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Abstract:  
In the last decade, significant infrastructure changes occurred in the U.S. electricity sector. 
Between 2010-2018, 546 coal-fired power units retired, while natural gas and renewable 
developments grew. These infrastructure changes allow for a natural experiment examining the 
impact of power-plant emissions on population health, and thus can be used to study the health 
impacts of coal emissions on respiratory diseases. Using survey data from the National Center 
for Health Statistics, this paper proposes a study design to examine health benefits and estimate 
changes in health disparities from the closure of U.S. coal power plants. Respondent data from 
the National Health Interview Survey on respiratory health outcomes can be merged with the 
location of power plants and climatic wind direction. We provide a method to merge restricted 
access data and estimate a statistical model of health outcomes that allows data to remain 
deidentified while comparing across disparity dimensions (e.g. income, race), wind direction, 
and coal power plant closures. The findings contribute to the fields of environmental health 
economics, and energy economics by quantifying the benefit of improved health from coal plant 
closures across racial and income subgroups.  
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I. Introduction 

In the last decade, significant infrastructure changes occurred in the U.S. electricity sector. The 

shale gas revolution led to the North American bulk power system adding 180 GW of natural gas–

fired generation in 2009-2019 (NRECA, 2019). Improvements in network operations encouraged 

renewable developments, while 546 coal power plant units retired (Johnson & Chau, 2019). 

Between 2000-2018, particulate matter (PM2.5) concentrations from electricity fell 89% 

(Hernandez-Cortes et al., 2022). These infrastructure changes allow for a natural experiment 

examining the impact of power-plant emissions on population health, and thus can be used to study 

the health impacts of coal emissions on childhood and adult asthma, and respiratory and pulmonary 

diseases. 

Using survey data from the National Center for Health Statistics, this paper proposes a 

study design to examine health benefits and estimate changes in health disparities from the closure 

of U.S. coal power plants. Respondent data from the National Health Interview Survey (NHIS) on 

respiratory health outcomes can be merged with the location of power plants provided by the 

Energy Information Administration (EIA). Following a health economics framework, we provide 

a method to merge restricted access data and estimate a statistical model of health outcomes that 

allows data to remain deidentified but allows for comparisons across disparity dimensions (e.g. 

income, race), wind direction, and coal power plant closures. The difference-in-difference model 

captures the reduced health risk from a power plant closure relative to upwind residents (Abadie, 

2005; Angrist & Pischke, 2008; Bertrand et al., 2004; Gertler et al., 2011). The estimated reduction 

in relative risk from the power plant closure can then be used to estimate the healthcare cost savings 

from power plant closures using Medical Expenditure Panel Survey data. Results for the study 
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design can then provide policymakers an estimate of health benefits from coal power plants 

closure, in terms of the reduction in healthcare costs from plant closure across income and race. 

II. Background Literature 

In the epidemiological literature, coal plants have been linked to all-cause and premature mortality, 

respiratory disease and lung cancer, cardiovascular disease, poorer child health, and higher infant 

mortality (Gupta & Spears, 2017). Causal methods have been used to show that either expansion 

or closures of coal-fired and fossil fuel plants have wide ranging health effects with closures 

reducing premature mortality (Burney, 2020; Fraenkel et al., 2022); improving pregnancy and birth 

outcomes (DeCicca & Malak, 2020; Keil et al., 2021; Wilkie et al., 2023; Yang & Chou, 2018); 

reducing absenteeism in school (Komisarow & Pakhtigian, 2022); decreasing ER visits 

(Komisarow & Pakhtigian, 2022); and reducing medical expenditures and improving resident 

health (Jia & Luo, 2023). Expansions of coal use in India have also led to an increase in respiratory 

disease (Gupta & Spears, 2017). 

Disparities in ambient air pollution exposure has also been well-documented (Cushing et 

al., 2023; Goforth & Nock, 2022; Hajat et al., 2015; Henneman et al., 2023; Hernandez-Cortes et 

al., 2022; Jbaily et al., 2022; Spiller et al., 2021). Evidence suggests that minority and low-income 

populations are exposed to physical, biological, and chemical environmental hazards more 

frequently, and these byproducts of energy consumption are not evenly distributed across 

populations (Abel & White, 2011; Ash & Boyce, 2018; Clark et al., 2014; Miranda et al., 2011; 

Ou et al., 2008; Payne-Sturges & Gee, 2006; Tessum et al., 2019). Exposure rates to fine particulate 

matter from electricity generation is highest for Blacks, and low-income households (Thind et al., 

2019). Notably, Cushing et al. (2023) and Lane et al. (2022) find that historical red-lining led to 

more fossil fuel powerplants be sited in neighborhoods deemed “hazardous” during the Great 
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Depression era of the 1930s by the Federal Housing Administration, leading to greater pollution 

exposure for Black communities. Hajat et al. (2015) and Jbaily et al. (2022) also finds that low-

income populations are exposed to higher levels of particulate matter (PM2.5). Henneman et al., 

(2023) and Hernandez-Cortes et al. (2022) have modelled the reduction in pollution exposure 

driven by the retirement of fossil fuel electric generators and showed that since 2000, the Black-

White PM2.5 disparity has narrowed by 93%, and this narrowing can be attributed largely to 

changes in the electric generation sector with only small effects due to people changing residences. 

However, they find relatively small disparities of PM2.5 exposure by income over time. Henneman 

et al. (2023) notes that most of the exposure reduction after 2010 is attributable to retirements, 

whereas prior to 2010 reductions were attribute to scrubber installations. In the early 2000s, Black 

populations in the South and North Central U.S. were exposed to PM2.5 at higher rates compared 

to average population exposure, and these disparities decreased with falling emissions. However, 

Black populations in the North Central region continue to experience higher rates of PM2.5 

exposure than the population average.1 

Several studies have examined exposure disparities due to decarbonization policies, 

although the findings have been mixed. For example, Gallagher and Holloway (2022) find that 

decarbonization can lead to reductions in relative exposure for Black and Asian populations 

depending on the policy scenarios. However, Richmond-Bryant et al. (2020) find that historical 

changes in PM2.5 led to reductions in premature mortality rates, but shifted the proportional burden 

from particulate matter from White to non-white subgroups. Mejia-Duwan et al. (2023) show that 

changes in air pollution from vehicle electrification is not equally distributed with PM2.5, NOX, 

 
1 The North Central region includes the states Ohio, Michigan, Indiana, Wisconsin, Illinois, Minnesota, Iowa, 
Missouri, Kansas, Nebraska, and North and South Dakota.  The South region includes states as far west as Texas, 
and as far North as Maryland. 
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and SO2 emission reductions disproportionately occurring in the least disadvantaged communities. 

Finally, Thomson et al. (2018) find that coal mining counties, White and rural counites will 

experience some of the best improvements in air quality and specifically PM2.5 from the adoption 

of the Clean Air Act.  

Yet, the impact of these pollution reductions do suggest a benefit in terms of improved 

health to Black and low-income communities. Using a difference-in-difference approach, Casey 

et al. (2018) show a decline in pre-term birth from coal and oil power plant retirements, showing 

a larger reduction among non-Hispanic black and Asian mothers relative to non-Hispanic white 

and Hispanic mothers. Using atmospheric chemistry modelling, Qiu et al. (2022) find that 

mortality rates declined due to increase wind power driven by renewable portfolio standards, and 

people living in high PM areas experienced a greater health benefit relative to the average.  Black 

and low-income households experienced a larger benefit and Hispanic residents experienced a 

smaller than average benefit.  

The environmental health literature has yet to thoroughly explore the trade-off between 

economic activities that produce valued goods and services, such as fossil fuel produced electricity 

and the health costs and negative externalities created through its production. Economic research 

has shown minority groups generally receive a greater share of pollution risks but fewer 

employment benefits from living near US industrial facilities (Ash & Boyce, 2018); and Blacks 

and Hispanics bear a greater pollution burden from exposure to particulate matter PM2.5 than non-

Hispanic Whites, relative to their level of consumption of goods and services (Tessum et al., 2019). 

In this paper, we aim to contribute to this literature by assessing the energy-health trade-off from 

coal power plant closures. Understanding and quantifying this tradeoff between electricity 

production, public health costs, and health disparities is relevant to public and population health 
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experts, epidemiologists, economists, environmental health scientists, energy planners, regulators, 

and policymakers.  

III. Data 

The proposed research design relies on linking power plant location with survey respondent data 

from the National Center for Health Statistics’ National Health Interview Survey (NHIS). The 

NHIS is a repeated cross-sectional nationwide survey useful for this proposal in terms of sample 

size, demographic data, and health outcome metrics. For this proposal, the major strength of the 

NHIS survey is the ability to examine demographic and socioeconomic characteristics across 

health outcomes for a representative sample of the U.S. Between 2009-2018, the core survey has 

remained largely unchanged, capturing household demographics, adult and child health status, and 

health behaviors.  

Table 1. shows statistics for respiratory health outcomes by race and income subgroups. 

NHIS contains participant responses to medical conditions including general health status, and we 

focus on the following respiratory health outcomes: chronic bronchitis, chronic obstructive 

pulmonary disease (COPD), emphysema, lung cancer, if they had a cold in the past 2 weeks, if 

they have ever been told they have asthma, if they had an asthma attack in the previous year, and 

if they visited the ER for asthma in the previous year. Respondents do not answer all questions, 

and table 1 provides the number of respondents for each health outcome, and by subgroup based 

on publicly available data (Blewett et al., 2022).  From this sample, we calculate unweighted 

statistics for each health outcomes to demonstrate the sample size before matching with 

powerplants. These statistics highlight the health disparities between Black and White respondents 

with Black adults showing higher rates of fair or poor health, chronic bronchitis, lung cancer, 

having a cold, and asthma. When comparing across incomes, respondents in a household below 
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the federal poverty line (FPL) have worse rates for all measured health outcomes. These results 

are consistent when we use survey weights to calculate population estimates, as provided in 

Appendix A. 

Table 1 Descriptive Statistics for Adult Health Outcomes NHIS 2009-2018 

Respondents Full 
Sample 

Black White Above 
FPL 

Below 
FPL 

General Health 
Status 

Respondents N= 955,782 138,123 730,316 721,396 141,438 

Fair/Poor N 
(%) 

100,014 
(10.5%) 

19,851 
(14.4%) 

72,380 
(9.9%) 

63,270 
(8.8%) 

25,475 
(18.0%) 

Chronic bronchitis 
past year 

Respondents N= 312,288 45,537 242,192 242,585 48,567 

Yes N 
(%) 

13,374 
(4.3%) 

2,208 
(4.9%) 

10,575 
(4.4%) 

9,278 
(3.8%) 

3,226 
(6.6%) 

COPD Respondents N= 224,367 30,998 175,842 176,863 33,988 
Yes N 

(%) 
8,607 
(3.8%) 

921 
(3.0%) 

7,395 
(4.2%) 

6,074 
(3.4%) 

1,988 
(5.9%) 

Emphysema Respondents N= 312,269 45,541 242,168 242,580 48,574 
Yes N 

(%) 
6,086 
(2.0%) 

660 
(1.5%) 

5,196 
(2.2%) 

4,082 
(1.7%) 

1,531 
(3.2%) 

Lung Cancer Respondents N= 30,017 2,519 26,466 24,387 3,230 
Yes N 

(%) 
954 

(3.2%) 
124 

(4.9%) 
794 

(3.0%) 
710 

(2.9%) 
164 

(5.1%) 
Had a cold in the 
past 2 weeks 

Respondents N= 427,586 64,504 327,070 329,461 70,373 

Yes N 
(%) 

52,084 
(12.2%) 

8,186 
(12.7%) 

39,981 
(12.2%) 

38,797 
(11.8%) 

10,539 
(15.0%) 

Ever been told had 
asthma 

Respondents N= 427,479 64,490 326,977 329,404 70,352 

Yes N 
(%) 

56,203 
(13.2%) 

10,617 
(16.5%) 

41,550 
(12.7%) 

41,301 
(12.5%) 

11,774 
(16.7%) 

Asthma attack in 
last year 

Respondents N= 56,126 41,490 10,607 41,254 11,757 

Yes N 
(%) 

17,980 
(32.0%) 

3,616 
(34.1%) 

13,091 
(31.6%) 

12,492 
(30.3%) 

4,532 
(38.6%) 

ER visit for asthma 
in last year 

Respondents N= 52,710 9,902 38,999 38,773 11,090 

Yes N 
(%) 

5,522 
(10.5%) 

1,778 
(18.0%) 

3,343 
(8.6%) 

3,289 
(3.5%) 

1,913 
(17.3%) 
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For control variables, we also collect data on determinants of respiratory health such as 

biological factors (age, BMI, sex), socio-economic status (income, marital status, race, ethnicity, 

education, access to paid sick leave, owns their own home), access to healthcare access (has a 

usual place when sick, has delayed medical care in the last 12 months, ), health impacting 

behaviors (smoker status, alcohol frequency, moderate exercise frequency), and occupation and 

environment (Dodd & Mazurek, 2016; Lee et al., 2006; Robinson et al., 2011; Senthilselvan et 

al., 2020).  Table 2 provides the estimated population rates for fair or poor health status across 

categories of each covariate.  These variables account for variation in health status across socio-

economic factors, occupation type, access to healthcare, and health-related behaviors.  We see 

that rates of fair or poor health are higher across socio-economic factors: females, renters, some 

college or less for education, and being widowed, or divorced or separated.  Construction, 

production, transportation, or installation and repair occupations have higher rates of fair or poor 

health as do workers in construction, mining, and manufacturing industries. Having access to 

paid sick leave is associated with lower rates of fair or poor health, while delaying medical 

treatment due to concerns about cost is associated with higher rates of fair or poor health.  

Finally, respondents that report smoking, or a lack of moderate activity exercising exhibit higher 

rates of fair or poor health. 

Several studies have used the NHIS data to examine air pollution and health outcomes 

such as childhood respiratory allergies (Parker et al., 2009), mortality (Pope et al., 2018; Pope III 

et al., 2019), asthma (Nachman & Parker, 2012), all cancer mortality (Coleman et al., 2020), and 

heart disease (Parker et al., 2018) using the Environmental Protection Agency’s Air Quality 

System for PM2.5, SO2, and NO2 to measure exposure. Because of its sampling scheme, NHIS 

has the framework to merge data to the participants’ residential geocodes developed by the Dept.  
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Table 2 Rates of Fair/Poor Health Status across Covariates 

 

General Health 
Status is 
Fair/Poor  

General Health 
Status is 
Fair/Poor  

General Health 
Status is 
Fair/Poor 

 Yes 
P-
value  Yes 

P-
value  Yes 

P-
value 

Full 
Population 10.06%  Occupation Type Health-Related Behaviors 

Socio-Economic 
Factors  

Construction 
Occupation <0.01 

Ever smoked 100 
cigarettes <0.01 

Male 9.44% <0.01 No 11.68%  No 10.42%  
Female 10.65%  Yes 19.97%  Yes 19.05%  

         

Home Ownership <0.01 
Construction 
Industry <0.01 Current Smoker <0.01 

Own 9.08%  No 12.49%  Current 21.48%  
Rent 11.97%  Yes 17.58%  Former 17.21%  

      Never 10.42%  
Education <0.01 Access to Healthcare    

HS or less 12.94%  Paid Sick Leave <0.01 Alcohol Frequency <0.01 

Associates 11.64%  No 15.81%  daily 11.68%  
Some 

college 10.96%  Yes 11.32%  <weekly 14.34%  
Bachelors 5.63%     weekly 7.32%  

Masters+ 4.82%  
Has Usual Place for 
Healthcare <0.01 never 26.97%  

   Many 13.46%     
Marital Status <0.01 No 8.23%  Moderate Activity <0.01 
Married/Li
ving  with 

Partner 11.09%  Yes 11.13%  daily 9.48%  
Separated/
Divorced 20.84%     <weekly 12.16%  

Widowed 27.19%  

Medical Cost 
Delayed Treatment 
in Last Year <0.01 weekly 7.96%  

Never 
Married 4.84%  No 8.86%  never 22.11%  

   Yes 24.23%     
 P-values compare statistics across covariates based on a Chi-squared test. 
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of Housing and Urban Development (HUD) which can then be merged by NCHS statisticians to 

power-plant locations and removed. The process to merge and deidentify data requires several 

steps. First, researchers must cross power-plant locations with resident locations to calculate 

distance and bearing from the plant with the bearing later used to determine wind direction. 

Next, we identify people within 30 miles of only 1 coal power plant, and censor those 

respondents outside of 30 miles or within 30 miles of 2 or more power plants.  From this nearest 

plant, we retain the wind direction, whether the plant operated in the respondent’s survey year, 

and number of years since closure. Finally, NCHS statisticians mask any identifying information 

including the powerplant location identifiers, and external variables not needed in the final 

analysis, such as initial bearing.   

The EIA Form 860 collects generator-level information including retirements, historical 

production, and planned capacity.  Location and retirement year information from 1,114 generators 

for 468 power plants were acquired for the time period 2009-2018. Inclusion criteria for generators 

require that the generator be operating for the entire reporting year of 2018, as opposed to being 

on standby or out of service for some or all of the period to ensure exposure. As a result, no power 

plants are excluded from this operating inclusion criteria; however, we exclude plants with partial 

retirements, n=38 (i.e. some generators remained operational), or with generators’ retirement years 

that varied more than 0.5 standard deviations, n=24. Occasionally, new generators are added to 

existing power plants, and we exclude these plants by removing generators starting operations after 

2008 and with generators’ first operating years that varied more than 0.5 standard deviations, to 

ensure a discrete starting date. Additionally, retired plants with retirements before 2009 are 

excluded.  The final data set consists of 382 power plants of which 101 closed with discrete closure 

years.  A map of the excluded power plants is provided in Appendix B Figure B1. 
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Two cohorts of powerplants are derived: intervention and non-intervention groups.  

Intervention plants observed a retirement on or before 2016, and non-intervention plants retired 

after 2016 or are still operating as of 2018. For plants with multiple generators, retirement year 

was defined as the highest retirement year of all generators. Plants with several years between 

generator retirements (>0.5 standard deviations) and thus an unclear retirement year are excluded 

from the analysis. Figure 1 graphs (a) the number of retirements over the study period, and (b) the 

total nameplate capacity retired in our study sample. These figures highlight the three highest 

retirement years occurred in 2015, 2012, and 2018 with 2015 having the highest of plant 

retirements and 2018 having the largest amount of retirements based on nameplate capacity. 

For the analysis, the intervention group includes NHIS respondents within 30 miles of a 

retired plant with at least 2 years of health data post-retirement. For each location, we will evaluate 

at least five years of NHIS data with two years before the retirement and two years after. For those 

respondents in the non-intervention group (ie. non-retirement plants), we will use 2013-2017 as 

the comparison period. A sensitivity analysis will be performed to compare the robustness of 

results across all possible non-intervention counterfactual periods: 2009-2013, 2010-2014, 2011-

2015, 2012-2016, and 2014-2018. 

For perspective on where these retirements are occurring, Figure 2 maps power plant 

retirements with red circles indicating retired plant locations and blue circles designating operating 

plants as of 2018. Each circle’s radius is 30 miles. The selection criteria includes only NHIS 

respondents within 30 miles of only one power plant. Thus, much of the respondents in the final 

dataset will include individuals in the West, Midwest, and South where powerplants are spaced 

farther apart. 
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Figure 1: Coal power plant retirements 2009-2018. 

 
(a) Number of plant retirements by year 

 
(b) Total retired nameplate capacity by year 
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 Figure 2: Coal plant retirement locations from 2009-2018 

 
Red circles indicate retired plant locations and blue circles indicate operating plants as of 
2018.  Each circle’s radius is 30 miles. 

 
 

To proxy for pollution exposure, we rely on wind direction comparing downwind to 

upwind households to evaluate exposed households relative to an unexposed cohort. Linking 

current and former coal sites to weather data is critical for accurate analysis of such proxies 

(Deryugina et al., 2019). Location specific wind data are available for land based stations near 

energy producing facilities from the National Oceanic and Atmospheric Administration. Wind 

direction data are collected and modelled by Visual Crossing using the nearest weather stations to 

interpolate data on daily wind speed, gusts, and direction for a given latitude and longitude 

coordinates (Visual Crossing Corportion, Reston VA). For each location, we calculate the average 

wind direction over the year 2018 from daily wind directions using the CIRCULAR statistics 

module in Stata 17 (StataCorp. 2021. College Station, TX). Upwind and downwind cohorts are 

determined by comparing the initial bearing of the household relative to the closest power plant, 
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and a 90° interval around dominant wind direction is used to define upwind and downwind 

locations.  For this analysis, we will exclude respondents that fall outside the upwind or downwind 

region. 

 
IV. Method 

The difference-in-difference method measures the reduced health risk from a power plant closure 

by comparing a group exposed to the plant’s pollutants (i.e. downwind residents) to a control group 

(i.e. upwind residents) before and after the closure. This approach has been commonly used in 

epidemiological and economics literature measuring, for example, improvements in birth 

outcomes from coal retirements and desulfurization (Casey et al., 2018; Fraenkel et al., 2022; Jha 

et al., 2019; Jia & Luo, 2023; Luechinger, 2014; Yang & Chou, 2018; Yi & Sung, 2021).  To 

expand on this model, we propose to follow a health economics framework to assess health 

outcomes while incorporating health behaviors and evaluating health disparities  (Brunello et al., 

2016).   

The model of health outcomes (i.e. fair/poor health, asthma, lung cancer) for individual i 

is based on the operations of the nearest coal power plant and is modelled econometrically through 

a log link model: 

(1) 𝐻𝐻𝑖𝑖𝑖𝑖~ 𝐹𝐹( 𝜋𝜋𝑖𝑖 ) 

(2) log(𝜋𝜋𝑖𝑖) = 𝑐𝑐 + 𝛾𝛾1𝑊𝑊𝑖𝑖  + 𝛾𝛾2𝐶𝐶𝑖𝑖  + 𝛾𝛾3𝑊𝑊𝑖𝑖 ∙ 𝐶𝐶𝑖𝑖 + 𝛾𝛾4𝑇𝑇𝑖𝑖 + ∑ 𝛼𝛼𝑗𝑗𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛
𝑗𝑗=1 + 𝜹𝜹𝑿𝑿𝒊𝒊 + 𝛽𝛽𝐷𝐷𝐷𝐷𝑖𝑖   

 
where Hit is a binary outcome of respondent i's health, assuming a Poisson distribution to model 

the probability 𝜋𝜋𝑖𝑖𝑖𝑖 of the health outcome. The log Poisson model can then be used to estimate the 

incidence rate ratio (IRR), as well as the average risk difference (RD). Wi is an indicator 

representing the respondent’s upwind/downwind direction relative to the coal power plant site, and 



15 
 

Cit is an indicator for the coal site operating or closed in the year of the health interview. The 

difference-in-difference component of this model is captured by the interaction of Wi and Ci:  

𝛾𝛾1𝑊𝑊𝑖𝑖  + 𝛾𝛾2𝐶𝐶𝑖𝑖  + 𝛾𝛾3𝑊𝑊𝑖𝑖 ∙ 𝐶𝐶𝑖𝑖, where the parameter γ1 represents the impact of wind direction on 

health outcomes, γ2the effect of the closure, and γ3is the interaction between residents upwind and 

downwind-before and after closure. Ti is a discrete variable representing the number of years since 

closure, and controls for aggregate time effects.  

Using a marginal standardization approach to calculate IRR and RD, we calculate the 

expected predicted probabilities to assess risk for the four cohorts, such that the probability of the 

health outcome for the four groups are notated: 

(3) 𝜋𝜋�11 = 1
𝑚𝑚
∑ 𝑒𝑒𝑒𝑒𝑒𝑒� 𝑐𝑐 + 𝛾𝛾1� + 𝛾𝛾2� + 𝛾𝛾3� + 𝛾𝛾4�  + ∑ 𝛼𝛼𝚥𝚥�𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛

𝑗𝑗=1 + 𝜹𝜹�𝑿𝑿𝒊𝒊 + 𝛽̂𝛽𝐷𝐷𝐷𝐷𝑖𝑖 �𝑚𝑚
𝑖𝑖  

(4) 𝜋𝜋�01 = 1
𝑚𝑚
∑ 𝑒𝑒𝑒𝑒𝑒𝑒� 𝑐𝑐 + 𝛾𝛾2� + 𝛾𝛾4�  + ∑ 𝛼𝛼𝚥𝚥�𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛

𝑗𝑗=1 + 𝜹𝜹�𝑿𝑿𝒊𝒊 + 𝛽̂𝛽𝐷𝐷𝐷𝐷𝑖𝑖  �𝑚𝑚
𝑖𝑖  

(5) 𝜋𝜋�10 = 1
𝑚𝑚
∑ 𝑒𝑒𝑒𝑒𝑒𝑒� 𝑐𝑐 + 𝛾𝛾1�  + 𝛾𝛾4� + ∑ 𝛼𝛼𝚥𝚥�𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛

𝑗𝑗=1 + 𝜹𝜹�𝑿𝑿𝒊𝒊 + 𝛽̂𝛽𝐷𝐷𝐷𝐷𝑖𝑖 �𝑚𝑚
𝑖𝑖  

(6) 𝜋𝜋�00 = 1
𝑚𝑚
∑ 𝑒𝑒𝑒𝑒𝑒𝑒� 𝑐𝑐 + 𝛾𝛾4� + ∑ 𝛼𝛼𝚥𝚥�𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛

𝑗𝑗=1 + 𝜹𝜹�𝑿𝑿𝒊𝒊 + 𝛽̂𝛽𝐷𝐷𝐷𝐷𝑖𝑖 �𝑚𝑚
𝑖𝑖  

with 𝜋𝜋�11 notating downwind after coal closures, 𝜋𝜋�01 upwind after closures, 𝜋𝜋�10 downwind before 

closure, and 𝜋𝜋�00 upwind before closure.  These probabilities are conditional upon confounders Bji, 

Xi, DDi and time since closure Ti. 

The IRR compares the relative difference in health between two populations, for example 

representing the ratio of asthma cases for downwind residents relative to upwind residents. As 

such, 𝐼𝐼𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜋𝜋�10
𝜋𝜋�00

 captures the incidence rate ratio of downwind residents relative to 

upwind residents when the power plant is operating; and 𝐼𝐼𝐼𝐼𝐼𝐼𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜋𝜋�11
𝜋𝜋�01

 captures the 

incidence rate ratio of downwind residents relative to upwind residents given a closed power plant. 
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Similarly, the 𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜋𝜋�11
𝜋𝜋�10

 and 𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝜋𝜋�01
𝜋𝜋�00

 capture the incidence rate 

ratio from closure for downwind and upwind residents, respectively.  

We will assess two measures of interactive risk: multiplicative and additive. First, 

multiplicative interaction occurs when 𝜋𝜋�11∙𝜋𝜋�00
𝜋𝜋�10∙𝜋𝜋�01

  >1, and can be thought of as the relative risk from 

closure for downwind residents Wi=1 versus the relative risk from closure for upwind resident 

Wi=0. This interaction term can also be interpreted as the relative risk for downwind resident from 

closure, Ci=1, versus the relative risk for downwind residents when the plant is open, Ci=0.  

Second, the excess risk due to interaction (RERI) is an additive interaction measure is calculated 

as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (𝜋𝜋�11 − 𝜋𝜋�10 − 𝜋𝜋�01 + 𝜋𝜋�00)
𝜋𝜋�00� . In epidemiological literature, RERI is known as an 

interaction contrast ratio that is an additive interaction of risk (VanderWeele, 2009; VanderWeele 

& Knol, 2014).  RERI gives the direction of the additive interaction, with RERI >0 indicating a 

closure would have a larger effect in the downwind group, and RERI <0 implies the closure would 

have a larger effect on the upwind group. 

 From the Poisson regression model, we will also assess the average risk difference (RD). 

Notated as 𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜋𝜋�10 − 𝜋𝜋�00, this metric quantifies the average RD for the study 

population comparing downwind to upwind resident when the power plant is operating; 

𝑅𝑅𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜋𝜋�11 − 𝜋𝜋�01 estimates the risk difference for downwind residents after the closure 

of a power plant; 𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜋𝜋�11 − 𝜋𝜋�10 is the risk difference of the closure for 

downwind residents; and 𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝜋𝜋�01 − 𝜋𝜋�00 is the risk difference of the closure for 

upwind residents.  Following Güdemann et al., (2022), we will assess the conditional average 

treatment effect on the treated (ATT) as measured as the risk difference 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜋𝜋�11 − 𝜋𝜋�01, given 

confounders Bji, Xi, and DDi. Weighting can be used to account for the nature of the data as 



17 
 

repeated cross-sectional (Abadie, 2005). An alternative metric for ATT is the difference-in-

difference estimates (DiD) measured as: 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜋𝜋�11 − 𝜋𝜋�01 − (𝜋𝜋�10 − 𝜋𝜋�00), if significant 

differences between upwind and downwind cohorts exist (Athey & Imbens, 2006; Güdemann et 

al., 2022).  The number needed to treat is simply NNT = 1/ATT, used in the benefit calculation.   

Given that the outcome variables are binary, we will estimate this model using a Poisson 

pseudo maximum likelihood and examine the parallel trends assumption given the nonlinear model 

(Roth & Sant'Anna, 2023). A negative binomial model will be used as a robustness check if 

problems of overdispersion arise. The Poisson regression provides collapsible measures of risk 

measuring the incidence rate ratio rather than an odds ratio, and can be used to calculate, for 

example, the number of fewer asthma cases caused by a plant closure allowing for the benefit 

estimation (Colnet et al., 2023; Sagiv et al., 2005; Siddika et al., 2019; Spiegelman & 

VanderWeele, 2017). The estimated reduction in relative risk from the power plant closure will be 

used to estimate the healthcare cost savings from power plant closures using Medical Expenditure 

Panel Survey data for disease specific health costs. If convergence is not achieved, a logistic 

regression will be used to estimate relative risk and risk difference using sampling weights (Bieler 

et al., 2010). 

To address confounding from health behaviors and socio-economic factors, we will include 

a vector of health related behaviors (e.g. smoking, drinking, physical activity) such that Bji is 

behavior j. Additionally, X1it represents a vector of appropriate controls for respiratory health 

outcomes, such as gender, age, BMI, education, marital status, occupation, access to healthcare, 

and region of the country, to address confounding and increase precision. Finally, DDi represent a 

vector of disparity dimensions which captures socio-economic differences (e.g. income, race).  
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We propose to extend the model in equation (2) to examine health disparities by interacting 

the disparity dimension with the difference and difference component: 

(7) log(𝜋𝜋𝑖𝑖) = 𝑐𝑐 + 𝛾𝛾1𝑊𝑊𝑖𝑖  + 𝛾𝛾2𝐶𝐶𝑖𝑖  + 𝛾𝛾3𝑊𝑊𝑖𝑖 ∙ 𝐶𝐶𝑖𝑖 + 𝛾𝛾4𝑇𝑇𝑖𝑖 + ∑ 𝛼𝛼𝑗𝑗𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛
𝑗𝑗=1 + 𝜹𝜹𝑿𝑿𝒊𝒊 + 𝛽𝛽𝐷𝐷𝐷𝐷𝑖𝑖  + 𝜃𝜃1𝑊𝑊𝑖𝑖 ∙

𝐷𝐷𝐷𝐷𝑖𝑖   + 𝜃𝜃2𝐶𝐶𝑖𝑖  ∙ 𝐷𝐷𝐷𝐷𝑖𝑖 + 𝜃𝜃3𝑊𝑊𝑖𝑖 ∙ 𝐶𝐶𝑖𝑖 ∙ 𝐷𝐷𝐷𝐷𝑖𝑖   
 
The parameters γ1 + 𝜃𝜃1 represents the impact of wind direction on health outcomes for a given 

disparity dimension.  For example, if the disparity dimension is race, then γ1 + 𝜃𝜃1 represents the 

wind effect on health for Black relative to White residents. Similarly, γ2 + 𝜃𝜃2 represents the 

closure effect on health for Black relative to White residents, and γ3 + 𝜃𝜃3 is interaction between 

residents upwind and downwind-before and after closure for Black residents relative to White. 

Similar analysis will be performed for other disparity dimensions such as income or gender with a 

clearly established reference group. Inference and assumptions of this triple difference model will 

be assessed following methods proposed by (Olden & Møen, 2022). 

 Performing a sensitivity analysis, we will test the robustness of the model to account for 

plant random effects, and clustered standard errors by power plant. 

V. Benefits Estimation 

The estimated reduction in risk from the power plant closure can then be used to estimate the cost 

savings from power plant closures using Medical Expenditure Panel Survey (MEPS) data. MEPS 

is administered by the Agency for Healthcare Research and Quality and is the only national source 

of data measuring how Americans pay for medical care. The household component summary 

tables provide expenditure estimates that are nationally representative. Table 3 shows the 2019 

mean expenditures by race, and poverty status for persons with COPD, asthma, or other respiratory 

conditions. Expenditures trend upward for poorer households, yet near poor households (i.e. 

households with income between 100%-125% of the federal poverty line (FPL)) experience the 

highest average expenditure per person receiving care. 
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Table 3 Mean expenditure per person with care for COPD, asthma, and other respiratory 
conditions by income and race in 2019 
 Mean 

Expenditure 
95% Confidence Interval 

All persons $2,153 $1888 $2419 
Household Income    
Poor  
<=100% FPL 

$2830 $2207 $3454 

Near poor 
>100% FPL and <=125%FPL 

$3347 $1089 $5606 

Low income 
>125% FPL and <=200%FPL 

$2049 $1412 $2686 

Middle income 
>200% FPL and <=400%FPL 

$2072 $1555 $2590 

High income 
>400% FPL 

$1844 $1536 $2151 

Race    
White $2231 $1884 $2578 
Black $2412 $1493 $3331 
Hispanic $1819 $1127 $2510 

Income definitions defined by ARHQ based on Federal Poverty Line (FPL). Classification by race 
and ethnicity is based on self-reported family members. 
 

MEPS data will be used to calculate the healthcare cost savings from reduced emissions 

based on changes in health outcomes derived from our statistical model. Specifically, the number 

needed to treat (NNT) along with the estimated population size will be used to derive both benefits 

from retired plants as well as cost of having active plants remain open. We use the following 

formula to calculate benefits: 

(8) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 × ∑ 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘�𝑘𝑘  

(9) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 × ∑ 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒
𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘�𝑘𝑘  

where Ni represents the population size of residents downwind of an active or closed power plant. 

For the k respiratory health outcomes including chronic bronchitis, COPD, lung cancer, 

emphysema, and asthma, we estimate the NNT the models presented in equation (2).  Summing 

over the health outcomes provides us with the number of respiratory cases in the population 
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downwind of a closed powerplant, ∑ 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘�𝑘𝑘 , or active power plant, ∑ 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑁𝑁𝑁𝑁𝑁𝑁𝑘𝑘�𝑘𝑘 .  

Average expenditures are then used to calculate total benefit from coal retirements, as well as total 

cost keeping open active power plants. 

 This model will then be extended to examine disparities in benefits by evaluating the NNT 

from models presented in equation (7), which accounts for disparities in the average treated effect 

on the treated by income and race. Equations (8-9) will be used across these dimensions of 

disparity to compare the benefits from powerplant closures across race and income. 

Further, we will quantify the trade-off with energy through the formulas:  

(10) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝𝑝𝑝𝑝𝑝 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑆𝑆 ∗ 𝑁𝑁𝑁𝑁𝑅𝑅)�  

(11) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝 𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
(𝑆𝑆 ∗ 𝑁𝑁𝑁𝑁𝐴𝐴)�   

where benefit per unit of capacity is a function of total benefit divided by the mean plant size, S, 

in units of MW, and the number of retired plants within our NHIS merged cohort, NPR.  Similarly, 

cost of keeping plants open per unit of capacity is a function of total cost divided by S and the 

number of active matched plants NPA.  

VI. Conclusion 

This research protocol proposes to examine environmental health disparities and the subsequent 

disparities in the economic burden of disease across two distinct dimensions: income and race. 

This combination will allow strong inferences into the relationship between the environment, 

socio-economic factors, health outcomes, and healthcare costs. The study design takes advantage 

of restricted access data from the National Center for Health Statistics and applies econometric 

inference techniques to answer environmental health science and health economic questions.  
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Specifically, the research protocol estimates the health and healthcare impacts from a 

reduction in air pollution exposure from coal power plant closures across socio-economic 

subgroups. These infrastructure changes proxy for changes in environmental exposures, and thus 

can be used to study the health impacts of childhood and adult asthma, chronic bronchitis, 

emphysema, COPD, and lung cancer. Furthermore, the study design adds to the fields of 

environmental health economics, and health disparities research by taking advantage of locational 

and plant closure differences to implement quasi-experimental designs methods, and merging 

restricted access data in a manner such that maintains data stewardship best-practices, but allows 

for health disparities research. 

The findings will contribute to the fields of environmental health economics, and energy 

economics by quantifying the cost of health disparities created by unequal exposure rates across 

racial and income subgroups. Thomson et al. (2018) find that coal mining counties, White and 

rural counites experienced some of the best improvements in air quality and specifically PM2.5 

from the adoption of the Clean Air Act. Studying the Northeast’s Regional Greenhouse Gas 

Initiative, Declet-Barreto and Rosenberg (2022) find that such policies focusing on total emissions 

reductions have largely benefitted non-environmental justice communities. Disparate exposure to 

energy-related air pollution increases health inequalities for low and minority populations, 

increases their cost of healthcare, and leads to a struggle between energy production, and public 

health and health disparities.   

 Limitations of the proposed methods are the sample size used for the assessment. While 

the NHIS dataset from 2009-2018 includes 955,782 survey respondents, the inclusion criteria of 

respondents within 30 miles of only one powerplant will reduce the available sample size. 

Additionally, not all respondents are asked questions regarding respiratory health further limiting 
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the sample size, and causing the sample size to vary between health outcomes.  Sampling weights 

will be used to expand the analysis to represent other individuals in the U.S. As noted above, many 

of the geographic areas with only one coal power plant are west of the Mississippi River or in the 

southeastern U.S., limiting the generalizability of the interpretation.  A final limitation of the study 

design is the influence of the inclusion and exclusion criteria on benefit and cost estimation.  Our 

sample only includes individuals within 1 mile of coal power plant and excludes those near 

multiple power plants or near partially retired plants. This suggests the benefits of closure may be 

larger than this method estimates, and cumulative effects from multiple plants are unmeasured. 

Two possible extensions of this proposal are possible. First, NCHS has a second survey 

collecting health information through the National Health and Nutrition Examination Survey 

(NHANES). These health interviews are more intensive than NHIS but can provide a more 

complete analysis of health-related behaviors and occupation. The survey combines interviews 

with physical examinations and biological specimen collection. The biennial survey provides a 

nationally representative sample from about 5,000 persons, and includes demographic, 

socioeconomic, dietary, and health-related questions. The main research trade-off between NHIS 

and NHANES is sample size for information on health-related behaviors to better account for 

lifestyle differences. Models based on NHANES can incorporate a greater level of detail for health-

related behaviors, such as smoking, drug and alcohol use, and physical activity. The examination 

portion provides measurements on height, weight, blood pressure, and measures of lung function. 

Future research building on this model can also compare counterfactuals with residents near 

nuclear power plants, or wind and solar developments to measure risk differences based on energy 

source rather than wind direction.   
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Appendix A – Population Estimates of Health Outcome by Disparity Dimensions Poverty 
and Race 

Table A1 provides the population estimates for health outcome for White, Black, and other 

minority respondents, and again by poverty status.  Health outcomes are worse for those below the 

federal poverty line across all metrics of respiratory health.  Black respondents have worse rates 

for general health, chronic bronchitis, lung cancer, having a cold, and asthma relative to White 

respondents. 

Table A1: Population Estimates of Health Outcome by Poverty and Race. 

 White Black 

Other 
Minori
ty P-value 

Above 
FPL 

Below 
FPL P-value 

General Health 
Status – Fair/Poor 9.63% 13.38% 8.72% <0.01 8.43% 18.27% <0.01 
Chronic bronchitis 
past year 4.37% 4.51% 2.41% <0.01 3.83% 6.74% <0.01 
COPD 4.08% 2.7% 1.59% <0.01 3.33% 5.9% <0.01 
Emphysema 2.15% 1.24% 0.89% <0.01 1.68% 3.27% <0.01 
Lung Cancer 2.89% 4.66% 3.97% <0.01 2.78% 4.98% <0.01 
Had a cold in the 
past 2 weeks 12.21% 12.77% 10.76% <0.01 11.82% 15.26% <0.01 
Ever been told had 
asthma 12.71% 16.38% 11.16% <0.01 12.49% 17.19% <0.01 
Asthma attack in 
last year 31.14% 33.44% 31.75% <0.01 29.97% 38.14% <0.01 
ER visit for asthma 
in last year 8.08% 17.41% 10.79% <0.01 8.06% 16.41% <0.01 

Source: NHIS 2009-2018 collected from IPUMS (Blewett et al., 2022). 
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Appendix B – Power plants excluded from analysis 

Excluded plants include those with partial retirements, n=38 (i.e. some generators remained 

operational), or with generators’ retirement years that varied more than 0.5 standard deviations, 

n=24. Occasionally, new generators are added to existing power plants, and we exclude these 

power plants by removing generators starting operations after 2008 and with generators’ first 

operating years that varied more than 0.5 standard deviations, to ensure a discrete starting date.  

Figure B1 shows the 30 mile radius of included plants (yellow) and excluded plants (red, green, 

black) based on exclusion criteria.  Most excluded plants are exclusive of other plants or their 

radius falls within two or more plants, which would have further excluded residents in those areas 

from the analysis. 

Figure B1: Excluded Coal Locations 

 
Yellow circles indicate the 30 mile radius of plants included in the analysis. 
Black circles indicate plants that added generation during the study period. 
Green circles indicate plants with only a partial retirement. Red circle plant 
locations indicate plants with a standard deviation in its generators’ 
retirement years greater than 0.5.  
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