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Abstract 

Contamination of drinking water with PFAS poses a significant public health threat. We 

examine the spatial distribution of PFAS in the US public water systems (PWS) and explore 

the relationship between PFAS contamination, PWS characteristics, and socioeconomic and 

industrial attributes of the affected communities. Using data from the third Unregulated 

Contaminant Rule (UCMR3), the Census Bureau of Statistics, and the Bureau of Labor 

Statistics (BLS), we identify spatial contamination hot spots and find that PFAS 

contamination is correlated with PWSs size, non-surface water sources, population, and 

housing density. We also find that non-white communities have lower PFAS in drinking 

water. Finally, we detect some evidence of PFAS contamination being associated with 

regional industrial structure.  
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Introduction 

Per- and Polyfluoroalkyl Substances (PFAS) cause a range of serious health problems, 

including cancer, hyperlipidemia, thyroid disease, immunodeficiency, ulcerative colitis, 

chronic kidney disease, coronary artery disease, hypertension, and reduced fertility (CDC, 

2022; EPA, 2022; Andersson et al., 2019; Steenland et al., 2010). Prior studies show that 95% 

of US adolescents and adults are exposed to PFAS, primarily through drinking water (Kato et 

al., 2011; De Silva et al., 2021). Between 16 and 270 million people in the US rely on PFAS-

contaminated drinking water daily, which suggests the need for a better understanding of the 

incidence and distribution of PFAS in public water systems (PWS) (Hu et al., 2016; Andrews 

and Naidenko, 2020). 

To develop effective public health policies aimed at mitigating the impact of PFAS 

contamination a comprehensive analysis addressing several fundamental questions is 

imperative. First, how pervasive is PFAS in drinking water, and are there regional clusters of 

contamination? Second, does PFAS contamination depend on PWS characteristics like size 

and water sources? Third, are some communities more vulnerable than others? Finally, is 

PFAS drinking water contamination driven more by industrial production or by final 

consumption?  

PFAS are a group of 9000 synthetic chemicals widely used in industrial processes and 

consumer goods for their stain, grease, water, and heat-resistant properties (Cordner et al., 

2019; National Institute of Environmental Health Science (NIH), 2019; Glüge et al., 2020). 

The use and production of PFAS dated back to more than 70 years ago when it was used for 
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uranium separation in the Manhattan Project (Department of Energy (DOE), 2022)1. Since 

then, these substances have become ubiquitous due to their widespread use, bioaccumulation, 

resistance to degradation, water insolubility, and the ability to translocate easily from one 

system to another through biological or physical means (De Silva et al., 2021). Close to 180 

PFAS have been identified as toxic and added to the Toxic Release Inventory list under the 

National Defense Authorization Act (EPA 2022a). 

Detrimental health impacts of PFAS have not been well understood, documented and 

recognized until recently. It wasn't until the EPA's Health Advisories were revised in 2022 

that the safe levels of PFOA, PFOS, and other PFAS were significantly reduced, suggesting 

that even low exposure can have detrimental health impacts (Federal Register, 2022; Federal 

Register, 2016). The 2016 health advisories for PFOA and PFOS indicated that less than 70 

ppt (Part Per Trillion) posed no health risks, while the 2022 advisory lowered the threshold to 

0.004 and 0.02 ppt, respectively. The addition of GenX (Hexafluoropropylene Oxide Dimer 

Acid and its Ammonium Salt) and PFBS to the list of hazardous PFAS further highlights the 

growing recognition of the danger that these chemicals pose. As more research is conducted 

and the risks associated with PFAS become better understood, it is critical that an appropriate 

public policy is developed to minimize exposure and prevent further contamination of the 

environment and drinking water sources. 

 
1 In 2021, the Department of Energy (DOE) issued a Departmental policy which aimed to reduce or 

eliminate PFAS release from departmental operations (DOE, 2022). Part of the DOE’s objectives is to 

identify and quantify Cold War era sources of PFAS including uranium processing operations going 

back to the Manhattan Project.  
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In response to growing public concerns, the EPA has announced a PFAS strategic 

Roadmap in October 2021 (EPA, 2021). The roadmap outlines the agency's plans to protect 

the public and the environment from PFAS contaminants by minimizing their discharge into 

the environment, identifying and removing them from ecosystems, and designating PFOA and 

PFOS as hazardous compounds under Comprehensive Environmental Response, 

Compensation, and Liability Act (CERCLA) (EPA, 2021). The EPA has also committed to 

conducting environmental and health toxicity assessments for additional PFAS, including 

PFBA, PFGxA, PFGxS (Perfluorohexanesulfonic acid), and PFDA (Perfluorodecanoic Acid) 

(EPA, 2021). Additionally, the roadmap includes provisions to ensure that disadvantaged 

communities have access to PFAS mitigation solutions. To make progress towards these 

goals, one must understand the distribution of exposure to PFAS via drinking water, including 

regional contamination clusters, differences across large and small public water systems, 

vulnerability of certain communities, and socioeconomic factors associated with 

contamination. 

Protecting drinking water from PFAS contamination is a complex challenge. First, 

PFAS substances are unregulated under the Safe Drinking Water Act (SWDA), which means 

that PWSs are not required to monitor and control PFAS in the water they supply. Second, 

there are no effective technological solutions for removing PFAS from drinking water. Third, 

the sources of contamination are not well understood, making it challenging to prevent future 

contamination. Although research is ongoing, and some technological solutions are emerging, 

there is currently no available technology for the effective removal of PFAS from drinking 

water (Trang et al., 2022). Fourth, PFAS substances are persistent, bioaccumulative, and do 
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not break down easily, increasing the risk of exposure and making it more challenging to 

remove them from the environment. 

Environmental Protection Agency (EPA) uses the Unregulated Contaminant 

Monitoring Rule (UCMR) to assess the presence of contaminants that do not have health-

based standards under the Safe Drinking Water Act (SDWA). Every five years, the EPA 

identifies 30 potentially harmful but unregulated contaminants under the UCMR program and 

tests all large Public Water Systems (PWSs) that serve more than ten thousand people, as well 

as a subsample of smaller facilities. In the UCMR3 program, the EPA tested six per- and 

polyfluoroalkyl substances (PFAS): perfluorooctanesulfonic acid (PFOS), perfluorooctanoic 

acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), 

perfluoroheptanoic acid (PFHpA), and perfluorobutanesulfonic acid (PFBS) in 2014-2016. 

Water samples were collected at the entry points to the distribution system by PWS operators 

and sent to an EPA-approved lab to test for the presence of each PFAS (EPA, 2012; EPA, 

2017). 

PWSs deliver drinking water to 95% of the US population (EPA, 2023a) and the 

UCMR3 program tested PWSs that serve 75% of the US population (EPA, 2016). UCMR3 

tested 4,120 large PWSs that serve more than 10,000 consumers and randomly selected 800 

representative small PWSs that serve 10,000 or fewer consumers in USA and its territories 

(EPA, 2017). Cumulatively, this sample represents 79% of the U.S. PWS consumer base. 

Many PWSs have more than one water supply facility, and UCMR3 tested all 15,195 facilities 

within the selected PWSs in the USA and its territories. 
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The EPA established minimum reporting levels (MRLs) for various types of PFAS, 

ranging from 10 to 90 ng/L (EPA, 2017)2. PFAS detection below the MRL is not reported to 

the EPA and is considered a "no detection". Total of 1152 detections were reported from 33 

US states and three territories. PFBS (n=19) and PFNA (n=19), which is a replacement 

chemical for PFOS, only accounted for 3% (n=38) of the cases, while PFOA (n=379) and 

PFOS (n=292) accounted for 58% (n=671) of detections. PFHpA (n=236) and PFHxS 

(n=207) accounted for the remaining 39% (EPA, 2017). Although the recent Health Advisory 

(HA) by the EPA (EPA, 2022) included PFOA, PFAS, PFBS, and GenX 

(Hexafluoropropylene Oxide Dimer Acid and its Ammonium Salt), UCMR3 did not have 

enough positive data on PFBS and did not collect any data on GenX in UCMR3. 

Several studies have utilized the UCMR3 PFAS data (Cadwallader et al. 2022; 

Andrews & Naidenko, 2020; Guelfo & Adamson, 2018; Hu et al., 2016). Hu et al. (2016) and 

Andrews and Naidenko (2020) estimated the population exposed to PFAS. Hu et al. (2016) 

estimated 16.5 million people are exposed to PFAS via drinking water. Andrews and 

Naidenko (2020) used UCMR3 and state level data from Colorado, Kentucky, Michigan, New 

Hampshire, New Jersey, North Carolina and Rhode Island. Their state level data had lower 

MRL than UCMR data, which enabled them to augment the population exposure estimates 

from UCMR. They also included private wells contamination data from Michigan and New 

Jersey. Extrapolating their findings from the states in their sample to all states in the US, they 

estimated the exposure rate of between 18 and 80 million people if the MRL was 10 ng/L and 

higher, and over 200 million if the MRL was at or above 1 ng/L. These estimates are 

 
2 The MRLs are 10 ng/L for PFHpA, 20 ng/L for PFOA and PFNA, 30 ng/L for PFHxS, 40 

ng/L for PFOS, and 90 ng/L for PFBS. 
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significantly higher than the estimates based on UCMR3 data. Their study did not explore the 

relationship between contamination and community characteristics.   

Guelfo & Adamson (2018) used the UCMR3 data and investigated the co-occurrence 

of different types of PFAS and relationship between PWS characteristics and contamination. 

They found six co-occurring PFAS pairs (PFOS/PFOA, PFOS/PFHxS, PFOS/PFHpA, 

PFOA/PFHxS, PFOA/PFHpA, and PFBS/PFHpA). PFHpA, PFOA, and PFNA were 

dominant in surface water whereas PFOS, PFHxS, and PFBS were dominant in groundwater. 

Large PWSs were more vulnerable to contamination than small ones. However, it is important 

to note that this study was limited only to the UCMR3 data and did not include other variables 

that may have an impact on contamination. To address this limitation, we expand on this 

study by including different socioeconomic and industrial variables from various data sources. 

This gives us a more comprehensive view of the factors that may contribute to PFAS 

contamination in drinking water. 

Some of the potential sources of PFAS contamination in UCMR3 data are examined in 

Hu et al. (2016). Using 8-digit HUC (Hydrologic Unit Code) level data, they examined the 

spatial correlation between presence of Major industrial site, MFTAs (Military Fire Training 

Area), AFFF (Aqueous Film Forming Foam) use certified airports, Wastewater Treatment 

Plants (WWTPs) and concentration of PFOA, PFAS, PFHpA, and PFHxS in the PWSs. They 

found that military fire training sites (MFTAs) were strong predictors of PFOS and PFHxS, 

and wastewater treatment plants (WWTPs) predicted a modest increase in PFOA, PFOS, and 

PFHxS concentrations. However, none of the factors they examined predicted PFHpA 

concentration. Their spatial autocorrelation analysis only included 16 industrial sites in the 
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USA that participated in the EPA’s 2010/2015 PFOA Stewardship program. Hence, the 

industrial contribution to PFAS contamination is examined using a limited set of industrial 

sites that participated in the PFOA stewardship. We contribute by examining the association 

with broader industrial categories using county scale GDP proportions. We also extend Hu et 

al. (2016) analysis by identifying contamination hotspots.  

Cadwallader et al. (2022) assessed the impact of limitations in UCMR3 data, including 

the MRL and limited inclusion of small PWS. Using UCMR3 and state-level PFAS test data 

from 17 states with lower MRLs requirement, they found that for most PFAS except PFHxS 

and PFHpA, incomplete representation of small PWSs and higher MRL in UCMR3 had no 

impact on contamination predictions.  

We contribute to previous literature with an examination of the relationship between 

PFAS contamination and PWS characteristics, socioeconomic factors, and regional industrial 

composition. Using publicly available data from UCMR3, Bureau of Labor Statistics (BLS), 

and American Community Survey (ACS) 5-year estimate, we identify geographic 

contamination hotspots and socioeconomic and industrial characteristics that are correlated 

with PFAS detection.  

Data  

County data on population, non-white population, per capita income, poverty, and 

housing density were collected from the American Community Survey 5-year estimates (US 

Census Bureau (USCBS), 2023). Poverty percentage is the share of poor3 relative to total 

 
3 A household is deemed poor if income, adjusted by family size, falls below the threshold set by the US Census 

Bureau (Creamer et al., 2022). For instance, if a household consists of one person under 65 years of age and their 
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people in the county. Non-white population is the difference between county total population 

and Caucasian (white) population. Number of non-white poor individuals is estimated by 

subtracting the number of white poor individuals from the total number of poor individuals. 

Finally, non-white poverty rate is the share of non-white poor individuals relative to total non-

white population in the county. On an average there are 23% non-white people in the county 

which ranges from 1% to 84%. Overall poverty is 16% (4 – 44%), with 13% (3 to 39%) for 

white population and 24% (0 – 66%) in for nonwhite population (Table 1).  

The county Gross Domestic Product (GDP) and shares of GDP from Agriculture, 

Forestry, Fishing and Hunting; non-durable and durable goods manufacturing; Health Care 

and Social Assistance; Accommodation and Food Services; and government enterprise were 

obtained from the U.S. Bureau of Labor Statistics (BLS). Sectoral contribution (in the 

percentage) is calculated by dividing the total GDP from the selected sectors by total GDP of 

the county. On an average Government enterprise has a highest contribution to the county 

GDP (14%) followed by health care (8%) durable good manufacturing (7%), non-durable 

good manufacturing (6%), food and accommodation (3%), and agriculture (2%) (Table 1). 

National PFAS contamination data was retrieved from the US EPA's National 

Contaminant Occurrence Database (NCOD), which was collected by the UCMR3 program 

from 2013 to 2016. UCMR3 is considered the most comprehensive national data source on 

PFAS contamination in Public Water Systems (PWS). Our study focuses on the 48 lower US 

states, excluding Washington DC. In the lower USA total of 35,589 water samples were 

 
annual income is less than $14,097, then they are considered below the poverty line. However, if the household 

consists of three people, the threshold increases to $21,559, and this threshold gradually rises as the number of 

individuals in the household increases. 
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collected from 1,616 counties, 4,782 PWSs, and 14,607 water supply facilities at the entry 

point to the distribution system. The selected PWSs were tested quarterly or bi-annually for a 

year based on their intake water source (EPA, 2016). PWSs that rely on Ground Water (GW) 

were sampled twice, with a 5- or 7-month interval, while those that use Surface Water (SW), 

Mixed Water (MX), or Mixed but dominated by Ground Water (GU) were sampled four 

times, once in each consecutive quarter. Multiple water supply facilities may be present at 

each PWS, and water samples were collected from each facility as described above. The 

collected samples were analyzed at an EPA-approved laboratory. UCMR3 database includes 

detailed information on the PWSs' characteristics, including county, zip code, PWS ID/name, 

Water Supply Facility ID/name, PWS size, water source, sample point name, sample ID, 

sampling date, and analytical results for six types of PFAS. 

In the lower USA, out of the six PFAS tested, at least one PFAS is detected in 33 

states (68.7%), 121 counties (7.49%), 193 PWS (4.04%), and 345 PWS-Facilities (2.36%). 

Overall, 1107 water samples were found to be contaminated with PFAS which is 0.52% of 

total sample tested (Figure 1). The highest frequency of contamination was observed for 

PFOA (n = 377) followed by PFOS (n = 275), PFHpA (n = 228), PFHxS (n = 191), PFNA (n 

= 19), and PFBS (n = 17). PFOA, PFOS, PFHpA, PFHpX, PFNA and PFBS were detected in 

27, 24, 22, 22, 4 and 7 states, respectively affecting around 16 million people in total (5.07% 

of the contiguous US population). Add The detailed summary statistics of different PFAS 

detected in the lower USA are presented in Appendix Table A1.  

PFAS contamination seems to depend on water sources (Figure 1). Each Public Water 

Systems (PWS) can have multiple water supply facilities, each with separate water sources. In 
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the lower USA, there are 14,706 water supply facilities and 4,782 PWS. Of these facilities, 

according to UCMR3 data, 22% rely on surface water (SW), 75.8% on groundwater (GW), 

1.4% on mixed water (MX), and 0.8% on mixed water dominated by groundwater (GU). The 

UCMR3 data show that PFOA, PFOS, PFHxS, and PFNA contamination is higher if the 

water source includes groundwater (i.e., GW, MX, or GU) (Figure 1 and Appendix Table 

A2), which is consistent with Guelfo and Adamson (2018) and Hu et al (2016) findings.  

PFAS contamination differs depending on the size of PWSs (Figure 2). The larger 

PWSs, which serve more than 10,000 people, are more likely to be contaminated than smaller 

PWSs. Specifically, 4.7% of large PWSs showed contamination with at least one PFAS, as 

opposed to the 0.8% of small PWSs (Appendix Table A 2). These findings corroborate the 

results obtained by Guelfo and Adamson (2018) and underscore the importance of PWS size 

in assessing the vulnerability to PFAS contamination. 

 

Figure 1: Contaminated samples by water source 
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Figure 2: Proportion of the contaminated large and small PWSs  
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Table 1: Description and summary statistics of the variable used in the regression analysis. 
Water System Level variables Description Mean SD Min Max 

Dependent Variable 
     

Concentration of Contaminants, measured in mug/L 
    

PFBS Perfluorobutane sulfonic acid 0.0001 0.0044 0 0.3700 

PFHpA Perfluoroheptanoic acid 0.0001 0.0022 0 0.0869 

PFHxS Perfluorohexanesulfonic acid 0.0007 0.0137 0 0.7300 

PFNA Perfluorononanoic acid 0.0000 0.0009 0 0.0559 

PFOA Perfluorooctanoic acid 0.0004 0.0058 0 0.3490 

PFOS Perfluorooctanesulfonic acid 0.0010 0.0209 0 1.8000 

PFAS Sum of concentration of all above six PFAS tested 0.0024 0.0381 0 2.7000 

Indicator dependent variables 
     

PFBS Dummy variable=1, if water system has PFBS in at least one sample  0.0005 0.0219 0 1 

PFHpA Dummy variable=1, if water system has PFHpA in at least one sample 0.0064 0.0798 0 1 

PFHxS Dummy variable=1, if water system has PFHxS in at least one sample 0.0054 0.0731 0 1 

PFNA Dummy variable=1, if water system has PFNA in at least one sample 0.0005 0.0231 0 1 

PFOA Dummy variable=1, if water system has PFOA in at least one sample 0.0106 0.1024 0 1 

PFOS Dummy variable=1, if water system has PFOS in at least one sample 0.0077 0.0876 0 1 

PFAS Dummy variable=1, if water system has PFNA in at least one sample 0.0162 0.1264 0 1 

Independent Indicator Variables 
     

PWS Characteristics 
     

PWS size: Small Dummy variable=1, if water system has less than or equal to 10000 consumer 0.0894 0.2853 0 1 

Water Source: Surface Dummy variable=1, if water source to the water system is surface water 0.3549 0.4785 0 1 

Water Source: Mixed Dummy variable=1, if water source to the water system is mixed water 0.0226 0.1488 0 1 

Water Source: Mixed but dominated 

by Ground 

Dummy variable=1, if water source to the water system is mixed but is 

dominated by ground water 

0.0121 0.1095 0 1 

Population Total people in the county in which PWS is located 970036.9 1786044.0 1966 10100000.0 

Non-White Population percentage  %age of other than White people in the county 23.5673 13.8934 0.983753 83.6226 

Total Poverty (%) %age of the poor people out of the total people sampled 15.4980 5.8766 3.629071 43.9371 

White Poverty %age of Poor white people out of total white sampled 12.9859 5.2090 2.9086 39.3748 

Non-white Poverty %age of Poor non-white people out of total non-white sampled 23.5673 13.8934 0.9838 83.6226 

Housing density Number of housing unit per square mile 286.4846 392.1819 0.5 4832.06 

Contribution (%) to the GDP from  
     

Agriculture 
 

2.2385 5.1479 0 51.6102 

Durable goods manufacturing 
 

7.1686 6.4819 0 56.7367 

Non-durable good manufacture 
 

5.9150 6.8593 0 94.5604 

Healthcare and social assistance 
 

7.7165 3.3096 0 41.9700 

Food and accommodation 
 

2.8936 1.8789 0.000 33.5084 

Government enterprise 
 

14.0270 7.7341 1.115 75.3341 
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To provide a visual representation of PFAS spatial distribution, we show cumulative 

county scale contamination across six PFAS per PWS in Figure 3. We divided the aggregate 

number of positive samples in each county by the number of PWS in each county. Next, we 

used the Jenks natural breaks classification method (Jenks, 1967) to classify counties into 

groups based on contamination per PWS and county. Figure 3 shows that PFAS 

contaminations are more prevalent in Eastern than in western US counties. Some of the most 

contaminated counties per PWS are in Colorado, Alabama, Georgia, Delaware, New Jersey, 

and North Carolina. Appendix Figure A1 shows contamination per PWS in each county for 

PFOA, PFOS, PFHpA, and PFHxS individually. 

 
Figure 3. Number of PFAS contaminated water samples per PWS and county.  
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Methods 

Hot Spot analysis  

Spatial autocorrelation analysis is used to identify county-scale hot spots for PFOA, 

PFOS, PFHpA, PFHxS individually and all PFAS cumulatively (Kondo et al., 2016; Ord and 

Getis, 1995; Getis and Ord, 1992). This analysis is not provided for PFBS and PFNA because 

of limited number of positive samples. Getis-Ord (𝐺𝑖
∗(𝑑)) z- statistic is used to identify the 

spatial clusters. The intuition of this method is that a county is in a statistically significant hot 

spot if it has higher contamination and is surrounded by other contaminated counties. Higher 

z-values indicate more intense clustering. Counties with z-value at or above 2.58 and 1.96 are 

in hot spots at 1%, and 5% level of significance, respectively.  Following Getis and Ord 

(1992) and Ord and Getis (1995) the Getis-Ord 𝐺𝑖
∗(𝑑) statistic (z-value) for PFAS 

contamination per PWS in county i is estimated as 

 

𝐺𝑖
∗(𝑑) =  

∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗 − 𝑊𝑖
∗𝑥̅𝑗

 𝑠(𝑖) {[𝑛𝑆1𝑖
∗   − 𝑊𝑖

∗2] (𝑛 − 1)}⁄
1
2

  … . . … . (1) 

 

where, 𝑥𝑗  is number of contaminated samples per PWS in the county i, n is the number of 

counties, and 𝑤𝑖𝑗(𝑑) is the symmetric one/zero spatial weight matrix with ones for all links 

defined as being within the distance of given i; all other links are zero. 𝑑 is the threshold 

distance between county i and j. 𝑤𝑖𝑗(𝑑) is 1 if bilateral distance between county i and county j  

𝑑𝑖𝑗 is less than the threshold distance 𝑑 and 0 otherwise. We use d=146.2 km threshold 
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distance following Allaire et al. (2018), such that each county has at least one neighbor. Other 

term in the equation (1) is defined as; 

𝑥̅(𝑖) =  
∑ 𝑥𝑗𝑗

(𝑛 − 1)
… … … . . (2) 𝑎𝑛𝑑 

Where, ∑ 𝑥𝑗𝑗  is summation of all 𝑥𝑗 within d of i. 

𝑊𝑖 = ∑ 𝑤𝑖𝑗(𝑑) … … … … (3) 

𝑠2(𝑖) =
∑ 𝑥𝑗

2
𝑗

(𝑛 − 1)
… … … … … (4) 

𝑉𝑎𝑟(𝐺𝑖) =
𝑊𝑖(𝑛 − 1 − 𝑊𝑖)

(𝑛 − 1)2(𝑛 − 2)
 .  [

𝑠(𝑖)

𝑥̅(𝑖)
]

2

. . (5) 

For the details of 𝐺𝑖
∗(𝑑) derivation, please see Getis and Ord (1992) and Ord and Getis 

(1995). 

Regression analysis 

We examine the relationship between drinking water PFAS contamination and various 

physical, socioeconomic, and industrial characteristics of PWS and surrounding communities 

using Probit and Tobit models.  The UCMR3 dataset limitation is the non-reporting of results 

below the Minimum Reporting Level (MRL) (Cadwallader et al., 2022). Test results below 

the MRL are reported as zero, which implies data censoring. None of the earlier studies 

considered this censoring in previous statistical analysis. Therefore, extending prior literature, 

we use a Tobit limited dependent variable model to deal with the censoring limitation of 
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UCMR3 PFAS data4 (Sigelman & Zeng, 1999; Greene, 2018).  

The left-censored Tobit Model (Carson & Sun, 2007; Cameron & Trivedi, 2005; 

Sigelman & Zeng, 1999) is formulated as follows: 

𝑦𝑖𝑡
∗ = 𝛽0 + +𝛽𝑙𝐶𝑙𝑖𝑡 + 𝛽𝑚 𝐸𝑚𝑖𝑡 + 𝑋𝑖 + 𝑆𝑖𝑙 + 𝑇𝑡 + 𝜇𝑖𝑡 

where, 𝑦𝑖𝑡
∗  is the latent variable for concentration of PFAS in the county i (i= 1..n) and 

year t, (𝑿𝒊 is the vector of PWS characteristics of county i, 𝑪𝒍𝒊𝒕 is the nt*j matrix of 

socioeconomic characteristics j (j = population, nonwhite population, poverty, nonwhite 

poverty, and housing density) for county i in year t , and 𝜷𝒍 is the vector of coefficient of 

socioeconomic characteristics. 𝑬𝒌𝒊𝒕 is the nt*k matrix of share of county GDP from k sectors 

(k = Agriculture, forestry and fisheries; durable goods manufacturing, on durable goods 

manufacturing; health care and social assistance; food and accommodation; government 

enterprise) and 𝜷𝒎 is the vector of coefficient of all sectors that contribute to the county GDP.   

Indicator variables - state dummies (𝑆𝑖), and year dummies (𝑇𝑡), were included to account for 

state year invariant factors.  Population and housing density data are log transformed. 

Since our data is left censored, 

𝑦𝑖𝑡 = {
𝑦𝑖𝑡

∗  𝑖𝑓 𝑦𝑖𝑡
∗ > 𝑀𝑅𝐿

𝐿 𝑖𝑓 𝑦𝑖𝑡
∗ ≤ 𝑀𝑅𝐿

} 

where, MRL is a nonstochastic constant and 𝑦𝑖
∗ is missing when it is less than MRL. 

 
4 Ordinary Least Squares (OLS) regression produces biased results in the presence of data censoring. Therefore, 

we do not present the OLS results but have those, along with Heckman two step model results, available upon 

request. 
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We also use Probit regression to examine contamination vulnerability (likelihood of 

contamination) as follows. 

Pr (𝑦𝑖𝑡 = 1|𝑋) = Φ(𝛽0 + +𝛽𝑙𝐶𝑙𝑖𝑡 + 𝛽𝑚 𝐸𝑚𝑖𝑡 + 𝑋𝑖 + 𝑆𝑖𝑙 + 𝑇𝑡) 

where, Pr(𝑦𝑖𝑡 = 1|𝑋) is the probability of observing a PFAS-positive sample for ith PWS in 

year t and Φ is a cumulative density function of normal distribution.  

Results  

Hot Spot of Contamination 

We identified four PFAS contamination hot spots (Figure 3). We also identified hot 

spots of PFOA, PFOS, PFHpA, and PFHxS contaminations individually (Appendix Figure 

A2). A list of states and counties in Hot spots along with the z-scores are reported in the 

Appendix Tables A3 -A7. 

Four prominent PFAS hotspots encompassing 10 states and 149 counties have been 

identified (Figure 4). The largest hotspot spans across Alabama, Georgia, and Tennessee, 

encompassing 31 counties in Georgia, 18 counties in Alabama, and 17 counties in Tennessee. 

The second largest hotspot resides in the Northeast USA, with 20 counties in New Jersey, 14 

counties in Pennsylvania, 10 counties in New York, and 2 counties each in Delaware and 

Connecticut. The third largest hotspot is situated on the border of North and South Carolina, 

comprising 25 counties in North Carolina and 2 counties in South Carolina. The smallest 

hotspot is in 10 counties in Colorado. 
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Hotspots exhibit either prevalence of PFAS manufacturing plants or PFAS industrial 

use sites, or densely populated sites or combination of them. For instance, the hotspot 

extending to the northeast states (NY, DE, NJ, PA, and CT) is predominantly situated in a 

densely populated region which indicates the contamination related to consumption of PFAS 

containing goods and its leakage to the water bodies. The Colorado hotspot includes highly 

populated counties which also have international and regional airports, along with defense and 

space infrastructure. 

The hotspot in Georgia, Tennessee, and Alabama can be attributed to PFAS 

production  and industrial use in this area and the subsequent leakage of PFAS into waterbody 

there, thereby contaminating the PWSs reliant on this water system (AP NEWS, 2019; de 

Amorim et al., 2019). Notably, de Amorim et al. (2019) highlight the carpet industry in 

Georgia as a major source of PFAS contamination in drinking water. The PFAS chemicals 

used during carpet production have been found to leach into water sources, resulting in the 

contamination of the drinking water supply. Furthermore, a striking example of PFAS 

contamination is evident in the Tennessee River, which subsequently led to the contamination 

of downstream drinking water in Alabama. A PFAS-producing plant in close proximity to the 

river was the source of this pollution and pay $98 million to compensate the damage it causes 

(AP NEWS, 2019). These cases emphasize the role of PFAS production and use activity in 

creating the contamination hotspot in this area. Similarly, the hotspot in the North and South 

Carolina can be linked to industrial production and the presence of a substantial consumer 

base in major cities. 
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Overall, these hotspots highlight the complex interplay between industrial activities, 

consumer sites, and population centers, underscoring the geographical concentration of PFAS 

contamination in specific regions. 

 

Figure 3. Hot spots of PFAS contamination. Legend intervals in the map represent significant 

PFAS contamination hot spots based on z-values obtained from standardized Getis Ord 

statistics. Counties with z-values ranging between 1.96 (-1.96) to 2.576 (-2.56) indicate hot 

spots (cold spots) at a 5% significance level, while z-values of 2.576 (-2.576) and higher 

(lower) signify hot spots with even greater significance at 1% level. 

Regression results 

The combined PFAS results from the Left Censored Tobit and Probit models are 

presented in table 2. The corresponding PFOA, PFOS, PFHpA, and PFHxS results are 

provided in the appendix Table A8 -A10. Tobit model shows correlations between cumulative 

PFAS at PWS scale and the corresponding independent variables, while the Probit model 

considers the likelihood of a PWS showing a positive PFAS sample. The results show that the 
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Tobit model provides a better model fit than Probit based on Akaike’s Information Criteria 

(AIC) and Bayesian Information Criteria (BIC) values.  However, we present both sets of 

results because they provide qualitatively similar but technically different interpretations.  

PFAS contamination and PWS characteristics 

PFAS contamination is less likely in small PWSs. On average, small PWSs have 0.145 

ng/L (0.000145µg/L*1000 = 0.145 ng/L) less PFAS than large PWSs. This result is consistent 

with previous PFAS studies (Hu et al., 2016; Guelfo & Adamson,2018). The result is also 

consistent with Rahman et al. (2010) who found more SDWA regulated contaminant 

violations by large PWSs than by small ones in Arizona. However, many other studies on 

SWDA regulated contaminant violations found small PWSs to have more violations (Allaire 

et al., 2018; Michielssen et al., 2020; Acquah & Allaire, 2023; Anica and Elbakidze, 2023).  

PWSs that rely on surface water sources are less likely to experience PFAS 

contamination compared to those that depend on ground water. PWSs that use surface water 

have 0.163 ng/L less PFAS concentration compared to the PFAS that uses GW. This finding 

is in line with PFAS contamination study by Guelfo and Adamson (2018) but contradicts the 

SDWA regulated contamination study (Allaire et al., 2018). Hence, surface water may pose 

greater risk for some of the SDWA regulated contaminants, while groundwater may pose 

greater risk in terms of PFAS contaminants.  

The discrepancy in concentrations between SDWA-regulated contaminants and PFAS 

in groundwater sheds light on the contrasting behaviors exhibited during the percolation 

process. The diminished levels of SDWA-regulated contaminants in the ground water as 

compared to the surface water suggest that they undergo effective filtration through natural 
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processes as they journey through the Earth's surface and reach the aquifer. This natural 

filtration mechanism acts as a safeguard, reducing the risk associated with these contaminants. 

However, in stark contrast, the absence of such filtration becomes apparent when considering 

PFAS. The substantial presence of PFAS in groundwater is a clear indication that these 

persistent compounds resist degradation through natural processes. Instead, they persist and 

accumulate wherever they settle, posing an ongoing concern for the quality and safety of 

groundwater resources. 

Contamination and Socioeconomic Characteristics 

PFAS contamination is more likely in PWSs located in populous and densely housed 

areas. For every 1% increase in population, PFAS concentration increases by 0.00057 ng/L 

(0.00005740µg/L*1000 = 0.0574 ng/L. Since independent variable population is in log, 

0.0574/100 = 0.00057 ng/L per 1% increase in population). Similarly, PFAS increases by 

0.00085 ng/L for every 1% increase in housing density. The positive effect of population and 

housing density may be associated to greater consumption of goods that contain PFAS. PFAS 

from goods such as detergents, cleaning agents, clothes, and others wind up in sewage system 

and eventually drain into water bodies that serve as sources for PWSs. Since PWSs and 

wastewater treatment systems lack the capacity to filter PFAS, PWSs in areas with greater 

population and housing density can experience elevated levels of PFAS.  

PFAS contamination is a negatively correlated with non-white populations. 

Specifically, we find that for every 1% increase in non-white population and poverty, the 

concentration of PFAS decreases by 0.0063 ng/L (it is 0.2507 n/L in probit estimation). The 

overall poverty and poverty of disadvantaged community (non-white) has no impact on PFAS 
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concentration. These findings are opposite from what is observed in the case of SDWA 

regulated contaminants (Allaire et al., 2018; McDonalds and Johns, 2018).  In SDWA 

regulated contamination studies, greater numbers of violations are observed in disadvantaged 

communities and in areas with higher poverty.  PWSs in disadvantaged communities have 

limited access to financial and other resources, resulting in poorer infrastructure and 

maintenance, which leads to water quality violations (Elbakidze and Beeson 2021). In the 

case of PFAS contamination, however, lack of financial resources does not seem to be 

associated with contamination. One reason for this result may be that no PFAS filtration 

technology exists to remove these compounds from drinking water. Therefore, affordability 

does not play a role. Instead, PFAS in drinking water seems to be correlated with some of the 

characteristics of the surrounding community. Wealthier communities have higher purchasing 

power and consume more goods, including those that contain PFAS, which can lead to greater 

PFAS leaching into water bodies that serve as sources for local PWSs. Conversely, 

disadvantaged communities have lower purchasing power, consume fewer goods, and 

generate less PFAS leaching into local water bodies. 

Contamination and Industrial composition 

PWSs situated in areas where agriculture, forestry, and fishery sectors are significant 

components of the local economy are less prone to contamination. A 1% increase in the share 

of agriculture, forestry, and fishery in the county GDP results in a 0.01 ng/L decline in PFAS 

concentration. This trend prevails notably in rural regions of the United States, where 

agriculture holds a prominent economic position (USDA, 2022). There is no evidence of 

PFAS use of in agricultural production. The occurrence of PFAS contamination through 
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agriculture arises solely when municipal biosolids are employed as fertilizer, and such cases 

are infrequently reported within the country (MCDCP (Maine Department of Agriculture, 

Conservation and Forestry), 2023; Kim Lazcano et al., 2020 Choi et al., 2019). Moreover, the 

lower demand for consumer products in sparsely populated agriculturally dominant rural areas 

reinforces the validity of these findings. Consequently, the relative risk of PFAS 

contamination in PWSs within agriculturally driven communities remains low  

The correlation between county GDP from non-durable goods manufacturing industry 

and PFAS contamination in local PWSs is positive and statistically significant. A1% increase 

in the share of GDP from non-durable goods manufacturing leads to a 0.01 ng/L increase in 

drinking water PFAS concentration. Non-durable goods, which have an average life of less 

than three years, include a wide range of products such as textiles, food packaging material, 

carpet, clothing, cosmetics, hygiene products and more. The manufacturing of these goods 

often involves the use of various PFAS compounds (EPA, 2023b), which may explain the 

positive correlation between elevated contamination and the prominence of non-durable 

goods manufacturing industry in the local economy. 

The healthcare and social assistance industry exhibits a notable positive correlation 

with PFAS contamination. With each 1% increase in the healthcare and social assistance 

industry's share of the county GDP, there is a corresponding 0.01 ng/L increase in PFAS 

concentration. Numerous products utilized in hospitals and healthcare facilities, including 

MRI imaging, ultrasound, positron emission tomography (PET), cell abnormality tests, 

medicines, surgical gowns, drapes, flooring, and walls, contain PFAS (3M, 2019).  

Ensuring a contaminant-free environment is crucial in hospitals and care facilities to 
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prevent infections, necessitating specific cleaning protocols. PFAS are incorporated into the 

construction of these establishments and product manufacturing (e.g. surgical gown) due to 

their resistance to heat, water, and chemical degradation which facilitate rigorous cleaning 

procedures. Moreover, PFAS are commonly employed in medical implants and devices such 

as vascular grafts, surgical meshes, catheter tubes, filters, needle retrieval systems, 

tracheostomies, inhalers, catheter guide wires, and imaging products (Gaines, 2022). The 

consistent positive correlation between PFAS concentration and the proportion of the health 

sector in the local economy suggests that the healthcare industry serves as a significant user 

and emitter of PFAS into the environment. 

We observe that PFAS contamination is more likely for PWSs located in counties with 

greater role of government enterprises in the local economy. For every 1% increase in the 

government enterprises’ share of county GDP PFAS concentration increases by 0.0073 ng/L 

PFAS. Government enterprises such as military, firefighting, and government-operated 

airports have been found to use firefighting foams and heat-resistant equipment that contain 

PFAS (Hu et al., 2016). Additionally, federal and state-owned or partnered hospitals also use 

PFAS-containing products, which could contribute to the elevated levels of PFAS in the 

surrounding environment.  
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Table 2: PWS characteristics and socioeconomic factors affecting the overall PFAS contamination in the USA.  

 Model 

Tobit Probit 

Marginal effect 

(y*) 

Marginal effect 

for Censored 

Sample (y) 

Likelihood Marginal 

effect 

PWS size (1=small, 0= large) -0.203*** 

(0.0508) 

-0.00014550*** 

(0.00002710) 

-0.513*** 

(0.120) 

-0.0070471*** 

(0.000989) 

Water source (Surface water =1) -0.131*** 

(0.0208) 

-0.00016320*** 

(0.00003360) 

-0.272*** 

(0.0468) 

-0.0060083*** 

(0.0010733) 

Water source (Mixed=1) -0.0452 

(0.0560) 

-0.00005630 

(0.00007000) 

-0.0736 

(0.127) 

-0.0016275 

(0.002817) 

Water source (Mix but dominated by 

Ground water =1) 

0.0792 

(0.0614) 

0.00009870 

(0.00007750) 

0.259* 

(0.139) 

0.0057402** 

(0.0030902) 

Population (log) 0.0461*** 

(0.0145) 

0.00005740*** 

(0.00001930) 

0.0776** 

(0.0331) 

0.0017164** 

(0.0007303) 

Non-White population (%) -0.00503*** 

(0.00118) 

-0.00000626*** 

(0.00000168) 

-0.0113*** 

(0.00267) 

-0.0002507*** 

(0.0000596) 

Poverty (%) -0.00515 

(0.00434) 

-0.00000642 

(0.00000545) 

-0.0118 

(0.00993) 

-0.0002619 

(0.0002196) 

Nonwhite Poverty (%) 0.00213 

(0.00227) 

0.00000265 

(0.00000283) 

0.00666 

(0.00523) 

0.0001473 

(0.0001157) 

Log Housing density (house/sq mil) 0.0679*** 

(0.0150) 

0.00008460*** 

(0.00002150) 

0.182*** 

(0.0339) 

0.0040218*** 

(0.0007697) 

Percentage Contribution to the GDP from 

Agriculture -0.00882** 

(0.00405) 

-0.00001100** 

(0.00000512) 

-0.0224** 

(0.00934) 

-0.0004947** 

(0.0002042) 

Durable goods manufacturing -0.00592*** 

(0.00227) 

-0.00000737** 

(0.00000298) 

-0.0150*** 

(0.00518) 

-0.0003328*** 

(0.0001142) 

Non-durable good manufacture 0.0105*** 

(0.00161) 

0.00001300*** 

(0.00000249) 

0.0237*** 

(0.00359) 

0.0005242*** 

(0.0000789) 

Healthcare and social assistance 0.00820*** 

(0.00308) 

0.00001020** 

(0.00000403) 

0.0158** 

(0.00717) 

0.0003494 

(0.0001585) 

Food and accommodation 0.00628 

(0.00433) 

0.00000783 

(0.00000546) 

0.0125 

(0.00999) 

0.0002766 

(0.0002204) 

Government enterprise 0.00592*** 

(0.00134) 

0.00000738*** 

(0.00000188) 

0.0116*** 

(0.00312) 

0.0002577 

(0.0000694) 

Constant -1.569*** 

(0.181) 

 -3.312*** 

(0.400) 

 

Sigma .4345775   

.0151659 

   

Observations 35,589  30,777  

Log likelihood  -1995.8965  -2464.5555  

LR chi2(44) 997.68  811.01  

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Discussion 

Understanding the socio-economic and industrial factors associated with PFAS 

contamination in PWS is critical for developing effective mitigation strategies. Hot spot 

analysis identifying regional clusters of contamination helps pinpoint vulnerable communities 

and prioritize mitigation efforts to contain and eliminate PFAS from the water system. In this 

study, intense hot spots of PFOA, PFOS, and overall PFAS have been identified in the 

southeastern US, including - Alabama, Georgia, and North Carolina; western US in Colorado; 

and northeast US, including New Jersey, New York, and Massachusetts.  

The finding that large PWSs have more PFAS is consistent with the results of previous 

PFAS studies (Hu et al., 2016; Guelfo & Adamson, 2018). This result differs from non-PFAS-

SWDA regulated contaminant literature. Allaire et al. (2018) found that the majority of 

violations were occurring in small PWS which is also supported by many other studies 

including Switzer and Teodoro (2018), Michielssen et al. (2020), and Smith et al. (2023). 

We find that PWSs that rely on groundwater intake experience greater PFAS 

contamination. This result is consistent with all PWS-PFAS contamination studies. The 

inferiority of groundwater in terms of PFAS contamination is in stark difference relative to 

the SWDA-regulated contaminants. Allaire et al. (2018), for instance, found that violations of 

water quality regulations were significantly higher for PWSs that rely on surface water. The 

rationale is that groundwater goes through natural filtration processes before being pumped 

for treatment and delivery as drinking water. However, since PFAS do not biodegrade and are 

much more persistent (Cousins et al., 2020; Saez et al., 2008), the groundwater filtration 

processes may not be effective in removing these compounds. Furthermore, since PFAS can 
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bioaccumulate, groundwater can actually contain more PFAS than free flowing surface water. 

Hence, particular focus on aquifers may be justified in terms of remediating PFAS in drinking 

water.   

PFAS concentration is greater in PWSs that are located in more densely populated 

counties. This result is likely due to the greater consumption of PFAS-containing goods in 

densely populated regions (Glüge et al., 2020). PFAS can leach from everyday products like 

detergents, cleaning agents, and clothing, ultimately making their way into the wastewater 

treatment system and contaminating water sources (Stoiber et al., 2020). Since drinking water 

treatment facilities lack the capability to remove PFAS from drinking water, more PFAS 

contaminated intake implies more PFAS in drinking water. Hence, unless appropriate 

technology is developed and deployed to remove PFAS from drinking water, remedying 

drinking water PFAS will require addressing PFAS leakage from consumer goods.   

In general, larger PWS in wealthier counties have a higher credit rating and better 

financial and technical capabilities (Anica and Elbakidze 2023; EPA, 2001). However, we do 

not observe a significant relationship between PFAS contamination and poverty. We also do 

not find a statistically significant effect of nonwhite poverty in contrast to Beeson and 

Elbakidze (2021) who find that SDWA violations are more common in communities with 

poor nonwhite residents and other studies that document disproportionate SDWA violations in 

disadvantaged communities with, which often lack access to policymaking processes or 

federal and state funding (Allaire, Wu, and Lall, 2018; McDonalds and Johns, 2018; EPA, 

2001). These limitations put minority communities at greater risk of contamination as they 

have limited access to necessary technology or funding for proper water treatment. Our results 
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show that limited access to resources and lack of representation in decision-making are not 

the primary reasons for PFAS contamination. Instead, our results actually show that non-

white communities experience statistically less PFAS in drinking water than their white 

counterparts. These results support our previous interpretation that the PFAS in drinking 

water does not depend on community wealth or representation in government environmental 

initiatives because no technology is currently available to remove PFAS from drinking water. 

Instead, drinking water PFAS contamination seems to depend on population and housing 

density.  Greater population implies greater consumption of consumer goods that contain 

PFAS, which can leak into local waterways. If PWSs source water from contaminated 

waterbodies and are unable to remove PFAS from water, then areas with greater populations 

will experience greater PFAS in drinking water.  

PFAS in drinking water also depends on the surrounding area’s industrial 

composition. The observed negative correlation between PFAS in drinking water and the 

agriculture, forestry, and fishery sector may be due to the limited or no use of PFAS-

containing production inputs in these industries. Counties where these industries represent a 

significant share of local economy also tend to be rural with lower population densities 

(USDA, 2022) and lower demand for goods that contribute to PFAS in waterways. On the 

other hand, significantly higher concentration of PFAS is observed in counties with non-

durable goods manufacturing industry. Non-durable goods, which have an average life of less 

than three years, include a wide range of products including textiles, shoes, food packaging 

material, carpet, clothing, cosmetics, hygiene, and more (BEA, 2023; EPA, 2023b). The 

nondurable goods manufacturing often involves the use of various PFAS compounds (EPA, 
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2023c), which may explain the observed positive correlation between PFAS contamination 

the non-durable goods manufacturing.  

The healthcare and social assistance industry is also positively associated with PFAS 

contamination. Many hospital/health care products such as surgical gowns, drapes, flooring, 

and walls, contain PFAS. PFAS are also commonly used in medical implants and devices 

such as vascular grafts, surgical meshes, catheter tubes etc. to enhance longevity (Gaines, 

2022). As a result, the health industry may be a significant source of PFAS in local 

waterbodies. We also observe a positive correlation between PFAS and government 

enterprises including military, firefighting, and government-operated airports. These 

government operations often use fire-retardants that contain significant quantities of PFAS. 

This finding is consistent with Hu et al. (2016) how detect higher PFAS levels in areas 

surrounding AFFF-certified airports and military bases. 

Conclusion 

We examine PFAS geographical distribution across the US PWSs, document several 

regional hotspots, and investigate potential communities and PWS attributes that may be 

correlated with elevated PFAS in drinking water. Major findings are that large PWSs that are 

located in densely populated areas and rely on groundwater as intake source have greater 

PFAS concentrations. Drinking water PFAS contamination is also correlated with non-durable 

goods manufacturing, healthcare and social assistance, and government enterprises. 

Conversely, we find lower PFAS contamination in communities with more non-white 

populations and in areas with larger agricultural industry. 
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Cumulatively, these results suggest a strong association between PFAS contamination 

and some industrial activities and consumption. Hence, drinking water PFAS contamination is 

a negative externality of production as well as consumption. Densely populated areas 

consume greater quantities of goods like textiles, detergents, personal care products, paints, 

and food packaging materials that contain PFAS. Inadequate post consumption handling, 

disposal, and recycling methods and facilities may be contributing to PFAS contamination in 

these regions.    

  Hence, our results suggest that future PFAS mitigation efforts ought to pay particular 

attention to not only industrial production activities but also to consumption as a source of 

PFAS. Until appropriate technologies are developed to remove PFAS from drinking water, 

policies and programs may be needed to address PFAS leakage from consumption.  
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APPENDIX 

Table A1: PFAS in the US PWS  
  Total 

Sampled 

(n) 

Detected 

PFBS PFHpA PFHxS PFNA PFOA PFOS At least 

one 

PFAS 

States (n) 48 4(8.33) 22(45.83) 22(45.83) 7(14.58) 27(56.25) 24(50.0) 33(68.75) 

Counties 

(n)  

1616 7(0.43) 61(3.77) 43(2.66) 12(0.74) 78(4.83) 60(3.71) 121(7.49) 

PWSs (n)  4782 7(0.15) 82(1.71) 52(1.09) 14(0.29) 116(2.43) 91(1.90) 193(4.04) 

Facilities 

(n)  

14,607 9(0.06) 136(0.93) 107(0.73) 14(0.10) 227(1.55) 165(1.13) 345(2.36) 

Samples (n) 35,589 17(0.05) 228(0.64) 191(0.54) 19(0.05) 377(1.06) 275(0.77) 578(1.62) 

Population, 

106 (n) 

314.38 0.28 

(0.09) 

8.76 

(2.79) 

5.50 

(1.75) 

0.52 

(0.17) 

7.73 

(2.46) 

10.28 

(3.27) 

15.95 

(5.07) 

Note: figures in the parenthesis indicate the percentages of the total(n) 

 

 

Table A2: PFAS contamination by large and small PWSs and by intake water source. 
Attributes Total Count 

(n) 

Contamination (n(%)) 

PFBS PFHpA PFHxS PFNA PFOA PFOS At least 

one 

PFAS 

PWSs 4782 7 

(0.15) 

82(1.71) 52(1.09) 14(0.29) 116(2.43) 91(1.90) 193(4.40) 

Large 4008 

(83.81) 

7(0.17) 80(2.00)) 50(1.25) 13(0.32) 114(2.84) 87(2.17) 187(4.67) 

Small 774 (16.19) 0(0.0) 2(0.26) 2(0.26) 1(0.13) 2(0.26) 4(0.52) 6(0.78) 

Source of water to the Water supply facility 

Facility 14607 9(0.06) 136 

((0.93) 

107(0.73) 14(0.10) 227(1.55) 165 

(1.13) 

345(2.36) 

SW 3213(22.0) 5(0.16) 44(1.37) 7(0.22) 1(0.03) 46(1.43) 27(0.84) 74(2.30) 

GW 11074(75.8) 4(0.04) 88(0.79) 95(0.86) 13(0.12) 173(1.56) 130(1.17) 258(2.33) 

MX 210(1.4) 0(0.00) 3(1.44) 2(0.95) 0(0.00) 5(2.38) 5(2.38) 6(2.86) 

GU 110(0.8) 0(0.00) 1(0.91) 3(2.73) 0(0.00) 3(2.73) 4(3.64) 7(6.36) 

 Note: figures in the parenthesis indicate the percentages of the total(n)  
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Figure A.1: Number of and PFOA (A) and PFOS (B) contaminated water samples per PWS in 

the county.  
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Figure A.1.1: Number of and PFHpA (C), and PFHxS (D) contaminated water samples per 

PWS in the county.  
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Figure A2. Hot spot of PFOA(A) and PFOS (B) contamination. Hot spot was based on 

number of contaminated samples per PWS in the county. Intervals in the legends are selected 

based on 1% and 5% levels of significance.  
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Figure A2. Hot spot of PFHpA (C), and PFHxS (D) contamination. Hot spot was based on 

number of contaminated samples per PWS in the county. Intervals in the legends are selected 

based on 1% and 5% levels of significance.  
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Table A3: Hot spots of PFOA Contamination  

Hot Spots state County 

1 Alabama [18]  Etowah (9.53), DeKalb (9.02), Jackson (8.90), Marshall (8.81), 

Cherokee (8.02), Calhoun (7.89), Blount (7.03), Madison (7.00), 

St. Clair (6.89), Cullman (6.76), Morgan (5.78), Winston (5.27), 

Lawrence (5.06), Limestone (4.94), Walker (4.49), Talladega 

(4.36), Jefferson (3.83), Shelby (2.86) 

Georgia 

[33] 

Chattooga  (7.62), Floyd (7.38), Catoosa (7.38), Haralson (7.38), 

Walker (7.30), Whitfield (7.28), Dade (7.21), Gordon (7.19), Polk 

(7.19), Bartow (7.19), Paulding (6.93), Murray (6.85), Carroll 

(6.21), Cobb (5.80), Douglas (5.65), Cherokee (5.65), Gilmer 

(5.03), Coweta (4.66), Gwinnett (4.36), DeKalb (4.29), Hall (4.23), 

Forsyth (4.17), Fulton (4.17), Union (4.00), Dawson (4.00), 

Rockdale (3.15), Barrow (3.09), Fayette (3.04), Habersham (2.86), 

Stephens (2.61), Jackson (2.35), Henry (2.30), Walton (2.30) 

Tennessee 

[16] 

  

Franklin (9.36), Marion (7.75), Hamilton (5.80), Meigs (5.70), 

McMinn (5.61), Lincoln (5.46), Bradley (5.46), Bledsoe (4.72), 

Rhea (4.65), Coffee (2.87), Lawrence (2.84), Giles (2.72), Monroe 

(2.65), Warren (2.40), Marshall (2.36), Maury (2.17) 

2 New Jersey (18] 

 

Ocean (7.42), Burlington (6.88), Mercer (6.72), Monmouth (6.72), 

Middlesex (6.72), Atlantic (6.43), Somerset (6.43), Hunterdon 

(6.08), Union (5.72), Hudson (5.71), Passaic (5.66), Bergen (5.66), 

Essex (5.62), Camden (5.39), Morris (5.37), Gloucester (5.21), 

Warren (4.92), Cape May (2.25), Marion (1.97) 

Pennsylvania 

[13] 

 

Philadelphia (6.50), Bucks (6.29), Montgomery (6.01), Lehigh 

(5.90), Northampton (5.89), Lackawanna (5.44), Pike (5.28), 

Carbon (5.19), Monroe (5.12), Delaware (5.03), Wayne (4.67), 

Chester (4.39), Berks (4.16) 

New York [10] 

 

Suffolk (6.26), Nassau (6.02), Queens (6.00), Rockland (5.48), 

Orange (5.10), Westchester (5.09), Putnam (5.00), Dutchess (4.95), 

Ulster (4.86), Sullivan (4.72) 

Connecticut [2] New Haven (3.00), Fairfield (2.97) 

3 West Virginia 

[9] 

Kanawha (2.47), Mason (2.33), Putnam (2.33), Cabell (2.16), 

Wood (2.10), Wayne (2.10), Lewis (2.05), Taylor (2.05) 

Ohio [3]  Meigs (2.16), Washington (2.10), Athens (2.00) 

4 Colorado [10] 

 

Pueblo (8.76), Fremont (6.79), El Paso (5.99), Arapahoe (5.39),  

Adams (4.93), Douglas (4.93), Denver (4.93), Broomfield (4.93), 

Jefferson (4.72), Gilpin (4.72),  

5 Arizona [3] Gila (3.73), Pinal (3.13), Graham (2.77) 
Value in [ ] indicates number of counties that fall in the hot spot in respective states. 

Value in ( ) indicates the z-score of Standardized Getis Ord statistics. 
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Table A4: Hot spots of PFOS Contamination 

Hotspot state county 

1 Alabama 

[23] 

Etowah (8.50), DeKalb (8.03), Jackson (7.92), Blount (7.13), 

Madison (6.79), Cherokee (6.56), St. Clair (6.46), Marshall 

(6.38),  

Cullman (6.29), Winston (6.16), Lawrence (5.92), Limestone 

(5.70), Morgan (5.60), Walker (5.26), Calhoun (4.18), Jefferson 

(4.00), Lamar (3.70), Talladega (3.49), Colbert (3.34), Franklin 

(3.18), Lauderdale (3.11), Tuscaloosa (2.57), Shelby (2.42),  

Georgia [27]  Chattooga (6.22), Walker (5.56), Dade (5.49), Floyd (5.39), 

Catoosa (5.39), Haralson (5.39), Whitfield (5.31), Gordon (5.24), 

Polk (5.24), Bartow (5.24), Murray (5.17), Paulding (5.03), 

Carroll (4.32), Cobb (4.20), Douglas (4.08), Cherokee (4.08), 

Gilmer (3.77), Rockdale (3.22), Barrow (3.16), Gwinnett (3.11), 

DeKalb (3.06), Hall (3.00), Forsyth (2.95), Fulton (2.95), Union 

(2.81), Dawson (2.81), Stephens (2.06) 

Mississippi [3] Lee (2.34), Alcorn (2.20), Prentiss (2.08) 

Tennessee [18] Franklin (8.60), Marion (5.88), Lincoln (5.22), Meigs (4.32), 

McMinn (4.25), Hamilton (4.18), Bradley (4.12), Lawrence 

(4.06),  

Giles (3.91), Maury (3.29), Coffee (3.16), Marshall (3.16), 

Bledsoe (2.87), Rhea (2.82), Warren (2.72), Bedford (2.44), 

Hardin (2.14), McNairy (2.08) 

2 Colorado [10] 

 

Pueblo (8.76), Fremont (6.79), El Paso (5.99), Arapahoe (5.39),  

Adams (4.93), Douglas (4.93), Denver (4.93), Broomfield (4.93), 

Jefferson (4.72), Gilpin (4.72),  

3 Florida [5]  Monroe (4.79), Miami-Dade (4.32), Broward (3.43), Collier 

(3.43), Hendry (2.76),  

4 New Jersey [4] Middlesex (2.45), Monmouth (2.45), Atlantic (2.05), Union 

(2.00) 

New York [1] Queens (2.02) 

5 California [3] Orange (2.46), San Diego (2.12), Los Angeles (2.06),  

6 Wisconsin [2] Chippewa (2.28), Eau Claire (2.09) 

7 Minnesota [1] Beltrami (2.36),  
Value in [ ] indicates number of counties that fall in the hot spot in respective states. 

Value in ( ) indicates the z-score of Standardized Getis Ord statistics. 
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Table A5: Hot spots of PFHpA Contamination 

Hot Spot state County 

1 Alabama [25]  St. Clair (11.09), Blount (8.99), Cullman (8.41), Madison 

(8.28), Calhoun (8.09), Etowah (7.98), Marshall (7.92), 

Talladega (7.79), DeKalb (7.59), Jackson (7.49), Morgan 

(7.18), Cherokee (6.96), Winston (6.30), Jefferson (6.30), 

Lawrence (5.93), Shelby (5.75), Limestone (5.72), Walker 

(4.66), Chambers (4.41), Tallapoosa (4.01), Butler (2.81), 

Tuscaloosa (2.55), Perry (2.29), Dallas (2.29), Chilton (2.05) 

Georgia [25] Floyd (6.98), Haralson (6.83), Polk (6.81), Bartow (6.81), 

Paulding (6.56), Chattooga (6.50), Gordon (6.50), Catoosa 

(6.36), Walker (6.35), Whitfield (6.27), Dade (6.26), Murray 

(5.51), Carroll (4.88), Coweta (4.26), Cherokee (4.17), Cobb 

(4.14), Douglas (4.03), Gilmer (3.68), Forsyth (2.31), Gwinnett 

(2.28), Fayette (2.28), DeKalb (2.24), Hall (2.19), Dawson 

(2.19), Fulton (2.15) 

Tennessee [16] Franklin (7.70), Lincoln (6.78), Marion (6.69), Hamilton (4.40), 

Meigs (3.88), McMinn (3.82), Bradley (3.70), Coffee (3.28), 

Lawrence (3.21), Giles (3.08), Marshall (2.90) Bedford (2.85), 

Bledsoe (2.53), Rhea (2.48), Warren (2.39), Maury (2.30) 

2 North Carolina 

[42]  

Robeson (8.95), Cumberland (7.98), Bladen (7.88), Scotland 

(7.53), Sampson (7.44), Hoke (7.41), Wayne (7.18), Lenoir 

(6.84), Alamance (6.23), Pender (6.20), Orange (6.12), Harnett 

(6.12), Chatham (5.83), Lee (5.74), Moore (5.66), Randolph 

(5.57), Guilford (5.57), Richmond (5.49), Montgomery (5.41), 

Franklin (5.28), Granville (5.28), Anson (5.11), Wake (4.98), 

Johnston (4.89), Durham (4.89), Stanly (4.81), Rockingham 

(4.80), New Hanover (4.79), Onslow (4.62), Brunswick (4.46), 

Nash (4.32), Davidson (4.27), Wilson (4.05), Person (3.52), Pitt 

(3.45), Warren (2.67), Stokes (2.27), Forsyth (2.22), Davie 

(2.22), Cabarrus (2.21), Union (2.16), Rowan (2.09),  

South Carolina 

[7] 

Dillon (8.81), Marlboro (7.18), Chesterfield (5.27), Marion 

(5.02), Horry (4.18), Darlington (4.17), Florence (3.84) 

3 Colorado [10]  Pueblo (8.80), Fremont (6.83), El Paso (6.03), Arapahoe (5.43), 

Adams (4.96), Douglas (4.96), Denver (4.96), Broomfield 

(4.96), Jefferson (4.76), Gilpin (4.76) 

4 New Jersey [6] Atlantic (2.39), Monmouth (2.37), Middlesex (2.37), Ocean 

(2.11), Mercer (2.07), Cape May (2.02),  

Pennsylvania 

[1] 

Bucks (1.99) 

Value in [ ] indicates number of counties that fall in the hot spot in respective states. 

Value in ( ) indicates the z-score of Standardized Getis Ord statistics. 
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Table A6: Hot spots of PFHxS Contamination 

Hot Spot state county  
1 New Jersey 

[18] 

Atlantic (3.26), Monmouth (3.22), Middlesex (3.22), Mercer 

(2.72), Ocean (2.69), Union (2.68), Somerset (2.58), Cape 

May (2.50), Camden (2.47), Burlington (2.42), Hunterdon 

(2.41), Gloucester (2.37), Passaic (2.35), Bergen (2.35), 

Hudson (2.30), Essex (2.25), Morris (2.13), Cumberland 

(2.03) 

Pennsylvania 

[8] 

Bucks (2.69), York (2.61), Delaware (2.48), Chester (2.32), 

Philadelphia (2.28), Montgomery (2.28), Northampton (2.17), 

Lehigh (2.17) 

Maryland [1] Baltimore (2.01) 

New York [1] Queens (2.49) 

2 Colorado [10] Pueblo (13.96), Fremont (10.94), El Paso (9.73), Arapahoe 

(8.83), Adams (8.12), Douglas (8.12), Denver (8.12), 

Broomfield (8.12), Jefferson (7.82), Gilpin (7.82) 

3 Wisconsin [7]  Oneida (3.94), Wood (3.21), Portage (2.97), Marinette (2.87), 

Marathon (2.87), Shawano (2.49), Waupaca (2.04) 

4 Minnesota [3] Beltrami (3.04), Itasca (2.26), Polk (2.26) 

5 South Dakota 

[2] 

Mellette (3.04), Hughes (3.04) 

6 Kansas [2] Ellis (2.02), Ford (2.02) 

7 Texas [2] Tom Green (2.02), Jones (2.02) 
Value in [ ] indicates number of counties that fall in the hot spot in respective states. 

Value in ( ) indicates the z-score of Standardized Getis Ord statistics. 
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Table A7: Hot spots of PFAS Contamination 

Hot Spot state county  
1 Georgia [31] Chattooga (7.77), Floyd (7.63), Haralson (7.58), Catoosa (7.45), Polk 

(7.43), Walker (7.43), Bartow (7.43), Whitfield (7.35), Gordon (7.34), 

Dade (7.33), Paulding (7.15), Murray (6.89), Carroll (6.09), Cobb (5.65), 

Cherokee (5.55), Douglas (5.50), Gilmer (5.18), Coweta (4.42), Gwinnett 

(4.26), DeKalb (4.20), Hall (4.13), Forsyth (4.11), Fulton (4.07), Dawson 

(3.93), Union (3.76), Rockdale (3.31), Barrow (3.26), Fayette (2.84), 

Henry (2.27), Habersham (2.27), Stephens (2.10) 

Alabama [18] Etowah (9.74), DeKalb (9.22), Jackson (9.09), Marshall (8.83), Cherokee 

(8.23), St. Clair (8.15), Calhoun (7.96), Blount (7.75), Madison (7.61), 

Cullman (6.89), Morgan (5.93), Winston (5.66), Lawrence (5.39), 

Limestone (5.21), Talladega (5.18), Walker (4.44),  

Jefferson (4.29), Shelby (3.34) 

 Tennessee [17] Franklin (9.55), Marion (7.86), Hamilton (5.92), Meigs (5.81), McMinn 

(5.72), Lincoln (5.56), Bradley (5.55), Bledsoe (4.27), Rhea (4.20), 

Lawrence (3.15), Coffee (3.07), Giles (3.01), Marshall (2.62), Warren 

(2.51), Maury (2.42), Bedford (2.19), Monroe (2.04) 

2 New Jersey 

[20] 

Middlesex (5.00), Monmouth (5.00), Ocean (5.00), Atlantic (4.85), 

Mercer (4.67), Burlington (4.56), Somerset (4.43), Hunterdon (4.15), 

Union (3.96), Camden (3.88), Hudson (3.86), Essex (3.78), Gloucester 

(3.73), Bergen (3.64), Passaic (3.64), Morris (3.58), Warren (2.92), Cape 

May (2.80), Cumberland (2.32), Salem (1.98) 

Pennsylvania 

[14] 

Bucks (4.48), Philadelphia (4.28), Montgomery (4.09), Northampton 

(4.09), Lehigh (4.09), Delaware (3.77), Carbon (3.36), Chester (3.33), 

Lackawanna (3.21), Monroe (3.16), Berks (3.11), Pike (3.05), York 

(2.07), Wayne (2.02) 

New York [10] Queens (3.92), Nassau (3.52), Suffolk (3.45), Rockland (3.16), Orange 

(2.92), Westchester (2.69), Putnam (2.63), Dutchess (2.62), Ulster (2.20), 

Sullivan (2.04) 

Connecticut [2] New Haven (3.00), Fairfield (2.97) 

Delaware [2] New Castle (2.10), Kent (2.04) 

3 North Carolina 

[25] 

Cumberland (3.19), Robeson (3.00), Scotland (2.96), Hoke (2.90), 

Sampson (2.86), Bladen (2.79), Wayne (2.72), Harnett (2.67), Alamance 

(2.66), Franklin (2.65), Granville (2.65), Orange (2.60), Wake (2.45), 

Chatham (2.43), Johnston (2.39), Durham (2.39), Lee (2.38), Moore 

(2.23), Guilford (2.18), Randolph (2.18), Rockingham (2.16) Lenoir 

(2.15), Richmond (2.13), Montgomery (2.09), Person (1.97),  

South Carolina 

[2] 

Dillon (2.90), Marlboro (2.29) 

4 Colorado [10] Pueblo (10.61), Fremont (8.23), El Paso (7.27), Arapahoe (6.55), Adams 

(5.98), Douglas (5.98), Denver (5.98),  

Broomfield (5.98), Jefferson (5.74), Gilpin (5.74) 

Value in [ ] indicates number of counties that fall in the hot spot in respective states. 

Value in ( ) indicates the z-score of Standardized Getis Ord statistics. 
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TableA8: PWS characteristics and socioeconomic factor affecting the PFOA contamination in the USA.  

VARIABLES - PFOA Models 

Tobit Probit 

Marginal 

effect (y*) 

Marginal effect 

for Censored 

Sample (y) 

Likelihood Marginal effect 

Size of the PWS – Small (1=small, 0= 

large) 

-0.0668*** 

(0.0173) 

-0.0000093*** 

(0.0000024) 

-0.725*** 

(0.181) 

-0.0045854*** 

(0.0006519) 

Source of water to the PWS- Surface 

(SW) 

-0.0301*** 

(0.00580) 

-0.0000092*** 

(0.0000028) 

-0.293*** 

(0.0567) 

-0.0037098*** 

(0.0007919) 

Source of water to the PWS- Mixed 

(MX) 

0.00437 

(0.0144) 

0.0000013 

(0.0000044) 

0.0592 

(0.143) 

0.0007486 

(0.001814) 

Source of water to the PWS- Mix but 

dominated by Ground water (GU) 

-0.00704 

(0.0186) 

-0.0000022 

(0.0000057) 

-0.0306 

(0.184) 

-0.0003867 

(0.0023285) 

Population log 0.00522 

(0.00404) 

0.0000016 

(0.0000013) 

0.0537 

(0.0404) 

0.0006792 

(0.0005107) 

Non-White population (%) -0.00120*** 

(0.000328) 

-0.0000004*** 

(0.0000001) 

-0.0120*** 

(0.00323) 

-0.0001513*** 

(0.0000425) 

Poverty (%) 0.00115 

(0.00123) 

0.0000004 

(0.0000004) 

0.00787 

(0.0124) 

0.0000996 

(0.0001565) 

Nonwhite Poverty (%) -0.00102 

(0.000647) 

-0.0000003  

(0.0000002) 

-0.00577 

(0.00656) 

-0.000073 

(0.0000832) 

Log Housing density (house/sq mil) 0.0194*** 

(0.00421) 

0.0000059*** 

(0.0000019) 

0.204*** 

(0.0410) 

0.0025839*** 

(0.0005679) 

Percentage Contribution to the GDP 

from 

    

Agriculture -0.00244* 

(0.00126) 

-0.0000007** 

(0.0000004) 

-0.0223* 

(0.0123) 

-0.0002824** 

(0.0001537) 

Durable goods manufacturing -0.000480 

(0.000621) 

-0.0000001 

(0.0000002) 

-0.00395 

(0.00619) 

-0.00005 

(0.0000784) 

Non-durable good manufacture 0.00276*** 

(0.000459) 

0.0000008*** 

(0.0000002) 

0.0275*** 

(0.00448) 

0.0003479*** 

(0.0000597) 

Healthcare and social assistance 0.00184** 

(0.000853) 

0.0000006* 

(0.0000003) 

0.0184** 

(0.00872) 

0.0002333** 

(0.0001113) 

Food and accommodation 0.000494 

(0.00120) 

0.0000002 

(0.0000004) 

0.00396 

(0.0120) 

0.0000501 

(0.0001514) 

Government enterprise 0.00145*** 

(0.000388) 

0.0000004*** 

(0.0000002) 

0.0146*** 

(0.00385) 

0.0001847*** 

(0.0000508) 

Constant -0.336*** 

(0.0514) 

 -3.472*** 

(0.496) 

 

Sigma .1009417 

(.0046164) 

   

Observations 35,589  28,908  

Log likelihood  -825.49792  -1657.6946  

LR chi2(44) 866.11  705.75  

Prob > chi2 0  0  

Pseudo R2 0.3441  0.1755  

AIC  1740.996  3403.389  

BIC  2122.586  3767.352  

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A9: PWS characteristics and socioeconomic factors affecting the PFOS contamination in the USA.  

VARIABLES - PFOS Models 

Tobit Probit 

Marginal 

effect (y*) 

Marginal effect 

for Censored 

Sample (y) 

Likelihood Marginal 

effect 

Size of the PWS – Small (1=small, 0= 

large) 

-0.126** 

(0.0571) 

-0.000009** 

(0.00000376) 

-0.328** 

(0.148) 

-0.00244*** 

(0.0007582) 

Source of water to the PWS- Surface 

(SW) 

-0.151*** 

(0.0277) 

-0.000018*** 

(0.00000629) 

-0.382*** 

(0.0690) 

-0.00404*** 

(0.0007939) 

Source of water to the PWS- Mixed (MX) -0.0159 

(0.0567) 

-0.000002 

(0.00000669) 

-0.00229 

(0.143) 

-0.00002 

(0.00151) 

Source of water to the PWS- Mix but 

dominated by Ground water (GU) 

0.138** 

(0.0685) 

0.000016* 

(0.00000951) 

0.397** 

(0.173) 

0.00419** 

(0.0018761) 

Population (log) 0.103*** 

(0.0194) 

0.000012*** 

(0.00000424) 

0.277*** 

(0.0485) 

0.00293*** 

(0.0005201) 

Non-White population (%) -

0.00751*** 

(0.00171) 

-0.000001*** 

(3.32E-07) 

-

0.0204*** 

(0.00429) 

-0.00022*** 

(0.0000455) 

Poverty (%) -0.00377 

(0.00537) 

-4.44E-07 

(6.43E-07) 

-0.0103 

(0.0138) 

-0.00011 

(0.0001452) 

Nonwhite Poverty (%) -0.000242 

(0.00275) 

-2.85E-08 

(3.24E-07) 

0.000405 

(0.00711) 

0.00000 

(0.0000751) 

Log Housing density (house/sq mil) 0.0534*** 

(0.0179) 

0.000006** 

(0.00000282) 

0.146*** 

(0.0450) 

0.00154*** 

(0.0004776) 

Percentage Contribution to the GDP from     

Agriculture -0.00138 

(0.00430) 

-1.63E-07 

(5.08E-07) 

-0.00314 

(0.0110) 

-0.00003 

(0.0001161) 

Durable goods manufacturing -0.00179 

(0.00292) 

-2.11E-07 

(3.51E-07) 

-0.00338 

(0.00752) 

-0.00004 

(0.0000792) 

Non-durable good manufacture 0.0117*** 

(0.00214) 

0.000001*** 

(4.78E-07) 

0.0325*** 

(0.00527) 

0.00034*** 

(0.0000575) 

Healthcare and social assistance 0.0172*** 

(0.00360) 

0.000002*** 

(7.43E-07) 

0.0471*** 

(0.00903) 

0.00050*** 

(0.0000997) 

Food and accommodation 0.0266*** 

(0.00497) 

0.000003*** 

(0.00000111) 

0.0728*** 

(0.0122) 

0.00077*** 

(0.0001371) 

Government enterprise 0.00814*** 

(0.00177) 

0.000001*** 

(3.53E-07) 

0.0231*** 

(0.00444) 

0.00024**** 

(0.0000484) 

Constant -2.316*** 

(0.261) 

 -6.199*** 

(0.604) 

 

Sigma (0.3881836 

(0.0202158) 

   

Observations 35,589  27,667  

Log likelihood  -1051.62  -1315.18  

LR chi2(44) 587.53  453.07  

Prob > chi2 0  0  

Pseudo R2 0.2184  0.1469  

AIC  2187.249  2712.366  

BIC  2543.401  3049.714  

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A10: PWS characteristics and socioeconomic factors affecting the PFHpA contamination in the USA.  

VARIABLES - PFHPA Model 

Tobit Probit 

Marginal 

effect (y*) 

Marginal effect for 

Censored Sample 

(y) 

Likelihood Marginal effect 

Size of the PWS – Small (1=small, 0= 

large) 

-0.0277*** 

(0.00943) 

-0.00000060** 

(0.00000028) 

-0.576*** 

(0.184) 

-0.00251*** 

(0.0004785) 

Source of water to the PWS- Surface 

(SW) 

0.00383 

(0.00348) 

0.00000017 

(0.00000017) 

0.0813 

(0.0658) 

0.00065 

(0.0005254) 

Source of water to the PWS- Mixed 

(MX) 

0.00342 

(0.0110) 

0.00000015 

(0.00000049) 

0.0992 

(0.204) 

0.00079 

(0.001628) 

Source of water to the PWS- Mix but 

dominated by Ground water (GU) 

-0.0211 

(0.0185) 

-0.00000093 

(0.00000090) 

-0.391 

(0.347) 

-0.00312 

(0.0027917) 

Population (log) 0.0167*** 

(0.00319) 

0.00000074** 

(0.00000034) 

0.314*** 

(0.0581) 

0.00251*** 

(0.0004814) 

Non-White population (%) -

0.000967*** 

(0.000221) 

-0.00000004** 

(0.00000002) 

-0.0183*** 

(0.00406) 

-0.00015*** 

(0.0000336) 

Poverty (%) 0.000120 

(0.000782) 

0.00000001 

(0.00000003) 

0.000150 

(0.0148) 

0.000001 

(0.0001182) 

Nonwhite Poverty (%) -0.000503 

(0.000429) 

-0.00000002 

(0.00000002) 

-0.00762 

(0.00814) 

-0.00006 

(0.0000648) 

Log Housing density (house/sq mil) -0.00196 

(0.00290) 

-0.00000009 

(0.00000013) 

-0.0282 

(0.0546) 

-0.00023 

(0.0004366) 

Percentage Contribution to the GDP 

from 

    

Agriculture -0.000275 

(0.000694) 

-0.00000001 

(0.00000003) 

-0.00410 

(0.0130) 

-0.00003 

(0.0001035) 

Durable goods manufacturing -0.00170*** 

(0.000474) 

-0.00000008** 

(0.00000004) 

-0.0323*** 

(0.00878) 

-0.00026*** 

(0.0000698) 

Non-durable good manufacture 0.00108*** 

(0.000327) 

0.00000005* 

(0.00000002) 

0.0214*** 

(0.00608) 

0.00017*** 

(0.0000491) 

Healthcare and social assistance 0.00147*** 

(0.000511) 

0.00000006** 

(0.00000004) 

0.0288*** 

(0.00962) 

0.00023*** 

(0.0000786) 

Food and accommodation 0.000923 

(0.000909) 

0.00000004 

(0.00000004) 

0.0180 

(0.0171) 

0.00014 

(0.0001358) 

Government enterprise 0.00126*** 

(0.000216) 

0.00000006** 

(0.00000003) 

0.0247*** 

(0.00388) 

0.00020*** 

(0.0000369) 

Constant -0.279*** 

(0.0382) 

 -5.297*** 

(0.660) 

 

Sigma .0532621   

.0032024 

   

Observations 35,589  25,844  

Log likelihood  -402.85  -1051.33  

LR chi2(44) 660.28  508.42  

Prob > chi2 0  0  

Pseudo R2 0.4504  0.1947  

AIC  885.7002  2180.663  

BIC  1224.892  2498.897  

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table: Getis-Ord (Gi(d)) Statistics for Hot-Spot analysis 

Variables z≤2.58 -2.58z≤1.96 -1.96z<1.96 1.96≤z<2.58 2.58≤z 

Total PFOA contamination per 

PWS in the county 

0 0 1481 19 116 

Total PFOS contamination per 

PWS in the county 

0 0 1591 20 77 

Total PFHpA contamination 

per PWS in the county 

0 0 1484 28 104 

Total PFHxS contamination per 

PWS in the county 

0 0 1562 27 27 

Total of all PFAS 

contamination per PWS in the 

county 

0 0 1465 29 122 

 


