwhite Poverty (%) -0.000503 -0.00000002 -0.00762 -0.00006
(0.000429) (0.00000002) (0.00814) (0.0000648)
Log Housing density (house/sq mil) -0.00196 -0.00000009 -0.0282 -0.00023
(0.00290) (0.00000013) (0.0546) (0.0004366)
Percentage Contribution to the GDP
from
Agriculture -0.000275 -0.00000001 -0.00410 -0.00003
(0.000694) (0.00000003) (0.0130) (0.0001035)
Durable goods manufacturing -0.00170*** -0.00000008** -0.0323*** | -0.00026***
(0.000474) (0.00000004) (0.00878) (0.0000698)
Non-durable good manufacture 0.00108*** 0.00000005* 0.0214*** 0.00017***
(0.000327) (0.00000002) (0.00608) (0.0000491)
Healthcare and social assistance 0.00147*** 0.00000006** 0.0288*** 0.00023***
(0.000511) (0.00000004) (0.00962) (0.0000786)
Food and accommodation 0.000923 0.00000004 0.0180 0.00014
(0.000909) (0.00000004) (0.0171) (0.0001358)
Government enterprise 0.00126*** 0.00000006** 0.0247*** 0.00020***
(0.000216) (0.00000003) (0.00388) (0.0000369)
Constant -0.279*** -5.297***
(0.0382) (0.660)
Sigma .0532621
.0032024
Observations 35,589 25,844
Log likelihood -402.85 -1051.33
LR chi2(44) 660.28 508.42
Prob > chi2 0 0
Pseudo R2 0.4504 0.1947
AlIC 885.7002 2180.663
BIC 1224.892 2498.897

Standard errors in parentheses
s p<0_01’ *%k p<0_05, * p<0.1
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Table: Getis-Ord (Gi(d)) Statistics for Hot-Spot analysis

contamination per PWS in the
county

Variables 7<2.58 -2.582<1.96 -1.962<1.96 1.96<z<2.58 | 2.58<z
Total PFOA contamination per 0 0 1481 19 116
PWS in the county

Total PFOS contamination per 0 0 1591 20 77
PWS in the county

Total PFHpA contamination 0 0 1484 28 104
per PWS in the county

Total PFHXS contamination per 0 0 1562 27 27
PWS in the county

Total of all PFAS 0 0 1465 29 122
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