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Local unexpected food price volatility affects children’s nutrition in sub-

Saharan Africa  

Catharina Latka, Kathy Baylis, Tess Lallemant, Katie McMahon, Patrese Anderson, Thomas 

Heckelei 

 

Abstract 

Food access can be affected by high and volatile food prices with potentially severe 

consequences for children’s nutrition. Local food price volatility is driven by international 

prices and local climate shocks, but little work explores how these price movements affect 

nutrition. Here, we decompose local maize price movements across 508 markets in 24 sub-

Saharan African (SSA) countries to understand the sources of variation using econometric 

approaches. Our decomposition suggests that local price movements are strongly driven by 

global futures prices. Next, we compile DHS data over 19 years to measure how food price 

volatility affects children’s nutrition in SSA. We address endogeneity concerns and control 

for health-relevant weather shocks. Our results indicate that a 1 SD increase in unexpected 

price volatility in the year after birth increases the odds of stunting by 9%. These effects 

prevail more strongly among children in agricultural households without livestock.  
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1. Introduction 

Global political crises and consequences of climate change threaten food and nutrition 

security especially in lower income countries. One channel through which such global events 

affect local food systems are through food prices. Food price volatility is transmitted from 

international prices and climate shocks to local market prices, but evidence for how these 

factors affect subnational markets is scarce. High and volatile food prices affect households’ 

access to food in sub-Saharan Africa (SSA), especially when food comprises a large fraction 

of household expenditure (Drammeh et al., 2019). If food access is reduced, food and 

nutrition insecurity can follow, leading to long-term consequences for health, developmental, 

and economic outcomes (Currie and Vogl, 2013; Engle et al., 2007; Hoddinott et al., 2013; 

Moradi et al., 2019).  

Despite the United Nations’ Sustainable Development Goal 2 (UN, 2015), which aims to end 

all forms of malnutrition by 2030 and to reduce stunting and wasting in children under 5 

years of age by 2025, little progress has been achieved in SSA countries (Pomati and Nandy, 

2020). Recent global political concerns such as the COVID-19 pandemic and the war in 

Ukraine have aggravated food supply shortage and food insecurity in SSA (Baptista et al., 

2022). To improve nutrition outcomes, we need to better understand the drivers of food 

insecurity and the role played by volatile prices. 

In this paper, we ask two related questions. First, what is the source of unexpected maize 

price volatility in SSA? Second, how does this price volatility affect children’s nutrition? We 

begin by decomposing local food price volatility in SSA into variation driven by global maize 

futures and local weather shocks. Since global prices based out of a key market like the 

Chicago Board of Trade (CBOT) vary over time but not over space, we interact these prices 

with a measure of closeness to the nearest port to introduce cross-sectional variation that is 

meaningful in the sense that less remote places are likely more exposed to international price 

shocks than more remote ones.  

Furthermore, we examine how local food price volatility affects nutrition outcomes for 

children under 5 years of age. The assessment focuses on stunting, a measure for low height 

given a certain age, that can result from chronic and recurrent undernutrition especially in 

utero and during the first two years of age (De Onis and Branca, 2016). Reasons for these 

undernutrition events are insufficient nutrition of the mother during pregnancy and 

breastfeeding, suspended breastfeeding, or insufficient protein supply to the child (Beal et al., 

2018; Sebayang et al., 2020). Missing food access is a crucial underlying cause of 

malnutrition (Psaki et al., 2012). High food prices reduce affordability which threatens 

sufficient nutrient supply in children’s diets (Ryckman et al., 2021). Besides high price 

levels, volatile prices might endanger a stable access to food, especially if households did not 

anticipate the price changes or have the capacities to prepare for these (Amolegbe et al., 

2021; Cornia et al., 2016; Kornher and Kalkuhl, 2013).  

Hitherto, only few studies explore the link between food prices and stunting in the literature 

(Lloyd et al., 2018; Woldemichael et al., 2022). We assess the effect of food price volatility 

in different stages of a child’s life on stunting and control for a series of additional variables 

representing child-, parent-, and household-specific characteristics across SSA.  

Our work contributes to two separate strands of literature. First, we complement existing 

research on the causes of local food price levels and volatility. Here, we focus on the 

contributions of weather shocks and international prices. Second, we contribute an extensive 

cross-country analysis of how changes in local staple food prices impact children’s nutrition.  

Existing studies that assess the impact of food prices on the nutrition of children in SSA 

typically focus on one price measure and rarely provide inter-country comparisons. While 

limited, the evidence is suggestive. Arndt et al. (2016), for example, show that high food 

price inflation increases wasting and underweight conditions among children in Mozambique. 



Amolegbe et al. (2021) assess the impact of rice price volatility on diet diversity and food 

expenditure shares for Nigeria. Grace, Brown and McNally (2014) conclude that increasing 

maize prices before pregnancy correlate with low birth weights in Kenya. For Malawi and 

Niger, Cornia et al. (2016) show that the trend, seasonal, and famine components of food 

prices significantly affect child admissions to feeding centers.  

We contribute to the existing literature by analyzing local market price data for maize in 24 

SSA countries to compose and compare multiple price indicators (i.e., price level, price 

volatility, unexpected price volatility) and estimate their effect on nutrition in children under 

the age of 5. In particular, we compare the effects of price volatility in rural, local markets 

and more centralized, urban centers to capture the effect of prices faced by both urban and 

rural populations.  

We use nutrition indicators provided by the Demographic Health Survey (DHS) and compile 

data on more than 300,000 children over 19 years and 24 SSA countries. Due to data gaps in 

relevant covariates, the number of observations drops to below 100,000 in the full model 

specifications. We make use of the variation in our data over time and space and disentangle 

the effects on different household types, to better understand the heterogeneity of findings for 

rural vs. urban and rich vs. poor family types.  

Local market prices and nutrition outcomes are potentially subject to endogeneity concerns as 

local production shocks and policies can affect both nutrition and prices. Also, household 

decisions to buy or sell on the local market can be determined by their children’s nutrition 

and thus simultaneously affect local food prices. To address these issues, we use global 

prices, a measure of closeness to the nearest port and local agriculturally-relevant weather 

shocks to predict local price volatility. 

Weather shocks do not only affect children’s nutrition through their impact on food 

availability and access. There can also be a link through direct health effects caused by heat 

stress or disease spreading, that influences children’s nutrient uptake and parents’ 

productivity and income opportunities (Engle et al., 2007; Hoddinott et al., 2013). We 

account for these direct channels of weather on health by controlling for explicitly health-

relevant weather variables such as wet-bulb temperature for a subset of our data.  

The research data and methods are described in Section 2. The results of the price 

decomposition and the nutrition–price analyses are presented in Section 3 and discussed in 

Section 4. Concluding remarks are provided in Section 5. 

 

2. Research data and methodology 

2.1. Price decomposition 

We employ monthly maize price data consolidated from the Global Information and Early 

Warning System on Food and Agriculture (GIEWS)1, the World Food Program (WFP)2, and 

the Famine Early Warning Systems Network (FEWS)3 for 508 local markets across all 

investigated SSA countries and matched survey years. For each market we determine the 

dominant maize price based on the longest data series available among the different sources. 

Rolling mean prices for each market serve as price levels 𝑃𝑚,𝑡
 ̅̅ ̅̅ ̅ varying by market 𝑚, and time 

𝑡. We compose a general price volatility measure 𝑉𝑚,𝑡
𝑔

 following Kornher and Kalkuhl (2013) 

based on the standard deviation of the difference of logarithmic monthly price changes over 

the preceding twelve months. 

 
1 https://fpma.apps.fao.org/giews/food-prices/tool/public/#/home 
2 https://data.humdata.org/dataset/wfp-food-prices 
3 https://fews.net/fews-data/337 



𝑉𝑚,𝑡
𝑔

= 𝜎𝑚,𝑡 = √∑ (𝑙𝑜𝑔 ∆𝑝𝑚𝑡 − 𝑙𝑜𝑔 ∆𝑝𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

2𝑡
𝑡−11

𝑁 − 1
 

In contrast to price levels or seasonally reoccurring price movements, unexpected price 

volatility is presumably more difficult for a household to prepare for. To compute the 

unexpected nonseasonal price volatility 𝑉𝑚,𝑡,𝑠
𝑢  for each market 𝑚 and in time 𝑡, we follow the 

approach described by Amolegbe et al. (2021) to strip out seasonal variation and price trends. 

We use non-deflated prices converted to USD cents based on available exchange rates to 

compute price variables in a comparable unit across markets and countries. In addition, the 

month after harvest 𝐻 is included as dummy when regressing the price against a continuous 

time variable 𝐶  

𝑃𝑚,𝑡,𝑠 =  𝛼𝑚 + 𝐶𝑡,𝑠𝛽𝑚 + 𝐻 + 𝜀𝑚,𝑡,𝑠 
to detrend the price 

𝑃𝑚,𝑡,𝑠
𝑑𝑒𝑡 = 𝑃𝑚,𝑡,𝑠 − 𝑃𝑚,𝑡,𝑠̂ 

Then, we calculate the unexpected nonseasonal price variation as the difference between the 

deflated, detrended price and its market- and season-specific average: 

𝐴𝑚,𝑡,𝑠
𝑢 = 𝑃𝑚,𝑡,𝑠

𝑑𝑒𝑡 − 𝑃𝑚,𝑠
𝑑𝑒𝑡̅̅ ̅̅ ̅̅  

We create the rolling 12-months standard deviation of this unexpected price variation, which 

we furthermore refer to as unexpected volatility. 

𝑉𝑚,𝑡,𝑠
𝑢

 

 = √
∑ (𝐴𝑚,𝑡,𝑠

 𝑢 − 𝐴𝑚,𝑡,𝑠
 𝑢̅̅ ̅̅ ̅̅ ̅)2𝑡

𝑡−11  

𝑁
. 
  

Before assessing the effects of price volatility on children’s nutrition, we like to understand 

how much of it is driven by local versus global shocks. Therefore, we decompose our price 

variables to assess how much these are driven by the corresponding global price movements, 

and – in lieu of missing yield data – local weather shocks.  

To create market-specific and agriculturally relevant weather data, we determine nearby 

maize-growing regions and extract temperature and precipitation during the relevant prior 

crop growing season. Nearby maize-growing regions are identified based on production 

quantity raster data from FAO’s Global Agro-Ecological Zones (GAEZ) International 

Institute for Applied Systems Analysis (IIASA)4. Within each maize-growing region random 

points are drawn for which weather information is collected. Daily rainfall data is retrieved 

from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 

2015). Mean monthly temperature data are taken from the National Centers for 

Environmental Information (NCEI)’s Global Historical Climatology Network (GHCN)5.  

To capture the international market price for maize, we use daily CBOT nearby corn futures 

prices (closing price) between 1990 and 20196. We aggregate these to monthly average 

prices. Price levels, general futures volatility and unexpected futures volatility are constructed 

analogously to the market price indicators. 

International market prices are interacted with a measure of market integration 𝐼𝑚 to create 

spatial variation in this variable. We use travel time to the nearest medium or large port 

(Nelson et al., 2019), scale and reverse it to create a weight that reflects proximity to the 

nearest port.For the decomposition exercise, we estimate linear regressions controlling for 

fixed effects for markets 𝑀, years 𝑌, and months 𝑂 (Eq. I). Since monthly variation has 

already been stripped out in the unexpected volatility variable, we do not include month fixed 

 
4 https://iiasa.ac.at/models-and-data/global-agro-ecological-zones 
5 https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-monthly 
6 CME Group. (2019). CBOT corn futures contract prices (Daily data, Sep 2009–Oct 2019). https://bba.bloomberg.net 



effects there. The analogous international price indicators 𝐹 and the weather variables 𝑊 

(and their polynomial transformations) are included as explanatory variables. Eq. I can also 

be regarded as the first stage of our two-stages instrumental variable approach. 

𝑉𝑚,𝑡,𝑠
𝑗

=  𝜔𝑊𝑚,𝑟 + 𝛾𝐼𝑚 × 𝐹𝑡,𝑠
𝑗

+ 𝑌 + 𝑀 + 𝑂 + 𝜀𝑚,𝑡,𝑠    (I) 

 

𝑤𝑖𝑡ℎ 𝑉𝑚
𝑗

= {𝑃𝑚,𝑡,𝑠
 , 𝑉𝑚

𝑢, 𝑉𝑚
𝑔

}, 𝐹𝑚
𝑗

= {𝐹𝑚,𝑡,𝑠
 , 𝐹𝑚

𝑢, 𝐹𝑚
𝑔

 }, 

𝑊𝑚,𝑟 = 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑖𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑐𝑟𝑜𝑝 𝑠𝑒𝑎𝑠𝑜𝑛 (𝑟) 𝑎𝑟𝑜𝑢𝑛𝑑 𝑛𝑒𝑎𝑟𝑏𝑦 𝑚𝑎𝑟𝑘𝑒𝑡 (𝑚)   
(𝑖. 𝑒. , 𝑚𝑒𝑎𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙, 𝑚𝑒𝑎𝑛 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑,   
𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑠𝑞𝑢𝑎𝑟𝑒𝑑)   
 

3. Nutrition–price analysis 

To assess children’s food security and nutrition, we use DHS7 data, which are nationally 

representative. For stunting, we use the height-for-age z-score (haz),)8. For this binary 

indicator, we refer to a two standard deviations threshold below the mean based on the WHO 

Child Growth Standards implying moderate or severe nutritional deficiencies. We calculate 

the diet diversity score ranging between 0 and 10 following Niles et al. (2021) as another 

control variable. Our data cover 24 SSA countries and survey rounds between 1998 and 2020. 

Food security and price data are matched on the basis of geo-locations of surveyed 

households and markets9 subject to annual data availability (Figure 1).  

As the main explanatory variable of interest, the fitted values for mean price levels, general 

volatility and unexpected volatility are included in these models. Since shocks during the 

prenatal period and early childhood can be decisive for nutrition outcomes, we analyze price 

changes in different periods of a child’s life. Nutrition outcomes can accumulate over a 

child’s lifetime and are thus not necessarily the result of (only) short-term price shocks. 

We control for variables relevant to the child’s nutrition (e.g., sex, birth order, siblings) and 

related to the household’s characteristics (e.g., parents’ education, mother’s age and height, 

assets, wealth, ruralness). As fixed effects we consider the survey year and the matched 

market to which the price data relates. The remaining variation explained by the coefficients 

should therefore be independent of time-invariant market characteristics and location-

invariant annual specifics. 

 
7 https://dhsprogram.com/Methodology/Survey-Types/DHS.cfm 
8 https://dhsprogram.com/data/Guide-to-DHS-Statistics/Nutritional_Status.htm 
9 Matching in R based on distm and distHarversine, market with minimum distance to a household chosen among markets 

within a respective country for which price data are available for relevant matching years 



 
Figure 1 Household – market mapping shown for all survey years and markets with price data for the preceding 12 months. 

 

In addition, we control for direct channels of weather on health by adjusting for explicitly 

health-relevant weather shocks based on wet-bulb globe temperature (built with CHIRTS 

daily Tmax data and downscaled daily RHmin (Tuholske et al., 2021; Verdin et al., 2020). 

Wet-bulb globe temperature indicates humid-hot air which causes heat-stress in humans and 

is especially dangerous for health as the humidity inhibits the human body’s ability to cool 

down (Parsons, 2006). We include the count of days where maximum wet-bulb globe 

temperature exceeded a biologically relevant threshold (i.e., 28C (Parsons, 2006)) during the 

child’s life in our model.  

𝑆𝑐
𝑖 =  𝛼(𝑉𝑚,𝑡

𝑗
×  𝐿𝑐,𝑡) + 𝛽𝑋𝑐 + 𝜃𝑇𝑚,𝑟 + 𝑌 + 𝑀 + 𝜀𝑐    (II) 

With  

𝑆𝑐
𝑖 = Stunting, 

𝑉𝑚
𝑗

= {𝑃𝑚,𝑡
 ̂ , 𝑉𝑚,𝑡

𝑢̂ , 𝑉𝑚,𝑡
𝑔̂

 }, 

𝐿𝑐,𝑡 = 𝐿𝑖𝑓𝑒 𝑠𝑡𝑎𝑔𝑒 𝑜𝑓 𝑎 𝑐ℎ𝑖𝑙𝑑, 

𝑋𝑐 = 𝑐ℎ𝑖𝑙𝑑−, 𝑝𝑎𝑟𝑒𝑛𝑡𝑎𝑙−, ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,  

𝑇𝑐 = ℎ𝑒𝑎𝑙𝑡ℎ − 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑤𝑒𝑡 − 𝑏𝑢𝑙𝑏 𝑔𝑙𝑜𝑏𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,  
𝑌 = 𝑠𝑢𝑟𝑣𝑒𝑦 𝑦𝑒𝑎𝑟 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠, 𝑀 = 𝑚𝑎𝑟𝑘𝑒𝑡 𝑓𝑖𝑥𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠  

 

We estimate this as a fixed effects maximum likelihood model of the family logit using R’s 

fixest package (Berge, 2018) and cluster standard errors at the market level. Price variables 

are converted to z-scores to facilitate coefficient interpretation as the result of a 1 standard 

deviation increase. Moreover, it is assumed that the fitted values are exogenous to the local 



market and capture the variation in price volatility that is driven by international futures 

prices and local weather shocks.  

 

4. Results 

Results of the price decomposition (4.1) and the nutrition-price analysis (4.2) are presented in 

the following. Both analyses are connected since the fitted values of the price decomposition 

inform the nutrition-price analysis.  

4.1. Price decomposition 

We aim to get a better understanding of the underlying drivers of local market price volatility. 

In Figure 2, the variables underlying our price decomposition are shown as averages across 

local markets between January 1994 and December 2017. For most of this period, maize 

futures and average local maize market prices move in similar directions. Spikes and drops 

are more amplified in the global futures market. The spread of local market prices has 

increased since 2008. Regarding weather variables, the average mean temperature remains 

comparably constant over this period. However, already small differences in temperature 

might affect crop yields (Faye et al., 2023; Waha et al., 2013). Total rainfall reveals larger 

variability over time and strong differences across markets. To account for this variability in 

long-run local climate in our price decomposition, we control for market-, year-, and month-

fixed effects in the econometric models.  

 
Figure 2 Ithaca, NY 14853-6201 

Table 1 shows how three different price variables are affected by local weather changes and 

their respective international futures market prices weighted by closeness to the nearest port. 

 
  



Table 1 Decomposition of local market price movements 

  local market (USD cents) 

  price level volatility volatility unexpected 

price_level_int:port_closeness -0.011   

  (0.004)   

volatility_int:port_closeness  0.146  

   (0.064)  

volatility_unexp_int:port_closeness   0.038 

    (0.017) 

temp 0.101 0.404 2.433 

  (0.141) (1.214) (0.671) 

rain -0.666 2.062 -0.346 

  (0.429) (1.836) (0.843) 

temp_sq -0.004 -0.001 -0.037 

  (0.003) (0.024) (0.013) 

rain_sq 0.369 -0.088 1.065 

  (0.331) (1.372) (0.580) 

Num. obs. 42373 42373 42373 

Num. groups: year 24 24 24 

Num. groups: month 12 12  

Num. groups: market 508 508 508 

R2 (full model) 0.963 0.419 0.564 

R2 (proj model) 0.000 0.001 0.007 

Adj. R2 (full model) 0.963 0.411 0.558 

Adj. R2 (proj model) 0.000 0.001 0.007 

 

We find positive effects of general and unexpected futures volatility on the respective local 

price volatility. The negative effect on price levels might indicate an “iceberg transport cost” 

(Bosker and Buringh, 2020) relationship, though this requires further investigation. The 

weather-related coefficients suggest temperature and rainfall are affecting local price 

volatility in complex ways. A linear model might be limited in capturing the pathways of 

influence on local market price volatility. Therefore, in future research we will test the 

sensitivity of our results with respect to model specification and choice of functional form. 

4.2. Nutrition–price analysis 

High and volatile staple food prices assumingly affect food access and nutrition outcomes. In 

the following it will be assessed, in how far our data supports this relationship on the basis of 

maize prices for sub-Saharan Africa. 

Table 2 summarizes the regressions for stunting as dependent variable including the predicted 

values of either the mean price, general or unexpected volatility in separate regressions. We 

control for child-, parent-, and household-characteristics.  

 
  



Table 2 Estimation results for stunting 

  stunting 

  Price level Volatility Unexpected volatility 

𝑉𝑗̂. 𝑧:in utero 0.144 0.034 0.038 

  (0.318) (0.040) (0.048) 

𝑉𝑗̂. 𝑧:year1 0.167 0.097 0.092 

  (0.320) (0.046) (0.048) 

𝑉𝑗̂. 𝑧:year2 0.157 0.085 0.062 

  (0.318) (0.038) (0.044) 

𝑉𝑗̂. 𝑧:year3 0.163 0.037 0.064 

  (0.316) (0.049) (0.044) 

𝑉𝑗̂. 𝑧:year4 0.187 -0.045 0.050 

  (0.316) (0.078) (0.053) 

Wet bulb hot days (number) 0.020 0.018 0.019 

  (0.011) (0.010) (0.011) 

Diet diversity 0.016 0.015 0.016 

  (0.007) (0.007) (0.007) 

Age child months -0.586 -0.535 -0.555 

  (0.327) (0.309) (0.321) 

Urban -0.189 -0.188 -0.189 

  (0.033) (0.033) (0.033) 

Poor (omitted: middle) 0.079 0.080 0.079 

  (0.036) (0.035) (0.036) 

Rich (omitted: middle) -0.240 -0.240 -0.239 

  (0.034) (0.034) (0.034) 

Male child 0.225 0.225 0.226 

  (0.023) (0.023) (0.023) 

Birth order 0.056 0.056 0.056 

  (0.010) (0.010) (0.010) 

Child is twin 0.814 0.814 0.815 

  (0.080) (0.080) (0.080) 

Age mother -0.024 -0.024 -0.024 

  (0.004) (0.004) (0.004) 

Mother no education  

(omitted: high) 
0.742 0.741 0.741 

  (0.108) (0.108) (0.108) 

Mother primary education 

(omitted: high) 
0.669 0.669 0.668 

  (0.103) (0.104) (0.103) 

Mother secondary education 

(omitted: high) 
0.486 0.486 0.485 

  (0.110) (0.110) (0.109) 

Mother works in agriculture 0.062 0.063 0.063 

  (0.034) (0.034) (0.034) 

Floor unfinished 0.072 0.072 0.072 



  stunting 

  Price level Volatility Unexpected volatility 

  (0.045) (0.045) (0.045) 

Height mother -0.004 -0.004 -0.004 

  (0.001) (0.001) (0.001) 

Has livestock -0.093 -0.093 -0.094 

  (0.023) (0.023) (0.023) 

Has agricultural land 0.063 0.063 0.062 

  (0.033) (0.032) (0.033) 

Num. obs. 128364 128364 128364 

Num. groups: year 11 11 11 

Num. groups: market 325 325 325 

Log Likelihood -78895.100 -78870.828 -78889.431 

Pseudo R2 0.080 0.080 0.080 

 

Despite being mostly statistically insignificant, the full model specifications disentangle a 

positive link between price levels, general and unexpected volatility, and stunting. Volatile 

staple food prices appear to be especially problematic in the first year after birth. Our results 

indicate that a 1 SD increase in unexpected price volatility in the first year of life increases 

the odds of stunting in children by 9%.  

Other control variables consistently show that being urban, comparably rich and owning 

livestock reduces the occurrence of stunting, whereas being a twin, living in a household that 

owns agricultural land, and having a mother with little education increases the likelihood of 

stunting in a child. While it reduces the odds of stunting to live in a household that owns 

livestock, an important direct source of protein, higher diet diversity increases the probability 

of stunting. This outcome contradicts findings in previous research (Darapheak et al., 2013). 

Diet diversity might be inversely linked to breastfeeding, which is regarded an important 

component in a healthy nutrition of children especially during the months after birth 

(Arimond and Ruel, 2004; Sebayang et al., 2020). The effect of experiencing one more hot-

humid day than average during childhood increases the odds of stunting by 2%.  

If we compare the marginal effects by markets (Figure 3), some variation becomes apparent. 

In tendency, the influence of price volatility seems to be lowest in some markets in West 

Africa. The regional heterogeneity and resulting policy implications require further 

investigation. 



 
Figure 3 Marginal effect of unexpected volatility on stunting in year 1 after birth (grouped by market) 

A heterogeneity analysis is provided in Table 3. Effects of unexpected volatility by life 

period are disentangled for rural vs urban households, by wealth level and agricultural 

involvement. The largest and most significant effects of unexpected maize price volatility on 

stunting are found in the first year of life across subgroups. Larger effects of price volatility 

on stunting for rich compared to poor households are surprising, still, the overall odds of 

being stunted are considerably smaller for children in rich households. It is striking, that 

having access to livestock does not only reduce the odds of stunting by itself, but additionally 

through mediating effects of price volatility. While differences between rural and urban or 

rich and poor households turn out to be minor, children in households that own agricultural 

land face higher odds of stunting in any life period as consequence of an increase in 

unexpected price volatility. Nonseasonal weather shocks and price transmission of volatile 

international prices might meet crop producers unprepared. Owning livestock versus cropland 

influences how unexpected maize price volatility affects stunting in opposing ways. Both 

effects will be underlying the estimate for children in overall rural households and to some 

degree cancel out.  

 
  



Table 3 Heterogeneity analysis for stunting and unexpected volatility 

Stunting  Price variable related to life period: 

  In Utero Year1 Year2 Year3 Year4 

𝑉𝑢̂ . 𝑧:rural 0.02 0.09 0.06 0.07 0.04 

  (0.05) (0.05) (0.05) (0.05) (0.06) 

𝑉𝑢̂ . 𝑧:urban 0.09 0.11 0.07 0.05 0.07 

  (0.06) (0.06) (0.05) (0.06) (0.07) 

𝑉𝑢̂ . 𝑧:poor 0.03 0.10 0.08 0.09 0.07 

  (0.05) (0.05) (0.05) (0.05) (0.06) 

𝑉𝑢̂ . 𝑧:middle -0.00 0.05 0.04 0.04 0.01 

  (0.05) (0.06) (0.06) (0.06) (0.07) 

𝑉𝑢̂ . 𝑧:rich 0.09 0.11 0.05 0.02 0.03 

  (0.05) (0.06) (0.05) (0.05) (0.07) 

𝑉𝑢̂ . 𝑧:No agric. 

land 
0.04 0.09 0.04 0.01 0.01 

  (0.06) (0.06) (0.05) (0.06) (0.07) 

𝑉𝑢̂ . 𝑧:Has agric. 

land 
0.04 0.10 0.07 0.08 0.07 

  (0.05) (0.05) (0.05) (0.05) (0.06) 

𝑉𝑢̂ . 𝑧:No 

livestock 
0.06 0.14 0.08 0.09 0.07 

  (0.05) (0.06) (0.05) (0.05) (0.06) 

𝑉𝑢̂ . 𝑧:Has 

livestock 
0.03 0.07 0.05 0.05 0.04 

  (0.05) (0.05) (0.05) (0.05) (0.06) 

Further covariates Yes 

Num. obs. 128364 

Num. groups: year 11 

Num. groups: market 325 

 

5. Discussion 

Our price decomposition reveals that unexpected local market price volatility is significantly 

driven by futures volatility, subject to closeness to the nearest port, and local weather shocks. 

Our findings are in line with Brown and Kshirsagar (2015) who show that international prices 

and domestic weather disturbances affect local market prices.  

Previous research shows that food price inflation during pregnancy and infancy increases the 

risk of stunting significantly (Woldemichael et al., 2022). In contrast, Grace et al. (2014) find 

a positive correlation between pre-pregnancy maize prices and birthweight.  

For the time during pregnancy, our results do not allow a clear conclusion regarding the effect 

of price levels and volatility on stunting. High and volatile food prices could cause families to 

delay pregnancies or miscarriage (Grace et al., 2014). In this case, our results for the price 

effects around birth could be driven by households with generally lower risk of food insecurity.  

A similar logic could be underlying the effects related to hot humid days, in cases where heat 

stress during pregnancy induces miscarriage. Moreover, our linear model specification might 

be limited in its ability to disentangle the relationship between weather shocks and nutritional 

outcomes that is, for example, fitted to a fourth order polynomial model or other model types 

(Baker and Anttila-Hughes, 2020; Sweeney et al., 2013). A more in-depth exploration of 



weather variables e.g. making use of machine learning techniques could help disentangling 

these relationships as these data-driven approaches are able to capture non-linearities without 

imposing a functional form (Storm et al., 2020).  

Our data hardly allows us to differentiate between net food producing households, including 

sellers and subsistence farmers, and food purchasing households, to a limited extent. We 

distinguish between rural and urban households and include information about the possession 

of agricultural land and livestock and about the employment in agriculture. However, a clear 

distinction between net producers and buyers is impossible, wherein the resulting effects 

could still be the outcome of opposing mechanisms of both household types. Nonetheless, 

livestock ownership is nutrition improving across models, which agrees with previous 

research (Khonje et al., 2022). 

Despite that maize is the main staple food across SSA, nutrition outcomes are especially 

dependent on dietary diversity and sufficient protein consumption. Therefore, the presented 

analysis is limited by its focus on maize prices. Nevertheless, given its important role in diets, 

maize price volatility likely has a direct effect on the consumption of other food products as 

well. 

Our underlying nutrition and price data originate from different sources. The matching of 

households to the nearest market is based on the geolocations provided in the two data 

sources. Our market price data is limited; thus, the matches might not represent the actually 

relevant market for each household. Nevertheless, infrastructure, market integration, and 

weather shocks might be comparable to the true market in many cases. Moreover, owing to 

confidentiality reasons, the DHS household locations are shifted by up to 10 km, which adds 

further error to our geo-matching approach. 

 

6. Conclusions 

High and volatile staple food prices are often regarded as threats to food security. In 

particular, nonseasonal unexpected price volatility can reduce food access, because 

households might not have the chance to adjust their food production, purchases, storage, and 

subsistence behaviors accordingly. Climate change and related weather shocks can affect 

crop yields and, via market effects and related expectations, food prices. Increasingly 

integrated global value chains and trade relations cause the transmission of international price 

changes to local market levels. 

We complement existing research (i) by investigating price volatility drivers in a 

decomposition analysis, and (ii) by getting a step closer toward causally estimating the effect 

of price volatility on nutrition.  

The findings of this paper clearly suggest that price volatility is transmitted from international 

to local markets in SSA. The effect direction of weather shocks on unexpected price volatility 

are less clear and require further investigation. Our results indicate that unexpected price 

volatility in the first year after birth increases the odds of stunting in children significantly. 

While net producers and consumers are hard to differentiate based on the available dataset, 

the results suggest that unexpected price volatility imposes a greater risk of stunting among 

children in agricultural households unless these have access to livestock. 
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