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1 Introduction

Integrated pest management (IPM) is an ecosystem approach to crop production and protection that

combines different management strategies and practices to grow healthy crops and minimize the

use of pesticides (FAO, 2023)[9]. In practicing IPM, growers follow four steps: set action thresh-

old, monitor and identify pests, prevention, and control (EPA, 2022)[6]. Among control strategies,

pesticide application (chemical control) and the use of predators and parasitoids to suppress crop

pest populations (biological control) are important. Unfortunately, the use of broad-spectrum in-

secticides can kill many common natural enemies along with the biological control services they

can provide. When setting the action threshold for pesticide application, it is important to account

for the detrimental effect on beneficial natural enemies. However, bioeconomic research on the

natural enemy-adjusted economic threshold (NEET) of pesticide application is very limited and

chemical manufacturers do not provide farmers with guidance on the threshold, which are major

barriers to adopting IPM practices. One notable exception is the work by Zhang and Swinton

(2009)[23] in the context of soybeans, aphids, and naturally occurring predators in an open-field
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agriculture setting. We are not aware of similar work in protected agriculture and specialty crops

that can inform the NEET for applying insecticide.

High tunnels (HTs) are one of the most accessible and affordable forms of protected agricul-

ture and are used almost exclusively to produce specialty crops. Through capturing radiant heat

and management strategies such as controlling the timing of ventilation and integrating row cov-

ers, farmers have the ability to alter the microclimate surrounding the crop. As a result, HTs

increase farm viability through season extension, which provides a steady income stream during

the traditional ‘off-season’ of farming (Bruce et al., 2019)[2]. Spinach is a cool-season crop that

is frequently grown in high tunnels across the United States (Carey et al., 2009)[3]. According

to survey data, 45% of farmers grow spinach in high tunnels in the Central U.S. (Knestson et al.,

2010)[17].

Both ecological and economic factors indicate that control strategies used in open fields do

not translate to the unique growing environment of HTs. Ecologically, HTs insect pest pressure is

often greater than open-field production due to higher planting density and favorable conditions for

pest growth (Ingwell et al., 2017, Ingewell et al., 2018)[14],[15]. On the other hand, HTs might be

better suited for the adoption of natural enemies than open-field agriculture because their boundary

can partially keep predators from flying away. Economically, Zhang and Swinton (2012)[24] show

that NEET can vary with a wide range by the different market conditions such as crop prices and

biological parameters such as reproducing rates. The unique growing environment in HTs leads to

parameters differing a lot from open-field agriculture. Thus we expect NEET in HTs will also be

different from open-field agriculture.

This work fits within a larger body of literature that considers optimal pest control decisions

in either static or dynamic frameworks. Harper and Zilberman (1989)[13] and Harper (1991)[12]

examine pesticide use decisions for static and dynamic models, respectively, that include a pri-

mary pest, a secondary pest, and a natural predator of the secondary pest which can be harmed

by the pesticide used to control the primary pest. Through comparative static/dynamic analysis,

they find that growers who ignore the effect of the pesticide on the predator will overuse the pes-
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ticide. Zhang and Swinton (2009)[23] develop a dynamic bioeconomic model including one pest

(soybean aphids) and one predator (lady beetles) of the pest. With deterministic and perfectly

observable population dynamics, and given predator population densities, they solve the optimal

spraying strategies under different combinations of initial pest and predator densities using nu-

merical methods. Grogan (2014)[10] adopts a similar biological relation and deterministic setting

as Zhang and Swinton but changes to continuous-time and infinite-horizon dynamic optimization.

They explicitly include augmenting the predator as a second control strategy besides insecticide

application. With linear functional forms and constant marginal control costs assumptions, they

solve the closed-form solution that entails a "most rapid approach1" to the singular path.

The solution method of this work also fits in the literature on the management of invasive

species with recently developed approaches. Marten and Moore (2011)[19] build an options based

bioeconomic model for biological and chemical control of invasive species, without considering

the detrimental effect of the pesticide on the predator. With fixed costs to exert the control strategies

every time, they convert it to an impulse control problem with a continuation region (wait without

control) and action regimes (exert at least one control). They include stochasticity in their model,

such as weather affecting the occurrence of the pest and predator. They solve the optimal control

strategies with numerical methods of solving optimal switching models developed by Balikcioglu

(2008)[1] and Fackler (2018)[8]. The imperfectly observed population density, which is called

state uncertainty, is another major barrier to resource management. Breaking up the state space into

several categories and approximating the problem as a discrete-state Partially Observable Markov

Decision Process (POMDP) has been applied to many resource management problems (Fackler

and Haight, 2014; Haight and Polasky, 2010)[7],[11]. Recently, Kling et al. (2017)[16] adopt

density projection as an approximating approach to solve a continuous-state POMDP problem,

which is a breakthrough in solving state uncertainty problems in resource management.

The model that follows differs from previous work in several ways (Table 1). Compared to

previous research on pest control and identifying the NEET (Zhang and Swinton, 2009; Grogan,

1Most rapid approaches are characterized by a cornel solution for part of the trajectory, where the optimal control
is constrained at an upper or lower bound until the steady-state optimum is achieved (Conroad and Rondeau, 2020)[5].
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Table 1: Comparison of Pest/Invasive Species Control Models

Study Control target Control variable(s) Pesticides harm predator Stochasticity State uncertainty

Zhang & Swinton (2009) Pests Chemical Yes No No
Grogan (2014) Pests Chemical & Biological Yes No No
Marten & Moore (2011) Invasive species Chemical & Biological No Yes No
Haight & Polasky (2010)Invasive species Monitoring & Removal Not applied No Discrete
Fackler & Haight (2014) Invasive species Monitoring & Removal Not applied No Discrete
Kling et al. (2017) Invasive species Monitoring & Removal Not applied No Continuous
This research Pests Chemical & Biological (& Monitoring) Yes Yes (Discrete/Continuous)

Note: The parts within () are expected and we are still working on them.
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2014)[23],[10], this model allows stochasticity (such as weather) to affect population dynamics

of both the pest and predator. Our results confirm that adding stochasticity changes the NEET of

pesticide application. We also plan to include monitoring as another control strategy to account for

imperfect observed population densities, which would be another innovation of our work. Com-

pared to previous research on invasive species control (Marten and Moore, 2011)[19], this paper

explicitly considers the negative effect of chemical control on biological control, which leads to a

trade-off between them.

This study fills the gap in the literature by deriving the natural enemy-adjusted economic

threshold to support the adoption of integrated pest management in protected agriculture and spe-

cialty crops. We develop a dynamic bioeconomic optimization model to derive the optimal pest

control strategies under different population densities of the pest and predator. The model explic-

itly takes into account the pest control service provided by natural enemies through a predator-prey

submodel. Insecticide sprays targeted to the pest can impair the natural enemy and reduce the level

of pest control services they provide, which adds an opportunity cost to insecticide use. By solving

the dynamic optimization model, we provide an optimal solution to jointly adopting insecticides

and commercial natural enemies, thereby providing farmers an economically viable option to adopt

sustainable pest management practices that are not the extreme ends of the conventional-organic

spectrum. We therefore expect this work to contribute more broadly to the literature on sustain-

able agriculture intensification (Pretty, 2018)[22]. By adjusting our parameter values based on the

unique temperature conditions within HTs, we ensure that our recommendations are tailored to

guide pest management in this type of protected agriculture.

2 Optimal Control Framework

We build a bioeconomic model to determine the dynamically optimal pest control strategies with

and without uncertainty in this section. It is necessary to clarify the concept of uncertainty analyzed

in our model. According to LaRiviere (2018)[18], there are four types of uncertainty in the con-
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text of an optimal dynamic management framework: stochasticity, parametric uncertainty, model

uncertainty, and state uncertainty. First, the dynamic processes can be influenced by stochasticity,

such as intrinsic variability, shock, risk, or "noise". We include the stochasticity from weather con-

ditions in our model. We model the stochasticity by adopting Brownian motions (Ito processes)

in our equation of motions. Second, farmers do not know the accurate parameter values related

to biology and ecology, such as the pest’s intrinsic growth rate. We model the parameter value

with the best knowledge that we can find through existing literature and field experiment by our

research team. We will conduct a sensitivity analysis to account for parametric uncertainty. We

are not interested in modeling farmers’ learning in this research. Third, farmers do not know the

accurate functional forms capturing the relationship between pest and predator growth. Although

it is possible to model uncertainty by adopting functional forms that come from given distributions,

such an approach can significantly complicate our model. Thus, we do not pursue to account for

the model uncertainty. We will also conduct a sensitivity analysis to test how different functional

forms can affect our results. Fourth, the state variables, such as population densities of pests and

predators, are not accurately observable. We plan to use the Partially Observable Markov Decision

Processes (POMDP) approach to account for the state uncertainty.

To control pests, we assume that a farmer has two control strategies, one is to apply pesticide

(xt) as a chemical control and the other is to release commercial predators at a certain proportion

(At) of the current predator density as a biological control. Here, we assume xt to be a binary

variable (x1 = 0 or xt = 1) and At to be a continuous variable (At ∈ [0,1]). Applying pesticide can

kill both pests and predators. We assume kS and kP to be the pesticide’s toxicity to the pests and

predators, respectively, i.e. how much percentage of pests and predators being killed by one-time

application of such pesticide. Thus, applying pesticides at t will cause the pest density (S) and

predator density (P) changes to be

Ṡt =−kS · xt ·St (1)

Ṗt =−kP · xt ·Pt (2)
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We assume the corresponding cost of applying pesticide to be

CX(xt) = θ(St) · xt (3)

where θ(St) is the marginal cost of applying pesticides at the pest density of St . The marginal cost

is the money required to spray pesticide one more time when pest density is St , without accounting

for any potential opportunity cost.

Augmentative strategy at t will cause the predator density changes to be

Ṗt = At ·Pt (4)

The corresponding cost of augmenting the predator density is

CA(At) = ω(Pt) ·At (5)

where ω(Pt) is the marginal cost of augmenting predators at the predator density of Pt . The

marginal cost is the money required to release commercial predators at the amount equal to one

more percent of the current predator density Pt , without accounting for any potential opportunity

cost.

In the absence of controls the population dynamics of the two species are defined by a system

of stochastic differential equations:

dSt = a(St ,Pt)dt +b(St)dW S
t (6)

and

dPt = c(St ,Pt)dt +d(Pt)dW P
t (7)

where W S and W P are standard Brownian motions and E[dW SdW P] = σSPdt.

We assume the pest-free potential harvest to be ȳ and the pest density St , results in damages
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D(St). Although spinach is harvested (removed) at the end of a growing cycle, pests and predators

can live to next growing cycle because farmers do polyculture inside HTs. The goal of the farmer

is to maximize the expected discounted flow of revenues minus any cost associated with applying

control strategies, with a discount factor ρ:

V (St ,Pt) = max
xt ,At

E
[∫

∞

0
e−ρt [pȳ(1−D(St))−CX(xt)−CA(At)]

]
dt (8)

This model represents a two dimensional singular control problem with two controls for which

the solution is defined by a variational inequality (VI), representing the Hamilton-Jacobi-Bellman

equation and the necessary smooth pasting conditions (Øksendal and Sulem, 2007)[21]. Following

Balikcioglu (2008)[1], the optimality conditions of the VI are

ρV (St ,Pt)≥ pȳ(1−D(St))+a(St ,Pt)VS + c(St ,Pt)VP

+
1
2

b2(St)VSS +
1
2

d2(Pt)VPP +σSPb(St)d(Pt)VSP (9)

θ(St)≥−kS ·St ·VS − kP ·Pt ·VP (10)

and

ω(At)≥ Pt ·VP (11)

where Vs and Vp are the partial derivatives of the value function V (·) with respect to pests and

predators, respectively. One of the conditions must hold with equality. Which condition holds

with equality will determine the optimal control strategy. If conditions 10 and 11 hold with strict

inequality, it is implied that the value at the current state of nature, V (St ,Pt), is greater than any

other which could be obtained when taking into account the cost of exerting the controls. Thus,

condition 9 must hold with equality, which means that it is optimal for the farmer to wait before

applying any of the controls. The economic interpretation is that the rate of return obtainable by

investing V (St ,Pt) must be equal to the flow of income plus the expected change in V (St ,Pt). The

corresponding certain regions of the state space is called continuation region. On the other hand,
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if conditions 10 or/and 11 hold with equality, a higher value may be obtained if at least one control

is used, then it is optimal to exert the corresponding control strategy. Thus, condition 9 must hold

with strict inequality, which means that the flow of income plus the expected change in V (St ,Pt)

is smaller than the rate of return obtainable by investing V (St ,Pt) if the farmer does not adopt

any control strategies. The corresponding certain regions of the state space are action regions.

It is worth noting that in condition 10, the marginal cost of applying pesticide also includes the

opportunity cost of the loss of predators caused by pesticides.

3 Green Peach Aphids Control in High Tunnels

3.1 Stochastic Model

In order to apply the optimal control framework presented in the previous section, we specify

functional forms for the evolution equations and cost functions for control. We adopt similar

functional forms to Grogan (2014)[10] but we change the deterministic model to a stochastic model

with geometric Brownian processes (GBM). GBM reflects the fact that green peach aphids (GPA)

have the potential to increase exponentially in the field with enough food but no appropriate control.

By not reaching 0 in any finite time, GBM also accounts for that full eradication is unlikely is

impossible given the potential for reintroductions. We adopt a logistic growth form for the pest

and a dynamic Lotka-Volterra predator-pery model to describe the population density changes in

the predator:

dSt =

[
αSt(1−

St

K
)−βSt ·Pt

]
dt +σSStdW S

t (12)

and

dPt = [γηPt ·St − τPt ]dt +σPPtdW P
t (13)

where α is the intrinsic growth rate of GPA. K is the carrying capacity of GPA. Both β and η

are the predation rate (β = η). We use different letters (β and η) to account for the fact that

the predation may have different effects on the growth of the pest and predator in future. γ is a
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parameter related to the growth of the predator. τ is the death and run off rate of the predator. σS

and σP are volatility parameters. We assume E[dW SdW P] = σXPdt to be the covariance between

the natural shocks to aphids and predators. If σXPdt = 0 then the shocks have independent effects

on aphids and predators. However, given that the weather condition, which affects both aphids

and predators, is one important source of the natural shocks. We expect that σXPdt ̸= 0. We will

explore the influence of the correlation factor on optimal control strategies more in the sensitivity

analysis.

Previous literature argue that while many non-linear specifications are possible for D(St), for

agricultural insect pests linear specifications are appropriate and have in some cases been found to

outperform non-linear ones (Ceddia et al., 2009)[4]. Thus, we adopt a linear damage functional

form that the pest damages a proportion of the crop, St/K

D(St , t) =
St

K
(14)

We assume that the farmer takes a calendar-based spraying (no scouting). Thus the marginal

cost of spraying is constant.

θ(St) = θ (15)

and

ω(Pt) = ω (16)

V (S,P) = max
xt ,At

[∫
∞

0
e−ρt [pȳ(1− St

K
)−θxt −ωAt ]

]
dt (17)

The optimality conditions for the singular control problem:

ρV (St ,Pt)≥ pȳ(1− St

K
)+

[
αSt(1−

St

K
)−βSt ·Pt

]
VS +[γηPt ·St − τPt ]VP

+
1
2

σ
2
S S2

t VSS +
1
2

σ
2
PP2

t VPP +σSPσSσPSt ·PtVSP (18)

θ ≥−VS · kS ·St −VP · kP ·Pt (19)
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and

ω ≥VP ·Pt (20)

3.2 Deterministic Model

For stochastic models, the state and action generally will not converge to specific values, and

the long-run behavior of the model can only be described probabilistically. Nonetheless, in these

cases, it is often useful to derive the steady state of the deterministic "certainty-equivalent" problem

obtained by fixing all exogenous random shocks at their respective means (Miranda and Fackler,

2002)[20]. We are interested in comparing the optimal control strategies, values, and shadow prices

under deterministic and stochastic cases.

The certainty-equivalent optimization problem:

max
xt ,At

∫
∞

0
e−ρt [pȳ(1− St

K
)−θxt −ωAt ]dt (21)

Subject to:

dSt =

[
αSt(1−

St

K
)−βSt ·Pt − kS · xt ·St

]
dt (22)

dPt = [γηPt ·St − kP · xt ·Pt +(At − τ) ·Pt ]dt (23)

The current-value Hamiltonian:

Ht = pȳ(1− St

K
)−θxt −ωAt +λSt (αSt(1−

St

K
)−βSt ·Pt − kS · xt ·St)

+λPt (γηPt ·St − kP · xt ·Pt +(At − τ) ·Pt) (24)
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The first order conditions:

∂H
∂xt

=


0 if θ +λPt kPPt >−λSt kSSt

xSS if θ +λPt kPPt =−λSt kSSt

xmax if θ +λPt kPPt <−λSt kSSt

(25)

∂H
∂At

=


0 if ω > λPt ·Pt

ASS if ω = λPt ·Pt

Amax if ω < λPt ·Pt

(26)

λ̇St −λSt =−∂H
∂St

=
pȳ
K

−λSt (α(1− 2St

K
)−β ·Pt − kS · xt)−λPt γηPt (27)

λ̇Pt −λPt =−∂H
∂Pt

= λSt (βSt)−λPt (γηSt − kP · xt +At − τ) (28)

where xSS and ASS are the singular solutions defined in Eqs. 31 and 32 below, xmax is the max-

imum allowed application rate for the particular pesticide, and Amax is the maximum possible

augmentation rate that can be achieved. Because of our constant marginal cost and other linearity

assumptions, the optimal control strategies are in the "most rapid2" forms. In Eq. 25, −λSt kSSt

represents the value of crop damages avoided by one more unit of pesticide application. The farmer

will apply no control if the cost of control (both the marginal cost of spraying and the opportunity

cost of losing predators) exceeds the value of crop losses prevented by the pesticide. On the other

hand, the farmer applies the maximum chemical control when the cost of doing so is less than the

value of damages prevented. When the cost and damage prevented are equal, the farmer applies

the singular level of control. The cost and benefit of augmentative strategies similarly determine

the level of biological control.

Eq. 25 has an important implication for pest eradication. As St goes to zero, −λSt kSSt ap-

2Most rapid approaches are characterized by a cornel solution for part of the trajectory, where the optimal control
is constrained at an upper or lower bound until the steady-state optimum is achieved (Conroad and Rondeau, 2020)[5].
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proaches zero. Thus, θ +λPt kPPt > −λSt kSSt always holds, which implies that when pest density

is low enough, it is optimal to stop spraying pesticides.

The steady-state solution to this problem can be derived from the first-order conditions (see

Appendix A for derivations):

SSS =
θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kS
(29)

PSS =
ωkS

β (θ +ωkP)
(30)

xSS = α(1− θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kSK
)− ω

θ +ωkP
(31)

ASS = τ +kP

[
α(1− θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kSK
)− ω

θ +ωkP

]
−γη

θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kS
(32)

The steady state solution shows the optimal combination of chemical and biological control

strategies, which depends on the parameter values, to keep the system at the steady state. At the

steady state, there exist certain amounts of both pests and predators, which implies that eradication

of pests is not optimal.

4 Numerical Results

(This part is still in progress. We are waiting for the results from field experiments and farmer’s

survey from our research team to improve our parameter value. We attach the preliminary result

for expositional purposes.)

Given the complex nature of this continuous time, two states, two singular control stochastic

dynamic programming problem, closed form solutions for the value function, and optimal control

policy (do not exist). Therefore we rely on numerical methods to derive a solution to the problem.

Since the form of the value function is unknown, we define a relatively flexible approximation for

V (St ,Pt) over the relevant portion of the state space using piecewise linear functions (and/or some
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other functional forms). The goal is then to solve for the set of coefficients of the approximating

functions.

Following Fackler (2018)[8], Balikcioglu (2008)[1], and Marten and Moore (2011)[19], Sup-

pose V (St ,Pt) ≈ φ(St ,Pt)θ , where φ represents a set of n basis functions for a family of approxi-

mating functions and θ is an n-vector of coefficients for the value function.

Recall the optimality conditions of the VI are

ρV (S,P)≥ pȳ(1− St

K
)+

[
αSt(1−

St

K
)−βSt ·Pt

]
VS +[γηPt ·St − τPt ]VP

+
1
2

σ
2
S S2

t VSS +
1
2

σ
2
PP2

t VPP +σSPσSσPSt ·PtVSP (33)

θ ≥−VS · kS ·St −VP · kP ·Pt (34)

and

ω ≥VP ·Pt (35)

At least one the of above expressions must hold with equality. If the first expression holds with

equality, the farmer is in the continuation regime. If either/both of the last two expressions hold

with equality, the farmer is in the corresponding action regime(s).

The optimality conditions can be restated in the form:

0 = min
[

ρV (St ,Pt)− pȳ(1− St

K
)−LV (St ,Pt),θ +VS · kS ·St +VP · kP ·Pt ,ω −VP ·Pt

]
(36)

where

LV (St ,Pt) =

[
αSt(1−

St

K
)−βSt ·Pt

]
VS +[γηPt ·St − τPt ]VP

+
1
2

σ
2
S S2

t VSS +
1
2

σ
2
PP2

t VPP +σSPσSσPSt ·PtVSP (37)

The full details of the numerical method are presented in Appendix B.
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Table 2: Parameterization of the bioeconomic model

Parameter Definition Value Units Comments

p Output price 5 $/lb 4.5-5.5
ȳ Max potential yield 1.5 Lbs/sq ft
K Carrying capacity 500 Pests/sq ft
α Intrinsic growth rate of GPA 0.156 GPA
β Predation rate 0.15 Pests/predator
γ Intrinsic growth rate of predators 0.05
η Predation rate 0.15 Pests/predator same as β

τ Death & Run off rate of predators 0.2 Predators
θ Marginal cost parameter for chemical control 0.014 $/sq ft
ω Marginal cost parameter for biological control 0.02 $/sq ft
σi Volatility parameters 0.25 Assumptions tested
σXP Brownian motion correlation 0.5 in sensitivity analysis.

Our current parameter values are listed in Table 2. To see how well the biological model

describes the ladybeetle-GPA system, we simulate model predictions of untreated predator-free

GPA population density and untreated ladybeetle-GPA population dynamics. Figure 1 shows the

untreated and predator-free GPA population density when we set the GPA carrying capacity to

500 and the initial GPA density to 10. Figure 2 shows the untreated ladybeetle-GPA population

densities when we set the initial GPA density to 10. We notice that under our current parameter

values, the initial ladybeetle density of 6 has a significant effect in GPA control before they run off,

which necessitates the addition of commercial predators. Figure 3 shows the untreated ladybeetle-

GPA population densities when we set the initial GPA density to be 300. Under high initial GPA

density, the initial ladybeetle density of 6 still has a significant effect on GPA control before they

run off. The simulation results validate our biological model. We decide to set the GPA density

range to 0-500 and the ladybeetle density range to 0-8 to solve for our optimal control strategies.

To numerically solve the optimality conditions of the dynamic model, we use a piecewise

linear family of basis functions and 21*21 breakpoints spread evenly over the two-dimensional

state space to approximate the value function. Our preliminary results are listed as figure 4 and

figure 5.

Based on the preliminary results, we find that including stochasticity indeed changes the opti-
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Figure 1: Simulated untreated and predator-free GPA density

Figure 2: Simulated ladybeetle-GPA population densities with low initial GPA density
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Figure 3: Simulated ladybeetle-GPA population densities with high initial GPA density

Figure 4: Optimal control strategies under different population densities with stochasticity (x-axis:
GPA, y-axis: ladybeetle)

18



Figure 5: Optimal control strategies under different population densities without stochasticity (x-
axis: GPA, y-axis: ladybeetle)

mal control strategies, which confirms our contribution to the existing literature that derives NEET

without considering stochasticity. Figure 4 (with stochasticity) shows that under low pest density,

farmers should rely more on chemical control, while the optimal control strategies would change

to biological control or waiting without any control depending on the predator density under high

pest density. Figure 5 (without stochasticity) shows that chemical control is the optimal control

strategy under almost all the scenarios.

Since our parameter values are not precise enough at this moment (we are still waiting for

the results from field experiments from our research team), our preliminary results are just for

expositional purposes. We expect to update the parameter values and get more precise results later.

We will also conduct a sensitivity analysis based on that.
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A Mathematical Solutions to the Deterministic Case

Ht = pȳ(1− St

K
)−θxt −ωAt +λSt (αSt(1−

St

K
)−βSt ·Pt − kS · xt ·St)

+λPt (γηPt ·St − kP · xt ·Pt +(At − τ) ·Pt) (38)

The first order conditions:
∂H
∂xt

=−θ −λSt kSSt −λPt kPPt (39)

∂H
∂At

=−ω +λPt Pt (40)

λ̇St −λSt =−∂H
∂St

=
pȳ
K

−λSt (α(1− 2St

K
)−β ·Pt − kS · xt)−λPt γηPt (41)

λ̇Pt −λPt =−∂H
∂Pt

= λSt (βSt)−λPt (γηSt − kP · xt +At − τ) (42)

At the steady state, from Eq. 40,

λPt =
ω

Pt
(43)

Differentiate both sides with respect to time yields:

λ̇Pt =
−ωṖt

P2
t

(44)

Plug Eq. 43 into 39 yields

λSt =−θ +ωkP

kSSt
(45)

Differentiate both sides with respect to time yields:

λ̇St =
(θ +ωkP)Ṡt

kS(St)2 (46)
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Plug Eq. 45 and Eq. 43 into Eq. 41, solving for λ̇St yields

λ̇St =−θ +ωkP

kSSt
+

pȳ
K

+
θ +ωkP

kSSt
(α(1− 2St

K
)−β ·Pt − kS · xt)−ωγη (47)

Combining Eq. 46 and Eq. 47 yields

(θ +ωkP)Ṡt

kS(St)2 =−θ +ωkP

kSSt
+

pȳ
K

+
θ +ωkP

kSSt
(α(1− 2St

K
)−β ·Pt − kS · xt)−ωγη (48)

Which can be simplified as

0 =−θ +ωkP

kSSt
+

pȳ
K

− θ +ωkP

kSSt

St

K
−ωγη (49)

Where we use the equation of motion Eq. 22

Solving Eq. 49 for St yields the singular path for the pest population:

SSS =
θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kS
(50)

Plugging Eqs. 43 44 and 45 into Eq. 42 yields

−ωṖt

P2
t

− ω

Pt
=−θ +ωkP

kSSt
(βSt)−

ω

Pt
(γηSt − kP · xt +At − τ) (51)

Solving Eq. 51 for Pt using euqaiton of motion Eq. 23 yields the singular path for the predator

population:

PSS =
ωkS

β (θ +ωkP)
(52)

Since this is an autonomous linear control optimization problem, the singular chemical control

occurs when:

Ṡt = αSt(1−
St

K
)−βSt ·Pt − kS · xt ·St = 0 (53)

Plugging Eqs. 50 and 52 into Eq. 53 and solving for xt , yields the singular chemical control:
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α
θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kS
(1− θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kSK
)

−β
θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kS

ωkS

β (θ +ωkP)
− xt(θ +ωkP)

( pȳ
K − θ+ωkP

kSK −ωγη)
= 0 (54)

α
θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kS
(1− θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kSK
)− ω

pȳ
K − θ+ωkP

kSK −ωγη

− xt(θ +ωkP)

( pȳ
K − θ+ωkP

kSK −ωγη)
= 0 (55)

xSS = α(1− θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kSK
)− ω

θ +ωkP
(56)

Similarly, in steady state,

Ṗt = γηPt ·St − kP · xt ·Pt +(At − τ) ·Pt = 0 (57)

Plugging Eqs. 50, 52 and 56 into Eq. 57, yields the singular biocontrol:

γη
ωkS

β (θ +ωkP)

θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kS

− kP

[
α(1− θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kSK
)− ω

θ +ωkP

]
ωkS

β (θ +ωkP)
+(At − τ)

ωkS

β (θ +ωkP)
= 0

(58)

ASS = τ +kP

[
α(1− θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kSK
)− ω

θ +ωkP

]
−γη

θ +ωkP

( pȳ
K − θ+ωkP

kSK −ωγη)kS
(59)
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B Numerical Method Solution

Recall the optimality conditions of the VI are

ρV (S,P)≥ pȳ(1− St

K
)+

[
αSt(1−

St

K
)−βSt ·Pt

]
VS +[γηPt ·St − τPt ]VP

+
1
2

σ
2
S S2

t VSS +
1
2

σ
2
PP2

t VPP +σSPσSσPSt ·PtVSP (60)

θ ≥−VS · kS ·St −VP · kP ·Pt (61)

and

ω ≥VP ·Pt (62)

At least one the of above expressions must hold with equality. If the first expression holds with

equality, the farmer is in the continuation regime. If either/both of the last two expressions hold

with equality, the farmer is in the corresponding action regime(s).

The optimality conditions can be restated in the form:

0 = min
[

ρV (St ,Pt)− pȳ(1− St

K
)−LV (St ,Pt),θ +VS · kS ·St +VP · kP ·Pt ,ω −VP ·Pt

]
(63)

where

LV (St ,Pt) =

[
αSt(1−

St

K
)−βSt ·Pt

]
VS +[γηPt ·St − τPt ]VP

+
1
2

σ
2
S S2

t VSS +
1
2

σ
2
PP2

t VPP +σSPσSσPSt ·PtVSP (64)

Since we don’t know V (·), following Fackler (2018)[8] and Balicioglu (2008)[1], suppose

V (St ,Pt)≈ φ(St ,Pt)θ , where φ represents a set of n basis functions for a family of approximating

functions and θ is an n-vector of coefficients for the value function. Then the complementarity
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problems in Eq. 63 - evaluated at the n nodal points in the state space, (S,P), can be rewritten as

0 = min(B1θ +q1,B2θ +q2,B3θ +q3) (65)

where

B1 = ρφ(St ,Pt)−
[

αSt(1−
St

K
)−βSt ·Pt

]
φS − [γηPt ·St − τPt ]φP

− 1
2

σ
2
S S2

t φSS −
1
2

σ
2
PP2

t φPP −σSPσSσPSt ·PtφSP (66)

B2 = φS · kS ·St +φP · kP ·Pt (67)

B3 =−φP (68)

q1 =−pȳ(1− St

K
) (69)

q2 = θ (70)

and

q3 = ω (71)

Then use Fischer-Burmeister function

Φ
−(x,y) = x+ y−

√
x2 + y2

to set

F1(θ) = Φ
−(B1θ +q1,F2(θ))

F2(θ) = Φ
−(B2θ +q2,F3(θ))

and

F3(θ) = B3θ +q3
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Then Eq. 65 is equivalent to solving

F1(θ) = 0
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