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1. Introduction 

Asset pricing theory has a long tradition of inquiry into the tradeoff between expected 

return and risk, as measured by variance or volatility. The predictability of return and volatility 

has paramount financial implications for risk management, portfolio allocations, and investments. 

Martin (2017) recently derived a lower bound for the equity premium (i.e., the expected excess 

return on the market) using an implied volatility index named SVIX. SVIX is computed from the 

observed premiums on stock options and the observed prices of their underlying stocks. Martin 

(2017) showed how one could use SVIX as a real-time measure of the equity premium. This feature 

is a distinctive advantage of SVIX compared to alternatives that need infrequently updated 

accounting data to make such predictions. Another suitable implied volatility measure to assess 

risk in equity markets is VIX, often called the “fear gauge” (Demeterfi et al. 1999). Like SVIX, 

VIX is calculated using the observed premiums on stock options and the observed prices of their 

underlying stocks. VIX has become quite popular as a gauge of risk in equity markets, to a large 

extent because the Chicago Board of Options Exchange (CBOE) provides a real-time VIX index 

mailto:mahenks1@iastate.edu
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(up to minutes) for several asset classes traded.1 Mathematically, one can express the SVIX and 

VIX measures as follows: 

𝑆𝑉𝐼𝑋𝑡→𝑇
2 =

2𝑅𝑓,𝑡
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∞
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]          …(2) 

where 𝑡 and 𝑇 denote the current time period and option maturity date, 𝑅𝑓 is the risk-free interest 

rate between the time periods 𝑡 and 𝑇, and 𝐹𝑡,𝑇 is the underlying asset's current forward/futures 

price which expires on date 𝑇. The call and option prices are denoted as 𝑐𝑎𝑙𝑙𝑡,𝑇, and 𝑝𝑢𝑡𝑡,𝑇. Lastly, 

𝐾 indicates the traded option's strike price on the underlying asset.  

  Option price theory deals with measures like VIX and SVIX under the implied volatility 

paradigm. Implied volatility measures are calculated from the observed premiums on options 

traded, and are indicators of expected realized volatility over the period preceding the options’ 

maturity date. Unlike the standard calculation of implied volatility which relies on the Black and 

Scholes’ option pricing model (Black and Scholes, 1973), VIX and SVIX are “model-free”, in that 

they only rely on the assumption of no arbitrage. Martin (2017) provides an intuitive interpretation 

of VIX and SVIX. He demonstrates that SVIX is the risk-neutral volatility of the return on the 

market, whereas VIX is the risk-neutral entropy of the return on the market. Importantly, both 

measures are driven by the expected variation of the underlying asset’s returns. Furthermore, 

Martin (2017) analytically shows–under the assumption that the stochastic discount factor (SDF) 

and returns are conditionally jointly log-normal–that SVIX should always be greater than VIX and 

that the magnitude of the gap between these two implied volatility measures should not be large. 

                                                 
1 https://cdn.cboe.com/api/global/us_indices/governance/Volatility_Index_Methodology_Cboe_Volatility_Index.pdf  
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On the contrary, Martin (2017) finds that VIX is higher than SVIX for the S&P500 index during 

the period 1996–2012. Furthermore, he finds a large gap between VIX and SVIX, and that such 

gap becomes even larger during times of market stress, i.e., periods of high volatility. Martin 

(2017) interprets these empirical facts as strong evidence that the joint conditional log-normality 

assumption for the SDF and returns is highly unlikely to hold in real-world asset prices, and that 

such an assumption becomes even less likely to hold during periods of extreme volatility, i.e., 

market stress or market crash. In other words, the gap between VIX and SVIX can thus be 

interpreted as direct model-free evidence that SDF and returns are not log-normally distributed, at 

least in the equity market.  

 To build upon this discussion, we conjecture that there is no a priory reason for the standard 

log-normality assumption to hold in agricultural commodity markets. Hence, it remains an 

empirical question whether gaps between VIX and SVIX do exist in agricultural markets. Notably, 

unlike options defined on the S&P500 index, options on agricultural commodities (e.g., corn, 

soybean, and wheat) are defined on their corresponding futures contracts. Therefore, of necessity 

the gaps between VIX and SVIX for such commodities must be analyzed using the observed 

premiums of futures options contracts and their underlying futures prices.   

 In addition, there exists a plethora of studies that investigate the ability of implied volatility 

measures to predict realized volatility. For instance, Christensen and Prabhala (1998) provide 

seminal empirical evidence that implied volatility measures based on Black and Scholes’ option 

pricing model contain forward-looking investors’ sentiment about the market conditions. Thus, 

such implied volatility measures can predict the (future) realized volatility. Furthermore, Kanas 

(2013) documents that incorporating VIX into the GARCH model improves the ability to forecast 

the realized volatility of the S&P500 index. Pan et al. (2019) utilize a volatility spillover GARCH 
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model and report that adding VIX to their model significantly improves the forecast for the 

S&P500 index’s realized volatility. In other words, VIX computed from today’s option prices 

contains information about subsequent market conditions, and models incorporating it have greater 

predictive power than the ones relying only on the historical realized volatility.  

Embarking on this strand of literature, we hypothesize that the gap between VIX and SVIX 

(which originates due to the violation of the log-normality assumption) contains extra embedded 

information about future conditions in agricultural commodity markets. In particular, in this study 

we seek to examine the ability of the VIX-SVIX gap to predict the realized volatility of 

corn/soybean/wheat futures prices. In a nutshell, we explicitly ask this research question: does the 

divergence between VIX and SVIX measures forecast market stress in agricultural commodity 

derivatives markets? To the best of the authors’ knowledge, this study will be the first one to 

employ SVIX (risk-neutral volatility of the return on the market) to predict future realized 

volatility for agricultural commodity derivatives. Surprisingly, Hollstein et al. (2020) is the only 

paper in the literature that explicitly uses VIX and SVIX measure for commodities to study their 

volatility term structures, however, a different goal from the objective of the present paper.     

On a similar note, Bollerslev et al. (2018) provide a very intuitive mean-variance 

framework that signifies the need for volatility forecasting in general. In their framework, there is 

a representative agent with mean-variance preferences. The agent faces an optimal wealth 

allocation problem with two assets: (i) a risk-free asset and (ii) a risky asset with time-varying 

return volatility. Therefore, we can write the time-𝑡 expected utility as follows: 𝐸𝑡(𝑈(𝑊𝑡+1)) =

𝐸𝑡(𝑊𝑡+1) −
1

2
𝛾 𝐴𝑉𝑎𝑟𝑡(𝑊𝑡+1), where 𝛾 𝐴 is the investor’s absolute risk aversion. Also, the budget 

constraint can be written as 𝑊𝑡+1 = 𝑊𝑡(1 + 𝑥𝑡𝑟𝑡+1 + (1 − 𝑥𝑡)𝑟𝑡
𝑓

), where 𝑊𝑡 denotes initial 
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wealth; 𝑥𝑡 is the fraction of wealth invested into a risky asset, and 𝑟𝑡+1is the interest accrued on 

the risky asset. Now, one can define the excess return as 𝑟𝑡+1
𝑒 = 𝑟𝑡+1 − 𝑟𝑡

𝑓
and drop the constant 

terms from the optimization problem to arrive at the objective function as: 𝑈(𝑥𝑡) =

𝑊𝑡 (𝑥𝑡𝐸𝑡(𝑟𝑡+1
𝑒 ) −

𝛾

2
𝑥𝑡

2𝑉𝑎𝑟𝑡(𝑟𝑡+1
𝑒 )). Here, 𝛾 = 𝛾 𝐴𝑊𝑡 is the investor’s relative risk aversion. Now, 

one can replace the expected realized volatility as: 𝑈(𝑥𝑡) = 𝑊𝑡 (𝑥𝑡𝐸𝑡(𝑟𝑡+1
𝑒 ) −

𝛾

2
𝑥𝑡

2𝐸𝑡(𝑅𝑉𝑡+1)). 

Bollerslev et al. (2018) argue that it is very common among investors to target the Sharpe ratio for 

their investments as 𝑆𝑅 =
𝐸𝑡(𝑟𝑡+1

𝑒 )

√𝐸𝑡(𝑅𝑉𝑡+1)
. Thus, one can modify the objective function as: 𝑈(𝑥𝑡) =

𝑊𝑡(𝑥𝑡𝑆𝑅√𝐸𝑡(𝑅𝑉𝑡+1) −
𝛾

2
𝑥𝑡

2𝐸𝑡(𝑅𝑉𝑡+1)) and get the optimal wealth allocation 𝑥𝑡
∗ =

𝑆𝑅
𝛾⁄

√𝐸𝑡(𝑅𝑉𝑡+1)
 and 

achieve the highest utility level as 𝑈(𝑥𝑡
∗) =

𝑆𝑅2 

2𝛾
𝑊𝑡 . For illustration, we can take some reasonable 

numbers 𝑆𝑅 = 0.4 and 𝛾 = 2 to arrive at 𝑈(𝑥𝑡
∗) = 4%𝑊𝑡 . Therefore, if one could perfectly 

forecast next period's volatility, then the representative investor in the model could attain the 

highest level of utility, i.e., 4% of his/her initial wealth. Thus, we resort to this simple illustration 

to motivate this article to investigate the extant issue of empirical forecasting of realized volatilities 

using the information embedded in the VIX and SVIX gap. This issue has been largely ignored in 

the existing literature to the best of authors’ knowledge.  

   One of the recent empirical pieces of evidence for commodity price volatility and the 

underlying determinants is available in Algieri (2021). She specifically analyzes the crop futures 

(wheat/corn/rice/soybean) and WTI crude oil futures traded in the U.S. from January 4, 2000, to 

October 27, 2017. She investigates the role of behavioral factors like economic policy uncertainty, 

price risks (captured by commodity-specific implied volatility measures), and the extent of 

regulation in the U.S. financial markets. Employing the Generalized Autoregressive Conditional 
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Heteroskedasticity (GARCH) type modeling, Algieri (2021) finds empirical support for the 

following: (i) economic policy uncertainty and price risks (implied volatility) positively impact 

the (future) realized volatility; and (ii) the period of 2000–2009, which was less regulated and 

promoted high liberalization in commodity markets witnessed high volatility as compared to the 

2010–2018 (Dodd-Frank Act) era which had more stringent financial regulations.  

Similarly, Giot (2003) reports one of the earliest such evidence from the agricultural 

commodity markets. Giot (2003) considers the sample of cocoa, coffee, and sugar futures and 

options prices and concludes that under the GARCH setup, option-based implied volatility 

measures provide one of the most relevant short-term forecasting information content. So much so 

that the past return volatility adds a minuscule predictive power once the implied volatility has 

been incorporated into the GARCH regression model. Recently, Triantafyllou et al. (2015) 

contributed to this discussion by assessing the predictive power of option-implied volatility and 

risk-neutral option-implied skewness to forecast the future realized volatility for wheat, corn, and 

soybean futures market. They analyze the data set for crop futures traded on the CBOT for January 

1990 to December 2011. Triantafyllou et al. (2015) report that risk-neutral option implied volatility 

and skewness have far superior predictive accuracy than the model based on historical volatility. 

Also, Triantafyllou et al. (2015) find significant predictive power of the variance risk premium to 

forecast the returns in these crop futures markets.  

Furthermore, Triantafyllou et al. (2020) contribute to this discussion by analyzing implied 

volatility measures to predict the sudden price jumps in the agricultural commodity markets, not 

only the price volatility. Triantafyllou et al. (2020) utilize daily futures and options data for 

corn/wheat/soybeans traded on the CBOT from January 1990 to December 2011. Triantafyllou et 

al. (2020) model the probability of price jumps in a probit model and find the following: (i) more 
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negative forward spreads (futures and spot price spread) indicate a higher probability of price 

jumps in the agricultural commodity markets, and (ii) higher option-implied measures (tail-risk 

measure; risk-neutral variance, i.e., implied volatility; variance risk premium) are associated with 

higher probability of price jumps. Triantafyllou et al. (2020) interpret that the negative forward 

spread is more like a convenience yield in the theory of storage that causes higher returns in the 

next period or price jumps in their analysis.  

Moreover, Trujillo-Barrera et al. (2018) provide another interesting evidence of how 

option-implied volatility measures predict the ex-ante lean hog futures price density (not only 

standard point forecast). Note that these ex-ante price densities are the future conditional 

probability of price distribution. Trujillo-Barrera et al. (2018) consider daily settlement prices of 

lean hog futures and options contracts traded on the Chicago Mercantile Exchange (CME) from 

February 2002 to February 2017 and perform the forecasting exercise at a 2-week time horizon. 

Trujillo-Barrera et al. (2018) conclude that the risk-neutral and risk-adjusted forward-looking 

option-implied measures always outperform the traditional GARCH model with historical 

volatilities in predicting future price densities. 

Adding another dimension to the context, it becomes quintessential to analyze the volatility 

spillover from other closely related assets. For instance, in the era of commodity financialization, 

risks can spill-over between closely related commodities. Marfatia et al. (2022) provide very recent 

evidence of such spillover of volatility between agricultural commodities. In particular, Marfatia 

et al. (2022) examine the role of co-volatility among China's agricultural futures (corn, cotton, 

palm, wheat, and soybean) and the role of volatility in the global oil market. Marfatia et al. (2022) 

argue that recently there has been a very close nexus between the energy sector and agriculture for 

several reasons, particularly the push toward bio-renewable fuels in several countries. Marfatia et 
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al. (2022) utilize high-frequency data (5-minutes interval, intraday) from January 2013 to May 

2018 in a multivariate heterogeneous autoregressive regression (MHAR) model that allows for co-

volatility error dependence structure to conclude the following: (i) global oil volatility has almost 

no incremental information to forecast the volatility in the agricultural commodities, and (ii) 

MHAR model performs reasonably well for forecasting at 5-day ahead or 22-day ahead horizons. 

However, we don't account for such spillover mechanisms among commodities to focus on the 

main research objective of this study.  

Stochastic volatility models have been another main strand of the literature to model the 

price returns and examine the underlying volatility process. Koekebakker and Lien (2004) follow 

this model suite to investigate the sudden and discontinuous price changes in the wheat futures 

market in the U.S. Koekebakker and Lien (2004) argue that these prices follow a jump-diffusion 

process and incorporate seasonality and maturity effects in their stochastic volatility model. They 

apply this framework to the CBOT wheat futures data for January 1989 to December 1999 and 

find that neglecting jump process, seasonality, and maturity effect led to severe mispricing of the 

wheat futures. Similarly, Wu et al. (2015) propose a risk-adjusted measure of implied volatility 

based on a jump-diffusion process. Wu et al. (2015) apply their model to the corn futures and 

options data for February 25, 1987, to June 30, 2010, and find that risk-adjusted model-free option-

implied volatility measures are unbiased predictors with superior forecasting ability for the future 

realized volatility in the corn futures market.  

Furthermore, Koopman et al. (2005) provide crucial empirical evidence using both time-

series and stochastic volatility suite of models to forecast the daily variability of the S&P100 index. 

Koopman et al. (2005) argue that the more frequent data helps recover the underlying volatility 

process accurately; thus, it should have better forecasting ability for the future volatility. They 
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consider three volatility measures to make such predictions: (i) historical volatility (calculated 

from the daily return series), (ii) implied volatility (calculated from the option data), and (iii) 

realized volatility (sum of the square of high-frequency returns within a day). They employ a daily 

tick-by-tick data set for January 1997 to November 2003 in four different models: (i) 

autoregressive fractional integrated moving average, (ii) unobserved component model based on 

Ornstein-Uhlenbeck process, (iii) stochastic volatility model, and (iv) GARCH model. Koopman 

et al. (2005) report that any model (either time-series based or stochastic volatility) with realized 

volatility as the explanatory variable has a higher prediction accuracy. Their findings can be of 

crucial significance to the present work as well. Given the data availability, this work can be 

extended to have the measure of realized volatility (i.e., the sum of the square of high-frequency 

returns within a day) as the dependent variable and investigate the efficacy of the gap between 

VIX and SVIX to forecast it. A dependent variable with less measurement error or less noise could 

help improve the forecasting exercise overall.  

Similar evidence regarding informational efficiency was found in New Zealand’s dairy 

industry. Fernandez‐Perez et al. (2019) construct a dairy implied volatility index using the options 

traded on the New Zealand exchange on the whole milk powder futures. They utilize a dataset 

consisting of daily observations on futures and options for November 30, 2011, to January 8, 2018. 

Fernandez‐Perez et al. (2019) find that implied volatility measures, along with the historical 

measures, have superior forecasting ability in both GARCH setup and the predictive regressions. 

Lastly, Liang et al. (2020) provide empirical evidence about the superior performance of implied 

volatility measures from the international stock market. In particular, Liang et al. (2020) consider 

eight international stock markets, namely: (i) SPX (U.S.), (ii) GDAXI (Germany), (iii) FCHI 

(France), (iv) FTSE (UK), (v) SMSI (Switzerland), (vi) N225 (Japan), (vii) KS11 (South Korea), 
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and (viii) HIS (Hong Kong) from October 24, 2006 to December 31, 2018. Liang et al. (2020) 

employ the heterogeneous autoregressive framework and substantiate the following findings: (i) 

implied volatility measures have better forecasting abilities at any forecasting horizon from 1 day 

to 22 days, and (ii) the market's own implied volatility and first principal component of 

international markets' implied volatilities produce a superior forecasting performance.  

The remainder of the article proceeds as follows: Section 2 describes the dataset utilized, 

section 3 presents the empirical methodology employed, section 4 briefly discusses the empirical 

results, and, finally, section 5 concludes with some policy implications.  

2. Data  

We source the daily settlement prices of corn and soybean futures and options contracts of 

different maturities from IVolatility.2 We consider December 2, 2025 to January 31, 2023 as the 

time period of analysis in this study. We consider corn, soybean, and wheat futures and options 

contracts traded on the Chicago Mercantile Exchange (CME).3 There are five standard futures 

contracts for corn (and wheat) traded on CME that expire in March, May, July, September, and 

December. There are several option contracts defined on these corn futures contracts as underlying 

assets4. Similarly, there are seven futures contracts available for soybeans on CME, which expire 

in January, March, May, July, August, September, and November5. Furthermore, one should note 

corn and soybean futures expire typically on the 14th day of the respective expiration month (or 

the previous trading date if the 14th of that month is not a trading day). Similarly, corn options 

                                                 
2 https://www.ivolatility.com/home.j  
3 In the next revision, we plan to analyze nine more commodities: Soybean Oil, Soybean Meal, Cocoa, Light Sweet 

Crude Oil, Cotton No. 2, Live Cattle, Lean Hog, Henry Hub Natural Gas, and Sugar No. 11.  
4 Corn contract specification: https://www.cmegroup.com/markets/agriculture/grains/corn.contractSpecs.html  
5 Soybean contract specification: 

https://www.cmegroup.com/markets/agriculture/oilseeds/soybean.contractSpecs.options.html  

https://www.ivolatility.com/home.j
https://www.cmegroup.com/markets/agriculture/grains/corn.contractSpecs.html
https://www.cmegroup.com/markets/agriculture/oilseeds/soybean.contractSpecs.options.html
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contracts on a particular futures contract typically mature on the 3rd Friday of the month preceding 

the underlying futures maturity month. For instance, the May 2022 futures contract for corn expires 

on May 13, 2022, whereas the option contract that takes this May 2022 corn futures contract as 

underlying expires on April 22, 2022. One can access the detailed calendar for these grain futures 

and options contracts at Barchart6. One has to be very careful about assigning the exact expiration 

dates and IVolatility provides daily options premium data along with the underlying futures price. 

Recently, the CME has allowed weekly options trading on the agricultural futures, however, we 

remove all those weekly options from the analysis. Also, for all the following VIX and SVIX 

computations, we deal with out-of-the-money options with strike prices not too distant from the 

underlying futures price. For instance, if the underlying futures price is 100 cents then we only use 

options with strike prices between 90 and 110 cents to compute VIX or SVIX.   

Furthermore, we need a risk-free interest rate until the options maturity date to compute 

VIX and SVIX. Given the data availability, we utilize the market yield on U.S. Treasury Securities 

at 3-month constant maturity (available daily for the relevant time period of this study) as the risk-

free interest rate to expiration7. In an ideal world, one would like to get the risk-free interest at any 

time to the expiration date precisely. Such a risk-free interest rate will require interpolation (like a 

cubic spline) between 1-month and 3-month constant maturity rates. However, for brevity, we use 

3-month constant maturity rates as the risk-free interest rates for the VIX and SVIX computations. 

Since we compute VIX and SVIX for the next thirty days, this assumption about the risk-free 

interest rate does not pose a severe threat to the empirical computational exercise. Lastly, we adopt 

the discrete method of VIX computation from the CBOE VIX white paper8. Similarly, we follow 

                                                 
6 (i) Future expiration calendar: https://www.barchart.com/futures/futures-expirations/grains  

(ii) Futures-option expiration calendar: https://www.barchart.com/futures/options-expirations/grains  
7 Downloaded from this link: https://fred.stlouisfed.org/series/DGS3MO  
8 https://cdn.cboe.com/resources/vix/vixwhite.pdf  

https://www.barchart.com/futures/futures-expirations/grains
https://www.barchart.com/futures/options-expirations/grains
https://fred.stlouisfed.org/series/DGS3MO
https://cdn.cboe.com/resources/vix/vixwhite.pdf
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Martin (2017) to compute SVIX discretely, as we don't observe continuous strike prices (K) in the 

real-world data.  

3. Empirical Method 

 We follow a simple econometric regression framework proposed by Christiansen et al. 

(2012) to investigate the role, if any, of incremental information embedded in the gap between 

VIX and SVIX to forecast the realized volatility in the corn, soybean, and wheat futures markets. 

We measure realized annual volatility9 as 𝑅𝑉𝑡 = √12  × (√∑ 𝑟𝑡
2𝑡+𝑇

𝑡=𝑡+1 ), where 𝑇 denotes the 

number of trading days in a month; 𝑟𝑡 indicates the daily returns computed as 𝑟𝑡 = (
𝐹𝑡

𝐹𝑡−1
− 1) ×

100. Note, 𝐹𝑡 is the settlement price in the futures market on a particular trading date 𝑡. More 

specifically, this (slightly-different) specification of the realized-volatility graphically enables us 

to make a direct comparison with the forward looking implied volatility measures. At any trading 

date 𝑡, the realized-volatility constructed in this way captures the variation in the futures prices for 

the next 30-days. Similarly, VIX and SVIX measures also quantify the expected variation of 

underlying futures prices for a one-month ahead time period using premiums on options. In other 

words, we don’t need to introduce lead-lag structure between realized volatility and VIX or SVIX 

measures. Therefore, one can specify the following empirical regression framework to investigate 

the research objective of the present study:  

𝑅𝑉𝑡 = 𝛼 + 𝜌𝑅𝑉𝑡−30 + 𝛽(𝑉𝐼𝑋𝑡 − 𝑆𝑉𝐼𝑋𝑡) + 𝜖𝑡                         … (3) 

It is a simple univariate autoregressive framework that is suitable for univariate forecasting. One 

can interpret this regression as follows: at each trading day 𝑡, a measure of realized volatility is 

                                                 
9 This realized volatility RVt is annualized to make it time-unit consistent with VIX and SVIX measure. These two 

implied measures are annualized in their construction.  
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available using the next 30 days' futures settlement prices, and we need to forecast or predict it 

using the gap between forward-looking implied volatility measures computed at date 𝑡. Here, the 

parameter 𝛽 is of main interest, and given the findings of Martin (2017), we hypothesize it to be 

significantly different from zero. In other words, we test the hypothesis, 𝐻0: 𝛽 = 0.  Moreover, to 

make the analysis more robust, we also regress the following specification to assess the predictive 

ability of the gap between VIX and SVIX measures:  

𝑅𝑉𝑡 = 𝛼 + 𝜌𝑅𝑉𝑡−30 + 𝛾(|𝑉𝐼𝑋𝑡 − 𝑆𝑉𝐼𝑋𝑡|) + 𝜖𝑡                         … (4) 

This restricted specification enables us capture the predictive performance of the gap between VIX 

and SVIX measures by avoiding directional change of it. Similarly, we expect the parameter of 

interest 𝛾 to be statistically different from zero (i.e., 𝐻0: 𝛾 = 0). Lastly, we also check for the 

incremental predictive performance of the gap between VIX and SVIX measures, if any, after 

accounting for the historical volatility and VIX (or SVIX) in the regression models as follows: 

𝑅𝑉𝑡 = 𝛼 + 𝜌𝑅𝑉𝑡−30 + 𝛽(𝑉𝐼𝑋𝑡) + 𝜙(𝑉𝐼𝑋𝑡 − 𝑆𝑉𝐼𝑋𝑡) + 𝜖𝑡                       … (5) 

𝑅𝑉𝑡 = 𝛼 + 𝜌𝑅𝑉𝑡−30 + 𝛽(𝑉𝐼𝑋𝑡) + 𝛿(|𝑉𝐼𝑋𝑡 − 𝑆𝑉𝐼𝑋𝑡|) + 𝜖𝑡                       … (6) 

The above two regression models make the analysis even more interesting as the predictive 

abilities of the historical volatility and VIX have been very well documented in the recent 

literature. The statistical significance of 𝜙 (𝐻0: 𝜙 = 0) and 𝛿 (𝐻0: 𝛿 = 0) would indicate even 

superior predictive performance of the incremental information imbedded in the difference of VIX 

and SVIX measures.  
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4. Results 

Table 1 reports the summary statistics of the variables used in the analysis. For corn, over 

the sample period, the average of (30-days ahead) realized volatility is 25.76% (annualized). 

Figure 2 provides a clear visualization of it. Similarly, average of the VIX and SVIX measure for 

corn is estimated to be 25.84% and 25.88% (Figures 3 and 4). Moreover, the variable of the main 

interest, mean of the gap between VIX and SVIX measures is -0.04 and with -0.64 and 1.00 as 

minimum and maximum values respectively (Figure 5). Notably, this is a contrasting finding from 

Martin (2017) as he obtains VIX greater than SVIX throughout the sample period (Figure 1). We 

find similar observations for soybean and wheat as well. For instance, the absolute maximum 

values of VIX-SVIX are estimated as 0.45 and 1.55 for soybean and wheat respectively.  

Furthermore, Tables 2, 3, and 4 present the regression results for corn, soybean, and wheat 

respectively. In all these tables, we find that the VIX and SVIX measures have statistically 

significant predictive power to forecast the realized volatility even after accounting for the 

historical realized volatility term. This finding is in line with the literature discussed above. Most 

importantly, the coefficient of the gap between VIX and SVIX measures (VIX-SVIX) turns out to 

be statistically significant for soybean and wheat, but insignificant for corn. However, the 

coefficient on the absolute value of the gap between VIX and SVIX (|𝑉𝐼𝑋 − 𝑆𝑉𝐼𝑋|) is estimated 

to have statistically significant predictive power to forecast 30-day ahead realized volatility, that 

too after accounting for the lagged historical realized volatility. Furthermore, after accounting for 

the lagged realized volatility and VIX or SVIX, the incremental predictive ability of the gap 

between VIX and SVIX shows some promising predictive performances for corn and wheat. For 

instance, in Table 2 (columns 6 and 8), the absolute gap measure (|𝑉𝐼𝑋 − 𝑆𝑉𝐼𝑋|) is strongly 

statistically significant for corn. Similarly, in Table 4 (columns 5 and 7), the gap between VIX and 
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SVIX (VIX-SVIX) shows superior predictive performance for wheat. However, in Table 3, the 

incremental predictive power of (VIX-SVIX) or (|𝑉𝐼𝑋 − 𝑆𝑉𝐼𝑋|) vanishes after accounting for the 

lagged realized volatility and VIX or SVIX for soybean. In other words, these findings seem to be 

a modest contribution to the literature pertaining to the option-implied information.  

5. Conclusion 

The predictive ability of the implied volatility measures has been well documented in the 

previously discussed literature. However, the predictive ability of the information content 

embedded in the difference of alternative implied volatility measures (VIX minus SVIX) seems to 

be worthwhile avenue to be explore. This study attempts to shed a light on the information content 

embedded in the gap between VIX and SVIX. Martin (2017) interprets VIX and SVIX as risk-

neutral entropy and risk-neutral volatility of the underlying assets return respectively. Martin 

(2017) analytically shows–under the assumption that the stochastic discount factor (SDF) and 

returns are conditionally jointly log-normal–that SVIX should always be greater than VIX and that 

the magnitude of the gap between these two implied volatility measures should not be large. Indeed 

in this study, we find that the gap between VIX and SVIX is not very large for corn, soybean and 

wheat. However, SVIX is not always greater than VIX for all three commodities. Furthermore, the 

differences between these two implied measures are found to be statistically significant predictor 

of the future realized volatility for corn, soybean, and wheat futures market. Future work can make 

similar investigation for other commodities market like soybean oil, soybean meal, live cattle, lean 

hog, sugar, cotton, cocoa, crude oil and natural gas. A future research avenue could be to explore 

an important caveat of the present study, namely, that premiums used to compute VIX or SVIX 

are based on American style futures options. Notably, one can approximate European prices from 
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the American option premiums and subsequently estimate implied volatility measures (see Martin 

and Wagner, 2019).     
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Table 1: Summary Statistics of the variables used in the analysis.  

Variables No. of Obs. Mean Std. dev. Min Max 

 

Corn 

     

Realized volatility 4,307 25.76 10.13 6.48 67.38 

VIX 4,322 25.84 6.88 10.37 57.27 

SVIX 4,322 25.88 6.87 10.40 57.29 

(VIX-SVIX) 4,322 -0.04 0.09 -0.64 1.00 

|VIX-SVIX| 4,322 0.07 0.06 0.00005 1.00 

      

Soybean       

Realized volatility 4,307 21.04 8.32 7.73 62.97 

VIX 4,322 22.20 6.34 9.86 54.58 

SVIX 4,322 22.24 6.34 9.84 54.40 

(VIX-SVIX) 4,322 -0.04 0.08 -0.34 0.45 

|VIX-SVIX| 4,322 0.07 0.05 0.000005 0.45 

      

Wheat       

Realized volatility 4,307 30.27 11.00 8.90 91.31 

VIX 4,322 28.02 6.77 15.70 58.78 

SVIX 4,322 28.08 6.75 15.80 59.40 

(VIX-SVIX) 4,322 -0.06 0.08 -1.55 0.38 

|VIX-SVIX| 4,322 0.08 0.06 0.00005 1.55 

      

Note: |VIX-SVIX| denotes the absolute difference between VIX and SVIX measures.   
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Table 2: Regression results for Corn futures options.  

 (1) (2) (3) (4) (5) (6) (7) (8) 

Variables RV RV RV RV RV RV RV RV 

         

RVt-30 0.188*** 0.189*** 0.611*** 0.609*** 0.189*** 0.191*** 0.189*** 0.193*** 

 (0.0209) (0.0210) (0.0131) (0.0129) (0.0206) (0.0207) (0.0206) (0.0208) 

VIX 0.802***    0.802*** 0.791***   

 (0.0266)    (0.0267) (0.0266)   

SVIX  0.802***     0.802*** 0.791*** 

  (0.0267)     (0.0267) (0.0268) 

(VIX-SVIX)   0.718  -0.591  0.211  

   (1.462)  (1.354)  (1.351)  

|VIX-SVIX|    14.46***  11.14***  10.58*** 

    (1.837)  (1.701)  (1.687) 

Constant 0.181 0.101 10.04*** 9.021*** 0.121 -0.427 0.121 -0.455 

 (0.399) (0.401) (0.339) (0.343) (0.418) (0.409) (0.418) (0.409) 

         

Observations 4,285 4,285 4,285 4,285 4,285 4,285 4,285 4,285 

R-squared 0.490 0.490 0.374 0.383 0.490 0.495 0.490 0.495 

Note: RV is (30 days ahead) realized volatility. (VIX-SVIX) denotes difference between VIX and SVIX 

measures. |VIX-SVIX| indicates the absolute difference between VIX and SVIX measures. Robust standard 

errors in parentheses. Asterisks ***, **, * denote significance level at 1%, 5%, and 10% level respectively.  
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Table 3: Regression results for Soybean futures options.  

 (1) (2) (3) (4) (5) (6) (7) (8) 

Variables RV RV RV RV RV RV RV RV 

         

RVt-30 0.154*** 0.156*** 0.649*** 0.632*** 0.156*** 0.156*** 0.156*** 0.158*** 

 (0.0196) (0.0196) (0.0148) (0.0151) (0.0199) (0.0197) (0.0199) (0.0197) 

VIX 0.812***    0.810*** 0.803***   

 (0.0266)    (0.0270) (0.0276)   

SVIX  0.810***     0.810*** 0.802*** 

  (0.0266)     (0.0270) (0.0277) 

(VIX-SVIX)   -5.006***  -1.036  -0.227  

   (1.468)  (1.296)  (1.302)  

|VIX-SVIX|    14.67***  3.332*  2.680 

    (2.038)  (1.958)  (1.971) 

Constant -0.241 -0.264 7.176*** 6.756*** -0.269 -0.304 -0.269 -0.311 

 (0.347) (0.347) (0.292) (0.293) (0.345) (0.344) (0.345) (0.344) 

         

Observations 4,285 4,285 4,285 4,285 4,285 4,285 4,285 4,285 

R-squared 0.557 0.557 0.419 0.426 0.557 0.558 0.557 0.557 

Note: RV is (30 days ahead) realized volatility. (VIX-SVIX) denotes difference between VIX and SVIX 

measures. |VIX-SVIX| indicates the absolute difference between VIX and SVIX measures. Robust standard 

errors in parentheses. Asterisks ***, **, * denote significance level at 1%, 5%, and 10% level respectively.  
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Table 4: Regression results for wheat futures options.  

 (1) (2) (3) (4) (5) (6) (7) (8) 

Variables RV RV RV RV RV RV RV RV 

         

RVt-30 0.0956*** 0.0980*** 0.530*** 0.539*** 0.0880*** 0.0980*** 0.0880*** 0.100*** 

 (0.0213) (0.0214) (0.0170) (0.0160) (0.0212) (0.0212) (0.0212) (0.0212) 

VIX 0.898***    0.896*** 0.893***   

 (0.0345)    (0.0346) (0.0343)   

SVIX  0.896***     0.896*** 0.892*** 

  (0.0346)     (0.0346) (0.0343) 

(VIX-SVIX)   5.775**  5.169***  6.065***  

   (2.664)  (2.004)  (2.000)  

|VIX-SVIX|    7.973***  3.811*  3.020 

    (2.410)  (2.020)  (2.019) 

Constant 2.238*** 2.167*** 14.61*** 13.33*** 2.819*** 1.985*** 2.819*** 1.975*** 

 (0.584) (0.588) (0.565) (0.488) (0.646) (0.604) (0.646) (0.605) 

         

Observations 4,285 4,285 4,285 4,285 4,285 4,285 4,285 4,285 

R-squared 0.400 0.399 0.292 0.292 0.401 0.400 0.401 0.400 

Note: RV is (30 days ahead) realized volatility. (VIX-SVIX) denotes difference between VIX and SVIX 

measures. |VIX-SVIX| indicates the absolute difference between VIX and SVIX measures. Robust standard 

errors in parentheses. Asterisks ***, **, * denote significance level at 1%, 5%, and 10% level respectively.  
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Figure 1: Gap between VIX and SVIX measure for S&P500 index 

 

Source: Martin (2017) 

 

Figure 2: Return and realized volatility for (next-month) Corn futures.  

 

Source: Author’s calculation  
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Figure 3: VIX for Corn.  

 

Source: Author’s calculation  

 

Figure 4: SVIX for Corn.   

 

Source: Author’s calculation  
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Figure 5: VIX minus SVIX for Corn.  

 

Source: Author’s calculation.  

 

Figure 6: Return and realized volatility for (next-month) Soybean futures. 

 

Source: Author’s calculation.  
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Figure 7: VIX for Soybean.  

 

Source: Author’s calculation.  

 

Figure 8: SVIX for Soybean.  

 

Source: Author’s calculation.  
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Figure 9: VIX minus SVIX for Soybean.  

 

Source: Author’s calculation.  

 

Figure 10: Return and realized volatility for (next-month) Wheat futures. 

 

Source: Author’s calculation.  
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Figure 11: VIX for Wheat.  

 

Source: Author’s calculation.  

 

Figure 12: SVIX for Wheat.  

 

Source: Author’s calculation.  
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Figure 13: VIX minus SVIX for Wheat.  

 

Source: Author’s calculation.  

 

 

 

 

 


