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Abstract

In the context of developing countries, there is an urgent need to refine systematic food price
prediction models. Yield forecasting has received considerable attention, in comparison, food
price forecasting has received considerably less attention; yet food prices provide one of the
most accurate estimations of household food access and they provide a more accurate and
timely characterization of local food security. A key deterrent to building skillful price
prediction models is the difficulty and cost of obtaining complete subnational price data. Here
we use a novel method that combines traditional econometric techniques of price transmission
and new machine learn methods to predict maize prices one, three, and six months into the
future for 59 maize markets in Zambia. We find that we can predict monthly prices with a high
degree of predictive accuracy and price data that only relies on a few central markets rather

than using 59 individual price series.
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Introduction

Food prices are the most common measure of food access because they capture two main
components correlated with food security - the ability of households to purchase and consume
food and the capacity of farmers to plan for future food production. Several governments,
NGOs, and international organizations such as World Food Program (WFP), Food and
Agriculture Organization (FAO), and FEWSNET have been collecting subnational food price
data for years across several countries to inform their in-country operations and monitor
subnational levels of food security. Because of the high correlation between food price
movements and food security, this data is often used to predict food insecurity crises before they
occur. However, in developing countries, food price data can be difficult and costly to obtain.
The cost of collecting price data often increases when it is collected from smaller, remotely
located, tertiary areas that are more prone to food insecurity crises. In addition to being more
costly, rural, and isolated markets tend to display starkly different price dynamics than their
urban counterparts making them more difficult to predict. Despite these difficulties, accurate
records of food price dynamics in both urban and rural areas are vital to measuring and
monitoring the significant spatial heterogeneity that exists in food insecurity crises (Maxwell et
al., 2020).

In this paper we combine traditional econometric time series techniques and machine
learning algorithms to construct skillful monthly maize price prediction models for Zambia
Theoretical models of price transmission commonly assume that shocks are transmitted from an
external market (typically modeled as the world market) to the largest domestic city or port
within a country and then, depending on the degree of market integration within the country,
these shocks are transmitted to local markets. However recent evidence suggests that internal
shocks have a larger impact on prices than external shocks. In an analysis of 554 local
commodity markets across 51 countries during the period between 2008-2012, Brown &
Kshirsagar (2015) find that 20% of local market prices were affected by domestic weather
disturbances in the short-run in comparison to 9% by international price changes. This finding
has prompted recent literature to relax assumptions about international price transmission to
investigate how shocks are transmitted through local and regional markets.

In their estimation of price determinants Baffes et al. (2019) identify that local wholesale
market prices in Tanzania responded three to four times faster to the main regional market,

Nairobi, than to the international benchmark (US Golf). An extension of this work incorporates



network analysis and identifies that the largest city and port in Tanzania is not a significant
influencing market (Baffes & Kshirsagar, 2020), rather isolated markets located in maize surplus
areas bear more influence on price transmission. The findings in Baffes & Kshirsagar (2020)
highlight the need to properly identify a market (or markets) that serve as a reference or
benchmark when studying price dynamics and transmission in developing countries.
Furthermore, they show that the benchmark market can change depending on the season, local
factors, and the relative importance of surrounding domestic and regional markets.

While markets in developing countries have historically exhibited low levels of
integration, empirical evidence suggests that they display some level of efficiency during
climate related shocks. Empirically, Aker (2010) shows in Niger drought occurring in two
markets has a negative statistically significant impact on grain price dispersion occurring
between those two markets. She also finds that as the number of markets experiencing drought
increases the average effect of drought on price dispersion increases. Similarly, Salazar et al.
(2019) expands on Aker (2010) and finds that grain price dispersion in Mozambique also
decreases during droughts but increases during flood periods, an effect that they attribute to
increasing transport costs. Both papers suggest that markets show some degree of efficiency
during supply shocks in developing countries. More recent empirical evidence from Chile also
supports this claim. Salazar et al. (2023) find that drought shocks in Chile reduce market price
differentials for potatoes around harvesting and commercialization periods

This paper incorporates the results of supply shocks on market performance/integration to
build skillful price prediction models that use limited price data and other readily accessible
secondary data to predict monthly grain prices three, six, and nine months ahead in Zambia.
The goal of this paper is to systematically construct subnational price forecasting models that
minimize the use of large quantities of spatial price data, a major limitation faced by other
proposed estimation approaches. We limit the amount of data used by first determining if
monthly price series in each country co-move. We then use bivariate vector error correction
models (VECM) to both assess whether price movements in each country follow well-defined
paths and identify influencing and influenced markets. From this analysis we utilize the Least
Absolute Shrinkage and Selection Operator (LASSO) to construct a network of markets that
identify regional price anchors. Because local climate conditions have been found to both affect
and accurately predict agricultural prices, price dispersion, and yields in developing countries

we also incorporate climate conditions at both the market location and anchor market location.



1. Maize markets in Zambia

Zambia is a landlocked, lower-to-middle income country in southern Africa. Maize in
Zambia is the most commonly grown crop by smallholders. Approximately Ninety percent of
maize in Zambia is produced by smallholders who are supported through two primary
government programs the Farmer Input Support Program (FISP) which promote maize
production through the distribution of subsidized inputs and the Food Reserve Agency (FRA)
which is the larger buyer of maize in the country and often purchases maize directly from
farmers at pan-territorial pricing which often exceeds market prices. The marketing channel for
maize smallholders includes a variety of market outlets, namely, assembly traders who buy
grain in villages, informal and large-scale grain wholesalers, the FRA, and direct sales to
processors. Timing of sales plays a significant role in the price received for maize. Farmers who
have significant surplus and can delay trades to later on in the season can often demand higher
prices from formal buyers (Chamberlin et al., 2014). On the other hand, farmers who produce
smaller quantities and need access to income sell shortly after harvest within the farmgate.
Using representative data Chapoto and Jayne (2011) show that over 60% of smallholders who
sold maize sold to assembly traders within the village and that competition at the village level is
high.

Zambia produces maize in all ten of its provinces. However, Central, Eastern, and
Southern provinces contribute more than 50% of total production. Eastern province is the major
producer as its climate is most favorable, followed by Southern province which is more prone to
drought conditions (Esterhuizen & Caldwell, 2021). Less than 5% of cropped land in Zambia is
under irrigation; Zambian maize is primarily rainfed and dependent on volatile rainfall. As a
result, the country frequently experiences food price spikes and volatile food supply
(Chamberlin et al., 2014). Price spikes have typically occurred in drought years such as 1992,
1995, 1998, 2001, 2002, and 2005 when maize production fell drastically.

Government intervention in the maize market of Zambia is, and always has been, high.
In addition to actively subsidizing both maize inputs and outputs the government also tightly
regulates formal imports and exports of maize. Price responses to supply deficits are often
worsened by the large wedge between import and export parity prices, resulting from high
transport costs and poor market infrastructure (Sitko & Kuteya, 2013). Additionally, ad hoc

trading restrictions are often implemented, making it difficult for Zambia to emerge as a



significant trading region (World Bank, 2022).The unreliability and unpredictability in
government policy have increased the reluctance of traders to engage in cross border trade.
However, when trade does occur Zimbabwe is the primary destination for formally exported
maize from Zambia (Sitko & Kuteya, 2013) and Zambia’s maize imports come primarily from

South Africa.

2. Modeling Framework
2.1.  Spatial price transmission

Conceptually, this paper builds on the spatial market integration literature which
emphasizes the importance of space and transaction costs associated with trading an identical
good between markets. Markets are said to be spatially integrated if there is some degree of
price transmission occurring between them. The foundational regression framework to evaluate
the degree of price transmission occurring between two markets for an identical commodity
relies on examining the following relationship:

P, =a + alet te, (Eq. 1)

where P denotes the price of a homogenous good in market i (domestic market) at time ¢, and

Pjt denotes the price of homogenous good in market j (external market), €, is a random error

term. This regression is often used to test for perfect market integration in the short run; if

a, = 0, a = 1, then markets i and j are integrated in the short run (Isard, 1977; Richardson,

1978; Mundlak & Larson, 1992).

A fundamental shortcoming of estimating Eq. 1 through regression analysis is
nonstationarity of prices invalidates most standard econometric results and thus can give
misleading results regarding the degree of integration. It is therefore necessary to employ a

model that accounts for nonstationarity (Baffes & Gardner, 2003). If prices, Pit and Pjt, are
nonstationary and e is stationary then co-movement between the two prices occurs (Ardeni,
1989). To account for the non-unity slope coefficient, we can assume o, = 1 and test the

following:
(P, - Pjt)~1(0) (Eq. 2)
Which is equivalent to testing for a unit root in the price differential. If Eq. 2 is confirmed (i.e.

the price differential is stationary) then we can assume that market i follows price movements

occurring in market j in the long-run. However, we cannot make inferences about the degree of



integration in the short run or other economic implications about the degree of integration from
Eq. 2.
To test for short-run integration we can impose lags into the structure of Eq.1:
Pp=ot 0(1Pjt + aZPjt—l TP, e, (Eq. 3)
And following Hendry et al. (1984) we can impose the homogeneity restriction to Eq.3. which

will allow us to test if prices in market j will eventually be transmitted to market i. If ¥ a = 1
i

Eq. 3 will become:
(P. — Pit_l) = + (1 - oc3)(Pjt_1 - Pit_l) + al(Pjt - P

jt—1) +e€, (Eq. 4)
The coefficients in Eq. 4 are interpreted as follows:

it

1. « indicates how much of a given change in the external price will be transmitted to

domestic markets within the first period. This is referred to as the error correction term
or speed of adjustment.

2.« indicates how much of a given change market j’s price will be transmitted to market i

within the first period. This is referred to as the error correction term or speed of
adjustment.

3. 1 -« 3) indicates how much of the external-domestic price spread will be eliminated in

each subsequent period.
Following Baffes & Kshirsagar (2020), we relax the assumption that market j is an external
market. Rather we let i and j represent separate domestic markets and estimate Eq. 4 using an
error correction model to determine which domestic markets in Zambia are price influencers.
We include seasonal dummy variables and domestic weather disturbances occurring in both
markets our preferred specification takes the following form:

P =P Py ) Py =P ) FB W HBW 0 T e, (Eq. 5)

i

=a,+ (1 - ag)(Pjt_

1 1

Where P and Pjt are the log real prices of maize in market pairs i and j at time t, W denotes the

domestic weather disturbance estimated using the z-scores of rainfall, and § denotes a vector of
dummy variables to capture seasonality.
To estimate Eq. 5, price series i and j must satisfy the following;:
1. Integrated to the same order.

2. Cointegrated.



To test for the order of integration we use the Augmented Dickey Fuller (ADF) test and the
KPSS test. To test the series for cointegration we use the Johansen test (details explained in

section 4).

3.2.  Price prediction

The goal of this paper is to improve the predictive accuracy of price prediction models
while minimizing the use of subnational price data. Recently, concepts from market integration
have been merged with machine learning techniques to improve the predictive accuracy of
electricity price prediction models. Lago et al. (2018) use deep neural networks to understand
the temporal structure and impact of neighboring and connected markets on forecast accuracy.
They show that the inclusion of neighboring market features significantly improves the
predictive accuracy of local market predictions. In a similar paper, Ziel et al. (2015) utilize an
autoregressive model to analyze the relationship between the day-ahead electricity price of the
Energy Exchange Austria (EXAA) and other day-ahead electricity prices in European markets.
They find that the inclusion of EXAA prices improves predictive accuracy in the prediction of
local electricity market prices. Also, Panapakidis & Dagoumas (2016) apply a clustering
algorithm to create homogenous groups of electricity market clearing prices from different
competitive markets. Forecasts are then made within these groups. This framework allows the
prices in similar markets to inform the predictive capacity of the neural network used to predict

prices in local market
We use the price transmission framework to identify a set of markets which are responsible
for influencing surrounding maize markets. We then use these markets as predictors in a
random forest model to predict prices one, three, and six months ahead. We also use other
readily available data to control for transaction costs such as CPI, fuel prices, and travel distance
between markets. Finally, we compare the differences in predictive accuracy between the
baseline model that uses its own lagged prices as predictors and the model that uses price

anchors as predictors.

3. Data

Our primary data source, the World Food Program (WFP) Vulnerability Analysis and
Mapping (VAM), provides monthly price data for 71 markets across both urban and rural areas
in Zambia from 2003 to 2022. Data from 2003-2012 covers 40 markets that are primarily located



in more urbanized and denser areas. In 2012 the market coverage was expanded to 71 markets
and included markets in more remote and rural areas. Because rural markets often display price
dynamics that starkly contrast those in urban areas, we focus our analysis on the sample from
2012-2022 and provide further analysis on markets that span the 2003 to 2022 time period in the

Appendix. Table 1 summarizes the sample of WFP price data used for analysis.

Table 1
Summary statics of maize prices in Zambia (2012-2022)

Province N. Markets Average Min Max Volatility
Central 7 2.26 0.62 6.21 0.23
Copperbelt 6 2.33 0.67 6.67 0.19
Eastern 5 1.98 0.53 6.67 0.20
Luapula 6 2.03 0.73 5.36 0.21
Lusaka 3 2.38 0.71 5.67 0.16
Muchinga 4 2.07 0.67 6.11 0.22
North-Western 7 2.18 0.32 7.78 0.26
Northern 8 212 0.73 6.67 0.23
Southern 7 215 0.50 6.67 0.21
Western 6 2.50 0.50 7.78 0.23
Overall 59 2.20 0.32 7.78 0.22

Note. All prices are displayed in real prices ZMK/kg

In common with most price data from developing countries, WFP VAM suffers from
missing observations. To ensure we do not rely on an abundance of imputed data we retain
markets for analysis that have at least 70% of the data present. We impute missing observations
using cubic spline interpolation'. The resulting sample is 59 retail markets, consisting of 120
monthly observations each. Figure 1 plots the average maize prices for the respective time

period.

Figure 1
Average maize price in Zambia (2012-2022)

' To compute the imputed values we use the R function spline from the “Stats” package.
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Figure 2

Distribution of maize markets across provinces in Zambia
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Note. Circles represent market locations.

Zambia is divided into 10 provinces and 116 districts. The primary maize growing regions are in
Eastern and Southern province. Markets are located throughout the country, with at least one
market in each province. Figure 2 displays the location of each market.

Weather disturbances are estimated using Climate Hazards Center Infrared Precipitation
with Stations (CHIRPS) dataset which provides gridded (0.1- latitude x 0.1° longitude) monthly
precipitation data spanning our time period of interest - 1982 to 2022 (Chamberlin et al., n.d.).

CHIRPS and products have been used for modelling and forecasting maize yields in Southern



Saharan Africa and to support custom FEWS NET agroclimatic historical drought analyses in
Eastern and Southern Africa (Davenport et al., 2018; Davenport et al., 2021; Guimaraes Nobre et
al., 2019; Lee et al., 2022). We use the long-term deviation from the mean precipitation, captured
by z-scores, for a given market area and month as our measure of local weather disturbances.

In the following sections, we analyze the data using the empirical framework discussed
above. We employ a market integration analysis to analyze maize price dynamics for each of the
59 markets and identify markets that act as price anchors. We then use incorporate these results
in into a random forest model to make one, three, and six months ahead price predictions. We
compare the predictive accuracy of the price predictions that utilize information from the

market integration analysis.

4. Results
4.1.  Selecting the appropriate price anchors

We begin by applying unit root tests to log real prices using the Augmented
Dickey-Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) procedures. Results
from the ADF test indicate stationarity in log levels with a without a trend is rejected in all
cases, stationarity with a trend is rejected in all but two cases at the five percent level. Results
from the KPSS test indicate stationarity is not rejected in all case both with and without a trend.
Both tests confirm that when first differences are applied all series are stationary under both
KPSS and ADF procedures. See Table 2 for summary of results. These results indicate long-term
relationships exists between markets and they should be examined using co-integration

statistics and short-run relationships should be examined using an error correction model.

Table 2
Stationary properties
Augmented Dickey-Fuller Kwiatkowski-Phillips-Schmidt-Shin

With trend No trend Differences  With trend No trend Differences
p<0.10 0 0 0 0 0 0
p <0.05 2 0 8 0 0 0
p<0.01 0 0 51 59 59 0
Note.

As an intermediate step to determining the long run relationships between markets we

use Eq. 1 and Eq. 2. First, we use the ADF procedure to test for a unit root in the price



differential of each market pair?. If the price differential is I(0) and the we can assume that
market i follows market j price movements in the long-run. To determine the validity of the
model presented in Eq. 1 we test the order of integration of the error term. If prices are
nonstationary and the residuals of Eq.1 are stationary this implies movement between prices in
market i and market j and we can conclude that market i prices follow price signals from market
j. We use the ADF procedure to check that the residuals are stationary. A summary of results are
displayed in Table 3°.

All markets, except for one (Chingola), display a long-term co-moving relationship with
at least one other market in the sample. Based on the summary of indicators of long term
relationships we determine that Lukulu, Kaputa, Mongu, Choma, Kaoma have the most
long-term co-moving relationships with the other markets within Zambia. The specified error

correction model will quantify the relationships between these markets in the short-run.

Table 3

Summary indicators of long-term relationships between 59 markets in Zambia

(1) (2) €) (4)

Province Market Price Average Average Residuals
differential R-squared Coefficient

Western Lukulu 50 0.69 0.94 50
Northern Kaputa 45 0.56 0.73 45
Western Mongu 43 0.69 1.10 43
Southern Choma 38 0.76 1.04 38
Western Kaoma 38 0.72 1.00 38
Northern Luwingu 37 0.65 0.80 37
Western Senanga 35 0.71 0.92 35
Southern Kazungula 35 0.71 0.84 35
Muchinga Nakonde 35 0.60 0.77 35
Central Mkushi 32 0.77 0.94 32
Overall Mean 19.72 0.70 0.82 18.72
Overall Min 0 0.45 0.57 0
Overall Max 50 0.82 1.10 50

Note. Table provides summary statistics for the markets with the most co-moving relationships
between markets. (1) indicates the number of markets that reject null of non-stationarity of the
price difference in the market pair by the ADF procedure at the 5% level. (2) indicates the
average R-squared of the model estimated from Eq. 1 for each market pair. (3) indicates the
average of the coefficient, a , estimated from Eq. 1 for each market pair. (4) indicates the number

2 59 markets result in 3422 unique market pairs
3 A table of complete results can be provided upon request from the corresponding author.



of markets that reject the null of non-stationarity in the residuals resulting from the estimated
model of Eq. 1 for each market pair by the ADF procedure at the 5% level.
4.2.  Using price anchors for prediction models
For now, we use the first five markets in table 3 as as price anchors in the prediction
models. Later, these models will be better specified using information from the error correction
models to better define the price anchors. Currently, we specify the prediction models using a
regression based random forest in which the predictors in each model are lagged prices and the
outcome is the log real price in time period ¢.
To predict prices in each market we do the following
1. Split the data into training and test sets sequentially such that 70% of the for each
market is in the training set and the remaining 30% is in the test set.
2. Due to the random shuffling, k-fold cross validation does not respect the nature of
time series data. To remedy this, we tune the parameters in the random forest using
methods from financial time series forecasting (Hyndman & Athanasopoulos, 2013).
Specifically, we perform a grid-search of optimal parameter values using a moving
window time series cross validation approach.
3. Using the tuning parameter from (2) we specify a regression based random forest
that uses lags of price prices as predictors for each market.
4. To measure the predictive accuracy of each model we use the root mean squared
error (RMSE). Because prices are logged, we compute the RMSE in the following

way:

Results using each price anchor are provided in Table 4. Currently, this is a very sparsely
specified model future plans will incorporate results from short-term price transmission
integration and weather disturbances.

Table 4

RMSE across models using price anchors

Price anchor Mean Min Max Median

Choma 0.29 0.19 0.56 0.27
Kaoma 0.31 0.15 0.63 0.31



Kaputa 0.43 0.26 0.73 0.41

Lukulu 0.35 0.20 0.62 0.34
Mongu 0.37 0.23 0.65 0.36
Own prices 0.24 0.11 0.47 0.22

5. Discussion

The prediction models presented in this paper provide intuition on how price transmission
can be incorporated into price prediction models to minimize the use of costly price data.
Current price prediction models utilized by FEWS NET and other aid organizations are labor
intensive and require large swaths of data on production, market conditions, and other external
market forces. Additionally, many aspects of current price forecasting models are qualitative in
nature and scenario based. Our goal in this paper is not to construct the perfect prediction
model, but to determine when and where weather disturbances (forthcoming) and markets
linked through price transmission can contribute most to improving predictive accuracy across
different time horizons (forthcoming). The results presented in this paper can be utilized to
build more quantitatively rigorous models that are less labor intensive and more reliant on

frequently updated and accessible data.
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