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Abstract

It is crucial to predict crop yield distribution accurately to obtain an actuarially fair
premium rate when designing crop insurance contracts considering the importance of crop
insurance in U.S. agricultural policy. We proposed a new rating methodology that com-
bines two machine learning techniques: Gaussian Process and stacking. Gaussian Process
consolidates the conventional two-stage estimation into one and is capable of capturing non-
linear temporal effects and time-varying distributions of crop yields. Stacking pools similar
counties together and prioritizes the ability to forecast future crop yields over fitting exist-
ing data points when determining optimal weights on model averaging. Heteroscedasticity
adjustment is also added which further improves the predictive performance. A repeated
out-of-sample rating game is conducted to demonstrate the economic importance of the pro-
posed method. Based on the game results, stacking models outperform individual Gaussian
Process models by having smaller average loss ratios. Also, the stacking model benefits
from enlarging the candidate pool size. Compared to the Risk Management Agency (RMA)
rating methodology, the stacking model after heteroscedasticity adjustment generates more
accurate premium rates.
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Introduction

Crop insurance is a critical component of U.S. agricultural policy, with over $193 billion

in total liability in 2022 (U.S. Department of Agriculture Office of Inspector General, 2022).

Accurately forecasting crop yield distribution is essential in designing a crop insurance policy

to obtain an actuarially fair premium rate for insurance contracts. A more precise rating

methodology for crop insurance improves the overall soundness of the program and helps to

reduce adverse selection and moral hazard in crop insurance markets caused by asymmetric

information.

Rating area-type crop insurance contracts relies on county-level yield data, which depend

on various inputs, such as weather, seed technology, cropping intensity, soil quality, and

farming practices. Therefore, crop yield data exhibit nonlinear trends and time-varying dis-

tributions. Previous research commonly uses a two-stage approach to predict crop yield

distribution. In the first stage, the trend of crop yields is estimated and removed to obtain

the demeaned yields. In the second stage, the distribution of demeaned yields is estimated

using a parametric or nonparametric approach. This approach has two potential limitations

(Wu et al., 2021). First, if the trend is not accurately estimated in the first stage, an incor-

rect result may be concluded in the second stage. Second, while the actual yield distribution

can be changing over time, a stationary yield distribution is generally assumed in the second

stage. Currently, the Risk Management Agency (RMA) of the U.S. Department of Agricul-

ture (USDA) uses a two-knot linear spline model to estimate the trend function, which lacks

flexibility due to its simplicity. Therefore, to capture the nonlinear temporal function and

time-varying distributions of crop yields more accurately, we propose a Gaussian Process

(GP) model for each individual county. GP is a probabilistic machine learning method that

combines the two stages of yield density prediction into one and provides a more accurate

prediction that incorporates uncertainty that can vary over time.

On the other hand, county-level crop yields often have short histories of 60-70 years and

exhibit spatial dependence due to similar weather, soil conditions, and other geographical

features. Pooling or averaging individual county models can lead to more accurate estimates
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by borrowing information from similar counties. Thus, identifying the “similarity” between

neighboring counties is crucial for implementing this averaging scheme. Some literature

incorporates the geographic location of counties for this purpose, as neighboring counties

tend to be similar in crop production (Du et al., 2015; Wu and Zhang, 2020). Bayesian Model

Averaging (BMA) (Ker, Tolhurst, and Liu, 2016) offers an alternative approach by identifying

similar counties without specifying geographic information, which allows candidate counties

far away from the target county to contribute information on predicting the yield density

as long as they are “similar.” However, BMA has the flaw that it converges to the single

candidate model in the pool closest to the true model when the true model is not in the

candidate model pool, which is almost always the case in forecasting crop yield density. In

contrast, model stacking, the method proposed in this paper, overcomes this problem by

averaging individual models to generate a distribution closest to the data-generating process

under the chosen scoring rule. The weights for averaging are derived by maximizing the

overall predictive log scores, which measure the forecast ability of each candidate model

when predicting the crop yields of the target county (Geweke and Amisano, 2011; Yao et al.,

2018).

In this study, we evaluate the proposed estimation strategy using county-level U.S. corn

yield data from 1960 to 2020 for seven major corn-producing states. By incorporating in-

formation from similar counties, the stacking densities demonstrate better predictive perfor-

mance, as measured by yearly average log scores. A repeated out-of-sample rating game is

also conducted to evaluate the economic importance of the proposed method. The rating

game results show that stacking models perform better than individual models by showing

a substantial performance gain from enlarging the candidate pool size. Heteroscedasticity

adjustment also improves rating game results in general. Furthermore, stacking models out-

perform the conventional two-stage process used by RMA for capturing economical rents

and generating more accurate premium rates.
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Tradition Approaches on Crop Insurance Rating

Many approaches have been applied to estimate crop yield density in the literature. Most

of these approaches contain two stages. In the first stage, the trend of the yield distribution

is estimated. Conceptually, the trend represents technological advancements and climate

change over time. Polynomial (Just and Weninger, 1999), univariate ARIMA (Goodwin

and Ker, 1998), and mixtures of trend functions (Tolhurst and Ker, 2015) are employed in

previous studies for detrending. In the second stage, residuals taken from the first stage

are used to model the yield distribution after adjustment of potential heteroscedasticity.

Methods here can be classified into two classes: parametric and non-parametric. Parametric

methods are estimated by assuming a specific functional form of the yield distribution.

Among them, the normal distribution is used by Botts and Boles (1958) and considered

to be not unreasonable by Just and Weninger (1999). Other commonly used specifications

include Gamma (Gallagher, 1987), Beta (Nelson and Preckel, 1989), and Logistic (Atwood,

Shaik, and Watts, 2003) distributions. However, if the parametric distribution is specified

incorrectly with respect to the underlying crop yield distribution, biases may arise. Non-

parametric methods on the other hand provide a more flexible way to avoid specification error

and estimate yield density but require more effective samples to ensure convergence. More

examples include inverse sine transformation method (Moss and Shonkwiler, 1993), kernel

density estimation (Ker and Goodwin, 2000; Liu and Ker, 2020a; Wen, Wu, and Leatham,

2021), maximum entropy (Wu and Zhang, 2012; Tack, Harri, and Coble, 2012) and normal

mixtures (Goodwin, Roberts, and Coble, 2000; Woodard and Sherrick, 2011; Tolhurst and

Ker, 2015).

In estimating crop yield density, the major difficulty is the lack of data. Commonly the

county-level crop yield only has a history of 60-70 years. On the other hand, county-level

crop yield data is featured with spatial dependencies among counties due to the similar

weather, farming practice, and soil conditions. To exploit this feature, one can pool or

‘borrow’ information from similar counties to achieve more accurate estimates. A variety

of approaches have been applied here. For example, Annan et al. (2013) conduct a test for
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distributional equivalence to identify similar densities and find pooled model results in more

accurate rates. Bayesian model average is used by Ker, Tolhurst, and Liu (2016) to identify

and pool similar densities together and further employed by Liu and Ker (2020b) to smooth

across both space and time. Zhang (2017) proposes a density-ratio estimator which first sets

a common baseline density and then estimates individual distributions as deviations from

the baseline. This method is further extended by incorporating spatial dependence among

counties, where the weights of pooled counties are assigned by a local maximum likelihood

estimator proposed by Wu and Zhang (2020).

Gaussian Process

This study estimates the individual county model by Gaussian Process regression. Gauss-

ian Process is a powerful nonparametric method that can produce the entire predictive

distribution instead of only point estimates. In past literature for crop insurance, Wu et al.

(2021) employ a mixture of GPs to estimate crop yield density and it outperforms the tra-

ditional two-stage estimators, especially with nonstationary underlying distributions. For

more technical details of the Gaussian Process, we refer to Williams and Rasmussen (2006)

for a thorough overview.

Preliminaries

A Gaussian Process can be considered a multivariate Gaussian distribution with infinitely

many variables. Therefore, to completely specify a GP, we only need a mean function m(x)

and covariance function K(x,x′)

(1) f(x) ∼ GP (m(x), K(x,x′))

By the marginalization property, we can partition the data points we care about and

only work with this subset. Then the infinite dimension GP reduces to a finite multivariate

Gaussian distribution which is feasible for calculation.
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Given a training data set with input vector x = [x1, x2, ..., xn]
′ and corresponding noisy

observations y = [y1, y2, ..., yn]
′, where y = f(x) + ϵ, ϵ ∼ N(0, σ2

n), a GP regression model

is formulated by placing a GP prior over the non-linear function f . Here we assume f to

be a zero-mean GP with covariance function K(x,x). There is a variety of choices for this

covariance function.

To predict the outcomes at test location x∗, the joint distribution of f(x∗) and y need to

be evaluated. Denote f∗ = f(x∗), we have:

(2)

y
f∗

 ∼ N

0,

K(x,x) + σ2
nI K(x,x∗)

K(x∗,x) k(x∗,x∗)


With n training points and n∗ testing points, K(x,x∗) is an n×n∗ matrix where the (i, j)th

entry is the covariance between the training point xi and testing point x∗
j , and similarly for

K(x,x), K(x∗,x) and K(x∗,x∗)

The predictive distribution of f∗ given the data is:

(3) f∗|x,y,x∗ ∼ N (̄f
∗
, cov(f∗))

with predictive mean and predictive covariance:

(4) f̄
∗
= K(x∗,x)[K(x,x) + σ2

yI]
−1y

(5) cov(f∗) = K(x∗,x∗)−K(x∗,x)[K(x,x) + σ2
yI]

−1K(x,x∗)

The predictive uncertainty can be interpreted as prior uncertainty minus the reduction

in uncertainty from seeing the training data. Therefore, with more training data points

observed and more correlation between training data and predictive points, the predictions

will be more confident than prior.
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Application to Crop Yields

This study is using 1960 - 2020 United States county-level corn yield data obtained from

National Agricultural Statistics Service. Seven major corn-producing states are selected:

Illinois, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin. After removing counties

with missing values, a total of 300 counties are left in the final data set.

Let county-level corn yields be output y and each year as input x. For each county i (i =

1, ..., 300), to predict the corn yield distribution in each year of x∗ (x∗ = 1990, 1991, ...2021)

we use all data from that county before that year to fit a Gaussian Process. In total, 32 times

300 different GP models are built in this step. A zero mean GP with Squared Exponential

(SE) covariance function is used to fit the model. The SE kernel takes the form:

(6) k(xi, xj) = σ2
f exp(−

1

2l2
(xi − xj)

2)

where the length-scale l defines how quickly these correlations fall away, and signal variance

σ2
f defines the scale of the function. Since corn yields are noisy observations, there is another

parameter σ2
n that defines how noisy the data are at each point. For yi = f(xi) + εi, the

error term takes the form:

(7) εi ∼ N(0, σ2
n)

The covariance function for y becomes

(8) k(xi, xj) = σ2
f exp(−

1

2l2
(xi − xj)

2) + σ2
nδij

where δij is the Kronecker delta function.

For each GP model, the three hyperparameters (l, σf , σn) are estimated through maximum

a posteriori (MAP), which is known as the penalized maximum likelihood estimate. It obtains

a posterior mode estimate, which is also the mean of the posterior distribution since we are

dealing with Gaussian posterior.
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Finally, with the estimated hyperparameters, we can predict the corn yield distribution

as a Normal distribution centered at predictive mean with predictive variance calculated by

equations (4) and (5).

Heteroscedasticity Adjustment

Possible heteroscedasticity in crop yields is studied in past research (Harri et al., 2011;

Tolhurst and Ker, 2015; Ker and Tolhurst, 2019). Due to technological change, corn yield

data is showing signs of nonconstant variance with respect to time. Tolhurst and Ker (2015)

find yield density becomes more dispersed with bimodal shape over time. To adjust for

possible heteroscedasticity of crop yield, we assume:

(9) ϵi|xi ∼ N(0, σ2
n,i)

where

(10) lnσ2
n,i = α + βxi

The covariance function for yi = f(xi) + εi is now

(11) k(xi, xj) = σ2
f exp(−

1

2l2
(xi − xj)

2) + σ2
n,iδij

Instead of three, four hyperparameters (l, σf , α, β) are estimated through MAP when ac-

counting for heteroscedasticity.

To demonstrate the overall pattern and show the changes when incorporating heteroscedas-

ticity, Figure 1a and 1b show the fitted GP model of the average corn yields from all counties

in Iowa using historical data from 1960 to 2020 and predict the mean of the yield distribution

in 2021. The darker shaded area is the GP predicted mean plus and minus 1.96 predicted

signal standard deviation. The lighter shaded area is the GP predicted mean plus and minus

1.96 predicted standard deviation of signal with noise. With heteroscedasticity incorporated,

variance is now increasing over time.
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(a) Homoscedasticity - Iowa (b) Heteroscedasticity - Iowa

Stacking

Crop yield data is having a short history which is restricting the performance of the

prediction from the GP model. We proposed stacking as the approach to identify similar

counties and pool information together to overcome this difficulty.

Preliminaries

Model stacking is an ensemble machine learning technique that trains multiple models and

combines them in a way that maximizes their collective predictive performance. Generally,

it contains two steps: First, Given a set of data ((xi, yi), i = 1, ..., n) and the model list

M = (M1, ...,Mm), each model Mk is fitted separately to obtain the leave-one-out (LOO)

predictor for each data point i. Then the weight for each model is obtained by minimizing

the LOO mean squared error:

(12) ŵ = argmin
w

n∑
i=1

(yi −
∑
k

wkf̂
(−i)
k (xi))

2

where f̂
(−i)
k (xi) is the LOO predictor from model k and data point i (?).

However, minimizing LOO mean squared error is focusing on point predictions. To extend

this approach to predictive distributions, Yao et al. (2018) suggest finding stacking weights

by maximizing scoring rules. There is a variety of choices for the scoring rules, but under

regularity conditions, the log score is the only proper local score. Geweke and Amisano (2011)
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also suggest finding the optimal weight of the linear combination of prediction models by

maximizing the predictive log score.

When stacking predictive distributions, we first obtain the LOO predictive densities by

fitting model k without data point (xi, yi) for each i and k. Then the log score is the

logarithm of the probability that an actual data point yi is generated from the LOO predictive

distribution estimated without using the ith data point.

(13) logSik = log(p(yi|y−i,Mk))

The weight for each model is derived from maximizing the summation of the log score:

(14) ŵk = argmax
w

n∑
i=1

log
m∑
k=1

(wkp(yi|y−i,Mk))

Finally, the optimal predictive density is the weighted average of predictive distributions:

(15) p̂(ỹ|y) =
m∑
k=1

ŵkp(ỹ|y,Mk)

Instead of focusing on fitting existing data points more accurately, stacking is more focused

on enhancing the predictive ability by utilizing the leave-one-out approach. It generates a

distribution that is closest to the data-generating process under the selected scoring rule

(Yao et al., 2018).

Application to Crop Yields

After estimating the individual county predictive distribution from 1990 to 2021 by Gauss-

ian Process, we stack candidates counties together and derive the optimal weighted average

predictive distribution for each county. The predictive distribution of each county is aver-

aged in different candidate pools: using counties in the same States, or counties in the same

crop-reporting-district (CRD) in each State.

Assume the corn yield data from each county is generated from a different underlying

model in the model list M = (M1, ...,M300). To get the stacking predictive distribution of

target county i in the year T (1990 ≤ T ≤ 2021), we will need the predictive distribution
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pkj generated in the previous section, where k denotes each candidate county and j =

1, ..., (T − 1990 + 1) represents each forecast year x∗
j . This approach can be considered a

special case of the LOO method by only leaving one data point out instead of repeating this

procedure for all historical data points. It mimics the decision environment of real-world

insurers: predict the crop yield distribution for the next year using all historical data, which

is increasing in sample size as time goes by.

Denote the pool size as m. Then, for each target county i in each forecast year x∗
j (j ̸=

32), we put the actual yield y∗ij into the GP predictive distribution pkj obtained from each

candidate county k in the pool (k = 1, 2, ...,m) to calculate the log score:

(16) Sikj = log(pkj(y
∗
ij)), pkj ∼ N(f̄ ∗

kj, cov(f
∗
kj) + σ2

nkj)

where f̄ ∗
kj and cov(f ∗

kj) + σ2
nkj are the predictive mean and variance obtained from the indi-

vidual GP model of county k when forecasting year x∗
j

Then, for each target county i, by maximizing the summation of the log score before year

T , the stacking weights of the candidate models can be derived:

(17) ŵik = argmax
w

T−1990∑
j=1

log
m∑
k=1

(wikpkj(y
∗
ij))

The predicted density in year T of target county i from the stacking model is:

(18) p∗i =
m∑
k=1

ŵikp
∗
kj, j = T − 1990 + 1

Model stacking combines the predictions of multiple candidate models to improve predic-

tive performance, rather than focusing solely on fitting existing data points. This feature is

especially important for our study, as accurate predictions of crop yield density one or two

years in advance are necessary for rating crop insurance contracts. Unlike other methods,

the yield densities of candidate counties assigned with non-negative weights in stacking are

not necessarily similar to the target county’s densities, and these candidate counties are not
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restricted to the geographical closeness to the target county. However, they still contribute

to identifying the underlying data-generating process of the target county.

By definition, a higher log score represents higher forecasting performance. Figure 2 and

Figure 3 present the average log score in two example states: Illinois and Wisconsin, from

the year 2001 to 2020. The solid lines are from the homoscedasticity GP model and the

dotted lines are the GP models after heteroscedasticity adjustment. By incorporating het-

eroscedasticity, we found a large gain in predictive performance. Especially when crop yield

experienced large shocks, like the 2012 crop losses due to severe drought, the heteroscedas-

ticity models are affected less than the models without adjustments.

Furthermore, the black lines indicate individual GP models, while the blue and red lines

are stacking models with candidate pools using counties within CRD and counties within

states, respectively. Overall, by incorporating more “similar” models, the stacking model

outperforms individual models, with performance gains increasing as the candidate pool size

grows.

Figure 2. Illinois Figure 3. Wisconsin

Figure 4 and Figure 5 show the predictive distribution in the year 2021 using models after

heteroscedasticity adjustment from two example counties: Effingham County in Illinois and

Burnett County in Wisconsin. The individual predictive distributions are normal distribu-

tions with means and variances estimated by GP. The stacking distribution is no longer

normal distributions but rather a mixture of normal distributions, which is more flexible
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and appropriate in terms of crop yield distribution. By borrowing information from similar

counties, stacking densities tend to have quite different moments than the individual ones.

Figure 4. Illinois, Ford
County

Figure 5. Wisconsin,
Barron County

Out-of-sample Rating Games

To demonstrate the economic importance of the proposed method, we conduct a repeated

out-of-sample rating game to compare the performance of the individual method and the

stacking methods (?). The rating game is repeated for the recent 20 years (t = 2001, ..., 2020).

First, we calculate the log scores in the years 1990-2020 using the method described in the

previous section. For each t in the rating game, the optimal weights are calculated by

maximizing the summation of the log score within each pool from all previous years.

Then, we estimate and compare the premium rate in year t using the individual predictive

distribution as well as the weighted average of the predictive distributions. We assume

government uses the individual premium rate π̂G while private insurance company uses the

stacking premium rate π̂P (both in bushels per acre). If π̂P is larger than π̂G then the

insurance company considers government underestimates the risk and cedes the contract. If

π̂P is smaller than π̂G then the insurance company thinks government overestimates the risk

and retains the contract. Using the actual yield yi we can obtain the loss ratio of a set of

policies Ω in that year:

(19) LossRatioΩ =

∑
i∈Ω max(0, ŷGi

− yi)∑
i∈Ω π̂G
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where ŷGi
is the yield guarantee under 90% coverage level. It is equal to the expected yield

times the coverage level, where the expected yield is the predicted yield calculated by the

government. After the yearly loss ratios are calculated, two statistical tests are employed to

examine the performance of the proposed methods.

To show the incremental gain from increasing the size of the candidate pool, rating games

are further implemented by assigning the government a stacking premium rate obtained

from a smaller candidate pool, while insurance companies use a stacking premium rate

calculated from a larger pool. We demonstrate the gain under both homoscedasticity and

heteroscedasticity assumptions in Table 1. All the rating games are conducted under a 90%

coverage level. The loss ratios from the individual models are larger than the stacking models.

With more counties added to the pool of stacking, the loss ratios decrease in general. The

null hypothesis of Game 1 is that ceding or obtaining policies using the estimated premium

rates is as good as ceding or obtaining the same number of policies randomly. The result

shows all methods are significantly better than randomly choosing the policies.

Under the setup of the rating games, the insurance company could take advantage by

always selecting ahead of the government (Ker, Tolhurst, and Liu, 2016). Therefore, we use

Game 2 to nullify the advantage by letting government also select ahead of the insurance

company. The metric is calculated as:

(20) D =
LRp/LRg

LR∗
g/LR

∗
p

LRp and LRg are the loss ratio of the insurance company and government when the

insurance company selects against the government. LR∗
p and LR∗

g are the loss ratios of the

insurance company and government when they switch roles. Denote C∗ as the number of

D ≤ 1 in the 20 years rating game. Under the null, C∗ ∼ B(20, 0.5), which indicates in

terms of variance, the rates are equally efficient. Small p-values are obtained in the result of

Table 1 indicating the stacking models are more efficient.

Table 2 on the other hand focus on the improvement of the heteroscedasticity adjust-

ment. We found that without incorporating heteroscedasticity, even after stacking using
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Table 1. Corn Rating Game Results: 90% Coverage Level

Number of Retained by Loss Ratio Loss Ratio Game 1 Game 2
Method-State Counties Private (%) Government Private p-value p-value

Homoscedasticity: Individual vs Within CRD

Illinois 56 47.6 6.084 2.977 0.0000 0.0577
Iowa 75 46.2 6.931 2.388 0.0002 0.1316
Michigan 23 42.4 14.871 6.935 0.0000 0.1316
Minnesota 46 37.5 6.215 2.364 0.0000 0.0577
Missouri 12 68.3 4.683 2.220 0.0002 0.0207
Ohio 46 36.2 8.612 4.389 0.0000 0.0207
Wisconsin 42 40.7 7.165 5.356 0.0207 0.5881

Homoscedasticity: Within CRD vs Within State

Illinois 56 41.2 2.874 2.274 0.0013 0.0013
Iowa 75 32.3 3.534 2.826 0.0059 0.2517
Michigan 23 34.8 4.498 3.096 0.0000 0.0059
Minnesota 46 15.3 2.328 2.062 0.0207 0.0577
Missouri 12 35.8 1.880 2.110 0.0059 0.1316
Ohio 46 24.6 3.255 2.517 0.0002 0.0577
Wisconsin 42 32.4 5.022 1.283 0.0000 0.1316

Heteroscedasticity: Individual vs Within CRD

Illinois 56 74.6 0.729 0.396 0.0000 0.0207
Iowa 75 72.2 0.510 0.228 0.0000 0.0059
Michigan 23 69.1 0.388 0.256 0.0000 0.0059
Minnesota 46 75.2 0.248 0.138 0.0000 0.0577
Missouri 12 82.9 0.596 0.569 0.0002 0.0059
Ohio 46 75.8 0.282 0.296 0.0002 0.0577
Wisconsin 42 67.6 0.435 0.360 0.0059 0.0577

Heteroscedasticity: Within CRD vs Within State

Illinois 56 66.5 0.849 0.648 0.0000 0.0013
Iowa 75 86.5 0.486 0.441 0.0013 0.0002
Michigan 23 63.0 1.085 0.537 0.0000 0.0059
Minnesota 46 70.7 0.415 0.352 0.0013 0.0059
Missouri 12 67.9 0.414 0.794 0.0013 0.0013
Ohio 46 77.6 0.666 0.534 0.0000 0.0002
Wisconsin 42 71.4 1.133 0.476 0.0059 0.2517
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all counties within states, the loss ratios are still higher than individual GP models with

heteroscedasticity adjustment. p-values from both Game 1 and Game 2 are small enough to

indicate heteroscedasticity adjustment leads to a better and more efficient method.

Table 2. Corn Rating Game Results: 90% Coverage Level

Number of Retained by Loss Ratio Loss Ratio Game 1 Game 2
Method-State Counties Private (%) Government Private p-value p-value

Homoscedasticity Within State vs Heteroscedasticity Individual

Illinois 56 29.6 0.589 0.422 0.0013 0.0577
Iowa 75 35.1 0.381 0.331 0.0000 0.0577
Michigan 23 50.0 0.482 0.213 0.0002 0.0000
Minnesota 46 57.8 0.293 0.128 0.0002 0.0002
Missouri 12 42.9 0.789 0.431 0.0207 0.0059
Ohio 46 58.7 0.412 0.216 0.0059 0.0577
Wisconsin 42 35.8 0.516 0.365 0.0002 0.0013

Lastly, Table 3 compares the stacking model under heteroscedasticity adjustment using all

counties within states as the candidate pool with the conventional RMA rating methodology.

All states except Iowa are having a smaller average loss ratio under the proposed method.

Game 1 and Game 2 are both having small p-values for every state in the data set. Compared

to the current RMA approach, our proposed method is generating more accurate premium

rates.

Table 3. Corn Rating Game Results: 90% Coverage Level

Number of Retained by Loss Ratio Loss Ratio Game 1 Game 2
Method-State Counties Private (%) Government Private p-value p-value

Heteroscedasticity: RMA vs Within State

Illinois 56 75.7 0.679 0.485 0.0000 0.0207
Iowa 75 85.1 0.128 0.332 0.0000 0.0207
Michigan 23 72.6 0.670 0.315 0.0059 0.0059
Minnesota 46 79.8 0.227 0.205 0.0002 0.1316
Missouri 12 78.8 0.723 0.627 0.0002 0.0013
Ohio 46 65.4 0.649 0.581 0.0059 0.1316
Wisconsin 42 81.8 0.650 0.467 0.0013 0.0207
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Conclusions

In this study, we combine two machine learning techniques: Gaussian Process and stacking

to predict county-level crop yield distribution. Gaussian Process merges the conventional

two-step approach into one and is capable of capturing the nonlinear trends and time-varying

distributions of crop yields accurately. Stacking on the other hand pools similar counties

together to allow “borrowing” information among counties. By using a mixture model of

normals, the stacking model can capture non-normal or asymmetric distributions, which

may be more appropriate for some crop yield density data that exhibit complex and diverse

patterns across different counties. The proposed methodology has shown to be promising

in obtaining more accurate premium rates by incorporating model uncertainty, dealing with

situations where the true model is not in the candidate pool, and focusing more on predictive

performance compared to existing approaches.

By performing a repeated out-of-sample rating game, we demonstrate the economic im-

portance of our proposed method. The stacking models outperform individual models by

showing incremental gains as the candidate pool size increases. There is also a great im-

provement in rating game results using GP models with heteroscedasticity adjustment. Fur-

thermore, after incorporating heteroscedasticity, stacking using all counties within states

outperforms the traditional RMA method by generating more accurate premium rates. The

crop insurance policymakers may benefit from the proposed methodology with a smaller loss

ratio compared to the current RMA method. The proposed method can be further enhanced

by using the leave-one-out method for calculating mixing weights when the data are cross-

sectional, and more GP kernels can be considered to capture different temporal effects. The

proposed framework has the potential to contribute not only to yield forecasting and crop

insurance rating but also to more general applied works where the focus is distributional

prediction. Additionally, the proposed method can be easily adapted to a big data setup.
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