

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

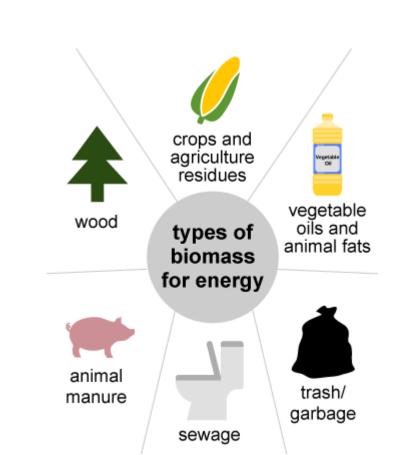
Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Title of the Presentation:
Is biomass co-firing a means to end or extend coal-based electricity production in the US? Evidence from a choice experiment
Harikrishnan Santhosh ^a , Greg Colson and Jeff Mullen University of Georgia ^a hsanthosh@uga.edu
Selected Poster prepared for presentation at the 2023 Agricultural & Applied Economics Association Annual Meeting, Washington DC: July 23- 25, 2023
Copyright 2023 by [authors]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.



Is biomass co-firing a means to end or extend coal-based electricity production in the US? Evidence from a choice experiment

Harikrishnan Santhosh, Greg Colson and Jeff Mullen

Introduction

- In 2021 the key goal set by COP26 was to secure global net zero emissions by 2050 and keep 1.5 degrees within reach
- To deliver on the target, countries will need to accelerate the phaseout of coal
- CO₂ emissions by US electric power sector amounts to 32% of total U.S. energy related CO₂ emissions in 2021 (EIA)
- The need to reduce CO_2 while meeting energy security needs has brought a renewed focus on increasing renewable energy sources in the energy mix
- Co-firing biomass with coal is a near term, low-cost option for efficiently and cleanly generating electricity
- Not only reduces the environmental footprint but also offers multiple benefits reduction of NO_x SO_2 , and generation of new markets for agriculture (Hite et al. 2008)
- Significant driver of widespread adoption is cost of implementation, cofiring ratio and biomass storage (Agbor et al., 2014; Rentizelas et al. 2009)
- Al-Mansour and Zuwala (2010) outline three mature technological approaches: direct co-firing (lowest cost), indirect co-firing and parallel co-firing
- Also, high operational and maintenance cost of co-firing equipment, cost of biomass feedstock, adequate year-round supply and cost of transport are major drivers (Goerndt et al. 2013)
- This paper uses a Choice Experiment framework to gauge consumers' willingness-to-pay (WTP) for electricity derived from co-firing biomass with coal

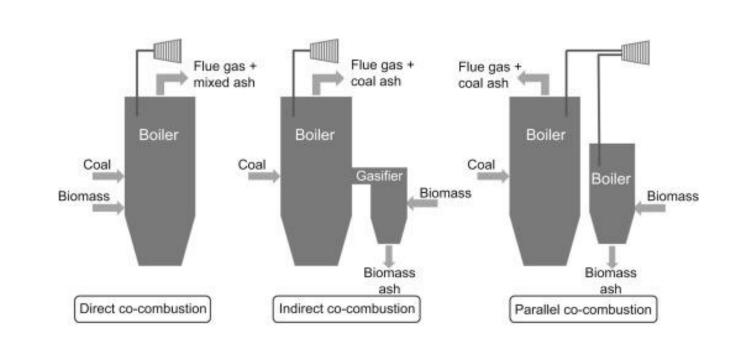


Fig1: Biomass Sources
Source: EIA

Fig2: Types of co-firing

Source: María V. Gil, Fernando Rubiera (2019). Coal and biomass cofiring: fundamentals and future trends

Objective

- No studies have focused on consumers' preferences for biomass and coal co-fired electricity
- A concern with the promotion of co-firing is how it will impact the phasing out of coal - Do consumers view it as a means to prolong the use of coal?
 What would be the ideal fuel-mix for co-firing?

Survey Design

The choice experiment was designed with the following attributes and levels:

- 1) Change in your monthly electricity bill
- No Change, Decrease 10%, Decrease 5%, Increase 5%, Increase 10%
- 2) Fuel used to produce your baseload electricity
- (100% coal, 90% coal 10% biomass co-fired, 70% coal 30% biomass co-fired, 50% coal 50% biomass co-fired)
- 3) Type of Biomass co-fired
- None, Wood processing waste, Dedicated energy crops, Agricultural waste
- 4) Planned phaseout date of Coal for electricity production in the U.S.
- 2035, 2050, 2065
- 5) Change in your household annual carbon footprint
- Decrease 5%, No Change, Increase 5%

Sample Choice Scenario:

	Option A	Option B	Standard Option
Change in your monthly electricity	Decrease 5%	Increase 5%	No change
bill			
Fuel used to produce your baseload	90% coal 10% biomass	50% coal 50%	100% coal
electricity	co-fired	biomass co-fired	
Type of Biomass co-fired	Wood processing	Agricultural waste	None
	waste		
Planned phaseout date of coal for	2035	2065	2050
electricity production in your region			
Change in your household annual	Decrease 5%	Increase 5%	No change
carbon footprint			

Summary Statistics

Variables		Mean	Std. Dev.
Age Gender		43.87	(17.30)
Octidei	% Male	47.36	(0.49)
	% Female	51.48	(0.15)
Education	70 T CITICIC	51.10	(0.15)
Laucation	Less than HS	2.46	(0.37)
	HS	29.2	
		16.94	(0.45)
	Some College		(0.37)
	College/Undergraduate	12.17	(0.32)
Incomo Lovel	Advanced/Graduate	39.14	(0.48)
Income Level	40 2Ela	10 DE	(0.20)
	\$0-25k	18.25	(0.38)
	\$25k-50k	20.72	(0.40)
	\$50k-75k	19.57	(0.39)
	\$75k-100k	13.48	(0.34)
	\$100k-150k	17.59	(0.38)
	\$150k+	10.36	(0.30)
	Urban	33.72	(0.47)
	Rural	21.05	(0.41)
	Suburban	45.23	(0.49)
N		608	

Results

• We use a mixed logit model to calculate the coefficients and the willingness-to-pay. The results from the model are shown below:

Variable	Coefficient
Cost of electricity	-0.031***
	(0.002)
Fuel mix	-0.007***
	(0.001)
Phase-out date	-0.003**
_	(0.002)
Energy crop	0.066
	(0.15) 0.097**
Agricultural waste	(0.045)
Carban footprint	-0.036***
Carbon footprint	(0.005)
Status Quo	-1.925***
Status Quo	(0.185)
Log likelihood	-5177.843
No. of choices	18240
No. of respondents	608

Table: Standard errors in parenthesis. *p <0.1, **p <0.05, ***p <0.01

Willingness to pay estimates:

Fuel %

Consumers are willing to increase their monthly electricity bill by 0.25% for each 1% increase in the percentage of biomass in the co-fired fuel mix

Phase-out date of Coal

Consumers are willing to increase their monthly electricity bill by 0.29% for each 1 year reduced in the phase-out date of coal from 2065

Carbon Footprint

Consumers are willing to increase their monthly electricity bill by 1.17% for each 1% reduction in their household's carbon footprint

Status Quo

Consumers are willing to accept a reduction of 61.87% of their monthly electricity bill to maintain the status quo of using only coal

WTP	
Fuel mix	-0.251
Phase-out date	-0.095
Energy crop	2.123
Agricultural waste	3.130
Carbon footprint	-1.174
Status Quo	-61.874

Conclusion

• The results show that consumers prefer an increase in the percentage of biomass in the fuel mix but also prefer an earlier date for the planned phase-out of coal

References

Agbor, Ezinwa & Zhang, Xiaolei & Kumar, Amit. (2014). A review of biomass co-firing in North America. Renewable and Sustainable Energy Reviews. 40. 930-943. 10.1016/j.rser.2014.07.195.

Al-Mansour, Fouad & Zuwala, Jaroslaw. (2010). Evaluation of biomass co-firing in Europe. Biomass and Bioenergy. 34. 620-629. 10.1016/j.biombioe.2010.01.004.

Goerndt, Michael & Aguilar, Francisco & Skog, Kenneth. (2013). Resource potential for renewable energy generation from co-firing of woody biomass with coal in the Northern US. Biomass and Bioenergy. 59. 348–361. 10.1016/j.biombioe.2013.08.032.

Rentizelas, Athanasios & Tolis, Athanasios & Tatsiopoulos, Ilias. (2009). Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renewable and Sustainable Energy Reviews. 887-894. 10.1016/j.rser.2008.01.003.