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Abstract

In the context of developing countries, there is an urgent need to refine systematic food price

prediction models. Yield forecasting has received considerable attention, in comparison, food

price forecasting has received considerably less attention; yet food prices provide one of the

most accurate estimations of household food access and they provide a more accurate and

timely characterization of local food security. A key deterrent to building skillful price

prediction models is the difficulty and cost of obtaining complete subnational price data. Here

we use a novel method that combines traditional econometric techniques of price transmission

and new machine learn methods to predict maize prices one, three, and six months into the

future for 59 maize markets in Zambia. We find that we can predict monthly prices with a high

degree of predictive accuracy and price data that only relies on a few central markets rather

than using 59 individual price series.

Keywords: Food security, food prices, price prediction, price transmission



Introduction

Food prices are the most common measure of food access because they capture two main

components correlated with food security – the ability of households to purchase and consume

food and the capacity of farmers to plan for future food production. Several governments,

NGOs, and international organizations such as World Food Program (WFP), Food and

Agriculture Organization (FAO), and FEWSNET have been collecting subnational food price

data for years across several countries to inform their in-country operations and monitor

subnational levels of food security. Because of the high correlation between food price

movements and food security, this data is often used to predict food insecurity crises before they

occur. However, in developing countries, food price data can be difficult and costly to obtain.

The cost of collecting price data often increases when it is collected from smaller, remotely

located, tertiary areas that are more prone to food insecurity crises. In addition to being more

costly, rural, and isolated markets tend to display starkly different price dynamics than their

urban counterparts making them more difficult to predict. Despite these difficulties, accurate

records of food price dynamics in both urban and rural areas are vital to measuring and

monitoring the significant spatial heterogeneity that exists in food insecurity crises (Maxwell et

al., 2020).

In this paper we combine traditional econometric time series techniques and machine

learning algorithms to construct skillful monthly maize price prediction models for Zambia

Theoretical models of price transmission commonly assume that shocks are transmitted from an

external market (typically modeled as the world market) to the largest domestic city or port

within a country and then, depending on the degree of market integration within the country,

these shocks are transmitted to local markets. However recent evidence suggests that internal

shocks have a larger impact on prices than external shocks. In an analysis of 554 local

commodity markets across 51 countries during the period between 2008-2012, Brown &

Kshirsagar (2015) find that 20% of local market prices were affected by domestic weather

disturbances in the short-run in comparison to 9% by international price changes. This finding

has prompted recent literature to relax assumptions about international price transmission to

investigate how shocks are transmitted through local and regional markets.

In their estimation of price determinants Baffes et al. (2019) identify that local wholesale

market prices in Tanzania responded three to four times faster to the main regional market,

Nairobi, than to the international benchmark (US Golf). An extension of this work incorporates



network analysis and identifies that the largest city and port in Tanzania is not a significant

influencing market (Baffes & Kshirsagar, 2020), rather isolated markets located in maize surplus

areas bear more influence on price transmission. The findings in Baffes & Kshirsagar (2020)

highlight the need to properly identify a market (or markets) that serve as a reference or

benchmark when studying price dynamics and transmission in developing countries.

Furthermore, they show that the benchmark market can change depending on the season, local

factors, and the relative importance of surrounding domestic and regional markets.

While markets in developing countries have historically exhibited low levels of

integration, empirical evidence suggests that they display some level of efficiency during

climate related shocks. Empirically, Aker (2010) shows in Niger drought occurring in two

markets has a negative statistically significant impact on grain price dispersion occurring

between those two markets. She also finds that as the number of markets experiencing drought

increases the average effect of drought on price dispersion increases. Similarly, Salazar et al.

(2019) expands on Aker (2010) and finds that grain price dispersion in Mozambique also

decreases during droughts but increases during flood periods, an effect that they attribute to

increasing transport costs. Both papers suggest that markets show some degree of efficiency

during supply shocks in developing countries. More recent empirical evidence from Chile also

supports this claim. Salazar et al. (2023) find that drought shocks in Chile reduce market price

differentials for potatoes around harvesting and commercialization periods

This paper incorporates the results of supply shocks on market performance/integration to

build skillful price prediction models that use limited price data and other readily accessible

secondary data to predict monthly grain prices three, six, and nine months ahead in Zambia.

The goal of this paper is to systematically construct subnational price forecasting models that

minimize the use of large quantities of spatial price data, a major limitation faced by other

proposed estimation approaches. We limit the amount of data used by first determining if

monthly price series in each country co-move. We then use bivariate vector error correction

models (VECM) to both assess whether price movements in each country follow well-defined

paths and identify influencing and influenced markets. From this analysis we utilize the Least

Absolute Shrinkage and Selection Operator (LASSO) to construct a network of markets that

identify regional price anchors. Because local climate conditions have been found to both affect

and accurately predict agricultural prices, price dispersion, and yields in developing countries

we also incorporate climate conditions at both the market location and anchor market location.



1. Maize markets in Zambia

Zambia is a landlocked, lower-to-middle income country in southern Africa. Maize in

Zambia is the most commonly grown crop by smallholders. Approximately Ninety percent of

maize in Zambia is produced by smallholders who are supported through two primary

government programs the Farmer Input Support Program (FISP) which promote maize

production through the distribution of subsidized inputs and the Food Reserve Agency (FRA)

which is the larger buyer of maize in the country and often purchases maize directly from

farmers at pan-territorial pricing which often exceeds market prices. The marketing channel for

maize smallholders includes a variety of market outlets, namely, assembly traders who buy

grain in villages, informal and large-scale grain wholesalers, the FRA, and direct sales to

processors. Timing of sales plays a significant role in the price received for maize. Farmers who

have significant surplus and can delay trades to later on in the season can often demand higher

prices from formal buyers (Chamberlin et al., 2014). On the other hand, farmers who produce

smaller quantities and need access to income sell shortly after harvest within the farmgate.

Using representative data Chapoto and Jayne (2011) show that over 60% of smallholders who

sold maize sold to assembly traders within the village and that competition at the village level is

high.

Zambia produces maize in all ten of its provinces. However, Central, Eastern, and

Southern provinces contribute more than 50% of total production. Eastern province is the major

producer as its climate is most favorable, followed by Southern province which is more prone to

drought conditions (Esterhuizen & Caldwell, 2021). Less than 5% of cropped land in Zambia is

under irrigation; Zambian maize is primarily rainfed and dependent on volatile rainfall. As a

result, the country frequently experiences food price spikes and volatile food supply

(Chamberlin et al., 2014). Price spikes have typically occurred in drought years such as 1992,

1995, 1998, 2001, 2002, and 2005 when maize production fell drastically.

Government intervention in the maize market of Zambia is, and always has been, high.

In addition to actively subsidizing both maize inputs and outputs the government also tightly

regulates formal imports and exports of maize. Price responses to supply deficits are often

worsened by the large wedge between import and export parity prices, resulting from high

transport costs and poor market infrastructure (Sitko & Kuteya, 2013). Additionally, ad hoc

trading restrictions are often implemented, making it difficult for Zambia to emerge as a



significant trading region (World Bank, 2022).The unreliability and unpredictability in

government policy have increased the reluctance of traders to engage in cross border trade.

However, when trade does occur Zimbabwe is the primary destination for formally exported

maize from Zambia (Sitko & Kuteya, 2013) and Zambia’s maize imports come primarily from

South Africa.

2. Modeling Framework

2.1. Spatial price transmission

Conceptually, this paper builds on the spatial market integration literature which

emphasizes the importance of space and transaction costs associated with trading an identical

good between markets. Markets are said to be spatially integrated if there is some degree of

price transmission occurring between them. The foundational regression framework to evaluate

the degree of price transmission occurring between two markets for an identical commodity

relies on examining the following relationship:

(Eq. 1)𝑃
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= α
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+ α
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term. This regression is often used to test for perfect market integration in the short run; if

, , then markets i and j are integrated in the short run (Isard, 1977; Richardson,α
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1978; Mundlak & Larson, 1992).

A fundamental shortcoming of estimating Eq. 1 through regression analysis is

nonstationarity of prices invalidates most standard econometric results and thus can give

misleading results regarding the degree of integration. It is therefore necessary to employ a

model that accounts for nonstationarity (Baffes & Gardner, 2003). If prices, and , are𝑃
𝑖𝑡

𝑃
𝑗𝑡

nonstationary and is stationary then co-movement between the two prices occurs (Ardeni,ϵ
𝑡
 

1989). To account for the non-unity slope coefficient, we can assume and test theα
1

= 1

following:

(Eq. 2)𝑃
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Which is equivalent to testing for a unit root in the price differential. If Eq. 2 is confirmed (i.e.

the price differential is stationary) then we can assume that market i follows price movements

occurring in market j in the long-run. However, we cannot make inferences about the degree of



integration in the short run or other economic implications about the degree of integration from

Eq. 2.

To test for short-run integration we can impose lags into the structure of Eq.1:

(Eq. 3)𝑃
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And following Hendry et al. (1984) we can impose the homogeneity restriction to Eq.3. which

will allow us to test if prices in market j will eventually be transmitted to market i. If
𝑖
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Eq. 3 will become:
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The coefficients in Eq. 4 are interpreted as follows:

1. indicates how much of a given change in the external price will be transmitted toα
1
 

domestic markets within the first period. This is referred to as the error correction term

or speed of adjustment.

2. indicates how much of a given change market j’s price will be transmitted to market iα
1
 

within the first period. This is referred to as the error correction term or speed of

adjustment.

3. indicates how much of the external-domestic price spread will be eliminated in(1 − α
3
)

each subsequent period.

Following Baffes & Kshirsagar (2020), we relax the assumption that market j is an external

market. Rather we let i and j represent separate domestic markets and estimate Eq. 4 using an

error correction model to determine which domestic markets in Zambia are price influencers.

We include seasonal dummy variables and domestic weather disturbances occurring in both

markets our preferred specification takes the following form:
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Where and are the log real prices of maize in market pairs i and j at time t, denotes the𝑃
𝑖𝑡

𝑃
𝑗𝑡

𝑊

domestic weather disturbance estimated using the z-scores of rainfall, and denotes a vector ofδ

dummy variables to capture seasonality.

To estimate Eq. 5, price series i and jmust satisfy the following:

1. Integrated to the same order.

2. Cointegrated.



To test for the order of integration we use the Augmented Dickey Fuller (ADF) test and the

KPSS test. To test the series for cointegration we use the Johansen test (details explained in

section 4).

3.2. Price prediction

The goal of this paper is to improve the predictive accuracy of price prediction models

while minimizing the use of subnational price data. Recently, concepts from market integration

have been merged with machine learning techniques to improve the predictive accuracy of

electricity price prediction models. Lago et al. (2018) use deep neural networks to understand

the temporal structure and impact of neighboring and connected markets on forecast accuracy.

They show that the inclusion of neighboring market features significantly improves the

predictive accuracy of local market predictions. In a similar paper, Ziel et al. (2015) utilize an

autoregressive model to analyze the relationship between the day-ahead electricity price of the

Energy Exchange Austria (EXAA) and other day-ahead electricity prices in European markets.

They find that the inclusion of EXAA prices improves predictive accuracy in the prediction of

local electricity market prices. Also, Panapakidis & Dagoumas (2016) apply a clustering

algorithm to create homogenous groups of electricity market clearing prices from different

competitive markets. Forecasts are then made within these groups. This framework allows the

prices in similar markets to inform the predictive capacity of the neural network used to predict

prices in local market

We use the price transmission framework to identify a set of markets which are responsible

for influencing surrounding maize markets. We then use these markets as predictors in a

random forest model to predict prices one, three, and six months ahead. We also use other

readily available data to control for transaction costs such as CPI, fuel prices, and travel distance

between markets. Finally, we compare the differences in predictive accuracy between the

baseline model that uses its own lagged prices as predictors and the model that uses price

anchors as predictors.

3. Data

Our primary data source, the World Food Program (WFP) Vulnerability Analysis and

Mapping (VAM), provides monthly price data for 71 markets across both urban and rural areas

in Zambia from 2003 to 2022. Data from 2003-2012 covers 40 markets that are primarily located



in more urbanized and denser areas. In 2012 the market coverage was expanded to 71 markets

and included markets in more remote and rural areas. Because rural markets often display price

dynamics that starkly contrast those in urban areas, we focus our analysis on the sample from

2012-2022 and provide further analysis on markets that span the 2003 to 2022 time period in the

Appendix. Table 1 summarizes the sample of WFP price data used for analysis.

Table 1

Summary statics of maize prices in Zambia (2012-2022)

Province N. Markets Average Min Max Volatility
Central 7 2.26 0.62 6.21 0.23
Copperbelt 6 2.33 0.67 6.67 0.19
Eastern 5 1.98 0.53 6.67 0.20
Luapula 6 2.03 0.73 5.36 0.21
Lusaka 3 2.38 0.71 5.67 0.16
Muchinga 4 2.07 0.67 6.11 0.22
North-Western 7 2.18 0.32 7.78 0.26
Northern 8 2.12 0.73 6.67 0.23
Southern 7 2.15 0.50 6.67 0.21
Western 6 2.50 0.50 7.78 0.23
Overall 59 2.20 0.32 7.78 0.22
Note. All prices are displayed in real prices ZMK/kg

In common with most price data from developing countries, WFP VAM suffers from

missing observations. To ensure we do not rely on an abundance of imputed data we retain

markets for analysis that have at least 70% of the data present. We impute missing observations

using cubic spline interpolation1. The resulting sample is 59 retail markets, consisting of 120

monthly observations each. Figure 1 plots the average maize prices for the respective time

period.

Figure 1

Average maize price in Zambia (2012-2022)

1 To compute the imputed values we use the R function spline from the “Stats” package.



Note. All prices are displayed in real prices ZMK/kg

Figure 2

Distribution of maize markets across provinces in Zambia

Note. Circles represent market locations.

Zambia is divided into 10 provinces and 116 districts. The primary maize growing regions are in

Eastern and Southern province. Markets are located throughout the country, with at least one

market in each province. Figure 2 displays the location of each market.

Weather disturbances are estimated using Climate Hazards Center Infrared Precipitation

with Stations (CHIRPS) dataset which provides gridded (0.1◦ latitude × 0.1◦ longitude) monthly

precipitation data spanning our time period of interest – 1982 to 2022 (Chamberlin et al., n.d.).

CHIRPS and products have been used for modelling and forecasting maize yields in Southern



Saharan Africa and to support custom FEWS NET agroclimatic historical drought analyses in

Eastern and Southern Africa (Davenport et al., 2018; Davenport et al., 2021; Guimarães Nobre et

al., 2019; Lee et al., 2022). We use the long-term deviation from the mean precipitation, captured

by z-scores, for a given market area and month as our measure of local weather disturbances.

In the following sections, we analyze the data using the empirical framework discussed

above. We employ a market integration analysis to analyze maize price dynamics for each of the

59 markets and identify markets that act as price anchors. We then use incorporate these results

in into a random forest model to make one, three, and six months ahead price predictions. We

compare the predictive accuracy of the price predictions that utilize information from the

market integration analysis.

4. Results

4.1. Selecting the appropriate price anchors

We begin by applying unit root tests to log real prices using the Augmented

Dickey-Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) procedures. Results

from the ADF test indicate stationarity in log levels with a without a trend is rejected in all

cases, stationarity with a trend is rejected in all but two cases at the five percent level. Results

from the KPSS test indicate stationarity is not rejected in all case both with and without a trend.

Both tests confirm that when first differences are applied all series are stationary under both

KPSS and ADF procedures. See Table 2 for summary of results. These results indicate long-term

relationships exists between markets and they should be examined using co-integration

statistics and short-run relationships should be examined using an error correction model.

Table 2

Stationary properties

Augmented Dickey-Fuller Kwiatkowski-Phillips-Schmidt-Shin
With trend No trend Differences With trend No trend Differences

p < 0.10 0 0 0 0 0 0
p < 0.05 2 0 8 0 0 0
p < 0.01 0 0 51 59 59 0
Note.

As an intermediate step to determining the long run relationships between markets we

use Eq. 1 and Eq. 2. First, we use the ADF procedure to test for a unit root in the price



differential of each market pair2. If the price differential is I(0) and the we can assume that

market i follows market j price movements in the long-run. To determine the validity of the

model presented in Eq. 1 we test the order of integration of the error term. If prices are

nonstationary and the residuals of Eq.1 are stationary this implies movement between prices in

market i and market j and we can conclude that market i prices follow price signals from market

j.We use the ADF procedure to check that the residuals are stationary. A summary of results are

displayed in Table 33.

All markets, except for one (Chingola), display a long-term co-moving relationship with

at least one other market in the sample. Based on the summary of indicators of long term

relationships we determine that Lukulu, Kaputa, Mongu, Choma, Kaoma have the most

long-term co-moving relationships with the other markets within Zambia. The specified error

correction model will quantify the relationships between these markets in the short-run.

Table 3

Summary indicators of long-term relationships between 59 markets in Zambia

Province Market
(1)
Price

differential

(2)
Average
R-squared

(3)
Average
Coefficient

(4)
Residuals

Western Lukulu 50 0.69 0.94 50
Northern Kaputa 45 0.56 0.73 45
Western Mongu 43 0.69 1.10 43
Southern Choma 38 0.76 1.04 38
Western Kaoma 38 0.72 1.00 38
Northern Luwingu 37 0.65 0.80 37
Western Senanga 35 0.71 0.92 35
Southern Kazungula 35 0.71 0.84 35
Muchinga Nakonde 35 0.60 0.77 35
Central Mkushi 32 0.77 0.94 32
Overall Mean 19.72 0.70 0.82 18.72
Overall Min 0 0.45 0.57 0
Overall Max 50 0.82 1.10 50
Note. Table provides summary statistics for the markets with the most co-moving relationships
between markets. (1) indicates the number of markets that reject null of non-stationarity of the
price difference in the market pair by the ADF procedure at the 5% level. (2) indicates the
average R-squared of the model estimated from Eq. 1 for each market pair. (3) indicates the
average of the coefficient, , estimated from Eq. 1 for each market pair. (4) indicates the numberα

1

3 A table of complete results can be provided upon request from the corresponding author.
2 59 markets result in 3422 unique market pairs



of markets that reject the null of non-stationarity in the residuals resulting from the estimated
model of Eq. 1 for each market pair by the ADF procedure at the 5% level.

4.2. Using price anchors for prediction models

For now, we use the first five markets in table 3 as as price anchors in the prediction

models. Later, these models will be better specified using information from the error correction

models to better define the price anchors. Currently, we specify the prediction models using a

regression based random forest in which the predictors in each model are lagged prices and the

outcome is the log real price in time period t.

To predict prices in each market we do the following

1. Split the data into training and test sets sequentially such that 70% of the for each

market is in the training set and the remaining 30% is in the test set.

2. Due to the random shuffling, k-fold cross validation does not respect the nature of

time series data. To remedy this, we tune the parameters in the random forest using

methods from financial time series forecasting (Hyndman & Athanasopoulos, 2013).

Specifically, we perform a grid-search of optimal parameter values using a moving

window time series cross validation approach.

3. Using the tuning parameter from (2) we specify a regression based random forest

that uses lags of price prices as predictors for each market.

4. To measure the predictive accuracy of each model we use the root mean squared

error (RMSE). Because prices are logged, we compute the RMSE in the following

way:

𝑅𝑀𝑆𝐸 = 1
𝑁×𝑇

𝑖=1

𝑁

∑
𝑡=1

𝑇

∑ 𝑒
𝑦

𝑖𝑡 − 𝑒
𝑦
^

𝑖𝑡( )2

Results using each price anchor are provided in Table 4. Currently, this is a very sparsely

specified model future plans will incorporate results from short-term price transmission

integration and weather disturbances.

Table 4

RMSE across models using price anchors

Price anchor Mean Min Max Median

Choma 0.29 0.19 0.56 0.27
Kaoma 0.31 0.15 0.63 0.31



Kaputa 0.43 0.26 0.73 0.41
Lukulu 0.35 0.20 0.62 0.34
Mongu 0.37 0.23 0.65 0.36

Own prices 0.24 0.11 0.47 0.22

5. Discussion

The prediction models presented in this paper provide intuition on how price transmission

can be incorporated into price prediction models to minimize the use of costly price data.

Current price prediction models utilized by FEWS NET and other aid organizations are labor

intensive and require large swaths of data on production, market conditions, and other external

market forces. Additionally, many aspects of current price forecasting models are qualitative in

nature and scenario based. Our goal in this paper is not to construct the perfect prediction

model, but to determine when and where weather disturbances (forthcoming) and markets

linked through price transmission can contribute most to improving predictive accuracy across

different time horizons (forthcoming). The results presented in this paper can be utilized to

build more quantitatively rigorous models that are less labor intensive and more reliant on

frequently updated and accessible data.
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