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1.- Introduction 
 
Between 2001 and 2019, Peru has improved its economic and social performance 
indicators. The total GDP has multiplied by 2.5 times at an average annual growth rate of 
4.61% (INEI, 2021). However, economic growth has been accompanied by three 
problematic issues. Firstly, a total of 2.6 million hectares of forest cover reduction 
between 2001 and 2020, reaching a deforestation level of 203 thousand hectares in 2020, 
which is the highest level in the last 20 years (Dourojeanni et al, 2020; Bastos et al., 
2021). Secondly, even two previous malaria control strategies were implemented by the 
Ministry of Health (the first between October 2005 and September 2010, and the second 
between 2017 and 2021), once both policies concluded, malaria incidence increases again 
showing a positive correlation with deforestation. Thirdly, considering that deforestation 
in the Amazon is the main challenge to be addressed in the fight against climate change, 
and that  people's health is indirectly compromised by climate change (Groves et al., 2020, 
Benavides et al., 2021) and directly by deforestation (Yasuoka and Levins, 2007; Vittor 
et al., 2006; Bustíos et al., 2014), increases in greenhouse gas (GHG) emissions from 154 
to 205 Mt of CO2 equivalent in 2005 to 2016, respectively (MINAM, 2021), certainly, 
raises a concern. 
 
Deforestation in the Amazon is the main threat to the country's biodiversity and the main 
challenge to be addressed in the fight against climate change, since the current state of 
the Amazon, without the implementation of measures to reverse it, would not only lead 
to an important advance of deforestation on the forest but that greenhouse gas emissions 
would increase considerably. 
 
In the Amazonian territory, there are currently 68 million hectares of tropical rain forest; 
however, this important natural capital is very likely to be affected by the high and 
growing levels of deforestation. Between 2001 and 2020, 2.6 million hectares were 
deforested (GEOBOSQUES, 2022), reaching a deforestation level of 203 thousand 
hectares in 2020, which is the highest level in the last 20 years and represents one hectare 
lost every 3 minutes. These levels of deforestation raise concerns that the Amazon region 
is approaching the tipping point (Dourojeanni et al, 2020; Bastos et al, 2021). 
 
On the other hand, people's health is indirectly compromised by climate change (IDB & 
Cepal, 2014; Stern et al., 2011; Park, 2011; Lindsay et al., 1998; Manoukis et al., 2011) 
and directly by deforestation (Yasuoka and Levins, 2007; Vittor et al., 2006; Bustíos et 
al., 2013). There is empirical evidence that accounts for the causal relationship between 
deforestation and the incidence of malaria (Garg, 2015) and the spatial behavior of the 
latter (Desbordes, 2021). Peru had the second highest number of malaria cases in South 
America behind Brazil in 1999, mainly in the Loreto region, which covers almost a third 
of the country. Bustíos et al (2014) argued that the change in forest land use towards 
precarious shifting cultivation has led malaria vectors to seek new breeding sites, 
dispersing through populated areas where the disease did not exist or was unknown. In 
fact, the Loreto region has accounted for most malaria cases in the country (Rosas-
Aguirre et al., 2015). 
 
Not only due to the large number of incidences during different periods since the 1990s, 
but also because of the economic burden on the state and the families of the affected 
communities, this disease is considered a serious public health problem. Between October 
2005 and September 2010, Peru received support from the Global Fund - PAMAFRO 



Project, which allowed the expansion of comprehensive malaria control strategies in the 
Peruvian Amazon (Rosas-Aguirre et al., 2015) and drastically reduced the number of 
cases in Loreto from 54,291 in 2005 to 11,604 in 2010. However, the issue of malaria 
cases has resurfaced since 2012 and has once again drawn the attention of policymakers 
(Figure 2). In 2018, there are almost 44,000 cases, of which 96.5% were reported in 
Loreto. Thus, the Peruvian government has implemented the Zero Malaria Plan 2017-
2021, allocating US$25 million to address the large increase in malaria incidence since 
2012, mainly in the Amazon region. 
 
Although recent information from MINSA shows that the Zero Malaria Plan had 
favorable results in reducing the number of malaria cases in the affected areas, as 
happened with PAMAFRO at the time, from the perspective of a policy decision maker , 
it is valid to ask whether it is more efficient to allocate economic resources to actions for 
people affected by malaria or direct efforts towards forest conservation actions that keep 
the disease vector under control (Figure 1). In this sense, it is pertinent to understand the 
spatial dynamics of malaria in Peru and its relationship with deforestation and its impact 
on malaria, giving rise to a negative externality to be mitigated, and thus be able to 
identify policy measures with a focus on malaria. cost-effective territorial measures that 
allow dealing with the consequences of climate change. 
 

Figure 1. Forest loss and malaria cases 

 
Source: MINSA, GEOBOSQUES 

 
From the perspective of a policy decision maker, it is valid to ask whether it is more 
efficient to allocate economic resources to actions for people affected by malaria or direct 
efforts towards forest conservation actions that keep the disease vector under control. 
Thus, it is important to understand the spatial dynamics of malaria in Peru and its 
relationship with deforestation in order to identify potential policies to mitigate a negative 
externality with a focus on malaria and cost-effective local measures that allow dealing 
with the consequences of climate change. 
 
Despite most of previous studies have identified a positive relationship between 
deforestation and malaria cases, causality from deforestation to malaria cases (Berazneva 
and Byker, 2017 and Garg, 2019), and spatial dependence between forest loss and malaria 
(Seabra Santos and Almeida, 2018) there is less research in how projecting forest loss – 
malaria relationship generates health benefits in Peru achieving carbon neutrality by 
2050. Thus, the objective of our study is to provide evidence that the path towards carbon 



neutrality helps to reduce the proliferation of tropical diseases such as malaria, opening 
the way to the evaluation of other health benefits beyond respiratory diseases. Then, 
besides using an econometric model we will use the Polysys-Peru model (De La Torre 
Ugarte et al., 2021). 
 
The structure of this paper is as follows. Sections 2 contains the review of existing 
literature, section 3 describes the data and analytical strategy, section 4 shows the results 
obtained, and section 5 shows the conclusions and policy recommendations. 
 
2.- Literature review 
 
In this paper, we investigate the relationship between deforestation and the incidence of 
malaria. In addition, we use these estimates to quantify the health benefits in Peru of 
achieving carbon neutrality by 2050, focusing on interventions in AFOLU sector. 
  
The relationship between deforestation and the incidence of malaria has been examined 
in several previous studies across the world, such as Brazil (Olson et al., 2010; Parente et 
al., 2012; Saccaro Junior et al., 2015; Mac Donald and Mordecai, 2019), Nigeria (Uneke 
and Ibeh, 2009), Malaysia (Fornace et al., 2016), Paraguay (Wayant et al., 2010), Perú 
(Olson et al., 2010), among others. 
  
As a reference, Vittor et al. (2006) have found that that Anopheles darlingi biting rate is 
higher in areas predominantly forested in the Peruvian Amazon, and Vittor (2009) found 
in the same region that sites with Anopheles darlingi had an average of 24.1% forest cover 
compared with 41.0% for sites without Anopheles darlingi. Olson et al. (2010) found that 
malaria risk increased by 50% in health districts when 4% of the area under study (Mancio 
Lima County, Brazil) underwent deforestation. Parente et al. (2012) have analyzed both 
malaria incidence and deforestation rates in four different regions at the State of Pará, 
eastern Amazon, Brazil, finding that after periods of intense deforestation, malaria 
incidence rates were high or very high. In Brazil, a similar relationship is found by 
Saccaro Junior et al. (2015) and Mac Donald and Mordecai (2019), as well, finding the 
former that for every 1% of deforested area a 23% increase in malaria incidence rates 
may occur, and the latter that, on average, a 10% increase in deforestation would result 
in a 2.27% increase in malaria incidence. 
  
Most of the aforementioned studies have identified a positive relationship between 
deforestation and malaria cases, while only Berazneva and Byker (2017) and Garg (2019) 
identified the causality from deforestation to malaria cases. Both studies also tested the 
effects of deforestation on other diseases and found no significant effect, which implies 
that the effect of deforestation is specific to malaria. Specifically, Berazneva and Byker 
(2017) investigated the dynamic impact of forest loss on malaria in Nigeria finding that 
a loss of 1% of forest cover in the previous year leads to a two percentage points increase 
in malaria incidence. In Indonesia, Garg (2019) provides causal evidence finding that a 
1% decline in primary forest cover loss increases by 10% the incidence of malaria, and 
that the effect is strongest in villages near forest (but persists to a lesser extent in more 
distant villages). Furthermore, as in Garg (2014), the author found also that deforestation 
has no discernible effect on the incidence of other diseases such as measles, diarrhea, and 
respiratory infections. 



Besides deforestation other covariates may also contribute to malaria incidence. Malaria 
is driven by a complex set of economic, socio economic and ecological factors. Regarding 
economic activities, in mining and logging camps, and in new farming settlements 
typically malaria occurs (Confalonieri et al., 2014). There is also evidence that the 
construction of large collection of surface waters such as dams (Quiroz and Motta-Veiga, 
2012; Kaiser et al., 2005) or irrigation systems (Pattanayak and Pfaff, 2009; Yasuoka and 
Levins, 2007) work as potential pathways through forest loss can increase malaria 
incidence. 

About socio economic factors, malaria is related to mobility of humans making them both 
infected and suceptible to the difficult logistics for the provision of health care service in 
remote communities (Gil et al., 2007). This interaction is seen in informal gold mining 
sites (Barbieri et al., 2005; Barbieri and Sawyer, 2007). Oppositely, urbanization due to 
demographic changes, better-quality “mosquito-proof” housing will, and better access to 
health care will lead decreased malaria transmission (De Silva and Marshall, 2012; 
Escobedo, 2010; Willicox and Ellis, 2006). In addition, in areas completely deforested 
and replaced by pasture malaria cases become rare (Castro et al., 2006). 

As part of ecological factors, a positive association between climatic and hydrological 
factors and malaria incidence has been found especially with river level and precipitation 
(Bazurko et al., 2011), as well with higher ground temperatures (Kweka et al., 2016), 
amount and duration of sunlight, and puddle formation (Gottwatt, 2013; Wolfarth, 2011; 
Pattanayak and Pfaff, 2009, Yasuoka and Levins, 2007; Magris et al., 2007; Bautista et 
al., 2006). Furthermore, changing landscapes can influence microclimatic conditions 
(e.g., temperature, evapotranspiration, and surface run-off) all key determining mosquito 
abundance and survivorship (Patz and Olson, 2006). 
  
Even previous studies suggest the existence of a positive correlation between 
deforestation and the incidence of malaria although this relationship could be fed back or 
affected by other variables (economic, socioeconomics and ecological factors), only some 
papers have addressed the potential issues of endogeneity (Garg, 2019; Garg, 2014; 
Berazneva and Byker, 2017) in order to estimate causal impact of forest loss on malarian 
transmission. Nevertheless, besides Santos and Almeida (2018) for Brazil, the literature 
addressing spatial dependence between forest loss and malaria -as incidence of malaria 
in one particular location could be spread to the nearby areas and infect humans- is still 
scarce. 
  
Thus, we provide in this study insights of the relationship between deforestation and 
malaria cases in Peruvian Amazon given the rising concern of public health related to 
natural resource degradation. Specifically, we aim to enhance the estimation of 
deforestation’s influence on malaria case incorporating spatial dependence among the 
variables of interest. Recent empirical works on the determinants of life expectancy in 
developing countries state that frequent omission of spatial dependence is troublesome, 
from an economic and econometric perspective, because local outbreaks of many 
infectious diseases are characterized by rapid spatial propagation (Desbordes, 2021). 
 
On the other side, despite the paucity of studies on forest loss in Peru, significant efforts 
were made to forecast its evolution through 2035 using trends and linear regressions 
based on the deforestation pattern of previous years. Limacho (2015) and PCNB (2016) 
estimate the main drivers of deforestation (cropland, grasslands, timber production, and 



forest fires, among others) as they want to reach better decision policies. MINAM et al. 
(2018) predicted trends for each forest use category because the objective was to establish 
and validate the NDCs. Seminario et al. (2017) incorporated land-use change and forestry 
production modules into the T21-Peru model for the purpose of simulating the Peruvian 
economy by 2035. This system dynamics model take into account the interactions and 
feedbacks between the agriculture (by natural region and two crop groups), forestry 
(Amazon), manufacturing, mining, and services sectors. The exchange of capital, labor, 
and land between sectors limited agriculture's profitability and, consequently, its growth. 
The demand for cropland in the rainforest was primarily influenced by agricultural profits 
and population growth. Profits in agriculture depended on capital elasticity and 
production, which was simulated by a Cobb-Douglas function that included capital, 
employment, and land. Nevertheless, T21-Peru examined the other forest loss drivers as 
fixed coefficients, grouped 16 forest categories into five categories, projected GHG 
emissions with an average coefficient per hectare lost, and did not account for price 
changes. The roles of secondary forests, forest burning, and fallow lands were omitted. 
 
Multivariate regressions based on linear, spatial, and panel data models are utilized in 
international research on forest loss drivers. These studies share variables such as crop 
consumption (local production, imports), local population (growth, density, urban or rural 
status), ground and river roads (accessibility, length, density, pavement status), market 
distance, institutional/financial variables (amount of infrastructure credit, presence of 
development projects, number of local banks, social aid), geophysical variables (nitrogen 
in soils, soil moisture, annual precipitation), and area of natural protected areas. Some 
studies attribute deforestation to the lack of recognition of the forest's value, which is 
represented by income and profit variables. These studies examine agriculture, livestock, 
and forestry variables such as prices (exports, imports, local market, inputs), government 
subsidies (agriculture, technology, equipment), soil quality, average household income 
(agriculture, livestock, forestry, off-farm, share), household (size, number of years in 
location), association status, livestock heads, and debt amount (Hargrave & Kis-Katos, 
2013; Araujo, Combes & Feres, 2014; Garrett et al., 2017). Intriguingly, the direction and 
magnitude of the effect of income on deforestation vary widely: in some cases, it is 
negative (Pfaff, 1999; Araujo, Combes & Feres, 2014; Ferretti-Gallon & Busch, 2014; 
Garrett et al., 2017) and in others, it is positive (Geist & Lambin, 2002). These differences 
may reflect an increase in productivity per hectare (intensification) in the agricultural 
sector (Foley et al, 2005). La Rosa (2016) highlights in Peru variables such as proximity 
(to deforested areas, natural protected areas, roads, and urban areas), sector GDP 
(agriculture, manufacture), cropland size, productivity (agriculture, timber), indigenous 
population size, employment by sector and region, and elevation. 
 
Finally, achieving net-zero emissions is necessary to limit global warming to well below 
2 °C and toward 1.5 °C, as stipulated by the Paris Agreement. More than 50 countries 
have set goals to achieve net-zero emissions, typically by 2050, and the majority are 
working towards similar objectives. To reach these objectives, the electricity, 
transportation, agriculture, land-use, buildings, industry, and waste-management sectors 
must undergo transformations (Fazekas, Bataille & Vogt-Schilb, 2022). Despite the fact 
that solutions exist to transition to a carbon-neutral economy, including technological and 
behavioral changes that are frequently accompanied by economic, social, or development 
benefits, many obstacles impede their adoption (Fazekas, Bataille & Vogt-Schilb, 2022).  
 



The  transformations of decarbonization can come with local benefits, such as lower 
energy costs owing to record-cheap renewable energy, operating savings due to 
electromobility, the benefits of avoided air pollution to health, reduced time wasted in 
traffic congestion, better health outcomes linked to physical exercise, reduced accidents, 
healthier diets, better industrial and agricultural productivity, and ecosystem services 
including biodiversity preservation, provision of fresh water, and attraction of tourism 
(Groves et al., 2020; IDB & MINAM, 2021, Benavides et al., 2021; Vogt-Schilb, 2021; 
Fazekas, Bataille & Vogt-Schilb, 2022). 
 
The contribution of decarbonization to health enhancements has focused on the 
advantages of improved air quality, as phasing out fossil fuels offers health benefits from 
cleaner air, water, and soil. There is a estimation about health cost of coal, oil, gas and its 
deaths generated (Markandya and Wilkinson, 2007) and water available tith power 
generation can be reduced by up to 95% if 100% of the world's energy comes from 
renewable sources (Lohrmann et al., 2019). In addition, cleaner air (indoor and outdoor) 
reduces the risk of cardiorespiratory disease, which is a health benefit associated with the 
electrification (IEA, 2016; Anenberg et al., 2019; RMI, 2020). 
 
The development of this study contributes to the generation of evidence that the path 
towards carbon neutrality helps to reduce the proliferation of tropical diseases such as 
malaria, opening the way to the evaluation of other health benefits beyond respiratory 
diseases. 
 
3.- Data and methodology 
 
3.1.- Econometric models 
 
3.1.1.- Fixed effects model 
 
The main objective of this study is to investigate the relationship between a district’s level 
of deforestation and its malaria incidence.  For it, given panel data as input, this 
relationship of interest can be rewritten empirically as the following:  
 

𝑀𝑎𝑙𝑎𝑟𝑖𝑎!" = 𝑓(𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!" , 𝛽)… (1) 
 
where 𝑀𝑎𝑙𝑎𝑟𝑖𝑎!" resembles the number of registered cases of malaria and it’s a function 
of 𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!", which represents the deforested area in district 𝑖 in year 𝑡. In turn, 
𝛽 explicates the effect that 𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!" exerts on 𝑀𝑎𝑙𝑎𝑟𝑖𝑎!". Though, for our 
empirical setting to capture forest loss’s impact on malaria incidence, several other 
influences must be considered, including both the observed and unobserved. Furthermore, 
this first relation can be expressed in the context of a panel data fixed effects model:  
 

𝑀𝑎𝑙𝑎𝑟𝑖𝑎!" = 𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!"𝛽 + 𝑿!"𝜸 + 𝜇! + 𝜀!" …(2) 
 
In equation (2), we yet again assume a linear structure for the relationship of interest and 
add the presence of a several control variables for district 𝑖 which are represented by 𝑿!". 
This may control for several other covariates which influence malaria incidence in 
districts 𝑖 in year 𝑡 such as:  climatological factors, socioeconomic and healthcare 
variables, and some controls. Thus, the effects of this set of observed control variables 
will be represented by the vector 𝜸. 𝜇! controls for the unobserved heterogeneity of each 



cross-section unit. 𝜀!" represents the idiosyncratic deviations of the model for district 𝑖 in 
year 𝑡. 
  
The core independent variable including in 𝑿!" is forest loss (in hectares) 1 year ago 
(lagged forest loss), following Berazneva and Byker (2017) and Jung (2015). Using this 
lagged variable has a twofold purposes: it allows us, firstly, to consider the dynamic 
impact of forest loss on malaria, which suggest a temporary ecological disturbance 
consistent with findings in the tropical medicine literature (Berazneva and Byker, 2017). 
Secondly, the temporal-lagged deforestation variable can prevent the potential 
endogeneity concern associated with the consequence of omitted variables and/or 
potential bidirectional causal relationship (MacDonald and Mordecai, 2019) or reverse 
feedback from malaria to deforestation (Garg, 2019). Thus, we estimate the following 
equation:  
 

𝑀𝑎𝑙𝑎𝑟𝑖𝑎!" = 𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!"#$𝛽 + 𝑿!"𝜸 + 𝜇! + 𝜀!" …(3) 
 
3.1.2.- Spatial dependence estimation 
 
In this paper, we employ spatial econometrics to identify the spatial spillover effect of 
local deforestation on other regions (districts). Previous literatures have indicated that the 
relationship between deforestation and malaria, as well as other controls may have a 
spatial correlation of malaria contagions through space (Seabra Santos and Almeida, 
2018; Olson et al., 2010; Hahn et al., 2014). In addition, since Anopheles darlingi has a 
radius locomotion up to 7 – 12 km away from its breeding source (Kauffman and Briegel, 
2004; Charlwood and Alecrim, 1989), a disturbance such as deforestation may thus lead 
to a higher (or lower) incidence of the mosquitoes in neighboring districts (Seabra Santos 
and Almeida, 2018). A conventional ordinary least squared (OLS) model assuming 
independent relationship across observations will provide biased and inconsistent 
estimates if the independence assumption is invalid (Le Sage and Pace, 2009). Thus, to 
prevent the potential issues of spatial dependence and obtain an unbiased estimation, we 
insert the spatial components in the next equation: 
 
𝑀𝑎𝑙𝑎𝑟𝑖𝑎!" = 𝜌𝑊𝑀𝑎𝑙𝑎𝑟𝑖𝑎!" + 𝛽$𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!"#$

+ 𝜑$𝑊𝐷𝑒𝑓𝑜𝑟𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛!"#$ + 𝜑%𝑾𝑿!" + 𝜇! + 𝜉" + 𝜆𝑊𝑢!" + 𝜀!" …(4) 
 
where 𝜌 is the spatial lag coefficient, 𝜑 is the spatial lag coefficient of the covariates, and 
𝜆 is the spatial error coefficient. The matrix of spatial weights, 𝑊, used to perform the 
spatial lag are a Binary Contiguity Matrix (Binary), a Row Standardized Contiguity 
Matrix (Raw Standardized) and a Hybrid of and Inverse Distance and Contiguity Matrix 
(Hybrid), which were estimated following a queen structure (which considers adjacency 
in knots and sides) for testing the malaria-deforestation relationship. The first one was 
based plainly on the earlier definition. The second one divides the elements of row of the 
matrix by the total of the number of neighbors, which is useful in spatial regressions since 
it sets to introduce geographical effects at their mean where applied. In turn, the third one 
is the result of multiplying each element ij of the Binary Matrix to the inverse of the 
distance between spatial units i and j. 
 
In the literature on malaria infection, no theory is found that supports which spatial 
parameters should be used (Seabra Santos and Almeida, 2018). According to Elhorst 
(2014), if 𝜌 = 0, we will have the spatial Durbin error model (SDEM); if 𝜑 = 0, we will 



have the Kelejian-Prucha (SAC) model; and if 𝜆 = 0, we will have the spatial Durbin 
model (SDM). We also have the case of two spatial coefficients being nonsignificant: if 
𝜌 = 0 and 𝜑 = 0, we estimate the spatial error model (SEM); if 𝜑 = 0 and 𝜆 = 0, we 
obtain spatial lag model (SAR); and, finally, if 𝜌 = 0 and 𝜆 = 0, we find the spatial lag 
of X (SLX). However, if 𝜌 = 0, 𝜑 = 0 and 𝜆 = 0, we estimate a panel model, in this 
case, of fixed effects, as we explained before. As it will be explained later, after 
performing some tests, we find that the Spatial Durbin Error error model (SDEM) is the 
most appropriate. 
 
3.1.3.- Data and variables 
 
We use a yearly data for 442 districts located in 6 regions-departments of the Peruvian 
Amazon (Amazonas, Cajamarca, Huánuco, Loreto, San Martín, and Ucayali) from 2001 
to 2020. This were selected conveniently given that these regions report the highest levels 
of cumulated deforestation in the last decade. 
 
Data for this study came from multiple sources. First, the number of malaria cases come 
from administrative records (at the district, province, and region level) of the National 
Center for Epidemiology, Disease Prevention and Control of the Ministry of Health 
(MINSA). The same source provides information regarding the total health and sanitation 
expenditure by the Central Government, as well as the number of public health care 
facilities by level of care. GeoBosques, a forest cover changes monitoring platform at the 
Ministry of Environment (MINAM), provides forest loss information1. Finally, 
socioeconomic (and economic) data (average years of education, and GDP in agriculture 
and mining), rurality condition and climatological measures (temperature, precipitation, 
evapotransmiration) came from the National Institute of Statistics (INEI), the Presidency 
of the Council of Ministers’ report on rural municipalities, and the National Service of 
Meteorology and Hydrology of Peru (SENHAMI), respectively. Finally, a control 
variable indicating the implementation of both malaria control programs (PAMAFRO 
and Plan Malaria Cero) was considered. Descriptive statistics for selected variables are 
summarized in Table 1. 
 

Table 1. Summary of variables (2001 – 2020) 
Variables* N Mean SD Min Max 

Malaria  6,581 128.05 652.96 .00 16,369.00 
Deforestation  5,640 337.64 693.82 .00 7,770.69 
Temperature  9,724 20.22 5.05 9.44 28.18 
Precipitation  9,724 109.88 59.54 1.54 453.81 
Evapotranspiration  9,724 112.14 22.66 64.76 150.40 
Population density 9,438 44.89 108.74 .07 1,693.57 
Rurality condition  9,724 .77 .42 .00 1.00 
Average years of education  8,840 8.27 .54 7.12 9.67 
GDP - agriculture  8,840 905,199.72 363,054.42 191,338.00 1,703,992.00 

 
1 The detection of the forest cover loss areas was carried out using a method called DSU, which is based 
on a Linear Model of Spectral Mixture (MLME) that assumes that the spectral response of a pixel is the 
linear combination of the materials that are shaped in the pixel. DSU uses the pixels of forest and forest 
loss, it assumes that when the cover of a forest is lost due to anthropogenic or natural causes, the result is a 
pixel of bare soil, the mixture of soil with dry vegetation or deforestation residues such as logs, which can 
also be next to standing forests. More specific information available in: 
https://geobosques.minam.gob.pe/geobosque/descargas_geobosque/perdida/documentos/Protocolo_Meto
dologico_Deteccion_Perdida_de_Bosque.pdf?Wed%20Oct%2020%202021%2012:18:27%20GMT-
0500%20(hora%20est%C3%A1ndar%20de%20Per%C3%BA) 



Variables* N Mean SD Min Max 
GDP - mining  8,840 1,047,761.80 1,215,242.57 45.00 3,789,024.00 
Malaria control program  9,724 .19 .39 .00 1.00 
Expenditure on healthcare 9,724 255,400,000.00 202,894,583.30 19,475,805.00 924,400,000.00 

Public health care facilities I-1 8,129 9.23 44.44 .00 505.00 

Public health care facilities I-2 8,129 5.84 38.87 .00 447.00 

Public health care facilities I-3 8,129 8.05 58.44 .00 664.00 

Public health care facilities I-4 8,129 .32 1.56 .00 18.00 

(*) Cases of malaria - Vivax, Falciparum or Malariae of year t in district i; Forest loss in the district (in hectares) of year t in district 
i; Mean temperature (in C°) of year t in district i; Mean precipitation (in mm/month) of year t in district i; Mean evapotranspiration 
(in mm/day) of year t in district i. Estimated population density of year t of the district i. Rurality indicator (1 if rural) of district i. 
Average years of education of population older than 15 years old of year t in region j. Total GDP of Agriculture, Livestock, Hunting 
and Forestry (in thousands of PEN) of year t in region j; Total GDP of Extraction of Oil, Gas and Minerals (in thousands of PEN) of 
year t in region j; Indicator of enrollment in malaria program (1 if district i have been treated in programs PAMAFRO between years 
2005 and 2010 or PLAN MALARIA CERO 2017 and 2020). Total public expenditure in healthcare of year t in region j. Public health 
care facilities in the district (Level of care I-1) of year t in district i; Public health care facilities in the district (Level of care I-2) of 
year t in district i; Public health care facilities in the district (Level of care I-3) of year t in district i; Public health care facilities in the 
district (Level of care I-4) of year t in district i.   
 
3.2.- Modeling the deforestation dynamic 
 
3.2.1.- POLYSYS-Peru Model 
 
POLYSYS-Peru integrates the agricultural, forestry and land use sectors into a single 
model, which allows capturing the relationship between these activities and land use 
change. This model has been calibrated based on the INGEI 2016 and considers the 
management of primary and secondary forest soil inventories, as well as the relationship 
of these forests with the causes of deforestation, loss of soil productivity, expansion of 
agriculture and livestock, mining, forest fires and urban expansion (De La Torre Ugarte 
et al, 2021; MINAM, 2021). 
 
The POLYSYS-Peru integrated model considers the competition for land use between 
crops and pastures, especially in the Amazon region, where deforestation becomes a 
response to agricultural and livestock pressures. Based on these variables, the model, 
through supply and demand, can determine prices, quantities produced and demanded, 
operating costs, income and investments, as well as environmental impacts such as 
emissions and ecosystem services from a base year. Land use is at the heart of the 
interaction. Crops and pastures compete for land use according to their profitability per 
hectare. In the Amazon region, this competition for land affects the forest landscape, as 
deforestation becomes a response to agricultural and livestock pressures. It is important 
to note that the greatest pressure from agricultural and livestock activities on the forest 
comes from small producers who do not have the resources to maintain soil productivity, 
so they resort to deforestation to replace the loss of productivity. 
 
 
 
 
 
 
 
 
 



Figure 2. Diagram of the AFOLU integrated model 

 
 
3.2.1.1.- Study area 
 
The model considered 1791 districts distributed in seven regions (North Coast, Central 
Coast, South Coast, South Coast, North Highlands, Central Highlands, South Highlands, 
and Amazon), the agricultural sector includes 16 crop categories: alfalfa, corn, legumes, 
tubers, fruits and vegetables for domestic consumption and export, cocoa, hard yellow 
corn, sugar cane, rice, cotton, grains and cereals, coffee, and pastures. The livestock sector 
has also been divided in the same way as the agricultural sector but has been categorized 
into six types of livestock species: cattle, pigs, poultry, sheep, goats and auquenidos; 
considering the district distribution offered by the IV CENAGRO of the livestock sector. 
The Interaction between the agricultural sector and the Land Use, Land Use Change and 
Forestry (LULUCF) sector, or landscape management, is only considered in the Amazon, 
because the POLYSYS-Peru model only considers Amazonian tropical forests. 
 
In the POLYSYS model, systems of simultaneous equations are established where the 
unknowns represent variations in endogenous variables that are solved in response to 
changes in the exogenous variables of the model. The result represents the market in 
equilibrium and the generated path functions as a baseline. At this point, the generation 
of scenarios implies that the equilibrium is affected exogenously by disturbances, and the 
results are stored as the results of the policies to be analyzed, generating alternative paths 
to the equilibrium one. Among the possible scenarios are the incorporation of rice 
cultivation due to intermittent droughts and an increase in pork consumption to replace 
meat consumption. 
 
On the consumption side, the model considers price, cross-price and income elasticities, 
which represent the preferences of the population. Thus, the proportional changes in the 
exogenous variables determine the cumulative effect of the changes in the package of 
exogenous variables for each scenario, including variations in the consumption variables 
of the different goods. 
 
 
 
 



3.2.1.2.- Data 
 
Databases with detailed information on the performance of the Peruvian agricultural and 
livestock sector, and which are simultaneously reliable, are scarce. The best options are 
those government databases (estimates) published by different public institutions, 
especially the Ministry of Agriculture and the Ministry of Environment. These databases 
tend to be, to a large extent, approximations. POLYSYS Peru uses fundamentally four 
different data sources: SIEA, ENA, CENAGRO and Inforcarbon. 
 
The Agricultural Information and Statistics System (SIEA) presents information 
compiled by the Peruvian Ministry of Agriculture and available to the public. The 
Anuario Estadístico de Producción Agrícola Boletines Anuales (midagri.gob.pe) contains 
data series on prices, production, yields and harvested area for each department and for 
each crop in the country, from 2016 to 2021. The Statistical Yearbook of Livestock and 
Poultry Production contains data series on prices, production, yield and population for 
each department and for the main livestock species in the country, from 2016 to 2021. 
The data contained in SIEA are an approximation of real values and there may be possible 
important differences with reality. It can be found at the following link: Home 
(midagri.gob.pe). On the other hand, MIDAGRI provided disaggregated information for 
the agricultural sector at the district level on the same variables, which are consistent with 
the departmental and national values presented by SIEA. 
 
The National Agrarian Survey (ENA) is a survey with data available by year from 2014 
to 2019. This survey is conducted by the National Institute of Statistics and Informatics. 
ENA includes information by year on agricultural costs: pesticides, seeds, and fertilizers. 
ENA data are collected annually, therefore, investment data are not available for long 
periods of time. In this sense, ENA data represent current expenditures associated with 
the agricultural sector. ENA data can be downloaded from the following link: 
http://iinei.inei.gob.pe/microdatos/. 
 
The CENAGRO is a census of the Peruvian agricultural sector and the most reliable 
source of data available, it was applied by the National Institute of Statistics and 
Informatics in 2012. On the other hand, CENAGRO lacks cost data, which is essential 
for the POLYSYS simulation model. It can be downloaded at the following link: 
http://iinei.inei.gob.pe/microdatos/. A quick exploration of the main results of the IV 
CENAGRO can be seen in the following link IV Censo Nacional Agropecuario 2012 - 
Cuadros Estadísticos (inei.gob.pe). For the livestock sector, the livestock population by 
species at the district level is obtained and projected using departmental values provided 
by the SIEA. 
 
Inforcarbono is a methodology for calculating emissions from each crop and from the 
livestock sector. It is a consolidated spreadsheet where different factors are applied to 
different variables for each sector. This methodology allows to obtain linearity in the 
emission calculations, so it will be easier to incorporate them in the POLYSYS 
simulation. 
 
3.2.1.3.- Variables 
 
Thirty-two variables are considered in the agriculture sector and eleven in the livestock 
sector. On the agriculture side the variables are Land, Yields, Costs, Prices, Demand, 



Yield variation rate, Cost increase, Variation of total land comprising the increase or 
decrease of land allocated to each crop category, per capita consumption, Calories per 
capita, Agricultural production, Net present value, International market results in 
production and International market results in value.  Likewise, the variables on emissions 
related to this sector are Aggregate emissions factor, Flooded rice field emissions factor, 
Harvest residue emissions factor, Synthetic fertilizer emissions factor, Fixative emissions 
factor, Residue burning emissions factor, Indirect fertilizer emissions factor, Aggregate 
total emissions, Total flooded rice field emissions, Total harvest residue emissions, Total 
synthetic fertilizer emissions, Total fixative emissions, Total residue burning emissions 
and Total indirect fertilizer emissions. On the livestock side, the following variables are 
considered: Heads of cattle, increase in the number of heads, Cost, Saca (supply or 
slaughter), Consumption, Emissions, Prices, Pastures, Factors explaining prices, Factors 
explaining costs and Live load. 
 
3.2.1.4.- Main components in the agricultural sector 
 
Agricultural supply 
 
The logic of the farmer-producer is to maximize the profit from the income obtained 
(price multiplied by yield of the crop category) per hectare minus the cost of agricultural 
production of the crop category per hectare. A more realistic situation is that the farmer 
has a certain amount of agricultural area which he must distribute among crops and this 
distribution will be made based on which crop will be the most profitable; therefore, the 
agricultural area initially allocated to a crop may be less or more depending on the market 
situation. 
 
The dynamics of profitability per hectare between crops and pastures has an impact on 
deforestation, since the farmer's logic as a producer is to obtain the maximum possible 
profit by distributing the agricultural area among crops, allocating more hectares of 
agricultural area to the most profitable crops. In short, farmers optimize profit. 
 
Agricultural demand 
 
In the POLYSYS model, demand takes a more passive position in the sense that instead 
of generating a different demand for each period, a single national demand is used which 
adapts, over time, to supply conditions. Changes in the quantity demanded for a crop will 
depend on the sensitivity of consumers to changes in the price of the crop or its substitute. 
 
Equilibrium 
 
When supply and demand converge it is because the farmer-producer has decided to 
allocate land and at the same time will be allocating how much he will produce which is 
equivalent to how much will be demanded and consumed. 
 
3.2.1.5.- Main components in the livestock sector 
 
The livestock sector models the six livestock species compartment. The simulation of the 
livestock sector is carried out considering a logistic function that allows simulating a 
general trend of the district's livestock population. However, given that the value of the 
population in this sector is affected by other variables, mainly of an economic nature, 



shocks of these variables are incorporated; for example, meat production will depend 
mainly on the population growth of the livestock species, which in turn will depend on 
the demand for meat consumption. It is worth mentioning that the agricultural sector 
generates the necessary outputs for the livestock sector. 
 
3.2.1.6.- Main components in the forestry sector 
 
The USCUSS sector module consists of a soil stock inventory management of primary 
forest, secondary forest, agricultural land, pasture, mining land, human settlements and 
roads, and other lands. This means that sources of forest deforestation reduce the forest 
stock but increase the stocks of other lands. However, satellite information does not 
clearly differentiate deforestation due to logging (timber and fuelwood) and any residual 
is apportioned to agricultural and livestock land. The following diagram illustrates the 
relationship between flows and stocks.  
 
The LULUCF model addresses deforestation by estimating the causes of deforestation 
for each of the 5 categories considered: Croplands, Pastures, Mining Lands, Settlements 
and Other Lands. In the case of crops, the following are considered as explanatory 
variables: agricultural income, forestry income, total paved roads and rural population. In 
the case of pasture, forest income, annual increase in head of cattle, total paved and 
unpaved roads, and an efficiency factor related to time, which allows controlling the trend 
improvements in the sector related to a higher animal load per hectare, have been 
considered. In the case of settlement, paved roads have been considered as the main 
explanatory variable, together with a constant component. In the case of mining, the 
projection of the international price of gold has been considered as the main explanatory 
variable. Finally, for deforestation by other lands, the average deforestation of previous 
years has been considered. 
 
A malaria module is included in LULUCF, it calculates the malaria cases level generated 
by deforestation using spatial econometric estimates of malaria and deforestation. Malaria 
cases are forecasted based on the estimated malaria deforestation elasticity, considering 
the indirect and direct effects of deforestation on malaria. Also, it provides the economic 
cost of malaria-related expenses, this estimate considers that a case of malaria generates 
between 10 to 20 days of lost work therefore it estimated of the minimum and maximum 
of cost due malaria, a minimum salary of 1,025 soles (close to 269 USD ) and a work 
month that includes 20 days. 
 
3.2.2.- Savings in health care costs due to stopping deforestation 
 
3.2.2.1.- Background 
  
Peru faces climate change by formulating adaptation and mitigation goals expressed in 
the Nationally Determined Contributions. The Nationally Determined Contributions 
(NDCs) assumed as a country and society are framed in the Paris Agreement on climate 
change, which was ratified by Peru on July 22, 2016. This is presented as a Peruvian 
response to climate change and is framed together with the commitment of the 
international community to address its impacts and reduce greenhouse gas emissions thus 
limiting the increase in the average temperature of the planet well below 2 °C. The 
mitigation target has the ambition to achieve a 40% reduction of GHG emissions 
compared to a BAU scenario by 2030. 



 
To achieve this objective, Peru is committed to achieving carbon neutrality by 2050. for 
this purpose, it is necessary the implementation of mitigation measures in LULUCF 
comprises combined actions for which enabling conditions are required (forest 
management and granting of rights, improved governance, institutionalism and 
monitoring and control) and are based on best production practices aimed at increasing 
productivity and area under these ves practices. 
 
3.2.2.2.- Methodology 
 
The process to analyze the impacts of the of the interventions in reducing deforestation 
and consequently in reducing malaria, starts by generating two scenarios in POLYSYS, 
first a baseline scenario (BAU) and then a scenario with interventions are estimated, DDP. 
For the BAU scenario, deforestation increases according to its trend evolution for the 
main causes: agriculture, based on the historical trend and growth of the sector; mining, 
based on international gold price projections; infrastructure, based on the growth of the 
road network expansion; and urbanization, based on the growth of the rural population in 
the region. Deforestation rates according to territorial forest categories remain constant 
throughout the 2020-50 period. 
 
For the DDP scenario, based on MINAM (2021), the following transformations have been 
simulated in: 
 

• Reduction of primary forest deforestation driven by the allocation of forest rights 
and by investments for conservation, recovery and increased productivity of 
agricultural soils in the Amazon through the introduction of agroforestry systems 
(coffee and cocoa), the implementation of a logistical support platform for 
agricultural development and the development of silvopastoral systems that 
together allow reducing the pressure of agriculture on the forest. In addition, 
agroforestry and silvopastoral systems contribute to carbon sequestration and 
increase crop productivity under agroforestry systems. In no case does the 
allocation of rights contemplate concessions in the primary forest for the 
development of forestry plantations. 

 
• Encouragement to take advantage of forest resources through the promotion of 

concessions under sustainable forest management and forest plantations for 
commercialization. 
 

• Significant promotion of investments in plantations for restoration purposes that 
in no case considers the development of forest plantations in the primary forest. 

 
In the agriculture sector, the following transformations are considered following 
transformations: 

• Recovery and management of natural pastures and high Andean and Amazonian 
pastures, which results in an increase in efficiency of the livestock and reduces 
emissions per kilo of beef.  

 
• Development of silvopastoral systems in the Amazon region, resulting in 

Amazon, which results in greater cattle efficiency, reducing emissions per kilo of 
beef produced in the Sierra region. efficiency, reducing emissions per kilo of beef 



produced in the Sierra region. emissions per kilo of beef produced in the Amazon 
region. in the Amazon region, and additionally contributes to carbon 
sequestration. contributes to carbon sequestration. 

 
• Use of agricultural residues through the production of organic fertilizers organic 

fertilizers to replace inorganic fertilizers inorganic fertilizers, mainly for fruit, 
cereal, grain and rice crops. and grains, and rice. 

 
• Adoption of the intermittent drying system for rice crops on the rice crops on the 

coast to replace the traditional traditional system of rice cultivation; this rice 
cultivation system; this helps reduce emissions and emissions and increases crop 
productivity. crop productivity. 

An additional transformative element is the promotion of changes in the food diet, 
namely: 
 

• On the carbohydrate side, it is driving a transition from rice consumption to the 
consumption of tubers, cereals and consumption of tubers, cereals and grains, and 
legumes, while maintaining a similar level of calorie similar level of calorie 
consumption. This contributes to reduce the pressure of rice crop expansion and 
redirects and redirects demand towards lower-emission crops. crops that generate 
lower emissions. 

 
• On the meat consumption side, a transition away from beef consumption is 

encouraged. a transition from beef consumption to pork consumption to pork 
consumption, thus maintaining the trend growth of the the trend growth of meat 
consumption is maintained, but with a meat consumption, but with a greater share 
of pork pork consumption, but with a higher share of pork pork in relation to beef. 
This contributes to reduce the pressure of deforestation by livestock expansion 
into the forest, and redirects demand and redirects demand towards lower-
emission consumption with lower emissions. 

 
Considering the estimated level of deforestation, the malaria level forecast for each of the 
scenarios is obtained based on the evolution of deforestation. For this purpose, the number 
of malaria cases in 2020 is taken as a starting point, and thereafter it is calculated, with 
the rate of change of deforestation and the estimated elasticity that relates deforestation 
to malaria cases, the level of malaria cases forecasted. 
For the estimation of the cost of malaria cases, a minimum and maximum is estimated 
based on the period that a malaria case can last. It is estimated the cost in lost work days, 
so it is considered the minimum wage, currently at 1,025 (269 dollars) with an exchange 
rate of 3.8, as well as a month with 20 working days (between 10 and 20 days).  
 
The savings in health costs are calculated by comparing the costs between the two 
scenarios, business as usual and the decarbonization scenarios. For this purpose, the total 
cost increase is estimated year by year and the total accumulated cost to 2050 is 
calculated. A cost per case is constant in period, so this estimate are expressed in 2020 
constant dollars. 
 
4.- Results 
 
4.1.- Malaria and deforestation relationship 



 
4.1.1.- Fixed effects estimation 
 
We estimated equation (3). A quadratic term is added for the variable of interest intending 
to identify nonlinear effects of deforestation over malaria incidence. We applied a 
logarithmic transformation for all continuous variables. Table 2 presents first evidence 
about the sign and significance of the covariates. Remarkably, the incidence in malaria is 
shown to be associated consistently with a positive and statistically significant coefficient 
starting from column 8 onwards. In summary, the results show that an increase in past 
deforestation is correlated directly with an increase in next year’s malaria incidence. But 
this impact appears to be penalized as its quadratic term’s coefficient is statistically 
significant though negative and with lower magnitude.  
 

Table 2. Panel data fixed effects regression 
 

 
 
 
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
 
4.1.2.- Spatial estimations 
 
It is necessary to continue addressing the risk of misspecifications, especially considering 
other non-observable influences on the malaria incidence. Particularly, the presence of 
spatial dependance between neighbor districts. To explore this, three types of contiguity 
matrices were estimated using geographical data provided by the MINAM’s GeoBosques 
plataform.  
 
Firstly, we applied the most widely used spatial autocorrelation method to test if variables 
of different regions are correlated or present independence. The Moran’s Index test or 
Moran’s I test states as null hypothesis that errors in an estimation such as the latter are 
iid. When rejected, it brings evidence that neighbor regions variables may be correlated. 
In table 3, we present our Moran’s I test statistics and respective p-values according to 
the structure set by the matrices used for years 2001 to 2020. 
 



Table 3. Moran’s I test statistics and p-values 
       

 Queen - Binary Queen - Row Standarized Hybrid (Queen * ID) 

  z-stat p-val z-stat p-val z-stat p-val 

2001 21.217 0.000 20.014 0.000 15.037 0.000 

2002 23.344 0.000 22.428 0.000 17.355 0.000 

2003 23.493 0.000 21.54 0.000 16.544 0.000 

2004 23.479 0.000 22.514 0.000 17.055 0.000 

2005 23.479 0.000 22.557 0.000 16.934 0.000 

2006 25.308 0.000 24.492 0.000 17.615 0.000 

2007 26.113 0.000 26.23 0.000 17.619 0.000 

2008 26.579 0.000 26.35 0.000 16.972 0.000 

2009 26.579 0.000 26.35 0.000 16.972 0.000 

2010 25.768 0.000 25.43 0.000 16.525 0.000 

2011 25.667 0.000 25.581 0.000 17.389 0.000 

2012 28.328 0.000 28.481 0.000 18.645 0.000 

2013 29.21 0.000 29.308 0.000 18.675 0.000 

2014 29.093 0.000 29.388 0.000 17.979 0.000 

2015 28.129 0.000 29.033 0.000 17.23 0.000 

2016 27.848 0.000 28.843 0.000 17.066 0.000 

2017 27.526 0.000 28.808 0.000 16.78 0.000 

2018 26.931 0.000 28.275 0.000 16.372 0.000 

2019 25.564 0.000 26.827 0.000 15.28 0.000 

2020 24.174 0.000 25.058 0.000 13.342 0.000 

 
Results show that for every year and for every 𝑊 matrix structure the test rejects its null 
hypothesis, suggesting that in every year the estimation presents spatial interdependence 
among districts. Therefore, for the estimation to be consistent, a spatial model that 
accounts for the non-observed indirect spatial effects other districts exert between each 
other is needed. 
 
Although, spatial dependence is evidenced by the test, it is not clear if the issue relies on 
spatial autocorrelation from the same dependent variable, meaning malaria rates are 
interdependent or “spatially lagged” between districts, or if key covariates of other 
districts, like deforestation, are spatially lagged between each other, making in the 
example other districts deforestation agent on one’s malaria rates. Even less is clear if 
neither are the case and the errors are those which are correlated spatially between 
districts. Knowing that for each case there are specific spatial models which address each 
specific dependence issue, we applied two tests for model selection using the three 𝑊 
spatial matrix.  
 
The first one consisted in a robust Lagrange multiplier test for spatial autocorrelation 
between both dependent variables and errors. Specifically, it tests the significance of 
coefficients of a modified model which introduces both a spatial autocorrelation term in 
the main structure – on the dependent variable - and the error structure. Thus, if there was 
spatial lagged dependence, it would be evidenced by its coefficient failing the null 
hypothesis. The table 4 shows the results of this first test.   
 
 
 
 
 



Table 4. Robust Lagrange Multiplier Tests 
Queen - Binary Queen - Row Standarized Hybrid 

I. Spatial lag   I. Spatial lag   I. Spatial lag   

Ha: Spatial lag dependence Ha: Spatial lag dependence Ha: Spatial lag dependence 

LM 13.509 LM 1.1795 LM 2.6712 

df 1 df 1 df 1 

p-value 0.000 p-value 0.2775 p-value 0.1022 

            

II. Spatial error   II. Spatial error   II. Spatial error   

Ha Spatial error dependance Ha Spatial error dependance Ha Spatial error dependance 

LM 24.526 LM 72.475 LM 40.382 

df 1 df 1 df 1 

p-value 0.000 p-value 0.000 p-value 0.000 

 
In general, this test shows strong evidence, across all three 𝑊 matrix, that this estimation 
presents spatially lagged errors terms in the error structure. On the other hand, it is just 
for the case of the Binary matrix, that actual spatial autocorrelation is hinted. 
 
To complement these results more directly, a secondary test was conducted which 
compares six predefined modifications of the current model being then tested by 
computing a Bayesian nonparametric method denominated Posterior Probability assigned 
at each specification. This test simulates an Ordinary Least Square model and 5 spatial 
regression models: Spatial Autoregressive Model (SAR), Spatial Error Model (SEM), 
Spatial Durbin Model (SDM), Spatial Durbin Error Model (SDEM), Spatial Lag of X 
(SLX). The selection process consists in selecting the model which offers higher posterior 
probability. Table 5 shows the results of these computations by matrices.  
 

Table 5. Bayesian posterior probability 
 

 
 
These results show for each matrix that the highest posterior probability in each case is 
associated with a SDM model and secondly to a SDEM model, leaving the other 
specification with extremely low estimates. This results alone evidence that spatial 
dependence may be coming from spatially lagged covariates, and in a minor way from 
the error structure. This would mean that not only deforestation in a given district may be 
influencing the same district’s malaria rate but, that it may respond to the deforestation 
occurred in nearby districts. Since the previous parametric test strongly evidenced the 
lack of spatial lag dependence in favor of spatially dependent errors, and these 
computations generally suggest the inclusion of a lagged covariates, the spatial model to 



be selected will be the Spatial Durbin Error Model (SDEM), since it integrates both 
components into the spatial estimation.  
 
Table 6 shows the main results of the SDEM estimations per each matrix. After 
considering spatial spillover effects of the covariates and the errors, coefficients 
associated to deforestation keep being positive and statistically significant. This means 
that higher rates of deforestation may lead to increases in registered malaria cases, 
significantly on the same district that is being deforested and more importantly, as noted 
by the magnitude of the coefficients, on those adjacent. Furthermore, this effect of the 
forest loss is also penalized as the quadratic term is also statistically significant and 
negative. Similar conclusion is evidenced by all three matrices. 
 
It is worth noting by the national expenditure’s coefficient that direct increases in care 
and action by the government appears to be statistically effective in counteracting the 
illness in one given district yet it faces the indirect nature of the effects of deforestation 
on malaria rates.  
 

Table 6. Spatial Durbin error model estimation 

 
 
4.2.- The deforestation dynamic 
 
Interventions in the forestry sector can succeeded in reversing the increasing trend of 
deforestation (Figure 3); the annual deforestation rate by 2050 falls from 200,000 to 
20,000 hectare annually. This is mainly because incentives to deforestation are addressed, 
forest productivity is boosted, value is given to standing forest, productive activity is 
promoted, property rights are strengthened, and the forest is protected from deforestation. 
 
 
 
 
 
 
 
 
 



Figure 3. Forecast of yearly deforestation (in hectares) by scenario 
 

 
 
The reduction of deforestation reduces forest emissions (Figure 4), as well as the 
promotion of plantations and agroforestry systems contribute to carbon sequestration, as 
can be seen, transforming the forest into a carbon sink, going from 244 Mt emitted to the 
sector sequesters 38 Mt in 2050. 
 

Figure 4. Net emissions of AFOLU sector by scenario 

 
 
 

 
 
 
 
 
 
 
 
 
 



Figure 5. Evolution of malaria cases due to deforestation 
 

 
 

Figure 6. Disaggregation of malaria cases evolution 

 
 
This reduction in the advance of deforestation impacts the evolution of malaria cases that 
occur, reduced from 11,500 to 7,000 cases in 2050 following model 1; and from 12,000 
to 3,000 cases according to model 2 and from 41,000 to negative case according to model 
3 (Figure 5). Consequently, the interventions can generate savings in health expenditures. 
This reduction in the advance of deforestation impacts the level of malaria cases that 
occur, from 8,000 to 200 cases in 2050 following model 1; and from 17,000 to 1900 cases 
according to model 2 (Figure 6). Consequently, the interventions can generate savings in 
health expenditures. As can be seen, according to the econometric approach, the 



contribution of spillover can be even greater than the direct effect, so it is important to 
consider what happens in neighboring districts (Figure 7). 
 

Table 7. Overall cumulative saving health due to stopping deforestation 
 

  Model 1 Model 2 Model 3 
Overall saving health 

(million USD) 
min 39.2 92.9 794 
max 78.4 185.7 1,588 

 
Figure 7. Disaggregation of costs 

 

 
 
5.- Conclusions 
 
In this study, we find evidence that forest loss in the Peruvian Amazon increases malaria 
contagions not only in local districts but also in the neighbor districts. After 
disaggregating the direct effects and spillover effects of deforestation on malaria cases, 
our results support the existence of a relationship between deforestation and malaria in 
the Peruvian Amazon that transcends beyond a local area. 
 
Our findings address a gap in the literature which was more focused in the correlational 
and causality issue, except Seabra Santos and Almeida (2018) who had some similar 
findings than ours for the Brazilian Amazon. Certainly, there are other economic, socio-
economic and ecological factors besides forest loss that has direct and/or spillover effects 
on malaria cases, such as health facilities, education, rural population density, and 
precipitation. Our findings show that indirect or spillover and total effects are larger under 
the one-dimensional 𝑊 contiguity matrix but more conservative with a restricted 𝑊 
hybrid spatial matrix. 
 
The reduction in the advance of deforestation impacts the evolution of malaria cases that 
occur, reduced from 11,500 to 7,000 cases in 2050 following model 1; and from 12,000 
to 3,000 cases according to model 2 and from 41,000 to negative case according to model 
3. Consequently, the interventions can generate savings in health expenditures. 
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