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1. Introduction

Asset pricing theory has a long tradition of inquiry into the tradeoff between expected
return and risk, as measured by variance or volatility. The predictability of return and volatility
has paramount financial implications for risk management, portfolio allocations, and investments.
Martin (2017) recently derived a lower bound for the equity premium (i.e., the expected excess
return on the market) using an implied volatility index named SVIX. SVIX is computed from the
observed premiums on stock options and the observed prices of their underlying stocks. Martin
(2017) showed how one could use SVIX as a real-time measure of the equity premium. This feature
is a distinctive advantage of SVIX compared to alternatives that need infrequently updated
accounting data to make such predictions. Another suitable implied volatility measure to assess
risk in equity markets is VIX, often called the “fear gauge” (Demeterfi et al. 1999). Like SVIX,
VIX is calculated using the observed premiums on stock options and the observed prices of their
underlying stocks. VIX has become quite popular as a gauge of risk in equity markets, to a large

extent because the Chicago Board of Options Exchange (CBOE) provides a real-time VIX index
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(up to minutes) for several asset classes traded.! Mathematically, one can express the SVIX and

VIX measures as follows:
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where t and T denote the current time period and option maturity date, Ry is the risk-free interest
rate between the time periods t and T, and F, ; is the underlying asset's current forward/futures
price which expires on date T. The call and option prices are denoted as call, r, and put, r. Lastly,

K indicates the traded option's strike price on the underlying asset.

Option price theory deals with measures like VIX and SVIX under the implied volatility
paradigm. Implied volatility measures are calculated from the observed premiums on options
traded, and are indicators of expected realized volatility over the period preceding the options’
maturity date. Unlike the standard calculation of implied volatility which relies on the Black and
Scholes’ option pricing model (Black and Scholes, 1973), VIX and SVIX are “model-free”, in that
they only rely on the assumption of no arbitrage. Martin (2017) provides an intuitive interpretation
of VIX and SVIX. He demonstrates that SVIX is the risk-neutral volatility of the return on the
market, whereas VIX is the risk-neutral entropy of the return on the market. Importantly, both
measures are driven by the expected variation of the underlying asset’s returns. Furthermore,
Martin (2017) analytically shows—under the assumption that the stochastic discount factor (SDF)
and returns are conditionally jointly log-normal-that SV1X should always be greater than VIX and

that the magnitude of the gap between these two implied volatility measures should not be large.

1 https://cdn.choe.com/api/global/us_indices/governance/Volatility Index Methodology Cboe Volatility Index.pdf
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On the contrary, Martin (2017) finds that VIX is higher than SVIX for the S&P500 index during
the period 1996-2012. Furthermore, he finds a large gap between VIX and SVIX, and that such
gap becomes even larger during times of market stress, i.e., periods of high volatility. Martin
(2017) interprets these empirical facts as strong evidence that the joint conditional log-normality
assumption for the SDF and returns is highly unlikely to hold in real-world asset prices, and that
such an assumption becomes even less likely to hold during periods of extreme volatility, i.e.,
market stress or market crash. In other words, the gap between VIX and SVIX can thus be
interpreted as direct model-free evidence that SDF and returns are not log-normally distributed, at

least in the equity market.

To build upon this discussion, we conjecture that there is no a priory reason for the standard
log-normality assumption to hold in agricultural commodity markets. Hence, it remains an
empirical question whether gaps between VIX and SVIX do exist in agricultural markets. Notably,
unlike options defined on the S&P500 index, options on agricultural commodities (e.g., corn,
soybean, and wheat) are defined on their corresponding futures contracts. Therefore, of necessity
the gaps between VIX and SVIX for such commodities must be analyzed using the observed

premiums of futures options contracts and their underlying futures prices.

In addition, there exists a plethora of studies that investigate the ability of implied volatility
measures to predict realized volatility. For instance, Christensen and Prabhala (1998) provide
seminal empirical evidence that implied volatility measures based on Black and Scholes’ option
pricing model contain forward-looking investors’ sentiment about the market conditions. Thus,
such implied volatility measures can predict the (future) realized volatility. Furthermore, Kanas
(2013) documents that incorporating VIX into the GARCH model improves the ability to forecast

the realized volatility of the S&P500 index. Pan et al. (2019) utilize a volatility spillover GARCH



model and report that adding VIX to their model significantly improves the forecast for the
S&P500 index’s realized volatility. In other words, VIX computed from today’s option prices
contains information about subsequent market conditions, and models incorporating it have greater

predictive power than the ones relying only on the historical realized volatility.

Embarking on this strand of literature, we hypothesize that the gap between VIX and SVIX
(which originates due to the violation of the log-normality assumption) contains extra embedded
information about future conditions in agricultural commodity markets. In particular, in this study
we seek to examine the ability of the VIX-SVIX gap to predict the realized volatility of
corn/soybean/wheat futures prices. In a nutshell, we explicitly ask this research question: does the
divergence between VIX and SVIX measures forecast market stress in agricultural commodity
derivatives markets? To the best of the authors’ knowledge, this study will be the first one to
employ SVIX (risk-neutral volatility of the return on the market) to predict future realized
volatility for agricultural commodity derivatives. Surprisingly, Hollstein et al. (2020) is the only
paper in the literature that explicitly uses VIX and SVIX measure for commodities to study their

volatility term structures, however, a different goal from the objective of the present paper.

On a similar note, Bollerslev et al. (2018) provide a very intuitive mean-variance
framework that signifies the need for volatility forecasting in general. In their framework, there is
a representative agent with mean-variance preferences. The agent faces an optimal wealth

allocation problem with two assets: (i) a risk-free asset and (ii) a risky asset with time-varying

return volatility. Therefore, we can write the time-t expected utility as follows: Et(U(WHl)) =

E(Wiyq1) — %yAVart(WHl), where y4 is the investor’s absolute risk aversion. Also, the budget

constraint can be written as Wy, = W, (1 + x;141 + (1 — xt)rtf), where W, denotes initial



wealth; x; is the fraction of wealth invested into a risky asset, and ., ,is the interest accrued on
the risky asset. Now, one can define the excess return as ., = rp41 — rtf and drop the constant

terms from the optimization problem to arrive at the objective function as:U(x;) =

W, (xtEt (ré) — %xtz Var, (rﬁrl)). Here, y = y4W, is the investor’s relative risk aversion. Now,

one can replace the expected realized volatility as: U(x;) = W; (xtEt(er) — %xtzEt(RVHl)).

Bollerslev et al. (2018) argue that it is very common among investors to target the Sharpe ratio for

their investments as SR = %‘;’1)). Thus, one can modify the objective function as: U(x;) =
t t+1
SR
v : L /
Wi (x:SR\E;(RV;y1) — EthEt(RVHl)) and get the optimal wealth allocation x; = Et(R—VVm) and

2
achieve the highest utility level as U(x;) = Sziy W, . For illustration, we can take some reasonable

numbers SR = 0.4 and y = 2 to arrive at U(x;) = 4%W, . Therefore, if one could perfectly
forecast next period's volatility, then the representative investor in the model could attain the
highest level of utility, i.e., 4% of his/her initial wealth. Thus, we resort to this simple illustration
to motivate this article to investigate the extant issue of empirical forecasting of realized volatilities
using the information embedded in the VIX and SVIX gap. This issue has been largely ignored in

the existing literature to the best of authors’ knowledge.

One of the recent empirical pieces of evidence for commodity price volatility and the
underlying determinants is available in Algieri (2021). She specifically analyzes the crop futures
(wheat/corn/rice/soybean) and WTI crude oil futures traded in the U.S. from January 4, 2000, to
October 27, 2017. She investigates the role of behavioral factors like economic policy uncertainty,
price risks (captured by commodity-specific implied volatility measures), and the extent of

regulation in the U.S. financial markets. Employing the Generalized Autoregressive Conditional



Heteroskedasticity (GARCH) type modeling, Algieri (2021) finds empirical support for the
following: (i) economic policy uncertainty and price risks (implied volatility) positively impact
the (future) realized volatility; and (ii) the period of 2000-2009, which was less regulated and
promoted high liberalization in commodity markets witnessed high volatility as compared to the

2010-2018 (Dodd-Frank Act) era which had more stringent financial regulations.

Similarly, Giot (2003) reports one of the earliest such evidence from the agricultural
commodity markets. Giot (2003) considers the sample of cocoa, coffee, and sugar futures and
options prices and concludes that under the GARCH setup, option-based implied volatility
measures provide one of the most relevant short-term forecasting information content. So much so
that the past return volatility adds a minuscule predictive power once the implied volatility has
been incorporated into the GARCH regression model. Recently, Triantafyllou et al. (2015)
contributed to this discussion by assessing the predictive power of option-implied volatility and
risk-neutral option-implied skewness to forecast the future realized volatility for wheat, corn, and
soybean futures market. They analyze the data set for crop futures traded on the CBOT for January
1990 to December 2011. Triantafyllou et al. (2015) report that risk-neutral option implied volatility
and skewness have far superior predictive accuracy than the model based on historical volatility.
Also, Triantafyllou et al. (2015) find significant predictive power of the variance risk premium to

forecast the returns in these crop futures markets.

Furthermore, Triantafyllou et al. (2020) contribute to this discussion by analyzing implied
volatility measures to predict the sudden price jumps in the agricultural commodity markets, not
only the price volatility. Triantafyllou et al. (2020) utilize daily futures and options data for
corn/wheat/soybeans traded on the CBOT from January 1990 to December 2011. Triantafyllou et

al. (2020) model the probability of price jumps in a probit model and find the following: (i) more



negative forward spreads (futures and spot price spread) indicate a higher probability of price
jumps in the agricultural commodity markets, and (ii) higher option-implied measures (tail-risk
measure; risk-neutral variance, i.e., implied volatility; variance risk premium) are associated with
higher probability of price jumps. Triantafyllou et al. (2020) interpret that the negative forward
spread is more like a convenience yield in the theory of storage that causes higher returns in the

next period or price jumps in their analysis.

Moreover, Trujillo-Barrera et al. (2018) provide another interesting evidence of how
option-implied volatility measures predict the ex-ante lean hog futures price density (not only
standard point forecast). Note that these ex-ante price densities are the future conditional
probability of price distribution. Trujillo-Barrera et al. (2018) consider daily settlement prices of
lean hog futures and options contracts traded on the Chicago Mercantile Exchange (CME) from
February 2002 to February 2017 and perform the forecasting exercise at a 2-week time horizon.
Trujillo-Barrera et al. (2018) conclude that the risk-neutral and risk-adjusted forward-looking
option-implied measures always outperform the traditional GARCH model with historical

volatilities in predicting future price densities.

Adding another dimension to the context, it becomes quintessential to analyze the volatility
spillover from other closely related assets. For instance, in the era of commodity financialization,
risks can spill-over between closely related commodities. Marfatia et al. (2022) provide very recent
evidence of such spillover of volatility between agricultural commodities. In particular, Marfatia
et al. (2022) examine the role of co-volatility among China's agricultural futures (corn, cotton,
palm, wheat, and soybean) and the role of volatility in the global oil market. Marfatia et al. (2022)
argue that recently there has been a very close nexus between the energy sector and agriculture for

several reasons, particularly the push toward bio-renewable fuels in several countries. Marfatia et



al. (2022) utilize high-frequency data (5-minutes interval, intraday) from January 2013 to May
2018 in a multivariate heterogeneous autoregressive regression (MHAR) model that allows for co-
volatility error dependence structure to conclude the following: (i) global oil volatility has almost
no incremental information to forecast the volatility in the agricultural commodities, and (ii)
MHAR model performs reasonably well for forecasting at 5-day ahead or 22-day ahead horizons.
However, we don't account for such spillover mechanisms among commodities to focus on the

main research objective of this study.

Stochastic volatility models have been another main strand of the literature to model the
price returns and examine the underlying volatility process. Koekebakker and Lien (2004) follow
this model suite to investigate the sudden and discontinuous price changes in the wheat futures
market in the U.S. Koekebakker and Lien (2004) argue that these prices follow a jump-diffusion
process and incorporate seasonality and maturity effects in their stochastic volatility model. They
apply this framework to the CBOT wheat futures data for January 1989 to December 1999 and
find that neglecting jump process, seasonality, and maturity effect led to severe mispricing of the
wheat futures. Similarly, Wu et al. (2015) propose a risk-adjusted measure of implied volatility
based on a jump-diffusion process. Wu et al. (2015) apply their model to the corn futures and
options data for February 25, 1987, to June 30, 2010, and find that risk-adjusted model-free option-
implied volatility measures are unbiased predictors with superior forecasting ability for the future

realized volatility in the corn futures market.

Furthermore, Koopman et al. (2005) provide crucial empirical evidence using both time-
series and stochastic volatility suite of models to forecast the daily variability of the S&P100 index.
Koopman et al. (2005) argue that the more frequent data helps recover the underlying volatility

process accurately; thus, it should have better forecasting ability for the future volatility. They



consider three volatility measures to make such predictions: (i) historical volatility (calculated
from the daily return series), (ii) implied volatility (calculated from the option data), and (iii)
realized volatility (sum of the square of high-frequency returns within a day). They employ a daily
tick-by-tick data set for January 1997 to November 2003 in four different models: (i)
autoregressive fractional integrated moving average, (ii) unobserved component model based on
Ornstein-Uhlenbeck process, (iii) stochastic volatility model, and (iv) GARCH model. Koopman
et al. (2005) report that any model (either time-series based or stochastic volatility) with realized
volatility as the explanatory variable has a higher prediction accuracy. Their findings can be of
crucial significance to the present work as well. Given the data availability, this work can be
extended to have the measure of realized volatility (i.e., the sum of the square of high-frequency
returns within a day) as the dependent variable and investigate the efficacy of the gap between
VIX and SVIX to forecast it. A dependent variable with less measurement error or less noise could

help improve the forecasting exercise overall.

Similar evidence regarding informational efficiency was found in New Zealand’s dairy
industry. Fernandez-Perez et al. (2019) construct a dairy implied volatility index using the options
traded on the New Zealand exchange on the whole milk powder futures. They utilize a dataset
consisting of daily observations on futures and options for November 30, 2011, to January 8, 2018.
Fernandez-Perez et al. (2019) find that implied volatility measures, along with the historical
measures, have superior forecasting ability in both GARCH setup and the predictive regressions.
Lastly, Liang et al. (2020) provide empirical evidence about the superior performance of implied
volatility measures from the international stock market. In particular, Liang et al. (2020) consider
eight international stock markets, namely: (i) SPX (U.S.), (ii) GDAXI (Germany), (iii) FCHI

(France), (iv) FTSE (UK), (v) SMSI (Switzerland), (vi) N225 (Japan), (vii) KS11 (South Korea),



and (viii) HIS (Hong Kong) from October 24, 2006 to December 31, 2018. Liang et al. (2020)
employ the heterogeneous autoregressive framework and substantiate the following findings: (i)
implied volatility measures have better forecasting abilities at any forecasting horizon from 1 day
to 22 days, and (ii) the market's own implied volatility and first principal component of

international markets' implied volatilities produce a superior forecasting performance.

The remainder of the article proceeds as follows: Section 2 describes the dataset utilized,
section 3 presents the empirical methodology employed, section 4 briefly discusses the empirical

results, and, finally, section 5 concludes with some policy implications.
2. Data

We source the daily settlement prices of corn and soybean futures and options contracts of
different maturities from 1\Volatility.? We consider December 2, 2025 to January 31, 2023 as the
time period of analysis in this study. We consider corn, soybean, and wheat futures and options
contracts traded on the Chicago Mercantile Exchange (CME).® There are five standard futures
contracts for corn (and wheat) traded on CME that expire in March, May, July, September, and
December. There are several option contracts defined on these corn futures contracts as underlying
assets*. Similarly, there are seven futures contracts available for soybeans on CME, which expire
in January, March, May, July, August, September, and November®. Furthermore, one should note
corn and soybean futures expire typically on the 14™ day of the respective expiration month (or

the previous trading date if the 14" of that month is not a trading day). Similarly, corn options

2 https://www.ivolatility.com/home.j

3 In the next revision, we plan to analyze nine more commodities: Soybean Qil, Soybean Meal, Cocoa, Light Sweet
Crude Qil, Cotton No. 2, Live Cattle, Lean Hog, Henry Hub Natural Gas, and Sugar No. 11.

4 Corn contract specification: https://www.cmegroup.com/markets/agriculture/grains/corn.contractSpecs.html

5 Soybean contract specification:
https://www.cmegroup.com/markets/agriculture/oilseeds/soybean.contractSpecs.options.html
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contracts on a particular futures contract typically mature on the 3™ Friday of the month preceding
the underlying futures maturity month. For instance, the May 2022 futures contract for corn expires
on May 13, 2022, whereas the option contract that takes this May 2022 corn futures contract as
underlying expires on April 22, 2022. One can access the detailed calendar for these grain futures
and options contracts at Barchart®. One has to be very careful about assigning the exact expiration
dates and IVolatility provides daily options premium data along with the underlying futures price.
Recently, the CME has allowed weekly options trading on the agricultural futures, however, we
remove all those weekly options from the analysis. Also, for all the following VIX and SVIX
computations, we deal with out-of-the-money options with strike prices not too distant from the
underlying futures price. For instance, if the underlying futures price is 100 cents then we only use

options with strike prices between 90 and 110 cents to compute VIX or SVIX.

Furthermore, we need a risk-free interest rate until the options maturity date to compute
VIX and SVIX. Given the data availability, we utilize the market yield on U.S. Treasury Securities
at 3-month constant maturity (available daily for the relevant time period of this study) as the risk-
free interest rate to expiration’. In an ideal world, one would like to get the risk-free interest at any
time to the expiration date precisely. Such a risk-free interest rate will require interpolation (like a
cubic spline) between 1-month and 3-month constant maturity rates. However, for brevity, we use
3-month constant maturity rates as the risk-free interest rates for the VIX and SVIX computations.
Since we compute VIX and SVIX for the next thirty days, this assumption about the risk-free
interest rate does not pose a severe threat to the empirical computational exercise. Lastly, we adopt

the discrete method of VIX computation from the CBOE VIX white paper®. Similarly, we follow

8 (i) Future expiration calendar: https://www.barchart.com/futures/futures-expirations/grains

(if) Futures-option expiration calendar: https://www.barchart.com/futures/options-expirations/grains
" Downloaded from this link: https:/fred.stlouisfed.org/seriessDGS3MO

8 https://cdn.choe.com/resources/vix/vixwhite.pdf
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Martin (2017) to compute SVIX discretely, as we don't observe continuous strike prices (K) in the

real-world data.
3. Empirical Method

We follow a simple econometric regression framework proposed by Christiansen et al.
(2012) to investigate the role, if any, of incremental information embedded in the gap between

VIX and SVIX to forecast the realized volatility in the corn, soybean, and wheat futures markets.

We measure realized annual volatility? as RV, = V12 x (X7, ?), where T denotes the

number of trading days in a month; r, indicates the daily returns computed as r; = (Fi —1) x
t—1

100. Note, F; is the settlement price in the futures market on a particular trading date t. More
specifically, this (slightly-different) specification of the realized-volatility graphically enables us
to make a direct comparison with the forward looking implied volatility measures. At any trading
date t, the realized-volatility constructed in this way captures the variation in the futures prices for
the next 30-days. Similarly, VIX and SVIX measures also quantify the expected variation of
underlying futures prices for a one-month ahead time period using premiums on options. In other
words, we don’t need to introduce lead-lag structure between realized volatility and VIX or SVIX
measures. Therefore, one can specify the following empirical regression framework to investigate

the research objective of the present study:
RVt == a+pRVt—30+B(V1Xt_SVIXt)+6t e (3)

It is a simple univariate autoregressive framework that is suitable for univariate forecasting. One

can interpret this regression as follows: at each trading day t, a measure of realized volatility is

® This realized volatility RV; is annualized to make it time-unit consistent with VIX and SVIX measure. These two
implied measures are annualized in their construction.
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available using the next 30 days' futures settlement prices, and we need to forecast or predict it
using the gap between forward-looking implied volatility measures computed at date t. Here, the
parameter £ is of main interest, and given the findings of Martin (2017), we hypothesize it to be
significantly different from zero. In other words, we test the hypothesis, H,: § = 0. Moreover, to
make the analysis more robust, we also regress the following specification to assess the predictive

ability of the gap between VIX and SVIX measures:

RVt = a+pRVt_30+y(|VIXt_SVIXt|)+6t e (4)

This restricted specification enables us capture the predictive performance of the gap between VIX
and SVIX measures by avoiding directional change of it. Similarly, we expect the parameter of
interest y to be statistically different from zero (i.e., Hy: y = 0). Lastly, we also check for the
incremental predictive performance of the gap between VIX and SVIX measures, if any, after

accounting for the historical volatility and VIX (or SVIX) in the regression models as follows:

RV, = a + pRV,_so + B(VIX,) + ¢(VIX, — SVIX,) + €, ... (5)

The above two regression models make the analysis even more interesting as the predictive
abilities of the historical volatility and VIX have been very well documented in the recent
literature. The statistical significance of ¢ (Hy: ¢ = 0) and § (Hy: 6 = 0) would indicate even
superior predictive performance of the incremental information imbedded in the difference of VIX

and SVIX measures.
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4. Results

Table 1 reports the summary statistics of the variables used in the analysis. For corn, over
the sample period, the average of (30-days ahead) realized volatility is 25.76% (annualized).
Figure 2 provides a clear visualization of it. Similarly, average of the VIX and SVIX measure for
corn is estimated to be 25.84% and 25.88% (Figures 3 and 4). Moreover, the variable of the main
interest, mean of the gap between VIX and SVIX measures is -0.04 and with -0.64 and 1.00 as
minimum and maximum values respectively (Figure 5). Notably, this is a contrasting finding from
Martin (2017) as he obtains VIX greater than SVIX throughout the sample period (Figure 1). We
find similar observations for soybean and wheat as well. For instance, the absolute maximum

values of VIX-SVIX are estimated as 0.45 and 1.55 for soybean and wheat respectively.

Furthermore, Tables 2, 3, and 4 present the regression results for corn, soybean, and wheat
respectively. In all these tables, we find that the VIX and SVIX measures have statistically
significant predictive power to forecast the realized volatility even after accounting for the
historical realized volatility term. This finding is in line with the literature discussed above. Most
importantly, the coefficient of the gap between VIX and SVIX measures (VIX-SVIX) turns out to
be statistically significant for soybean and wheat, but insignificant for corn. However, the
coefficient on the absolute value of the gap between VIX and SVIX (|VIX — SVIX]) is estimated
to have statistically significant predictive power to forecast 30-day ahead realized volatility, that
too after accounting for the lagged historical realized volatility. Furthermore, after accounting for
the lagged realized volatility and VIX or SVIX, the incremental predictive ability of the gap
between VIX and SVIX shows some promising predictive performances for corn and wheat. For
instance, in Table 2 (columns 6 and 8), the absolute gap measure (|VIX — SVIX]|) is strongly

statistically significant for corn. Similarly, in Table 4 (columns 5 and 7), the gap between VIX and

14



SVIX (VIX-SVIX) shows superior predictive performance for wheat. However, in Table 3, the
incremental predictive power of (VIX-SVIX) or (|VIX — SVIX]) vanishes after accounting for the
lagged realized volatility and VIX or SVIX for soybean. In other words, these findings seem to be

a modest contribution to the literature pertaining to the option-implied information.

5. Conclusion

The predictive ability of the implied volatility measures has been well documented in the
previously discussed literature. However, the predictive ability of the information content
embedded in the difference of alternative implied volatility measures (VIX minus SVIX) seems to
be worthwhile avenue to be explore. This study attempts to shed a light on the information content
embedded in the gap between VIX and SVIX. Martin (2017) interprets VIX and SVIX as risk-
neutral entropy and risk-neutral volatility of the underlying assets return respectively. Martin
(2017) analytically shows—under the assumption that the stochastic discount factor (SDF) and
returns are conditionally jointly log-normal-that SVIX should always be greater than VIX and that
the magnitude of the gap between these two implied volatility measures should not be large. Indeed
in this study, we find that the gap between VIX and SVIX is not very large for corn, soybean and
wheat. However, SVIX is not always greater than VIX for all three commodities. Furthermore, the
differences between these two implied measures are found to be statistically significant predictor
of the future realized volatility for corn, soybean, and wheat futures market. Future work can make
similar investigation for other commodities market like soybean oil, soybean meal, live cattle, lean
hog, sugar, cotton, cocoa, crude oil and natural gas. A future research avenue could be to explore
an important caveat of the present study, namely, that premiums used to compute VIX or SVIX

are based on American style futures options. Notably, one can approximate European prices from

15



the American option premiums and subsequently estimate implied volatility measures (see Martin

and Wagner, 2019).
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Table 1: Summary Statistics of the variables used in the analysis.

Variables No. of Obs. Mean Std. dev. Min Max
Corn

Realized volatility 4,307 25.76 10.13 6.48 67.38
VIX 4,322 25.84 6.88 10.37 57.27
SVIX 4,322 25.88 6.87 10.40 57.29
(VIX-SVIX) 4,322 -0.04 0.09 -0.64 1.00
[VIX-SVIX| 4,322 0.07 0.06 0.00005 1.00
Soybean

Realized volatility 4,307 21.04 8.32 7.73 62.97
VIX 4,322 22.20 6.34 9.86 54.58
SVIX 4,322 22.24 6.34 9.84 54.40
(VIX-SVIX) 4,322 -0.04 0.08 -0.34 0.45
[VIX-SVIX| 4,322 0.07 0.05 0.000005 0.45
Wheat

Realized volatility 4,307 30.27 11.00 8.90 91.31
VIX 4,322 28.02 6.77 15.70 58.78
SVIX 4,322 28.08 6.75 15.80 59.40
(VIX-SVIX) 4,322 -0.06 0.08 -1.55 0.38
[VIX-SVIX| 4,322 0.08 0.06 0.00005 1.55

Note: [VIX-SVIX| denotes the absolute difference between VIX and SVIX measures.
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Table 2: Regression results for Corn futures options.

1) (2) 3) 4) ®) (6) (7 (8)
Variables RV RV RV RV RV RV RV RV
RVi-30 0.188*** (0.189*** (0.611*** 0.609*** 0.189*** 0.191*** 0.189*** (.193***
(0.0209) (0.0210) (0.0131) (0.0129) (0.0206) (0.0207) (0.0206) (0.0208)
VIX 0.802*** 0.802*** (.791***
(0.0266) (0.0267)  (0.0266)
SVIX 0.802*** 0.802*** (.791***
(0.0267) (0.0267)  (0.0268)
(VIX-SVIX) 0.718 -0.591 0.211
(1.462) (1.354) (1.351)
[VIX-SVIX| 14.46%** 11.14*** 10.58***
(1.837) (1.701) (1.687)
Constant 0.181 0.101 10.04*** 9,021*** 0.121 -0.427 0.121 -0.455
(0.399) (0.401) (0.339) (0.343) (0.418) (0.409) (0.418) (0.409)
Observations 4,285 4,285 4,285 4,285 4,285 4,285 4,285 4,285
R-squared 0.490 0.490 0.374 0.383 0.490 0.495 0.490 0.495

Note: RV is (30 days ahead) realized volatility. (VIX-SVIX) denotes difference between VIX and SVIX
measures. [VIX-SVIX| indicates the absolute difference between VIX and SVIX measures. Robust standard
errors in parentheses. Asterisks ***, ** * denote significance level at 1%, 5%, and 10% level respectively.
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Table 3: Regression results for Soybean futures options.

(1) (2) (3) (4) () (6) (7) (8)
Variables RV RV RV RV RV RV RV RV
RVt0 0.154%** 0.156***  0.649*** 0.632*** 0.156*** 0.156*** 0.156*** 0.158%**

(0.0196) (0.0196)  (0.0148)  (0.0151) (0.0199) (0.0197) (0.0199) (0.0197)

VIX 0.812%** 0.810%** 0.803***
(0.0266) (0.0270)  (0.0276)
SVIX 0.810%** 0.810%** (.802***
(0.0266) (0.0270)  (0.0277)
(VIX-SVIX) -5.006*** -1.036 -0.227
(1.468) (1.296) (1.302)
IVIX-SVIX| 14.67*** 3.332* 2.680
(2.038) (1.958) (1.971)
Constant 0241  -0.264  7.176%** 6.756*** -0269  -0.304  -0.269  -0.311

(0.347)  (0.347)  (0.292)  (0.293)  (0.345)  (0.344)  (0.345)  (0.344)

Observations 4,285 4,285 4,285 4,285 4,285 4,285 4,285 4,285

R-squared 0.557 0.557 0.419 0.426 0.557 0.558 0.557 0.557
Note: RV is (30 days ahead) realized volatility. (VIX-SVIX) denotes difference between VIX and SVIX
measures. [VIX-SVIX| indicates the absolute difference between VIX and SVIX measures. Robust standard
errors in parentheses. Asterisks ***, ** * denote significance level at 1%, 5%, and 10% level respectively.
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Table 4: Regression results for wheat futures options.

1) (2) 3) 4) ®) (6) (7 8)
Variables RV RV RV RV RV RV RV RV
RVi-30 0.0956*** 0.0980*** 0.530*** (0.539*** (.0880*** 0.0980*** (0.0880*** 0.100***
(0.0213) (0.0214) (0.0170) (0.0160) (0.0212) (0.0212) (0.0212) (0.0212)
VIX 0.898*** 0.896***  (.893***
(0.0345) (0.0346)  (0.0343)
SVIX 0.896*** 0.896*** (.892***
(0.0346) (0.0346) (0.0343)
(VIX-SVIX) 5.775** 5.169*** 6.065***
(2.664) (2.004) (2.000)
[VIX-SVIX| 7.973*** 3.811* 3.020
(2.410) (2.020) (2.019)
Constant 2.238***  2.167*** 14.61*** 13.33*** 2.819*** 1,985*** 2.819*** 1 975***
(0.584) (0.588) (0.565)  (0.488) (0.646) (0.604) (0.646) (0.605)
Observations 4,285 4,285 4,285 4,285 4,285 4,285 4,285 4,285
R-squared 0.400 0.399 0.292 0.292 0.401 0.400 0.401 0.400

Note: RV is (30 days ahead) realized volatility. (VIX-SVIX) denotes difference between VIX and SVIX
measures. [VIX-SVIX| indicates the absolute difference between VIX and SVIX measures. Robust standard
errors in parentheses. Asterisks ***, ** * denote significance level at 1%, 5%, and 10% level respectively.
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Figure 1: Gap between VIX and SVIX measure for S&P500 index
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Figure 2: Return and realized volatility for (next-month) Corn futures.
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Figure 3: VIX for Corn.
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Figure 4: SVIX for Corn.
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Figure 5: VIX minus SVIX for Corn.
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Figure 6: Return and realized volatility for (next-month) Soybean futures.
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Figure 7: VIX for Soybean.
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Figure 8: SVIX for Soybean.
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Figure 9: VIX minus SVIX for Soybean.
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Figure 10: Return and realized volatility for (next-month) Wheat futures.
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Figure 11: VIX for Wheat.
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Figure 12: SVIX for Wheat.
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Figure 13: VIX minus SVIX for Wheat.
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