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Abstract

Personalized extension advisory deliver information that are more compatible with

farmer production conditions and has a better chance of adoption and impacts. We

exploit a rich four-round experimental panel data on RiceAdvice, a decision support

app that provides personalized information on soil fertility management and other agri-

cultural practices to rice farmers. We evaluate the impact of the app on technological,

managerial, frontier yield, and fertilizer productivity differentials, while accounting for

differences in production technologies possessed by the different treatment groups. Re-

sults based on the true random effects estimator suggest that exposure to RiceAdvice

significantly increases the production possibilities and managerial performance of rice

smallholders exposed to it (treated farmers), leading to an upward shift in the produc-

tion frontier for those same farmers. Exposed farmers also have higher mean fertilizer

productivity compared to the unexposed, especially when bundled with fertilizer in-

puts. The impacts are stronger in the early years but wanes over time. Ensuring

consistent access to the app as well as fertilizer input could help sustain the gains.

Keywords: Digital extension, productivity, technology gap, technical efficiency, rice
production, Nigeria

1 Introduction

Agricultural extension, along with evolving modes of information delivery and content, has

long served as an avenue to disseminate new techniques, improve farmer know-how, and stim-

ulate farm-level productivity growth. Advances in information and communication technol-

ogy (ICT) tools (e.g., mobile electronic devices, apps, internet connectivity, remote sensing,

etc.) have made agricultural information more accessible. Personalized extension advisory,

which utilizes ICT tools, deliver information that are more compatible with farmer needs

as they take into account the heterogeneity in farmer production conditions (MacCarthy

et al., 2018; Tjernström et al., 2021; van Campenhout, 2022). The use of these tools to
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deliver tailored information in turn, has a better chance of actually improving smallholder

decision-making and know-how. This mode of extension delivery presents a vital strategy

for expediting and sustaining agricultural productivity growth on existing smallholder farm-

lands, and a strategy that is much needed for economic transformation (World Bank, 2017;

Norton & Alwang, 2020; Jayne & Sanchez, 2021).

RiceAdvice, an ICT-based decision support tool developed by the Africa Rice Center

(AfricaRice), allows field-specific information on nutrient management, cropping calendar,

and good cultivation techniques to be disseminated to rice smallholder farmers (Saito et

al., 2015; Arouna et al., 2020). Access to the RiceAdvice app is expected to enhance rice

farmers’ production possibilities, managerial skills, fertilizer use rates, and consequently, have

an impact on output. While such ICT tools are increasingly popular in farm management,

rigorous evidence of their influence on smallholder efficiency and productivity performance

remains limited. We seek to broaden understanding of the productivity pathways of such

tools by evaluating the technology, technical efficiency (TE), land, and fertilizer productivity

impacts from using RiceAdvice.

Empirical studies on the role of ICT in agriculture have been increasing, and they have

broadly focused on knowledge acquisition, innovation and input adoption, and marketing

(e.g., Aker, 2010; Aker and Ksoll, 2016; Fu and Akter, 2016; van Campenhout, 2017; Maredia

et al., 2018). A few studies have examined impacts on yields, profitability, soil nutrient

management as well as technical efficiency, and poverty. Arouna et al. (2020) conducted

randomized controlled trials (RCT) to evaluate the impact of digital extension information

delivered through RiceAdvice in smallholder rice farming in Kano State, Nigeria. Based on a

three-round panel data they found significant impact on farmers observed yields, profitability,

and fertilizer use rate. In eastern Uganda, van Campenhout et al. (2021) also conducted a

field experiment to assess the effectiveness of extension delivered through videos, interactive

voice response (IVR) and short message services (SMS). They observed a significant yield

impact with the use of videos, but very little impacts using IVR, and SMS. Oyinbo et al.
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(2022) studied the impact of the Nutrient Expert tool for maize in an RCT setting in Nigeria

and found significant improvements in fertility practices and yields, but no improvements for

fertilizer use rates. In Zambia, Mwalupaso et al. (2019) utilized observational data to assess

the impact of mobile phone use on TE and poverty, addressing only bias from observables

and ignoring potential underlying differences in production technology between users and

non-users. They reported significant TE improvements and poverty reduction associated

with phone usage.

Our contribution in this study is three-fold. First, we go beyond looking narrowly at

only the impact on observed yields (measured as observed output per unit area) as is the

case in the received literature, to examine a more detailed set of productivity effects of

ICT use. These effects include: 1) technology gap that comes from access to better infor-

mation and/or inputs through RiceAdvice, 2) managerial performance improvement that

arises from enhanced know-how on the implementation of farm-level practices, 3) frontier

yield gain, which is a combination of the effects in (1) and (2), and 4) fertilizer productiv-

ity improvement coming from exposure to RiceAdvice. The production frontier framework

employed to generate these effects reflects the stochastic nature of the production environ-

ment in which smallholders operate. Second, we hypothesize that access to RiceAdvice

provides better technical information specific to users, enabling them to utilize the best-

practice technology. If so, then, the analysis of managerial performance differentials needs

to account for the possible differences in the underlying production technology between users

and non-users. We accomplish this by constructing a shared benchmark frontier known as

the stochastic metafrontier (Huang et al., 2014; Amsler et al., 2017; Owusu & Bravo-Ureta,

2021; Neubauer et al., 2022; Owusu & Bravo-Ureta, 2022), an approach largely ignored in

the related literature. Third, our analysis of fertilizer productivity differentials relies on a

single factor measure known as the fertilizer productivity index (FPI) that incorporates both

conventional and non-conventional production inputs. The measure overcomes drawbacks

of using single factor measures by adjusting for the possibility that managers of rice farms
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alter their input mix in response to changes in fertility management. The FPI also allows

a decomposition of the productivity measure so as to track sources of fertilizer productivity

growth. This is the first application of a more rigorous measure of fertilizer productivity in

related literature, thus, constitutes a novel contribution.

The rest of the paper is as follows: section two outlines the study context and the

intervention, section three details the conceptual framework, section four deals with the

data and the empirical strategy, section four presents the results and discussion, and section

five concludes.

2 Context and Intervention

Rice is a popular food staple in Nigeria with consumption rapidly increasing owing to fac-

tors such as shifting consumer preferences, increasing population and incomes, and rapid

urbanization (Kamai et al., 2020). Over the years, the increasing demand has been met

through importation of about 3 million metric tonnes (MMT), which is equivalent to around

480 million US$ in foreign exchange annually. The increase demand in imports is due to

the domestic production continuously falling short, accounting for just about 55% of total

consumption (Saito et al., 2015; Kamai et al., 2020).

Although both public and private efforts (e.g., Growth Enhancement Support Program)

have focused on increasing yields in order to reduce reliance on imports, the available data

from FAO suggest a modest increase from the lowest of 0.9 t/ha in 1961 to a six-decade high

of 2.7 t/ha in 2018 (see Figure 1).

To help increase rice productivity growth, AfricaRice and its collaborating national re-

search centers developed an Android mobile application (app) known as RiceAdvice to dis-

seminate plot-specific management information to rice farmers. This information is gener-

ated after the farmer has supplied information on expected production conditions such as,

seed varietal choice, planned management practices, fertilizer availability, prevailing input
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prices, expected production costs, etc. For more information on the app Saito et al. (2015)

and Arouna et al. (2020). The app has been introduced to rice farmers since 2015 in Kano

State, which is in the northern part of the country where over 72% of national rice output

originates.

To assess the performance of RiceAdvice in Kano State, AfricaRice implemented a ran-

domized controlled trials (RCT) in which rice farmers were randomly assigned into one of

three treatment groups: 1) control group (C) that received the traditional extension vis-

its with blanket recommendations, 2) first treatment arm (T1) received the personalized

information via RiceAdvice, and 3) second treatment arm (T2) received the personalized in-

formation plus fertilizer input subsidy (100%). The T1 and T2 treatments were administered

after all farmers had received the traditional extension visits with blanket recommendations

from the same set of extension agents. The quantity of fertilizer given to a T2 farmer de-

pends on recommendations from the RiceAdvice app, and is delivered directly to the farmer.

Contrasting T1 and C shows the productivity effects of RiceAdvice when liquidity constraint

binds. T2 versus C gives the effect when the constraint is relaxed. It is worth mentioning

that the provision of the in-kind fertilizer subsidy was done in only the first year or season

of production.
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Figure 1. Rice production statistics over the past decade in Nigeria
(Source: FAOSTAT, 2023 )

Notes: Mha - million hectares, MMT - million metric tonnes

3 Conceptual Framework

Evaluating the impact of RiceAdvice on productivity outcomes requires defining the coun-

terfactual for users of the app (the treated groups), which is their outcomes had they not

used it. Randomization has long been a standard approach to defining the counterfactual

as it ensures that treatment status is independent of potential outcomes, thus, eliminating

the possibility that selection bias taints the impact estimate (Duflo et al., 2007; Angrist &

Pischke, 2009).

To define the measure of impact, suppose the binary variable will Di = {0, 1} describes

treatment status so the Di = 1 represents exposure to RiceAdvice and Di = 0 denotes the

unexposed state. Let corresponding outcomes with and without exposure be denoted by Y1i
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and Y0i. Given random assignment of treatment, we measure impact of RiceAdvice as the

average treatment effect on the treated (ATET) based on the observed difference in exposure

status as:

∆Yi = E[Y1i|D = 1]− E[Y0i|D = 0]

= τATET + {E[Y0i|D = 1]− E[Y0i|D = 0]}

= τATET {: by randomization E[Y0i|Di = 1] = E[Y0i|Di = 0]}

(1)

3.1 Randomized Evaluation and Stochastic Frontiers

The application of stochastic frontier methods in impact evaluation is straight forward when

treatment assignment is randomized as is the case of participants’ exposure to RiceAdvice.

Derived productivity measures can be directly compared between the treated and control

groups. Here, we focus on defining the productivity measures employed in the evaluation,

which are technical efficiencies relative to the group frontier for each farmer (i.e., group TE),

and relative to the metafrontier (MTE); technology gap ratio (TGR) which are deviations

of the group frontiers from the metafrontier; frontier yield which is the ratio of the predicted

frontier output to cultivated area; and fertilizer productivity index (FPI) which is the product

of six indices namely, input deepening index (IDI), output-oriented scale efficiency index

(OSEI), environmental index (EI), output-oriented technology index (OTI), output-oriented

technical efficiency index (OTEI), and statistical noise index (SNI).

The stochastic production frontier (SPF) expresses the maximum output attainable from

a vector of inputs, the technology, and environment, and explicitly delineates exogenous

random shocks from technical inefficiency (Aigner et al., 1977; Meeusen & van den Broeck,

1977; O’Donnell, 2016; Njuki & Bravo-Ureta, 2018). For the period-t technology set,

T t = {(X, q) : X can produce q in period t} (2)

where, X ∈ <K+ and q ∈ <++, the production technology of farmer i in treatment group
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d ∈ {C, T1, T2} can be represented by the SPF model,

qitd = f t(xitd; θd)exp(εitd); εitd = vitd − uitd (3)

where, qitd is observed output; xitd is a vector of inputs; εitd is the error term composed of

a two-sided symmetric noise, vitd, and a non-negative technical inefficiency, uitd; θd is the

parameter vector. From eq. (3), the time-varying group-specific TE for farmer i is expressed

as,

TEitd =
qitd

f t(xitd; θd)exp(vitd)
= exp(−uitd) (4)

If production technologies are systematically different among the three groups, then cross-

group examination of managerial performance using TE in eq. (4) is untenable. Instead, a

TE index computed relative to the metafrontier (i.e., the MTE) needs to be used (Battese

et al., 2004; O’Donnell et al., 2008; Owusu & Bravo-Ureta, 2021).

3.2 Stochastic Metafrontier

The SMF emanated from the meta-production function of Hayami and Ruttan (1970) and as

an extension of the deterministic metafrontier (DMF) of Battese and Rao (2002). It has the

benefit of consistency with the stochastic nature of the group frontiers it envelops, possesses

statistical properties, and accommodates idiosyncratic shocks. Two approaches are identified

in the literature. The first is by Huang et al. (2014) and involves parametric estimation of the

SMF in two-stages. It does require the composed error term to have the correct skewness

in order for technical inefficiency to be identified. This approach is more common in the

literature (e.g., Lawin and Tamini, 2018; Alem et al., 2019; Bravo-Ureta et al., 2020; Owusu

and Bravo-Ureta, 2021). The second approach by Amsler et al. (2017) is semi-parametric

relying on simulations. Unlike the first, this approach has received less attention with only

three applications to the best of our knowledge (Owusu & Bravo-Ureta, 2021; Neubauer
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et al., 2022; Owusu & Bravo-Ureta, 2022). We implement the second approach in this study

as the first did not work given wrong skew of the residuals. Following O’Donnell (2018) and

Owusu and Bravo-Ureta (2022), we compute TGR as,

TGRit =
1

R

R∑
r=1

exp[−uτit(r)] (5)

where, R is the number of replications chosen, uτit(r) = uit(r)−uitd(r), uitd(r) is time-varying

inefficiency relative to the group frontier in the rth replication, and uit(r) is time-varying

inefficiency relative to the maximum output across the three groups. The MTE is then given

by the product of eqs. (4) and (5):

MTEit = TEitd × TGRit (6)

Frontier yield is calculated as follows:

Frontier yield =
q̂itd
area

(7)

where, q̂itd is predicted frontier output.

3.3 Fertilizer Productivity Index

Following Njuki and Bravo-Ureta (2019), we derive a fertilizer productivity index (FPI) that

addresses the drawback of single-factor measures, which ignore the effect of other factors

of production. To do so, let the technology represented in eq. (3) be approximated by the

Cobb-Douglas functional form and the input vector be comprised of conventional (xkitd) and

non-conventional factors (Zjitd). Then, multiplying both sides of eq. (3) by 1
x1itd

, where, x1itd
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is quantity of fertilizer in kilograms, gives an expression for FPI as;

FPIitd = (
qitd
x1itd

)

= [
K−1∏
k=1

(
xkitd
x1itd

)βkd ][(x1itd)
εd−1][exp(

L∑
l=1

γlZlitd)][exp(
T∑
t=1

λtt)][exp(−uitd)][exp(vitd)]
(8)

where: εd =
∑

k βkd is the scale elasticity. From eq. (8), fertilizer productivity of farmer i in

period t treatment d relative to farmer j in period s treatment b is given by:

FPIid(t)/jb(s) = {
K−1∏
k=1

(
xkitd
x1itd

× x1jsb
xkjsb

)βkd} × {(x1itd
x1jsb

)εd−1} × { exp(
∑L

l=1 γlZlitd)

exp(
∑L

l=1 γlZljsb)
}

× { exp(
∑T

t=1 λtt

exp(
∑S

s=1 λss
} × { exp(−uitd)

exp(−ujsb)
} × { exp(vitd)

exp(vjsb)
}

(9)

There are six terms on the right-hand side of eq. (9), which are interpreted as follows:

1) Input-deepening index (IDI): Accounts for changes in FPI owing to adjustments in the

quantities of other factors relative to fertilizer. 2) Output-oriented scale efficiency index

(OSEI): Captures productivity gains from a unit change in all the conventional factors of

production. 3) Environmental index (EI): Accounts for the effect of ecology, soil, institutional

support, and time-invariant attributes of the production environment. 4) Output-oriented

technology index (OTI): Quantifies fertilizer productivity effects due to dynamic shifts in the

production frontier. 5) Output-oriented technical efficiency index (OTEI): Reflects changes

in FPI associated with changes in managerial capabilities. 5) Statistical noise index (SNI):

Represents the effect of random shocks and measurement errors on FPI.
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4 Data and Estimation

The analysis uses a four-round panel dataset generated from an RCT conducted in Kano

State, Nigeria. Power analysis was conducted to inform the selection of 700 households in

35 villages across five local government areas (LGAs). The sample was distributed across

the treatment categories as follows: C = 320, T1 = 280, and T2 = 100. The baseline was

in 2015 and the endline in 2016. Two follow-up data collection efforts occurred. The first in

2017, and the second in 2018.

We specify a Cobb-Douglas (CD) SPF considering that, unlike the translog, it satisfies

global properties of the production frontier, and is consistent with requirements for comput-

ing proper productivity indices:

ln qitd = αi +
K∑
k=1

βkdln xkitd +
L∑
l=1

γlZlitd +
2018∑
t=2015

λtt+ vitd − uitd (10)

where:αi = α + ωi, α is a constant, ωi is the unobserved time-invariant farm-specific het-

erogeneity; qitd is rice output in kilogram; xkitd is the vector of conventional inputs - land

area in hectares, seed in kilogram, labor in person-days, fertilizer in kilogram, and other

chemicals in liters; Zjitd is a vector of non-conventional inputs including rice ecology, soil

type, extension, credit access, and group membership; t is a vector of year dummies; vitd is

the symmetric error assumed to be independently and identically distributed (i.i.d); uitd is a

one-sided time-varying inefficiency assumed to follow a half-normal distribution. α, βkd, γld,

and λt are parameters to be estimated.

Several panel SPF estimators for eq. (10) have been proposed in the panel stochastic

frontier literature starting with Pitt and Lee (1981) random effects model. However, the

inherent limitations of the received models motivated Greene (2005a, 2005b) to propose the

“true” fixed and random effects (TFE and TRE) estimators. Although both the TFE and

TRE can be attractive options, we implement the TRE owing to the incidental parameter

problem that leads to inconsistent parameter estimates with the TFE (Farsi et al., 2005;
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Greene, 2005a, 2005b; Filippini & Greene, 2016; Karagiannis & Kellermann, 2019).

5 Results and Discussion

In Table 1, we present estimates of the technology parameters of the “true” random effects

(TRE) stochastic production frontier (SPF) model estimated using maximum simulated

likelihood. The coefficients and standard errors are shown for all groups combined (All) in

the second column, for the control group (C) in the third column, the first treatment group

(T1) in the fourth, and the second treatment group (T2) in the fifth.

The variation in inefficiency (σu) relative to that of the symmetric noise (σv), given by

λ, is about 3.9 to 5.7 higher across the samples, and translates into about 80% or more of

the total residual variation for technical inefficiency (bottom of Table 1). This supports the

choice of the SPF model. Also, the variation in the random farm effects (σω) is statistically

significant, but only for the T1 group, indicating that the TRE estimator correctly delineates

time-invariant unobserved heterogeneity from time-varying inefficiency as is evident from the

shift in variation from the inefficiency to the random farm effects. This justifies the imple-

mentation of the TRE as opposed to the pooled estimator, which is subject to heterogeneity

bias.

Across all samples the coefficients of the conventional variables (land, seed, labor, fertil-

izer, and other chemicals) are positive and less than one suggesting a well-behaved production

technology consistent with economic theory and valid for examining managerial performance

(Henningsen & Henning, 2009). The model for the “All” sample assumes that the same pro-

duction technology is in use by all farmers regardless of treatment, except for the shift

parameters for the variables T1: Advice and T2: Advice + input. These two coefficients

point to 4.6% and 13.7% output increase associated with only RiceAdvice and RiceAdvice

bundled with fertilizer input, respectively. However, the results of the likelihood ratio test

shown below Table 1 suggest that different production technologies are in use across all three
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treatment groups. Consequently, analyses with estimates from the separate technologies are

favored.

Scale elasticities are statistically significantly less than 1 for C and T1, but not different

from 1 for the T2 (see bottom of Table 1). This implies that while the technologies for the

C and T1 exhibit diminishing returns to scale, that for the T2 displays constant returns.

Production elasticities for land are statistically significant at the 1% across the three groups,

ranging from 0.66 to 0.78. The values are also the largest among the five production factors.

This is consistent with results obtained elsewhere underscoring the importance of land for

smallholders (e.g., Munthali and Murayama, 2013; Jayne et al., 2014; Owusu and Bravo-

Ureta, 2022). Elasticity for seed is significant for the treated groups and not the control.

Elasticity for labor is not significant across all groups suggesting that labor may not be a

binding constraint in rice production in the study area. Production elasticities for fertilizer

and other chemicals are both statistically significant for only the control and T1 groups.

Summaries of the productivity indicators namely, TE relative to the group frontier (group

TE), technology gap ratio (TGR), TE relative to the metafrontier (MTE), frontier yield, and

fertilizer productivity index (FPI) are presented in Table 2. Columns 2-4 report the means

(across the four study years) and standard deviations for the three groups while columns 5-7

report the differences in means between the groups and their associated standard errors.

The mean TE relative to the group frontier is 64.8% for the T1 and 59.9% for T2. Com-

pared to the control group, the difference is statistically significant for the T1 (4.4 percentage

point) and not the T2. However, given the existence of separate and systematically different

production technologies evidenced by the TGR differences, the group TEs do not provide

a valid basis for comparing managerial performance. The results show that the mean TGR

is significantly higher for the T2 compared to C, and to T1. The difference in mean TGR

between T1 and C. The MTE, unlike the group TE, accounts for technology gaps. The

mean MTE is statistically significant for both the T1 (3.7 percentage points) and T2 (6.4

percentage points) relative to C.
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These findings suggest that access to only RiceAdvice increases managerial skills of rice

farmers despite producing the same amount of the potential output embodied in the best-

practice technology as the control group (about 81%). However, coupling RiceAdvice with

fertilizer input increases both the production potential and managerial performance of rice

farmers. This highlights the positive role of input bundling, and in this case, relaxing the

liquidity constraint for farm-level productivity gains. Results on the mean frontier yields are

consistent with the MTE and TGR gains of the treated group. Frontier yields increase by

about 4.2% (245/5845.9*100) and 10.9% (635/5845.9*100) for the T1 and T2, respectively.

Also, means of FPI are significantly higher for the T2 and T1 compared C, indicating

that treated farmers increase fertilizer productivity by 3.3 times for the T2 and 1.7 times for

the T1. In Figure 2, we plot the components of FPI which show that although the differences

in FPI between the groups are driven by the input deepening, environmental, technology,

and technical efficiency indices, IDI has an outsized role in driving the FPI differences. Thus,

RiceAdvice does influence the input mix by causing farmers to adjust the quantities of other

conventional inputs relative to that of fertilizer.

In Figures 3 and 4, we plot the treatment effects for T1 and T2 across years. We see that

in general, the effects increase until 2017 after which they dissipate. This suggests the need

for efforts that will help to at least sustain the impact over time.
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Table 1. Maximum likelihood estimates of parameters using the TRE SPF estimator

Variables All C T1 T2

Constant
7.678∗∗∗ 7.906∗∗∗ 7.350∗∗∗ 7.728∗∗∗

(0.101) (0.194) (0.140) (0.413)

T1: Advice
0.045∗∗

(0.019)

T2: Advice + input
0.128∗∗∗

(0.023)

Land
0.738∗∗∗ 0.784∗∗∗ 0.661∗∗∗ 0.701∗∗∗

(0.018) (0.030) (0.027) (0.068)

Seed
0.076∗∗∗ 0.033 0.141∗∗∗ 0.124∗∗∗

(0.013) (0.021) (0.021) (0.047)

Labor
0.009 0.009 0.001 0.019

(0.006) (0.011) (0.011) (0.024)

Fertilizer
0.054∗∗∗ 0.039∗∗ 0.098∗∗∗ 0.05

(0.011) (0.018) (0.016) (0.032)

Other chemicals
0.055∗∗∗ 0.064∗∗∗ 0.031∗∗ 0.041

(0.012) (0.022) (0.015) (0.043)

Extension
0.026 0.024 −0.018 0.088

(0.021) (0.041) (0.035) (0.070)

Credit
0.007 0.002 0.027 −0.086

(0.029) (0.052) (0.033) (0.115)

Group
0.023 0.045 0.031 −0.038

(0.020) (0.030) (0.033) (0.098)

Moderate soil
−0.024 0.046 −0.091∗∗ −0.062

(0.037) (0.133) (0.044) (0.164)

Rich soil
0.001 0.07 −0.037 −0.073

(0.040) (0.133) (0.048) (0.167)

Upland irrigated
0.001 −0.004 −0.010 −0.082

(0.028) (0.044) (0.038) (0.162)

Lowland non-irrigated
−0.010 0.022 −0.013 −0.183

(0.038) (0.063) (0.057) (0.172)

Lowland irrigated
0.046 0.058 0.03 −0.065

(0.030) (0.051) (0.040) (0.166)

Scale elasticity 0.932∗∗∗ 0.930∗∗∗ 0.933∗∗∗ 0.936

LGA fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

16



Table 1. Cont.

Variables All C T1 T2

Dummies(=1) for non-use of fer-
tilizer & other chemicals†

Yes Yes Yes Yes

σω 0.002 0.003 0.035∗∗∗ 0.009

σu 0.761 0.814 0.651 0.837

λ(= σu/σv) 4.5 5.4 3.9 5.7

Log-likelihood −1700.6 −809.1 −558 −269.7

N 2724 1220 1106 398

Notes:
The dependent variable is log of rice output. Standard errors are clustered at the panel
level. σu and σω are the standard deviations of technical inefficiency and the random farm
effects, respectively. C=control group (received the traditional blanket extension recommen-
dation); T1=treatment arm 1 (received traditional advice plus RiceAdvice recommendation);
T2=treatment arm 2 (received traditional advice plus RiceAdvice recommendation plus in-
kind input subsidy (100%) in year 2016).
† Following Battese (1997), a dummy is included for each variable to account for the zero-
valued observations after adjusting the zero values of the continuous variables.
Test of same production technology between T1 and C: LR ∼ χ2

23 = 86.523; p = 0.000
Test of same production technology between T2 and C: LR ∼ χ2

23 = 76.223; p = 0.000
Test of same production technology between T2 and T1: LR ∼ χ2

23 = 68.623; p = 0.000
∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2. Means and differences of productivity indicators across treatment

Indicator
Mean Difference

C T1 T2 T1-C T2-C T2-T1

Group TE
0.604 0.648 0.599 0.044∗∗∗ −0.005 −0.049∗∗∗

[0.199] [0.178] [0.199] (0.008) (0.011) (0.011)

TGR
0.813 0.811 0.929 −0.001 0.116∗∗∗ 0.117∗∗∗

[0.095] [0.077] [0.057] (0.004) (0.005) (0.004)

MTE
0.496 0.533 0.56 0.037∗∗∗ 0.064∗∗∗ 0.027∗∗

[0.187] [0.174] (0.196] (0.008) (0.011) (0.011)

Frontier yield
5845.9 6091.3 6480.7 245.0∗∗∗ 635∗∗∗ 389.0∗∗∗

[936.1] [1145.2] [1317.0] (43.0) (60.0) (70.0)

FPI
1.269 2.123 4.133 0.854∗∗ 2.864∗∗∗ 2.009∗∗

[6.462] [12.858] [19.993] (0.416) (0.657) (0.881)

Notes:
Standard deviations are in square brackets and standard errors in parenthesis. C=control
group (received the traditional blanket extension recommendation); T1=treatment arm 1
(received traditional advice plus RiceAdvice recommendation); T2=treatment arm 2 (received
traditional advice plus RiceAdvice recommendation plus in-kind input subsidy (100%) in year
2016).∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 2. Means of the FPI components by treatment
Notes: C=control group (received the traditional blanket extension recommendation);

T1=treatment arm 1 (received traditional advice plus RiceAdvice recommendation);

T2=treatment arm 2 (received traditional advice plus RiceAdvice recommendation plus

in-kind input subsidy (100%) in year 2016). IDI - input deepening index, OSEI -

output-oriented scale efficiency index, EI - environmental index, OTI - output-oriented

technology index, OTEI - output-oriented technical efficiency index, SNI - statistical noise

index
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Figure 3. Treatment effect on TE, TGR, and MTE by year

Figure 4. Treatment effect on frontier yield and FPI by year
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6 Concluding Remarks

This study analyzes the impact of RiceAdvice app introduced in rice farming in Kano State,

Northern Nigeria on smallholders technological endowment, managerial performance, yield

and fertilizer productivity. We couple the stochastic frontier technique with the randomized

evaluation framework to examine the causal impact of the app on various aspects of small-

holder productivity and then examine the persistence of impacts over time. The analysis

is then extended to address production technology differences among the three treatment

groups to be able to conduct valid comparisons of managerial performance. We also analyze

fertilizer productivity impacts by computing an index that accounts for the effects of both

conventional and non-conventional factors of production.

We find that the RiceAdvice app significantly increases both technical efficiency and

technological advantages of smallholder rice farmers allowing them to significantly increase

their output and economize on fertilizer use without compromising output. The effect tends

to be larger for farmers offered in-kind fertilizer subsidy, which shows that relaxing liquidity

constraints, often binding for smallholders, has robust productivity gains. Although, the

impact associated with the app increased in the first two years, in general, the last year of

follow-up data point to the initial impact having a waning effect.

These findings call for a need to improve farmers’ access to the app. In this study, the

in-kind fertilizer subsidy was only given in the first treatment year. In the future, it will be

good to find ways to make fertilizer more accessible for farmers in the absence of the direct

subsidy.
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