

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Regional Implication of Global Fertilizer Supply Restrictions

Ziqian Gong, North Carolina State University, zgong5@ncsu.edu

Justin Baker, North Carolina State University, jsbaker4@ncsu.edu

Petr Havlik, International Institute for Applied Systems Analysis (IIASA), havlikpt@iiasa.ac.at

Selected Poster prepared for presentation at the 2023 Agricultural & Applied Economics Association Annual Meeting, Washington DC: July 23- 25, 2023

Copyright 2023 by Ziqian Gong. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Introduction

Research Question:

- What is the regional (U.S.) impact of global fertilizer constraints?

Importance:

- Fertilizers provide essential nutrients to crops to enhance their growth and productivity.
- Recent market developments, trade policy decisions, and longer-term sustainability policy objectives suggest potential constraints on fertilizer availability.
- However, excess use of fertilizers adversely impacts surface water quality and ecosystem productivity, suggesting a need for policy instruments to address over-consumption

Objectives:

- Apply a detailed global land use model to assess the impact of fertilizer constraints on fertilizer use
- Assess the regional implications of global fertilizer constraints driven by market anomalies or policy restrictions
- Identifying key policy design considerations for balancing the effective and sustainable use of fertilizers in agriculture.

Methods

This research will build on recent efforts to further develop the Global Biosphere Management Model (GLOBIOM) for global-to-local economic modeling.

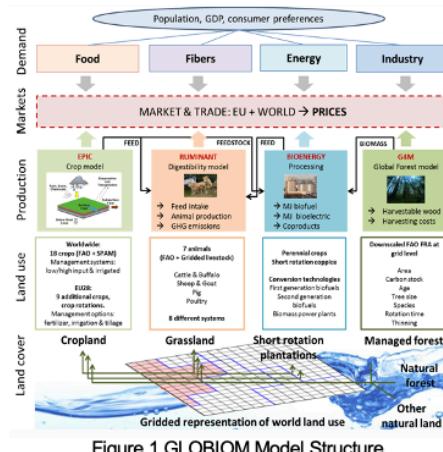


Figure 1 GLOBIOM Model Structure

Methodological innovation:

- Re-calibration of global agricultural trade flows,
- Adjusted land use constraints to assess optimal crop production and fertilizer consumption patterns across regions.
- Incorporation of global and regional fertilizer (quantity) constraints to mimic supply limitations or global policy targets.

Scenarios & Constraint

Phosphorus(P) Fertilizer Constraint	95%
Nitrogen(N) fertilizer Constraint	85%
P&N Fertilizer Constraint	80%
P&N Fertilizer Constraint	75%

Figure 2 Scenario labels and Constraints

Results

Global P Usage Change Under P Constraint 2050

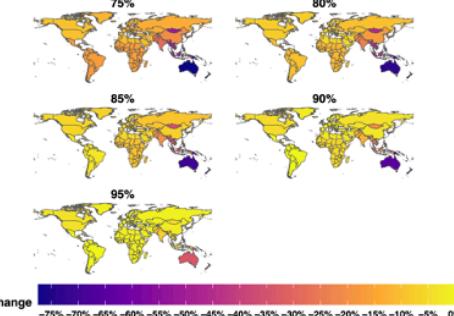


Figure 3 Global P Change Map

Global P Usage Change Under P&N Constraint 2050

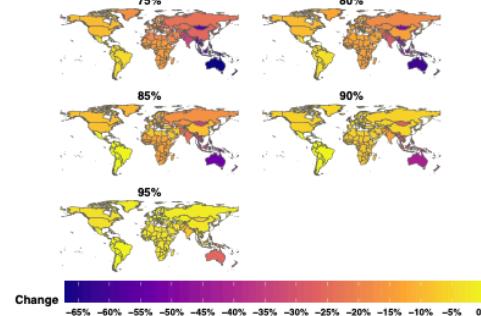


Figure 4 Global P Change Map

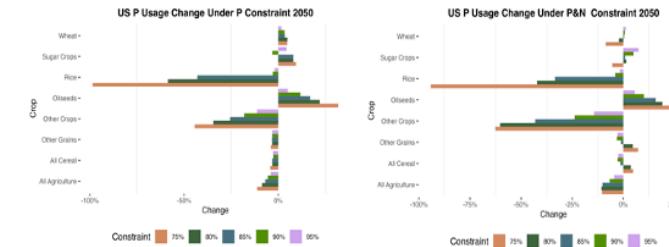


Figure 5: US P Consumption Change across Global Fertilizer Restrictions

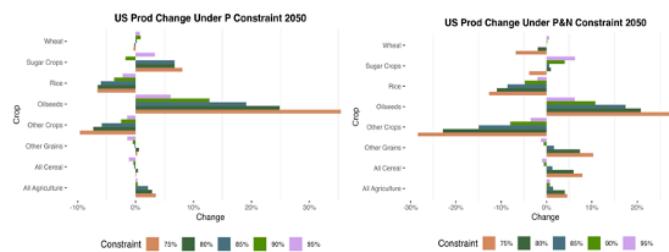


Figure 6 US Food Production Change

Discussion

- Global fertilizer restrictions impact regional production patterns and agricultural trade flows.
- North America always has a lower P fertilizer reduction rate than the global constraint because of its comparative advantage in agricultural production and exports relative to other regions.
- Global fertilizer constraints have the largest impact on Oceania in percentage terms, but this represents a small fraction of global P use.
- In the US, P fertilizer usage in production sees the highest decrease across all scenarios.
- US fertilizer use and production of Oilsseeds will increase under all scenarios to compensate for global responses to fertilizer restrictions.
- Nitrogen fertilizer constraints can impact P use and production as crop mixes shift away from the most N-intensive crops
- Conclusion: The impact of fertilizer constraints on fertilizer usage varies across regions and crops, highlighting the need to consider regional differences when designing mitigation strategies.