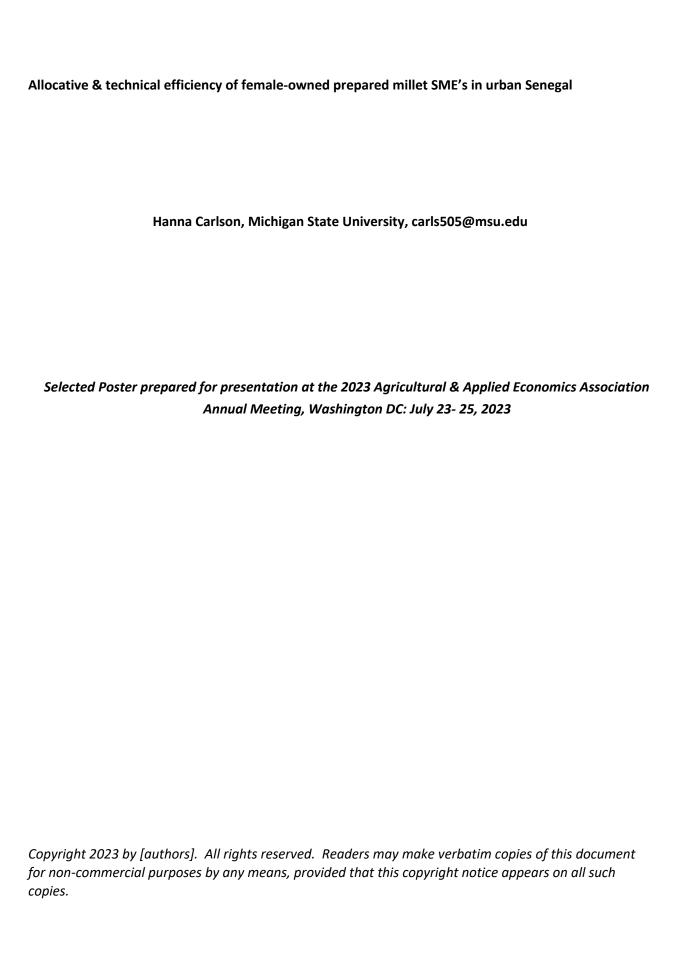


The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.


Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Allocative & technical efficiency of female-owned prepared millet SME's in urban Senegal

Hanna Carlson³, Véronique Thériaultª, Thomas Reardon³, Ndèye Fatou Faye Manéb, Xavier Beogob

Agricultural, Food, and Resource Economics (AFRE), Michigan State University, East Lansing MI, 48824 ** Senegalese Institute of Agricultural Research – Bureau of Macroeconomic Analysis (ISRA-BAME)

MOTIVATION

- Food processing is an important source of employment for women in Sub-Saharan Africa.
- This research focuses on second stage processed products: highly processed foods made of multiple ingredients such as
- It's crucial to understand the choices women-operated small and medium sized enterprises (SMEs) are making, and how their choices affect their performance.
- We compare efficiency of those belonging to a group (processors organizations or cooperatives) to those who do not belong to any groups to see if membership status has an impact on efficiency through improved access to equipment, sales channels, and/or trainings.

QUESTIONS

- Is there a significant difference in efficiency between group and nongroup women-operated SMEs?
- We contribute to the larger literature on the development of food markets and cereal value chains

DATA

- 922 second-stage processing SMEs, 827 of them process millet
- Sample across the 14 region capitals and 5 other major urban centers in Senegal stratified by city and type of actor (retailer or wholesaler)
- Data collected in March & April 2018

DESCRIPTIVE STATISTICS

	Table I: Demographics	ographics	
Variable	Millet Processors (Group)	Millet Processors (Non-Group)	Millet Processors (Total)
n	148	679	827
Dakar	35%	33%	33%
Center (Bassin)	18%	25%	24%
North	23%	24%	24%
East	16%	%8	%
South	9%	%01	9%
Female	%96	%66	%86
Age (mean)	55	48	49
Married	80%	76%	77%
French Education	73%	27%	35%
Received Training	77%	4%	17%
Unsatisfied Training Need	85%	53%	59%

Table 2: Means of Continuous Explanatory Variables		
Variable	Non-Group	Group
	Mean	Mean
	(Std. Dev.)	(Std. Dev.)
Age	48	55
	(12)	(10)
Distance between SME and nearest city (km)	1.0	2.5
	(3.2)	(6.0)
Distance between SME and nearest cereal wholesale market	1.6	7.4
(km)	(8.4)	(34)
Estimated value of training received (FCFA)	1,380	57,600
	(20,900)	(161,000)
Average price of millet grain (per kg)	295	269
	(67)	(72)
Average quantity of millet grain purchased (kg/month)	253	1,150
	(604)	(3,170)
Average millet processing capacity (kg/month)	652	1,980
	(2,050)	(2,460)
Average number of days of family labor per month	5.4	1.9
	(11.2)	(7.1)
Average number of days of salaried labor per month	1.7	5.3
	(6.9)	(10.9)
Average expenditure on family labor (FCFA/month)	7,030	31,700
(n _{nongroup} =181 n _{group} =47)	(22,300)	(110,000)
Average expenditure on salaried labor (FCFA/month)	15,100	173,000
(n _{nongroup} =181 n _{group} =47)	(50,800)	(311,000)

METHODOLOGY

- Stochastic Frontier AnalysisTechnical efficiency
- o Y_i is potential output for SME i,x_i is a vector of inputs and explanatory variables, β are the estimated parameters and ε_i is the composed error term
- o Production Function for SME i
- $Y_i = f(x_i, \beta) + \varepsilon_i \quad where \quad \varepsilon_i = v_i u_i$ o Technical Efficiency Score for SME i

$$TE_i = \frac{Y_i}{\exp(x_i\beta + v_i)} = \frac{\exp(x_i\beta + v_i - u_i)}{\exp(x_i\beta + v_i)} = \exp(-u_i)$$

o Technical Inefficiency term for SME i:

 $u_i = z_i \delta + \omega_i$

- Allocative efficiency
- o E_i is expenditure of SME i, y_i is the output vector for SME i, w_i is the vector of input prices faced by SME i, and γ is a vector of parameters to be estimated
- Cobb-Douglas functional form for cost frontier
- Cost frontier for SME i:

$$\ln(\frac{E_i}{w_{kl}}) = \gamma_0 + \gamma_y ln y_i + \sum_{n \neq k} \gamma_n \ln\left(\frac{w_{nl}}{w_{kl}}\right) + v_l + u_l$$
 o Cost efficiency for firm i

 $CE_i = \frac{c(y_i, w_i; \beta) * \exp(v_i)}{E_i} = \exp(-u_i)$

NINOWATION LAB FOR FOOD SECURITY POLICY RESEARCH, CAPACITY, AND INFLUENCE (PRCI)

RESULTS

Table 3: Select Coefficients for Techinical and Allocative Efficiency Estimations	Allocative Ef	ficiency
Log millet transformation capacity	TE Regression	AE Regression
Log monthly quantity (kg) millet grain purchased (avg		
across seasons)	0.26***	
Std. dev.	0.03	
Log number of days of salaried labor	0.20***	
Std. dev.	0.04	
Log number of days of family labor	-0.06*	
Std. dev.	0.03	
Constant	4.87***	
Std. dev.	0.15	
Log sigma squared v		
Constant	0.15**	
Std. dev.	0.05	
Log sigma squared u (Technical Inefficiency)		
Literacy (omitted: can read and write in one language)		
Can read in one language	-0.48	-
Std. dev.	0.53	
Can write in one language	-0.90*	
Std. dev.	0.52	
Age	-0.03**	
Std. dev.	0.01	

Table 4: Mean Technical Efficiency and Allocative Efficiency Scores	d Allocative Effic	ency Scores
Technical Efficiency	TE Score	n
Mean TE Score (Non-Group)	0.62	699
Mean TE Score (Group)	0.78	134
Mean TE Score (All)	0.64	833
Allocative Efficiency	AE Score	מ
Mean AE Score (Non-Group)		
Mean AE Score (Group)		
Mean AE Score (All)		

DISCUSSION

- SMEs that belong to a group are more technically efficient than those that do not belong to a group
- Future research could look at:
- What are the patterns and determinants of procurement, sales, and technology choices of second-stage women-operated processing SMEs? What are the outcomes of these choices in terms of profitability/incomes and resilience (in terms of variability of returns)?

