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The Strength of Weak Ties as a Strategy to Allocate Research Funds: Making a Bioenergy 

Research Network More Productive 1 

Abstract 

The famous analysis of calling crickets proposed an answer to a conundrum that had puzzled 

biologists - how do crickets conform calls so quickly? A very small number of crickets (maybe 

one in 10,000) reacting to a distant call, in addition to an immediate neighbor could accelerate 

harmonization greatly. We test this small-world phenomenon in what is close to the universe of all 

publications on Black Liquor Gasification (BLG) at papermills. BLG can more than double electric 

power beyond the 2.1% of all U.S. electric output already sold by papermills from BLG boilers.  

We collected the universe of published work from 1991 to 2007, author information, funding 

sources, and the number of publications. Using limited dependent variable methods, we estimate 

the number of publications and the entry or exit of active researchers within the network. We 

simulate each funding strategy over five cycles and update the network to create an outcome 

distribution. 

Three funding strategies were compared for this experiment. All funding policies provide 22% 

more funding to the network overall. Direct Optimization funds those author pairs with highest 

number of expected publications, and on average, increases publications by 92% and researcher 

recruitment by 30%; the Smart Small World Rule funds author pairs that, once paired, maximize 

the number of other researchers who have collaborated with either coauthor, and increases 

publication rates by 113% and researcher recruitment by 32%; the Fairness Rule, which funds 

author pairs that reduce the average number of steps between any two researchers across the entire 

network, increases publication rates by 111% and researcher recruitment by 36%. Finally, 

providing no additional funding reduces publications and the number of researchers.  

Overall, this experiment suggests that research funding that strengthens overall research 

community connectivity generates the highest levels of research productivity. 

Keywords: network, black liquor gasification, small world, research funding, network simulation. 

JEL codes: C45, D85, O31  

 
1 Parts of this work are drawn from a Doctoral candidacy defense on this topic. 
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1. Introduction  

Social networks have been used to predict social outcomes in diverse aspects of social and 

economic relationships. The small world is a distinct property of social networks that explain, 

roughly speaking, how any two of nodes in the network can reach each other through a very short 

sequence of acquaintances (Kleinberg, 2001).  

The effects of social networks have already been investigated in the fields of innovation and 

research and development (R&D). It has been found that the properties of a network have 

significant effects on stimulating new knowledge and innovation in a social network of researchers 

and innovators (see Watts, 2004; Hargadon, 2003; Cowan and Jonard, 2003; Baum et al., 2003; 

Schilling and Phelps, 2007; Uzzi and Spiro, 2006). Most of the discussed research work is 

descriptive, focusing on how an existing social network structures affect the realm of the scientific 

and academic networks (see Rumsey-Wairepo, 2006) or industrial innovation networks (see 

Schilling and Phelps, 2007; Fleming and Frenken, 2007; He and Fallah, 2009). The bulk of this 

scholarly descriptive work has focused on networks either of individuals or of institutions. This 

work seeks to employ specific properties of networks to locate strategic opportunities to inject 

funds into an existing research network to facilitate long run productivity and network resilience 

through time. 

The core property that drives the small world phenomenon is the random long-range connection, 

especially if the distant nodes are tightly connected locally (Watts, 2004). We employ small world 

networks as well as other network structures to assess policy vehicles to improve research output 

in a social network of researchers in a specific field. We recognize that funding is a key input that 

drives the formation and evolution of a knowledge-based research network. This paper contributes 

to the research literature by providing an empirical study on the impact of funding injected 

strategically into a network to enhance its performance by facilitating specific network properties 

such as connectivity, density, degrees of separation, and path length – all related terms, but have 

specific technical definitions that differ.  

We collected the universe of published work in the field of black liquor gasification from 1991 to 

2007, alongside funding sources and amount, co-authorship details, and the number of 

publications. Currently, black liquor, a by-product in the pulping process of wood into paper, is 

boiled. This energy conversion process produces close to 2.1% of the U.S. domestic electricity 
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supply. If black liquor could be gasified, this output could easily double, a substantial bioenergy 

contribution from a research activity involving relatively few researchers, mostly chemical 

scientists and engineers.  

Using publication information, we represent all pairwise scientific collaboration as nodes in a 

social network and develop rules to guide the evolution of connectivity within the network. We 

use econometric techniques to obtain the probabilities of: expected publications (Poisson 

Regression); recruiting a new coauthor into the system (Multinomial Logit Regression); and exit 

from the network or connection break (Logit Regression) for each collaboration. Using these 

probabilities of success or failures for each connection, we simulate the expected number of 

publications, total authors, average shortest path length, and clustering coefficient for the whole 

network in the first period. Then we use the same econometric rules and simulate again in order to 

complete the second-period evolution process. In the same way, based on the new network after 

second period, we change the information of all variables for each connection, and perform the 

iteration three more times – a total of five times, each with 1,000 simulations. We then get a series 

of distributions of total publications, total authors, average shortest path length, and clustering 

coefficient for the network after five periods.  

The funding strategy negotiation process involves three types of policy negotiation objects: 

Fairness Rule, where we fund author pairs with shortest average path lengths; Direct Optimization, 

where we fund author pairs with highest number of expected publications; and Smart Small World 

Rule, where we fund author pairs with highest number of first degree coauthors. In addition, we 

also see how the network evolves when no additional funds are injected. These are initial plausible 

policy choice rules that a policymaker can adopt and then compare the performance of these 

different options, including distribution of productivity, total authors, average shortest path length, 

and clustering coefficient, for the simulation exercises.  

Our results suggest strategic funding helps to facilitate small world network formation. Networks 

grow compact over time and eventually exhibit short average path lengths and high clustering 

coefficients. Adhering to a policy that provides 22% more funding to the most efficient 

collaborators (Fairness Rule) increases publication rates by 111% and researcher recruitment by 

36%. An equivalent funding to the most prolific researchers (Direct Optimization) increases 

publication rates by 92% and researcher recruitment by 30%; and funding the most prolific 
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collaborators (Smart Small World) increases publication rates by 113% and researcher recruitment 

by 32%. Finally, providing no additional funding reduces publications and collaborations, but still 

marginally reduces average shortest path length but not clustering coefficient. Overall, we show 

that research funding strategies that strengthen overall research community connectivity appear to 

generate the greatest levels of research productivity. 

2. Literature Review 

An extensive amount of field data has been used through sharp mapping protocols to explain 

variation in labor market outcomes and production of creation in an economy. There is also 

extensive literature that explores how economic outcomes are influenced by social network 

structures. For example, studies by Boorman (1975) and Montgomery (1991) find a relationship 

between labor market outcomes and social network; Ellison and Fudenberg (1995) find that the 

structure of communication can affect a consumer’s purchasing decisions; Bolton and Dewatripont 

(1994) show that organization of workers influence a firm’s efficiency; in evolutionary game 

theory, Ellison (1993), Goyal and Janssen (1997) and Anderlini and Ianni (1996) all demonstrate 

the influence of network structure on possible coordination among agents. 

As scientists seek to construct models of social process that result in observed structures of 

networks and study how the structures influence and facilitate the spread of knowledge, much of 

the interest in social networks revolves around understanding how networks develop and change 

(see Abrahamson and Rosenkopf 1997; Schilling and Phelps 2007; Doreian et al. 1996; Leenders 

1996; Nakao and Romney 1993; Snijders 1998; Weesie and Flap 1990; Zeggelink et al., 1996). 

Moreover, many researchers like Cowan and Jonard (2001), Choi et al. (2010), and Granovetter 

(1973) have emphasized the significant effect of network topologies on the performance of the 

system and diffusion of innovation. Such dynamics analysis is important for understanding 

network stability and evolution, which in itself is necessary for understanding the effect of 

networks on individual and group behavior over periods. The clear importance of such problems 

has prompted a good deal of methodological research on network variation. 

2.1 The Notion of Small-World and Six Degrees of Separation  

The small-world notion states that any two people around the world who are randomly selected 

are connected to each other with some intermediate links. Milgram (1967) first conducted a 
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quantitative survey regarding the small-world notion (Eslami, 2012) by randomly asking 296 

individuals in Nebraska to deliver a letter to a specific person in Boston whom they did not know. 

His study concluded that each pair of people in the world is separated, on average, by six 

intermediate acquaintances. Later, this phenomenon was named “six degrees of separation”, now 

more popularly known as the “six degrees of Kevin Bacon game”. Watts and Strogatz (1998) later 

formalized this phenomenon by studying the collective synchronization of crickets. They 

introduced a model of small-world network in which there are some clusters that contain local ties 

among agents and also a few global links that enable connections between any pair of nodes in the 

network. More generally, this parameterized family of models exhibited an interesting 

combination of properties - high clustering and short pathlengths.  

Watts and Strogatz (1998) also demonstrated the broad general application of weak ties to the 

sciences by studying the ‘small world’ phenomenon, which could be viewed in part as formal 

representations of the ‘strength of weak ties’. These studies emphasize an important social 

characteristic central to many network theory applications: to accomplish a task in a large social 

network, agents need to navigate that network efficiently through weak ties to conduct, such as, a 

job search (Grannovetter, 1973). For example, workers are more likely to get the information of a 

new job through weak ties rather than strong ones. Sometimes the most useful resource is obtained 

from the occasional person whose connection is outside of the local associations. 

Many empirical studies identify the small-world property operating in diverse and vibrant social 

networks. These include networks of American corporate boards, German corporate industries, 

strategic alliances, Canadian investment bank syndicates, email networks, Italian scientific and 

academic collaboration networks, and invisible scientific colleges (see Kogut and Walker 2001, 

Davis et al. 2003, Verspagen and Duysters 2003, Baum et al. 2003, Dodds et al. 2003, Balconi et 

al. 2004). Powell (1990) and Liebeskind et al. (1996) show that the property of network ties that 

describes a network among existing among individual researchers and inventors, housed at 

different universities and companies are among the most important factors that move technology 

forward to have a significant effect on the knowledge productivity.  

It is not surprising that small-world researchers have proposed that the small-world network 

structure in a research social network would have an immense effect on the production of 

knowledge and innovation (see Watts 1999; Hargadon 2003; Cowan and Jonard 2004; Baum et al. 
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2003; Schilling and Phelps 2007; Uzzi and Spiro 2005). It has been hypothesized that a network 

that exhibits a strong small-world property can enhance information transmission efficiency 

among the network actors.  We suggest using funding as a strategy to directly install small world 

property into a network by funding specific collaborations rather than specific researchers.  

Our objective is to assist the policymaker in the search for strategic connections that will facilitate 

greater research output. We suggest that the individual node (person or institution) may be a more 

efficient way to use the rich data available from modern social network maps. To this end, we 

suggest that there is a series of dynamic methods that can be applicable to certain types of 

networks, yet still honor the basic small world insight of long-range ties. When public 

administrators wish to encourage specific ties as a mechanism to facilitate high tech job creation 

or to stimulate research, encourage investment, or mobilize more vigorous community action, the 

ever-increasing quality of social network mappings, we contend, contains more information than 

many current techniques utilize. As applications of social networks in this field grow in 

sophistication through advanced data collection and mapping tools, construction of more 

developed instruments is required to entirely use all of this data, especially individual’s 

information regarding how they acquire resources and accomplish specific tasks.  

3. Research Questions 

This paper addresses two main research questions. First, we examine to what extent the structure 

of the collaboration network of black liquor gasification scientists resembles the small-world 

network structure. Since this type of network structure has attracted interest from researchers and 

has been shown to facilitate knowledge creation and diffusion, it is important to determine if the 

network shows small-world characteristics. To do this, we provide statistical evidence to evaluate 

the role of network structure by quantifying the properties of scientists’ network.  

Through this, we ask if the small-world structure facilitates the knowledge creation and the 

innovative performance of the inventors in the field of black liquor gasification. Previously, it has 

been accepted by scholars (see Cowan and Jonard 2004, Schiling and Phelps 2007, Watts 1999, 

Hargadon 2003) that the small world structure enhances the innovative productivity of the 

inventors’ network to a considerable extent.  
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Second, we examine the effect of the different funding strategies on the evolution of the structure 

of collaboration network of scientists in the field of black liquor gasification on their research 

productivity and connectivity. We are interested in testing various structural properties of the 

network and assessing the impact of funding on the creation of knowledge by scientists.  

Furthermore, the bulk of prior research analyzed the effect of patent coinventorship networks on 

the innovation productivity of inventors; but this study takes one step further by taking into account 

the important role of scientists’ reciprocal knowledge transfers during the creation of their 

scientific knowledge (represented here by the article coauthorships), in promoting the 

innovativeness of scientists.  

3.1 Why Black Liquor Gasification? 

We are interested in this field because black liquor gasification offers significant improvements in 

energy efficiency and environmental performance, as well as economic benefits. Currently, black 

liquor, a by-product in the pulping process of wood into paper, is boiled. This energy conversion 

process produces close to 2.1% of the US domestic electricity supply. If black liquor could be 

gasified, this output could easily double, a substantial bioenergy contribution from this one 

research activity involving relatively few researchers, mostly chemical scientists and engineers.  

This small network has the benefit that it allows us to collect an almost exhaustive list of 

researchers, their publications, authorship, citations, funding, funding sources, etc. that ultimately 

allows us to represent all collaborations as a social network to compare network evolution under 

different funding strategies. Moreover, the boilers, most of which were established in the 70s and 

80s and need to be replaced soon. Therefore, continued strategic funding is needed in this area to 

stimulate research, innovation, and development and ultimately contribute to a larger contribution 

to environmental-friendly energy sources.  

4. Data Description and Methods  

The data set in this study is based on a survey of 20 top researchers in black liquor gasification, 

collectively responsible for the bulk of all publications in this topic area. From these surveys, 

acquired information on 126 publications, published in 40 journals by 127 researchers from 60 

institutions. From each author’s data in the survey, we extract information on the date of 
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publication, the names of all coauthors, the presence of any new authors entering the network in a 

particular paper, and the funding level of the corresponding project. 

Next, we assess how different factors affect the probabilities of success (publication productivity 

and recruiting a new researcher) and failure (exit of a researcher) for any author-pair connection. 

Funding is one independent variable that explains successes. Drawing from Wang (2009), we also 

construct several new variables using the original data based on the author-pair connection unit.  

1. Dependent Variable: number of papers published by any two authors (e.g., if authors A and 

B published 5 papers together, then y is equal to 5)  

2. Independent Variable - Funding: total funding level for any two authors’ publications. 

Suppose author A published 15 papers and author B published 10 papers. Suppose that a 

total of 20 unique papers (not including the 5 repeated papers) are attributed to 2 projects. 

m denotes the funding of project 1 and n denotes the funding of project 2, then (m+n)/20 

will be the value of the variable – funded dollars per publication.  

3. Independent Variable – First degree: total first degree coauthor relations in the network for 

any two authors. Suppose author A is directly connected with 5 other authors, and author 

B is directly connected with 6 other authors, then the value of this variable is equal to 11. 

If there are duplications, only unique coauthors are counted.  

4. Independent Variable – Second degree: total second degree relations, or those two degrees 

of separation from a author-pair. We define second degree relations as follows: if author A 

is only indirectly connected with author C or author D through her coauthorship with B, 

then A is defined as being in a second degree relation to C and D. Total persons two degrees 

away count as the number of unique ‘coauthors of coauthors’.  

5. Independent Variable – Shared coauthors: number of total coauthors from any two authors’ 

shared publications. Suppose author A and author B published 5 papers together, and these 

5 papers involve 15 authors, then the value of this variable is equal to 15. This therefore is 

the number of other coauthors a particular author-pair shares directly in their joint work.  

6. Independent Variable – New authors: total number of new authors introduced to the 

network in publication by a coauthor-pair unit from any two authors’ publications (e.g., if 

authors A and B published 10 papers together, and there are 4 new authors in these 10 

papers, then the value of this variable is equal to 4). 
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7. Independent Variable – Funding square: the square of the Funding variable. 

8. Independent Variable – First degree x second degree: the interaction between First degree 

and Second degree coauthors.  

4.1 Methodology  

4.1.1 Evolution of the Network  

To study the evolution of the connectivity within the network, we use the following rules 

(graphically illustrated in Figure 1):  

• A Poisson regression is used to estimate the productivity for a connection. With the 

probability from the regression, we can simulate the number of publications for the whole 

network.  

• A Multinomial Logit regression is used to estimate the probability of a new permanent 

entrance into the network; with the probability of entry for each pair of authors we can 

simulate how many new authors will enter the network.  

• A Logit regression is used to estimate how many researchers permanently exit a network. 

First, we find the probability of whether a connection is broken or not. Second, if this 

connection is broken, we find which author in the connection exits the system. Then with 

the probability of exit for each pair of cells we can simulate how many authors will exit 

from the network.  

The starting network is composed of 127 researchers who published 126 papers in black liquor 

gasification. If any two authors have at least one publication, we connect the pair as collaborations, 

and extract the dependent and independent variables: how often they publish, how much funding 

they receive, whether their shared publications brought in new researchers in the network (and 

how many) and whether they failed to retain researchers already in the network (and how many).  
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Figure 1: Network Evolution 

 

4.1.2 Funding Strategies Guiding Evolution of Network  

The funding strategy negotiation process involves three types of policy negotiation objects: 

Fairness Rule, where we fund author pairs with smallest path lengths; Direct Optimization, where 

we fund author pairs with highest expected publications; and Smart Small World Rule, where we 

fund authors with highest number of first degree coauthors. These are initial plausible policy 

choice rules that a policymaker can adopt and then compare the performance of these different 

options, including distribution of productivity, total authors, average path length, clustering 

coefficient and density analysis, for the simulation exercises. 

5. Results 

5.1 Parameter Estimation  

5.1.1 Productivity Model  

The first model for observing the productivity of a network is estimated by Poisson regression 

process. The unit of analysis is each connection or pair of researchers, and the dependent variable 

is the number of publications. Since the number of publications is discrete units with zero being 
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the largest number, a Poisson estimator is used to predict the expected number of publications by 

a collaboration pairing. The method also provides a discrete probability of publishing a given 

number of papers, which can subsequently be employed in randomized simulation. 

The results are given in Table 1, which contains the coefficient estimates. The independent 

variables are funding, which is total funding level for any two authors’ publications; first degree, 

which is total first-degree connection in the network for any two authors; second degree, which is 

total second-degree relationships, or those two degrees of separation from a co-authoring pair; 

shared coauthors, which is number of total coauthors from any two authors’ shared publications; 

new authors, which is total number of new authors introduced to the network in publication by a 

collaborating unit from any two authors’ publications; funding square, which is the square of the 

independent variable of funding; and finally, first by second degrees, which is the multiplication 

between the second independent variable and the third independent variable.  

The estimated regression results indicate the following. In most cases, the independent variables 

are significant with p-value less than 0.05, except variables for second degree and for new authors. 

We are primarily interested in the effects of funding, so a discussion of the regression results will 

be limited to that variable, and first and second degree relationships, although as subsequent tables 

reveal, most other variables are also significantly related to the dependent variables.  

The effect of funding level on publications is very significantly different from zero, and the result 

means that the new average expected publication will be equal to the old average publication 

multiplied by 𝑒0.236(𝑝𝑢𝑏𝑠 = 𝑝𝑢𝑏𝑠 ∗ 𝑒𝛽1) when the funding level is increased by one unit or 

average probability that any two authors will successfully publish their average number of work 

increases by 23.6% as the research funding level increases one unit, measured in $100,000 units.  

First steps relationship is also an important variable affecting the publication probability. In Table 

1, the probability that pairs of researchers will publish increases by 7.5% for every additional unit 

of first degree relations, and the new average expected publication will be equal to the previous 

average publications multiplied by 𝑒0.075(𝑝𝑢𝑏𝑠 = 𝑝𝑢𝑏𝑠 ∗ 𝑒𝛽2).  

By the same criterion, the variable of coauthors affects the probability of success for each 

collaboration in a positive way. The greater the number of shared coauthors a pair of researchers 
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enjoys, the probability of publication success improves by 44.7%. The variable of funding square 

is negative, which shows a nonlinear relation with the probability of success.  

What is striking in the result is the power of additional co-authorship, where an additional co-

author increases publication success by 44.7% as a result the new publication will be equal to old 

average publications multiplied by 𝑒0.447(𝑝𝑢𝑏𝑠 = 𝑝𝑢𝑏𝑠 ∗ 𝑒𝛽4). This leaves open the policy 

concern addressed below regarding the relative strength of different resources: direct funding as a 

resource, or collaboration capacity and overall connectivity. Results above suggest both are strong. 

From a policy perspective, given the expense of collecting funding and past project information 

versus generating a research map, results suggest that network position of co-authorship history 

might be a source for a viable stand-alone policy. 

As indicated above, the primary interest in estimating the model is to obtain the estimates of the 

independent variables which affect the probability of success for any pair of researchers. With the 

parameters, we calculate the expected of publications of each pair of authors, and we could 

estimate the probability that any collaborations could publish certain number of papers 

𝑃(𝑥 = ℎ), ℎ = 0, 1, 2, … , 20). These probabilities allow us to simulate the total number of 

publications for the whole network.  

5.1.2 Entry Model 

The second model for observing the success of recruiting a new person into the system is estimated 

by multinomial logit regression. The unit of analysis is also each pair of researchers.  

The multinomial regression gives us the parameters estimates for entry model which is used to get 

the probability that any pairs of researchers could make a new person enter the system. The results 

are illustrated in Table 2. Here, group 1 indicates coauthor pairs who do not bring in additional 

authors and group 2 indicates coauthor pairs who bring in additional authors who only continue 

once. Because we only care about how many new researchers enter the system permanently, we 

focus on analyzing the probability of group 3.  

The effect of variables for funding, first steps, number of shared coauthors, and new authors on 

probability of entry for group 3 which denotes the case that this collaboration could make new 

people come into the system and the new author will not exit the system.  
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Once we have the estimated probabilities for each pair of authors in our data set to make a new 

person enter the system and they will stay in the system and continue to publish in future 

(𝑃(𝑥 = 3)). These probabilities allow us to simulate the total number of new authors for the whole 

network in section 4 for static simulation.  

5.1.3 Exit Model 

The third model is used to estimate the probability of exit for each pair researchers by a logit 

regression. The dependent variable is either zero, meaning the connection will not break, or one 

meaning that this connectivity will break. There are two steps to complete this objective. First, we 

estimate if the connection for a combination of authors breaks or not, and second if it breaks, which 

author of the two will exit the network. We calculate the probability for exit for each researcher 

and compare each’s probability of exit to determine which of the two will leave.  

The logit regression for exit is shown in Table 3. Most independent variables are significant at 5% 

level. Most variables that are statistically significant have a negative effect on probability that the 

connections will break for each pair; the results suggest increasing funding level, first and second 

degree connections, and shared coauthors will on average decrease the probability of exit for each 

collaboration, which makes intuitive sense. 

5.2 Static Baseline Simulation 

We start off by simulating the baseline network over one period to illustrate the simulation rules 

and principles. Based on the original data set, we first run the three regression models once and 

simulate the number of publications (Poisson Regression), new author (node) entry (Multinomial 

Logit Regression), and author exit (Logit Regression).  

5.2.1 Poisson Simulation 

We first calculate (𝑃(𝑥 = ℎ), ℎ = 0, 1, 2, … , 19, 20) where ℎ is the number of actual publications. 

Based on the parameter lambda for each connection, we are able to generate a random number 

drawn from the Poisson distribution corresponding to the parameter for each collaboration. We do 

this for all observations (author connections) in the data set, and then sum all simulated numbers 

and obtain a total connection of 688 for the whole network. This process is repeated 1,000 times 

to eventually obtain a distribution of total connections.  
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An important point to note is that this process has a duplication problem because this is a pairwise 

author’s estimation process. For example, we get 688 expected publications in the first iteration, 

but each publication may include more than a pair of coauthors. Hence, we have to scale by the 

ratio of real number of papers to real connections to get an estimated number of publications.  

𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑟𝑒𝑎𝑙 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
=

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
=>

682

126
=

688

𝑥
=> 𝑥 = 126 

where 𝑥 is the estimated number of publications in the static baseline case.  

5.2.2 Multinomial Logit Simulation 

Next, we simulate the number of new author entry into the network. We first calculate the 

probability of recruiting a new person for each combination (y=3; where 3 indicates whether the 

author pair recruits a new permanent author), and then draw a uniform random number to compare 

with the estimated probability. If the random number is larger than the estimated probability, then 

this coauthor pair/connection does not recruit a new coauthor, and vice versa. Again, using 1,000 

iterations of the simulation, we find that around 136 new connections on average will enter the 

network in one funding cycle. However, the same duplication problem exists, and can be similarly 

adjusted to estimate 25 new people entering the network.  

𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑢𝑡ℎ𝑜𝑟𝑠
=

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑒𝑤 𝑎𝑢𝑡ℎ𝑜𝑟𝑠
=>

682

127
=

136

𝑥
=> 𝑥 = 25 

5.2.3 Logit Simulation 

Finally, we simulate the number of author-exits from the network. To do this, we first calculate 

the probability that a connection is broken (y=1, where 1 indicates whether one of the authors from 

a connection exits the network), and use a uniform random number to compare with the estimated 

probabilities. If the random number is lower than the probability, then this connection is predicted 

to break. We also calculate each single author’s probability of exit; so, when we identify a 

connection involving that author is broken, we are able to compare the two authors’ individual 

probability of exit and decide which author will exit the system. After 1,000 simulations, we 

conclude that about 38 authors exit the system. Coupled with 25 new authors entering the network, 

an exit of 38 authors implies 13 author exits from the network and a total of 126 papers being 

published in the static baseline scenario.  
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5.3 Stimulative Dynamic Funding Policies 

Static simulation can only give one possible outcome in one period, that too without funding; so 

we do not know how a network evolves in response to different funding strategies. The funding 

policy negotiation process involves three types of policies: Fairness Rule, Direct Optimization, 

and Smart Small World Rule. These initial plausible policy choice rules allow a policymaker to 

compare the distributions of productivity, active researchers, and average pathlength, all of which 

we use to assess the network properties under different funding scenarios.  

5.3.1 Fairness Rule  

This funding strategy funds author pairs with the shortest average pathlength and is based on the 

principle that linking clusters increases network activity. The selected process seeks to link 

collaborations that minimize shortest pathlength among nodes in the network. Mathematically, let 

𝑑𝑖𝑗 denote the shortest distance between authors 𝑖 and 𝑗, then the average length is minimized as:  

𝑀𝑖𝑛 
1

𝑛(𝑛 − 1)
∑ 𝑑𝑖𝑗

𝑖≠𝑗
 

where 𝑛 is the number of vertices in the network.  

Simply put, connections are chosen so that the average number of steps along the shortest paths 

for all pairs of network nodes is as small as possible. Generally, there are many connections to 

choose from (10-15 connections that typically have the same smallest number pathlengths), so in 

reality, the policymaker is not limited to a small set of options. In our case, we choose 5 

connections (pairs of authors) with the minimum shortest pathlength and give each $100,000, 

connect them and iterate the simulation five (5) times. This implies $500,000 of additional capital 

in each funding round in total and $2,500,000 total in five rounds of funding, equivalent to 22% 

of the total funding in the data we have. Figure 2 demonstrates the progressive evolution of the 

network across baseline, first, third and fifth funding rounds. Each node represents an author, the 

vertice/edge connecting any two nodes indicates whether the nodes published together, and the 

width of the vertice indicates the strength of a relation.   

The distributions of publications for both baseline simulation and smart small world are shown in 

Panel A in Figure 3. We observe a significant increase in publications after applying funding the 

most efficient collaborators; the mean number of publications increases by 111% to 266 
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publications compared to the Static Baseline case of 126 publications, which is a significant 

increase in productivity in response to 22% more funding over five cycles.  

The distributions of the number of authors and average pathlength for Static Baseline are shown 

in Panels B and C of Figure 3. The mean of the number of authors in Static Baseline is 114, while 

with additional stimulative funding increases the mean to 155, equivalent to a 36% increase.  

The third measure we evaluate is the shortest pathlength, also called geodesic distance, which is 

defined as the path with the minimum number of edges measuring the shortest possible distance 

between any two nodes; the shortest pathlength of a network is thus simply the average of the 

shortest pathlengths of all nodes. A typical small world property is small shortest pathlength. A 

large network size does not necessarily occlude formation of small world networks, as such 

networks are often large yet still exhibit short pathlengths and compactness (Albert and Barabasi, 

2002). In this case, the mean of shortest pathlength reduces significantly from 3.898 in the Static 

Baseline to 2.897 in response to funding, which suggests that following this policy may stimulate 

authors to build more first degree connections in addition to publishing more.  

Overall, we find that this policy leverages the properties of efficient collaborators and selects new 

research collaborations based on their contribution to overall network connectivity and leveraging 

this strategy will generate 111% more publications and recruit 36% more researchers to the 

network with only 22% more funding. The results also suggest that it is possible to inject funds 

strategically into research networks and infuse in them properties typical of small world networks, 

and doing so helps increase research productivity and researcher connectivity and overall network 

efficiency.  

5.3.2 Smart Small World Rule  

The second stimulative policy selection is Smart Small World Rule. This selection process links 

those collaborations that maximize the total number of connections in the network and works by 

maximizing new authors one degree of separation away from a combination or research 

collaboration. The rule tends to draw links between highly connected points to highly connected 

points on the other. Formally, the rule maximizes 𝐶𝑖𝑗:  

𝑀𝑎𝑥 ∑ 𝐶𝑖,𝑘 + ∑ 𝐶𝑗,𝑚 + 𝐶𝑖𝑗 
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Simply, connections are chosen such that the total number of final connections (total first degree 

connections for two authors) that attach each of the two authors (nodes) linked is as large as 

possible. Like the last policy, we choose 5 pairs of researchers with the maximum first degree 

connections in the network. Each of the pairs is provided with $100,000, connect them and run the 

same process five times. Figure 4 demonstrates the evolution of the network in response to this 

funding policy.  

The distributions of publications for both Static Baseline and Smart Small World Rule are shown 

in Panel A of Figure 5. We see a significant increase in the number of publications after applying 

funding over five cycles; the mean of the number of publications for Smart Small World Rule 

increases by 113% to 268 publications compared to the Static Baseline case of 126 publications.  

The distributions of the number of authors and shortest pathlength for Static Baseline are shown 

in Panels B and C of Figure 5. The mean of total authors in Static Baseline simulation is 114, while 

providing additional funding increases this to 150, equivalent to a 32% increase.  

The mean of shortest pathlength also reduces from 3.898 to 2.992, which suggests that funding the 

most prolific collaborators will increase publications, author connectivity and make the research 

network more compact and efficient, all desirable properties of a small world network.  

5.3.3 Direct Optimization 

A third policy criterion is the Direct Optimization Rule. If the policy makers’ goal is publications, 

then it makes sense to put two highly published authors together to increase overall publications. 

This rule locates the greatest increase in expected output from single a connection. It uses 

information beyond connectivity, based on expected collaboration success, in this case, 

collaboration success means the publications for any connection.  

We define a collaboration success as 𝑆𝑖𝑗 (expected numbers of publications) for any two nodes 

𝑖, and 𝑗 connected by vertice 𝐶𝑖𝑗. We define the probability of success for that collaborating in any 

period as 𝑃(𝑆𝑖𝑗). If a given vector of node and collaboration specific characteristics, 𝑥, affects the 

probability of success on a given task for a collaboration, then we define the function 𝑃(𝑆𝑖𝑗) =

𝑆(𝐶𝑖𝑗(𝑥)) to present the probability of success over a distribution. Here, 𝑥 are characteristics such 

as the number of total connections that a node has and the history of past successes for that 
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collaboration, 𝐶𝑖𝑗. Technically, the Direct Optimization rule searches for a collaboration, 𝐶𝑖𝑗, to 

obey the objective (maximize the probability of expected publications):  

𝑀𝑎𝑥 ∑ 𝑃(𝑆𝑖𝑘) + ∑ 𝑃(𝑆𝑗𝑚) + 𝑃(𝑆𝑖𝑗) 

The Direct Optimization Rule differs from the Smart Small World rule which maximizes the 

number of connections between the most highly connected nodes, emphasizing instead 

connections that contribute the largest expected marginal gain. Measuring the instantaneous output 

gain for the two nodes linked and spillover impacts on all of their connections, the rule chooses 

those connections that are emergent productive collaborations that have not fully matured.  

Like the previous policies, we again choose 5 pairs of researchers, who have the maximum 

expected publications in the network and assign $100,000 to each pair as in the original case, 

connect them and run the same process over five periods. Figure 6 demonstrates the gradual 

evolution of the network under this funding policy of funding the most productive researcher pairs.  

The distributions of publications for both static baseline simulation and Direct Optimization are 

shown in Panel A of Figure 7. The result shows a significant increase in publications after funding 

author collaborations with the highest expected publications. The mean of publications for Direct 

Optimization increases from 126 to 242, equivalent to a 92% increase, which means that this policy 

too could have a stimulative effect on the productivity of network. Surprisingly though, even 

though this policy, by design, funds the most prolific researcher pairs, compared to the Direct 

Optimization and Smart Small World Rule, this policy resulted in a smallest increase in 

publications.  

The mean of total number of authors in Static Baseline is 114, while with Direct Optimization 

policy the mean of total authors increases 30% to 148 (Panel B of Figure 7), which shows an 

increase in author recruitment in Direct Optimization compared to Static Baseline, although again, 

this increase in the number of authors is smaller compared to Fairness and Smart Small World 

Rules. Finally, the shortest pathlength however, decreases the most compared to the other funding 

policies; from 3.898 to 2.952 (Panel C of Figure 7).  
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Overall, funding the most prolific authors yields more publications and authors and enhances 

network connectivity; however, the increase in the number of publications and number of authors 

is lower relative to the other two policies.    

5.3.4 No Funding 

Finally, providing no funding to any coauthor pair and iterating the simulation five times results 

in the evolution of the network as shown in Figure 8; we observe a marginally smaller number of 

publication outputs (126 to 116; an 8% decrease as shown in Panel A of Figure 9), significantly 

smaller number of authors (114 to 90; a 21% decrease as shown in Panel B of Figure 9), and 

interestingly, a reduction in shortest pathlength (from 3.898 to 2.992 as shown in Panel C of Figure 

9).  

5.3.5 Policy Summary and Network Evolution  

We suggest three policy tools based on different goals. The Fairness Rule funds those author pairs 

with the shortest pathlength, and yields the highest number of authors after five periods of funding 

simulation. The Smart Small World Rule funds author pairs with the highest number of first degree 

connections, and yields the highest number of expected publications. Direct Optimization funds 

author pairs with the highest number of expected publications and produces the smallest increase 

in the number of expected publications and author recruitment equivalent to the Smart Small 

World rule.  

All funding policies yield shorter average path length compared to the Static Baseline; one reason 

why that happens is demonstrated by the generation of large clusters in the graphs. In all funding 

policies, as more authors enter the network, initially, they are connected only to the coauthors by 

whom they were recruited. As the funding cycle progresses, these new authors begin to form 

connections with other authors outside those who initially recruited them, resulting in the growth 

of multiple interconnected clusters, which expectedly decreases the length of connectivity for these 

new authors to others in the network. The results also suggest that it is possible to inject funds 

strategically into research networks and infuse in them properties typical of small world networks, 

and doing so helps increase research productivity and researcher connectivity.  

Table 4 presents the summary diagnostics of the simulations. The table also presents two additional 

measures of network clustering: clustering coefficient and small world index, both measures used 
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to evaluate small world properties in networks. The small world index is a calculated variable 

measured by dividing the clustering coefficient by the shortest pathlength (Eslami, Ebadi, and 

Schiffauerova, 2013). Generally, the higher the clustering coefficient and small world index, the 

more dense and compact the network is, and in our context, the more closely connected and 

efficient are the researchers in the network. Again, under all funding policies, the clustering 

coefficient and density are higher than the static baseline case.  

Table 4: Policy Table 

 Avg. # of 

publications 

Avg. # of 

authors 

Avg. shortest 

pathlength 

Clustering 

coefficient 

Small world 

index 

Static Baseline 126 114 3.898 0.442 0.113 

Fairness Rule 266 155 2.897 0.499 0.172 

Smart Small 

World Rule 
268 150 3.073 0.500 0.163 

Direct 

Optimization 
242 148 2.952 0.480 0.163 

No Funding 116 90 2.992 0.357 0.119 

 

One important thing to note is that the networks under different funding scenarios cannot always 

reliably be compared with each other if the networks have significantly different size or 

connections. The level of entry and exit from network can potentially make a network appear less 

successful (more researchers with few coauthors, higher shortest pathlength), or more successful 

by showing greater density by eliminating the loose link authors to other groups (severing weak 

connections that remove a whole group from the network). Therefore, the relative success of a 

funding strategy should be assessed by considering the performance of several properties including 

the number of new author entries, exits, publications, and network connectivity measures.  

6. Conclusion 

We propose to use the small world property strategically to direct funding to specific research 

collaborations that enhance small world properties in a research network. As an experiment, we 

utilize the actual record of publication output of a network of chemical engineers who had worked 

on a bioenergy technology. We were able to attach specific grant awards to specific publications, 

and to impacts of those collaborations on bringing in (or losing) researchers to the network. We 
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simulate future outcomes under alternative funding strategies among those same researchers in 

that research network to facilitate research productivity, connectivity, and resilience over time. 

For this experiment we collected the universe of published work in the field of black liquor 

gasification from 1991 to 2007. The researchers identified for us the funding sources, the size of 

awards and coauthorship details for each publication. Currently, black liquor, a by-product of 

paper pulping, is processed in a boiler. This energy conversion process at the time produced close 

to 2.1% of the U.S. domestic electricity supply. If black liquor were processed in a gasifier instead, 

power output could have doubled, a substantial contribution from a singular research activity 

among relatively few researchers.  

Using this publication information, we construct a network. Each researcher is a network node, 

and each edge (connection line) connects two researchers who have coauthored one or more 

papers. The network evolves from coauthor successes or failures from its baseline by a series of 

stochastic events: the probability of the number of publications between coauthors based on 

funding level (including no funding); the probability of a given coauthorship pair recruiting new 

researchers; or the probability that a given researcher (node) falls away from the network. These 

outcomes are stimulated by new funding, yet depend on the past successes of collaborators, which 

itself is a product of the number of collaborators involved and the productivity of those 

collaborators. These rules direct the evolution of specific connections between network 

researchers, which are altered by fund decisions.  

We use econometric techniques to obtain the probabilities of: the expected number of publications 

(Poisson regression); no recruitment of new coauthors, or the recruitment of new coauthors who 

publish once, or publish two or more works (Multinomial Logit regression); and the chance that a 

given researcher may exit the network (Logit regression). Drawing from the distribution of these 

probabilities, we simulate network changes in the expected number of publications, the total 

number of network participants, the overall average shortest path length between network 

members, and a network clustering coefficient. We then repeat the process to simulate evolution 

of the second period on this updated network, and so on for five periods. We run each funding rule 

1,000 times through each of the five period treatments (a total of 5,000 times), drawing from the 

probability distributions for each type of outcome for each connection. For any treatment strategy, 

we obtain distributions of end period outcome: total publications, total number of researchers, the 



23 

 

average shortest path length between any two authors in the network, and a network clustering 

coefficient.    

Three funding strategies were compared for this experiment. Direct Optimization funds those 

author pairs with highest number of expected publications; a Smart Small World Rule funds author 

pairs that, once paired, maximize the number of other researchers who have collaborated with 

either coauthor; and, finally a Fairness Rule that funds author pairs that reduce the average number 

of steps between any two researchers across the entire network.  

All funding policies provide 22% more funding to the network overall. Direct Optimization, on 

average, increases publications by 92% and researcher recruitment by 30%; the Smart Small World 

Rule increases publication rates by 113% and researcher recruitment by 32%; the Fairness Rule 

increases publication rates by 111% and researcher recruitment by 36%. Finally, providing no 

additional funding reduces publications and the number of researchers.  

Overall, this experiment suggests that research funding that strengthens overall research 

community connectivity generates the highest levels of research productivity, using the properties 

of success in a real world research network that contained the universe of research funding and 

research output by those researchers. 
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Appendix 

Table 1: Poisson Regression 

 Estimate 

Intercept 
-1.941*** 

(0.211) 

Funding 
0.236*** 

(0.025) 

First degree 
0.075*** 

(0.016) 

Second degree 
-0.002 

(0.003) 

Shared coauthors 
0.447*** 

(0.078) 

New authors 
-0.092 

(0.080) 

Funding square 
-0.006*** 

(0.001) 

First degree x second degree 
-0.001*** 

(0.000) 

 

Table 2: Multinomial Logit Regression 

 Group 1 Group 2 

Intercept 
-1.065*** 

(0.017) 

-1.703*** 

(0.014) 

Funding 
0.021 

(0.161) 

0.103*** 

(0.054) 

First degree 
0.074** 

(0.031) 

0.102*** 

(0.030) 

Second degree 
0.007 

(0.007) 

0.007 

(0.005) 

Shared coauthors 
0.200 

(0.128) 

-0.486*** 

(0.054) 

New authors 
-0.242* 

(0.127) 

0.492*** 

(0.055) 

Funding square 
-0.015 

(0.014) 

-0.003 

(0.002) 

First degree x second degree 
-0.001*** 

(0.000) 

-0.001*** 

(0.000) 
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Table 3: Logit Regression 

 Estimate 

Intercept 
2.387*** 

(0.581) 

Funding 
-0.082*** 

(0.009) 

First degree 
-0.048*** 

(0.018) 

Second degree 
-0.017*** 

(0.008) 

Shared coauthors -0.966*** 

(0.188) 

New authors 
0.803*** 

(0.186) 

Funding square 
0.001 

(0.006) 

First degree x second degree 
0.001 

(0.001) 
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Figure 2: Network Evolution Under Fairness Rule 
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Figure 3: Distribution of Outcomes in Fairness Rule 

Panel A: Distribution of Publications 
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Figure 4: Network Evolution Under Smart Small World Rule 
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Figure 5: Distribution of Outcomes in Smart Small World Rule 

Panel A: Distribution of Publications 
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Figure 6: Network Evolution Under Direct Optimization 
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Figure 7: Distribution of Outcomes in Direct Optimization 
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Figure 8: Network Evolution Under No Funding 
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Figure 9: Distribution of Outcomes in No Funding 
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