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Abstract 

This study applies the causal random forest approach to investigate the extent to which persistent 

warming temperatures might induce farmers to utilize cover crops. Causal random forests is a 

novel statistical approach that allows for consistent and flexible estimation of heterogeneous 

treatment effects. The causal random forest technique is then applied to a unique satellite-based 

panel data set on cover crop adoption at pixel-level resolution. On average, we find evidence that 

being exposed to higher-than-average maximum temperatures at the end of the harvest season for 

multiple consecutive years influence farmers’ decisions to utilize cover crops. Moreover, our 

causal random forest analysis suggest that there is heterogeneity in the effect of persistent end-

of-season heat events, and the heterogeneity is likely driven by precipitation and drought 

conditions at different points of the growing season. The evidence points to farmers increasingly 

utilizing cover crops voluntarily as weather patterns associated with global warming become 

increasingly common. 

Keywords: Causal machine learning, extreme heat, generalized random forest, treatment effect 

heterogeneity 

JEL Classifications: C8, Q12, Q18 
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1. Introduction 

Climate change has become an important issue for agricultural production (Tack et al., 2015; 

Urban et al., 2015; D'Agostino and Schlenker, 2016). A large and growing literature has shown 

that extreme temperatures have negative effects on crop yields and will likely bring dramatic 

shifts in production agriculture (Burke and Emerick, 2016; Carleton and Hsiang, 2016; Chen et 

al., 2016; Zhang et al., 2017). For example, a warming increase of 2◦C is expected to reduce 

agricultural output by almost 25% (IPCC, 2014). In addition, higher temperatures are predicted 

to lead to more intense rainfall events and greater occurrence of severe soil erosion and soil 

nutrient loss (Nearing et al., 2004; O'Neal et al., 2015). Therefore, reducing greenhouse gas 

(GHG) emissions and sequestering carbon in agriculture have been an important policy goal for a 

number of countries in order to mitigate the adverse effects of global warming. For instance, the 

United States (US) Department of Agriculture (USDA) recently provided up to $1 billion for 

pilot projects that would support adoption of climate-smart practices (including cover crops), 

with the intent of helping reduce the adverse impacts of climate-change-induced weather events 

(USDA, 2022). 

Planting cover crops is regarded as a climate-smart soil health practice that can contribute 

to climate resilience in agriculture. Cover cropping as a practice has become increasingly 

relevant over the last decade as global warming changes the climate in which crops are grown 

(Arbuckle and Roesch-McNally, 2015; Kaye and Quemada, 2017; Olson et al, 2017; Shackelford 

et al, 2019). Cover crops are typically legumes, grasses, and brassicas that are planted to cover 

the soil between the growing seasons of regular crop production (Schnepf and Cox, 2006; 

Arbuckle and Roesch-McNally, 2015). Planting cover crops is expected to improve soil structure 

and soil health by increasing carbon sequestration potential and enhancing moisture infiltration 
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and retention capacity (Lal, 2015). In addition, cover crops are often depicted as a win-win 

practice for both economic productivity and the environment. It has been shown that cover crops 

have the potential to increase long-term crop yields and reduce the input costs of tillage and 

fertilization (Montgomery, 2017; Shackelford et al., 2019). In addition, cover crops has the 

potential to provide large-scale environmental benefits by reducing soil erosion, assimilating 

excess nutrients, improving water quality, and providing habitat for beneficial insects and 

pollinators (Snapp et al., 2005; Schnepf and Cox, 2006; Tonitto et al., 2006; Laloy and Bielders, 

2010; Castellano et al., 2012; Kladivko et al., 2014; Poeplau and Don, 2015; Hanrahan et al., 

2018). 

Despite the potential productivity and environmental benefits from planting cover crops, 

adoption of this soil health practice remains limited in the US. The 2017 US Census of 

Agriculture indicate that cover crop acres are only about 3.9% of all cropland acres nationwide 

(Zulauf and Brown, 2019). Previous literature has identified a range of factors that affect 

farmers’ decision to adopt cover crops, as well as the challenges that may explain the relatively 

low adoption rate. Farmers’ adoption of cover crops is mainly motivated by the private benefits 

of improving soil health and reducing soil erosion (Arbuckle and Roesch-McNally, 2015). In 

contrast, some studies suggest that uncertainty of net economic returns or cash crop yields in the 

short run is a barrier to the adoption of cover crops (Schipanski et al., 2014; Bergtold et al., 

2017). Other possible factors associated with relatively low cover crop adoption in the US 

include biophysical factors (e.g., operating on steeper slopes, complementarity with other 

practices) (Lee and McCann, 2019), structural factors (e.g., farm size, lack of time or equipment) 

(Arbuckle and Roesch-McNally, 2015; Dunn et al., 2016; Roesch-McNally et al., 2018a, b), and 

policy support (Dunn et al., 2016; Park et al., 2022). 
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The objective of this study is to investigate whether farmers’ decision to adopt cover crops 

is influenced by occurrence of persistent warming events (i.e., multiple years of high 

temperatures at harvest). We utilize a large-scale satellite data set that has cover crop adoption 

information at the pixel level for soybean fields in Indiana for the 2008-2015 period (Seifert et 

al., 2019). The cover crop data is then merged with pixel-level weather variables (i.e., from the 

Daymet data set (see Thornton et al., 2014)), yield information, and soil quality measures (i.e., 

the National Commodity Crop Productivity Index (NCCPI)). A causal random forest estimation 

procedure is then used to estimate the impact of warming events on cover crop usage by farmers. 

Causal random forests allow for estimation and investigation of heterogeneous causal treatment 

effects. 

There are very few studies that have investigated the relationship between farmers’ 

adoption of cover crops and climate change (Gardezi and Arbuckle 2019; Lee and McCann 

2019; Yoder et al., 2021; Dong, 2022; Kathage et al., 2022). Farmers’ cover crop adoption 

decisions in response to weather events associated with climate change are found to be mixed 

(Yoder et al., 2021). Some research suggests that farmers are motivated to adopt cover crops 

after experiencing particularly acute climate risks, such as greater precipitation (Lee and 

McCann, 2019). However, other research finds that climate change considerations do not play a 

significant role in farmers’ decisions regarding cover crop adoption (Kathage et al., 2022). Dong 

(2022) also find that previous occurrence of drought events do not affect farmers’ cover crop 

adoption decisions. In addition, some studies suggest that cover crops are inadequate to address 

climate change impacts (Arbuckle and Roesch-McNally, 2015; Houser and Stuart., 2020). Others 

also suggest that planting cover crop introduce new risks and management difficulties, which can 

exacerbate climate change’s negative impact on agricultural production (Roesch-McNally et al., 



 4 

2018a). Overall, this literature indicates that farmers can be motivated to adopt cover crops in 

order to address climate risks, but at the same time, they can also be discouraged from adopting 

cover crops due to uncertainty in its benefits and possible introduction of new management risks 

(Yoder et al., 2021). 

Despite the existing literature on cover crop adoption and climate risks, to the best of our 

knowledge, there has been no study that quantitatively examines how farmers’ adoption of cover 

crops is affected by persistent occurrence of extreme heat events. We contribute to the literature 

in this regard. Previous literature typically evaluates the effects of general climate change 

considerations or specific weather events (such as excessive precipitation and drought, rather 

than persistent multi-year extreme heat events) on cover crop adoption. We focus on persistent 

extreme heat events since higher temperatures are directly correlated with global warming and 

they are always accompanied by frequent occurrences of other adverse events, such as soil 

erosion. This study also complements existing agronomic studies arguing that cover crops 

improve soil physical properties over time, which in turn enhance resilience to extreme heat 

events and mitigate soil erosion. For example, agronomists have argued that cover crops can 

modulate extremes in soil temperature in hotter regions and thus adapt to climate change (Kaye 

and Quemada, 2017). To be specific, cover crop residues can reduce soil temperatures 

(Scholberg et al., 2010) and standing cover crops reduce the amplitude of temperature variation 

because of the increased boundary layer effect of the canopy compared to bare soil (Dabney et 

al., 2001). In addition, erosion control is one of the core services that cover crops are typically 

seen to provide (Prado Wildner et al., 2004). 

Second, we also contribute to the literature through the application of the causal random 

forest approach on a unique remote-sensing based data (i.e., from satellites) at a disaggregate 
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pixel level. The causal random forest approach is a relatively new machine learning approach 

that allows for assessing heterogeneous causal relationships (i.e., as compared to  traditional 

machine learning methods that are more concerned with prediction). To the best of our 

knowledge, only one recent study has used this method in the context of cover crop use (Deines 

et al., 2022). Traditional statistical approaches are limited to estimating average treatment 

effects, which can hide significant variation in how the treatment impacts different observations. 

Moreover, the use of a dense pixel-level data set based on satellite images is also a contribution 

since only a few studies have used satellite-based cover crop information for economic analysis 

(Seifert et al., 2019; Chen et al., 2021; Connor et al., 2021). Most studies that have examined 

cover crop adoption typically use either survey data sets (Lee and McCann 2019) or more 

aggregate (e.g., county-level) data sets (Chen et al., 2021; Connor et al., 2021; Chen et al. 2023). 

Lastly, since our study examines whether experiencing persistent higher-than-average 

maximum temperature events for multiple consecutive years would encourage (or discourage) 

farmers to adopt cover crops, we also contribute to the literature that have investigated how 

experiencing recent extreme events can influence economic decision-making. There is a large 

literature showing how people’s recent extreme experience has a role to play in the evaluation of 

subsequent choices, especially in different types of insurance markets (Cai and Song, 2017; 

Kousky, 2017; Bjerge and Trifkovic, 2018; Che et al., 2020). The general finding of these studies 

is that farmers are more likely to buy insurance (or use a risk mitigating instrument) after 

experiencing extreme weather events. Therefore, our study provides another context for which to 

evaluate whether recent extreme weather events influence adoption of cover crops (i.e., a 

practice that the agronomic literature consider a tool that can help manage or mitigate climate-

related risks, much like crop insurance). 
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Findings from this study suggest that being exposed to persistent higher-than-average 

maximum temperatures at the end of the harvest season likely induces farmers to utilize cover 

crops in their production system. We find evidence that this treatment effect is heterogenous and 

this heterogeneity appears to be driven by precipitation and drought conditions at various points 

in the growing season. The evidence points to farmers increasingly utilizing cover crops 

voluntarily as weather patterns associated with global warming (i.e., persistent high 

temperatures) become increasingly common. This insight can help provide a better 

understanding of farmer cover crop adoption behavior, and may help various institutions 

interested in encouraging more cover crop use (e.g., non-profit conservation groups, 

conservation-oriented government agencies, and university extension & outreach programs), 

especially with regards to targeting the timing and location of their educational programming. 

2. Data and Empirical Approach 

2.1 Data Description 

The data for this study was created from satellite imagery as detailed in Seifert et al. (2019). 

Seifert et al. (2019) kindly provided their dataset for use in this study. For our analysis, we 

specifically focus on yearly data for soybeans in Indiana from 2008 to 2015. Individual 

observations are satellite imagery pixels corresponding to a growing season for a particular year. 

Individual pixels are 30m x 30m in size.  

Cover crop use (CC) is the main dependent variable of interest in this study. It is a binary 

variable indicating whether cover crop usage is detected for a particular pixel before the next 

planting season. Detailed descriptions of how the cover crop data was generated can be found in 

Seifert et al. (2019). As reported in Seifert et  al. (2019), the satellite-based data set developed 

had an out-of-sample accuracy of 91.2% and compares favorably with temporal and spatial 
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trends observed in other third-party cover crop data sets (i.e., those from the Environmental 

Working Group (EWG) and USDA Natural Resource Conservation Service (NRCS)).  

Aside from the main cover crop dependent variable, the Seifert et al. (2019) study also 

utilized the Daymet gridded daily weather information (see Thronton et al, 2014) to produce 

weather data that corresponds to the individual pixel-level observations for cover crops. In 

particular the weather variables in the data set includes the following: precipitation (PRCP) in 

meters, maximum temperature (TMAX) in °C, minimum temperature (TMIN) in °C, and vapor 

pressure (VP) and vapor pressure deficit (VPD) measures (both in kPa) for drought conditions. 

Each weather variable is measured before planting (PRE-PLANT), early in the season (EARLY), 

mid-season (MID), and at the end of the season (END). That is, there are four weather 

measurements at various points of the year. The summary statistics for the weather variables in 

the data are presented in Table 1. 

Given our interest in the impact of persistent heat events on cover crop adoption decisions, 

it is critical to first define the “treatment” variables that correspond to occurrence of persistent 

heat events. Thus, based on the pixed-level weather data in Seifert et al. (2019), we create three 

binary treatment variables that correspond to whether or not a particular pixel-year observation 

experienced above average maximum temperatures at the end of the season for: (i) three 

consecutive years (TMAX_END3), (ii) four consecutive years (TMAX_END4);, and (iii) five 

consecutive years (TMAX_END5) (i.e., that is, TMAX_END_J where J = 3, 4, 5).  These three 

treatment variables are our main independent variables of interest. While above-average 

temperatures may occur and have different impacts at different points in the farming season, this 

study examines above-average maximum temperatures at the end of the season. The reason is 

that this is the most recent weather event prior to the farmers’ decision to use cover crop (or not). 
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Hence, it is reasonable to expect that these end-of-season heat events are the most likely to have 

an impact on cover crop utilization before the start of the next growing season. Note that the 

average maximum temperature is taken over the sample period to avoid increasing numbers of 

consecutive years with above-average maximum temperatures. Furthermore, these weather 

events are expected to be plausibly exogenous so that the effects estimated by the causal random 

forests will likely be consistent and unbiased. 

In addition to the cover crop, weather, and treatment variables described above, the Seifert 

et al. (2019) data set utilized also includes two measures of soil quality – (i) a measure of water 

holding capacity (WHC) at the root zone, and (ii) a soil productivity measure called the National 

Commodity Crop Productivity Index (NCCPI) version 2 from the USDA NRCS’ Soil Survey 

Geographic Database (SSURGO). We also use these two soil measures as observable covariates 

in the causal forest analysis. The summary statistics for the cover crop adoption variable, the 

three treatment variables, and the two soil quality measures are presented in Table 2. 

2.2 Empirical Approach: Causal Random Forests 

To explore the potential impacts of persistent end-of-season heat events on cover crop utilization 

(
itCC ), we are conceptually interested in estimating an empirical specification of the form: 

     ( _ _ , , , )it it it i t itCC f TMAX END J   = +X           (1) 

where 
itCC  is a binary cover crop use variable for pixel i in year t, _ _ itTMAX END J  is the 

binary “treatment” variable representing persistent end-of-season heat events over J consecutive 

years (i.e, J = 3, 4, 5),1 
itX  is a vector of observable covariates (e.g., which includes the weather 

variables (see Table 1), the soybean yields (see Table 2), and the soil quality measures (see Table 

 
1 With J = 3, 4, 5, equation (1) is estimated three times – for three consecutive years of above average heat events (J 

= 3),  for four consecutive years of above average heat events (J = 4), and for five consecutive years of above 

average heat events (J = 5). 
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2)), 
i  is an unobservable time-invariant pixel-level effect, 

t  is an unobservable year effect, 

and 
it  is an idiosyncratic error term. The “treatment effect” of persistent above average heat 

events (i.e., _ _ itTMAX END J  in equation 1) is then estimated using a recently developed 

machine learning algorithm called the causal random forest approach (Athey et al., 2019).2 

 The causal random forest approach can estimate non-linear and non-parametric 

heterogeneous treatment effects (as in the general form in equation 1) when the treatment 

propensity is dependent on observable variables (like 
itX ), but treatment is exogenous with 

respect to unobserved variables. The non-linear and non-parametric nature of the approach 

contributes to its flexibility in estimation and reduces the risk of misspecification since one does 

not need to assume a specific parametric fuctional forms (that may or may not allow for non-

linearity). The causal random forest procedure also allows for calculating the variance of the 

non-linear, non-parametric heterogeneous treatment effect, which then permits statistical 

inference on the estimated treatment effects (i.e., which is an improvement over traditional 

nonparametric methods that usually do not allow for  statistical inference). Moreover, the causal 

random forest method makes it possible to identify the most important observable variables (in 

the vector 
itX ) that most likely drives the heterogeneity in the estimated treatment effects.  

 Causal random forests are a recent adaptation of the classical random forest machine 

learning algorithm, which generates consensus predictions from many individual classification or 

 
2 The conceptual specification in (1) can also be expressed in the potential outcomes framework (see Imbens and 

Rubin, 2015), where the treatment effect (more precisely called the conditional average treatment effect (CATE)) is 

defined as 
1 0

1 0
( ) ( ) ( )

i i i i
x Y Y X x x x  =  − = = −   , where ( )

i
x  is the difference in potential outcomes 

between the treatment (1) and control (0) (i.e., the treatment effect) conditional on the observable covariates x. This 

is then equivalent to the difference in the conditional means  (
1 0
( ) ( )x x − ), assuming that the four underlying 

assumptions of this framework holds (e.g., conditional independence, stable unit value assumption, overlap 

assumption, and exogeneity of covariates). 
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regression trees (Breiman, 2001). Similar to the classical random forest approach in predictive 

machine learning (Breiman, 2001), causal forests attempt to find “neighbourhoods” in the 

covariate space, also known as recursive partitioning (i.e., partitioning the data for treatment 

estimation). While a random forest is built from decision trees, a causal forest is built from 

causal trees, where the causal trees learn a low-dimensional representation of treatment effect 

heterogeneity. Importantly, the splitting criterion used in causal forests is optimized for finding 

splits associated with treatment effect heterogeneity. Assuming that the treatment effect is 

constant over a neighbourhood N(x), then it is possible to estimate the average treatment effect in 

each neighborhood partition. The goal is to find tree “leaves” (i.e., the neighborhood defined by 

the partitions), where the treatment effect is constant but is different from other “leaves.”  

Therefore, a causal random “forest” is simply the average of a large number of causal trees, 

where the trees differ due to subsampling (Athey and Imbens, 2019). To create a causal forest 

from causal trees, it is necessary to estimate a weighting function and use the resulting weights to 

solve a local generalized method of moments (GMM) model to estimate the average treatment 

effect (conditional on the observable variables). To deal with overfitting, causal forests use an 

“honesty” condition. A tree is considered “honest”, if for each training sample (i),  it only uses 

the response (Yᵢ) to estimate the within-leaf treatment effect or to decide where to place the split, 

but not both (Jacob, 2021). Sample-splitting is used to create honest trees, where half the data is 

used to estimate the tree structure (i.e., a splitting subsample), and then the other half is used to 

estimate the treatment effect in each leaf (i.e., an estimating subsample). The prediction of 

treatment effects is the difference in the average outcomes between the treated and the control 

observations of the estimating subsample in terminal leaves. Intuitively, causal forests are a kind 

of matching approach where one aims to split the sample such that each leaf can be interpreted as 
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a random experiment (conditional on controls) from which treatment effects can be calculated 

per leaf. 

Using honest trees also allows for asymptotic normality in the estimator used to estimate the 

variance of the estimates, which then allows for reliable confidence intervals of the parameters 

estimated (Wager and Athey, 2018). This is important, because to obtain an accurate estimate, 

the bias should asymptotically disappear, such that the confidence intervals are minimized. Since 

the bias vanishes asymptotically, the causal forest estimates are consistent and asymptotically 

Gaussian, which means that together with the estimator for the asymptotic variance (honest 

trees), valid confidence intervals are ensured.  

More broadly (and for a more general intuition of the approach), causal random forests 

estimate treatment effects by comparing outcomes for each treatment sample against available 

control samples which are weighted based on their similarity to the the treatment sample. Thus, 

in our study, the causal random forest procedure allow us to use each pixel’s closest neighbor in 

covariate space to generate a counterfactual cover crop outcome estimate under the “control” 

scenario without recent persistent warming. Furthermore, causal forests guard against 

confoundedness, including by unobserved variables, by using a “doubly robust” (“honest”) 

treatment estimation method that combines treatment propensity weighting (i.e., in our case, how 

likely is the pixel to experience persistent warming) and a procedure based on a model of the 

expected outcome (i.e., in our case, whether or not to adopt cover crops). This approach 

minimizes sensitivity to misspecification (Athey et al., 2019; Scharfstein et al., 1999). Causal 

random forests also generate valid confidence intervals (as alluded to above), and are robust to 

large number of covariates, nonlinear interactions, and overfitting without requiring an explicit 

parametric model specification (Athey et al., 2019; Athey and Imbens, 2016; Belgiu and Dragu, 
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2016; Wager and Athey, 2018). Recent studies have shown that causal random forests are better 

able to detect and quantify heterogeneous treatment effects as compared to traditional 

econometric methods (Baiardi and Naghi, 2020; Farbmacher et al., 2019; Strittmatter, 2019). 

3. Results and Discussion 

The estimated average treatment effects (ATEs) from the causal random forests are presented in 

Table 3. Specifically, we show the results for experiencing three, four, and five consecutive years 

of above-average maximum temperatures at the end of the season. Note that each causal random 

forest in our runs contains 400 individual trees. In addition, note that the methodology used to 

estimate the average treatment effects is overlap-weighted. As indicated in Li et al. (2018), when 

treatment propensity is characterized by poor overlap (i.e., propensities that are either very close 

to zero or very close to one), the estimated average treatment effects tend to be unstable. Hence,  

the overlap-weighted estimation procedure is necessary to avoid instability caused by treatment 

propensities close to the endpoints. 

 In general, the estimated average treatment effects in Table 3 suggest that farmers with 

fields (or pixels) experiencing persistent above-average maximum temperatures at harvest time 

would have higher likelihood of adopting cover crops. The estimated treatment effects 

(conditional on observable covariates) are statistically significant at the 1% level of significance. 

Three consecutive years of above-average maximum temperatures at harvest increases the 

probability of cover crop use by 0.8 percentage points. In addition, more years of persistent 

warming experiences at harvest time consequently increases the likelihood of adopting cover 

crops. For example, four consecutive years of above-average maximum temperatures at the end 

of the season increases the probability of cover crop use by 1.3 percentage points, and five 

consecutive years of persistently high temperatures at harvest increases the probability of cover 
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crop use even more (i.e., by 4 percentage points). This pattern of results indicate that soybean 

growers in Indiana likely respond to how frequent they experience heat events, and the more 

frequent they experience above-average temperatures increases the probability that farmers will 

use cover crops in their production system. We posit that this behavioral response may be due to 

farmers’ knowing that cover crops’ can help modulate soil temperatures in the presence of 

warming (see Scholberg et al., 2010 and Dabney et al., 2001). It is also possible that since 

warming temperatures is often associated with soil erosion, the behavioral response to use cover 

crops may also be related to anticipated soil erosion problems. That is, the persistent above 

average temperatures may be a signal for impending soil erosion problems, and so farmers react 

by using cover crops to help address (or preempt) potential future soil erosion issues (Prado 

Wildner et al., 2004; Chen et al., 2023).  

 To better contextualize the magnitude of the estimated treatment effects, we conduct a 

simple back-of-the-envelope calculation using cover crop adoption figures based on data from 

the 2017 Census of Agriculture. Zulauf and Brown (2019) estimated that the cover crop adoption 

rate in Indiana (for all crops) is around 7% based on the cover crop acreage reported in the 2017 

Census of Agriculture. Based on our estimated treatment effects, a three-year heat event would 

increase cover crop adoption in Indiana from 7% to 7.8%. This is about an 11.42% increase in 

cover crop adoption rate due to three consecutive years of above average maximum temperatures 

at harvest (i.e., 0.8 divided by 7). Moreover, a four-year heat event at harvest would result in a 

18.57% increase in cover crop adoption, and a five-year heat event at harvest would result in a 

57% increase in cover crop adoption. These estimate magnitudes indicate that the impact of 

persistent above average temperatures on cover crop usage rates is economically meaningful. 

 Our causal random forest analysis also indicates that there is substantial heterogeneity in the 
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estimated treatment effect of persistent above average temperatures at harvest. In Figures 1, 2, 

and 3, we present the unweighted histograms of the estimated treatment effects based on the 

causal random forests for the three, four, and five year persistent heat treatments. It is apparent 

from these figures that the effect of experiencing multi-year above average temperatures at 

harvest varies across observations in the sample. Moreover, the figures also suggest that the 

variation tend to be larger (i.e., less narrow bell shaped curves) for the four and five year 

treatment effect as compared to the three year treatment effect. This supports the notion that a 

persistent warming event over five-years gives a “strong” signal for use of cover crops (e.g., 

more farmers wanting to adopt to address soil problems) such that the upper tail of the 

distribution “spreads” to the right and increases heterogeneity of impact. 

One advantage of the causal random forest approach is that it allows for calculation of a 

simple measure of “variable importance” to see which observable variables are most closely 

associated with the heterogeneity of the treatment effects. The variable importance measure we 

use is a simple weighted sum of how many times a particular variable was used as the splitting 

variable in each tree weighted by the depth at which the split occurred. Splits towards the top of 

the tree are presumed to be more important for the heterogeneity of the treatment effect 

compared to splits further down the tree. Splits are only considered down to a depth of 10 since 

the individual trees are rather large, so calculating this measure for each full tree would be rather 

time-consuming, and splits further down are unlikely to be very important. Figure 4 shows the 

results of this measure. Higher numbers for variable importance indicate that the variable is 

deemed as contributing more toward the heterogeneity in the treatment effect. The variable 

importance across each weather event from the causal random forests are broadly similar with a 

few exceptions. Surprisingly, usage of cover crops in the previous season and crop yield in the 
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preceding season do not appear to be very important for the heterogeneity in the treatment 

effects. Variables associated with drought conditions such as precipitation before planting, vapor 

pressure early in the season, and the vapor pressure deficit at the end of the season are more 

strongly associated with the heterogeneity in the treatment effects. The minimum temperate early 

in the season also appears to be an important contributor, perhaps because it suggests to farmers 

that there is a more permanent change in climate conditions rather than a temporary warm 

weather event. 

4. Conclusions 

Although there have been numerous previous studies that explored factors that may affect cover 

crop adoption, overall understanding of the nature and scope of the relationship between climate 

risks and cover crop adoption remains limited. In this paper, we investigate the impact of 

persistent adverse warming events on subsequent cover crop utilization. In particular, this study 

examines how farmers’ adoption of cover crops responds after experiencing consecutive years of 

above-average maximum temperatures at the end of the farming season. A causal random forest 

approach applied to a unique pixel-level satellite-based data is used to determine whether 

persistent warming events influence farmer adoption of cover cropping. Results from the causal 

random forest analysis suggest that farmers do respond to experiencing persistent warming 

events, and that this response is likely heterogeneous across observations in the sample. In 

addition, we find that more years of experiencing warming events also lead to a larger effect on 

cover crop adoption probabilities. Hence, it is likely that farmers will respond to warming 

climates by adapting climate-smart practices like cover crops. We posit that cover crops’ ability 

to manage soil temperatures and to address soil erosion in the presence of warming contributes to 

this observed cover crop response of farmers to persistent warming temperatures.  
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 Results from our study point to a couple of policy implications. Since farmers will likely 

increase cover crop use in response to persistent warming temperatures, this insight implies that 

it may be important to target educational programming and conservation payment programs to 

locations that have experienced warming events over the last several years. Based on our results, 

farmers in these “warming” areas are already more likely to utilize cover crops. Thus, 

educational programs about the resilience benefits of cover crops may help encourage more 

farmers in the area to use cover crops. Conservation payment programs in these areas may also 

push farmers “on the fence” about cover crops to ultimately use this practice in the presence of 

warming events. Extension programming efforts would also likely be more fruitful in areas 

already experiencing warming temperatures that can lead to soil health problems that cover crops 

can help address. 

While our research represents a step forward in understanding cover crop adoption and 

climate risks, it is important to acknowledge study limitations and issues that deserve future 

attention. First, even though our satellite-based data set covers a large scale pixel-level adoption 

rate of cover crops in Indiana, we still do not consider other major agricultural production 

regions in the United States. Second, we only focus on farmers’ responses after experiencing 

extreme heat events. The analysis will be more comprehensive if one can conduct further studies 

to show how farmers’ decisions would change after experiencing various climate events. Third, 

our study has shown that consecutive heat events would increase the adoption of cover crops. We 

have not explored whether farmers’ use of cover crops would respond to sudden weather shocks. 

We leave all these suggested research directions for future work.  



 17 

References 

Arbuckle, J. G., and Roesch-McNally, G. (2015). Cover crop adoption in Iowa: The role of 

perceived practice characteristics. Journal of Soil and Water Conservation, 70(6):418–429. 

Athey, S. and G.W. Imbens. (2019). Machine Learning Methods That Economists Should Know 

About. Annual Review of Economics. 11:685-725 

Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. 

Proceedings of the National Academy of Sciences of the United States of America. 113(27): 

7353–7360. 

Athey, S., Tibshirani, J., and Wager, S. (2019). Generalized random forests. Annals of Statistics, 

47(2):1148–1178. 

Baiardi, A., & Naghi, A. (2020). The value added of machine learning to causal inference: 

Evidence from revisited studies. Tinbergen Institute Discussion Paper 2021-001/V. 

 

Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and 

future directions. ISPRS Journal of Photogrammetry and Remote Sensing. 114: 24–31. 

 

Bergtold, J. S., Ramsey, S., Maddy, L., and Williams, J. R. (2019). A review of economic 

considerations for cover crops as a conservation practice. Renewable Agriculture and Food 

Systems 34(1):62–76. 

Bjerge, B., & Trifkovic, N. (2018). Extreme weather and demand for index insurance in rural 

India. European Review of Agricultural Economics, 45(3):397–431. 

Breiman, L. (2001). Random forests. Machine Learning. 45(1): 5–32. 

Burke, M., and Emerick, K. (2016). Adaptation to climate change: Evidence from U.S. 

agriculture. American Economic Journal: Economic Policy, 8(3):106–40. 

Cai, J., & Song, C. (2017). Do disaster experience and knowledge affect insurance take-up 

decisions?. Journal of Development Economics, 124:83–94. 

Carleton, T. A., and Hsiang, S. M. (2016). Social and economic impacts of climate. Science, 

353(6304): aad9837. 

Castellano, M. J., Helmers, M.J., Sawyer, J.E., Barker, D.W., and Christianson L. (2012). 

Nitrogen, Carbon, and Phosphorus Balances in Iowa Cropping Systems: Sustaining the Soil 

Resource. Proceedings of the 24th Integrated Crop Management Conference, 145–56. 

Ames: Iowa State University Digital Repository. 

Che, Y., Feng, H., & Hennessy, D. A. (2020). Recency effects and participation at the extensive 

and intensive margins in the U.S. Federal Crop Insurance Program. The Geneva Papers on 

Risk and Insurance-Issues and Practice, 45(1):52–85. 



 18 

Chen, S., Chen, X., and Xu, J. (2016). Impacts of climate change on agriculture: Evidence from 

China. Journal of Environmental Economics and Management, 76:105–124. 

Chen, B., Gramig, B. M., and Yun, S. D. (2021). Conservation tillage mitigates drought induced 

soybean yield losses in the us corn belt. Q Open, 1(1):qoab007. 

Chen, L., R.M. Rejesus, S. Aglasan, S. Hagen, and W. Salas. (2022). “The Impact of Cover 

Crops on Soil Erosion in the US Midwest.” Journal of Environmental Management. 324: 

1-15. 

Connor, L., Rejesus, R. M., and Yasar, M. (2021). Crop insurance participation and cover crop 

use: Evidence from Indiana county-level data. Applied Economic Perspectives and Policy, 

44(4), 2181–2208. 

Dabney, S. M., Delgado, J. A., & Reeves, D. W. (2001). Using winter cover crops to improve 

soil and water quality. Communications in Soil Science and Plant Analysis, 32(7-8):1221–

1250. 

D'Agostino, A. L. and Schlenker, W. (2016). Recent weather fluctuations and agricultural yields: 

implications for climate change. Agricultural economics, 47(S1):159–171. 

Deines, J. M., Guan, K., Lopez, B., Zhou, Q., White, C. S., Wang, S., & Lobell, D. B. (2022). 

Recent cover crop adoption is associated with small maize and soybean yield losses in the 

United States. Global Change Biology, 00:1–14. 

Dong, F. (2022). Cover crops, drought, yield, and risk: an analysis of U.S. soybean production. 

NBER Chapters. 

Dunn, M., Ulrich-Schad, J. D., Prokopy, L. S., Myers, R. L., Watts, C. R., and Scanlon, K. 

(2016). Perceptions and use of cover crops among early adopters: Findings from a national 

survey. Journal of Soil and Water Conservation, 71(1):29–40. 

Farbmacher, H., Kogel, H., & Spindler, M. (2019). Heterogeneous effects of poverty on 

cognition. http://www.farbm acher.de/worki ng_papers/Farbmacher_etal_2019.pdf 

Gardezi, M., and Arbuckle, J. G. (2019). The influence of objective and perceived adaptive 

capacity on Midwestern farmers’ use of cover crops. Weather, Climate, and Society, 

11(3):665–679. 

Hanrahan, B. R., Tank, J. L., Christopher, S. F., Mahl, U. H., Trentman, M. T., and Royer, T. V. 

(2018). Winter cover crops reduce nitrate loss in an agricultural watershed in the central 

U.S. Agriculture, Ecosystems & Environment, 265:513–523. 

Houser, M., & Stuart, D. (2020). An accelerating treadmill and an overlooked contradiction in 

industrial agriculture: Climate change and nitrogen fertilizer. Journal of Agrarian Change, 

20(2):215–237. 



 19 

Imbens, G.W. and D.B. Rubin. (2015). Causal Inference for Statistics, Social, and Biomedical 

Sciences: An Introduction. Cambridge University Press, Cambridge MA: 1- 495. 

IPCC, “Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to 

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” 

Technical Report, IPCC, Geneva, Switzerland 2014. [Core Writing Team, R.K. Pachauri 

and L.A. Meyer (eds.)]. 

Jacob, D. (2021). CATE meets ML - Conditional Average Treatment Effect and Machine 

Learning. (March 30, 2021). Available at SSRN: https://ssrn.com/abstract=3816558 or 

http://dx.doi.org/10.2139/ssrn.3816558 

Kathage, J., Smit, B., Janssens, B., Haagsma, W., & Adrados, J. L. (2022). How much is policy 

driving the adoption of cover crops? Evidence from four E.U. regions. Land Use Policy, 

116:106016. 

Kaye, J. P., and Quemada, M. (2017). Using cover crops to mitigate and adapt to climate change. 

A review. Agronomy for Sustainable Development, 37(1):1–17. 

Kladivko, E. J., Kaspar, T. C., Jaynes, D. B., Malone, R. W., Singer, J., Morin, X. K., & 

Searchinger, T. (2014). Cover crops in the upper midwestern United States: Potential 

adoption and reduction of nitrate leaching in the Mississippi River Basin. Journal of Soil 

and Water Conservation, 69(4):279–291. 

Kousky, C. (2017). Disasters as learning experiences or disasters as policy opportunities? 

Examining flood insurance purchases after hurricanes. Risk Analysis, 37(3):517–530. 

Lal, R. (2015). Soil carbon sequestration and aggregation by cover cropping. Journal of Soil and 

Water Conservation, 70(6): 329–339. 

Laloy, E., and Bielders, C. L. (2010). Effect of intercropping period management on runoff and 

erosion in a maize cropping system. Journal of Environmental Quality, 39(3):1001–1008. 

Lee, S., and McCann, L. (2019). Adoption of cover crops by U.S. soybean producers. Journal of 

Agricultural and Applied Economics, 51(4):527–544. 

Li, F., Morgan, K. L., and Zaslavsky, A. M. (2018). Balancing covariates via propensity score 

weighting. Journal of the American Statistical Association, 113(521):390–400. 

Montgomery, D. R. (2017). Growing a revolution: bringing our soil back to life. WW Norton & 

Company, Inc, New York. 

Nearing, M. A., Pruski, F. F., and O'neal, M. R. (2004). Expected climate change impacts on soil 

erosion rates: a review. Journal of Soil and Water Conservation, 59(1), 43–50. 

Olson, K. R., Al-Kaisi, M., Lal, R., & Morton, L. W. (2017). Soil ecosystem services and 

intensified cropping systems. Journal of Soil and Water Conservation, 72(3):64A–69A. 



 20 

O'Neal, M. R., Nearing, M. A., Vining, R. C., Southworth, J., & Pfeifer, R. A. (2005). Climate 

change impacts on soil erosion in Midwest United States with changes in crop 

management. Catena, 61(2–3), 165–184. 

Park, B., Rejesus, R. M., Aglasan, S., Che, Y., Hagen, S. C., and Salas, W. (2022). Payments 

from agricultural conservation programs and cover crop adoption. Applied Economic 

Perspectives and Policy, 1-24. 

Poeplau, C., and Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of 

cover crops–A meta-analysis. Agriculture, Ecosystems & Environment, 200:33–41. 

Prado Wildner, L. D., Freitas, V., & McGuire, M. (2004). Use of green manure/cover crops and 

conservation tillage in Santa Catarina, Brazil. In Green Manure/Cover Crop Systems of 

Smallholder Farmers (1-36). Springer, Dordrecht. 

Roesch-McNally, G. E., Arbuckle, J. G., and Tyndall, J. C. (2018a). Barriers to implementing 

climate resilient agricultural strategies: The case of crop diversification in the US Corn 

Belt. Global Environmental Change, 48:206–215. 

Roesch-McNally, G. E., Basche, A. D., Arbuckle, J. G., Tyndall, J. C., Miguez, F. E., Bowman, 

T., and Clay, R. (2018b). The trouble with cover crops: Farmers’ experiences with 

overcoming barriers to adoption. Renewable Agriculture and Food Systems, 33(4):322–

333. 

Scharfstein, D. O., Rotnitzky, A., Robins, J. M. (1999). Adjusting for nonignorable drop-out 

using semiparametric nonresponse nodels. Journal of the American Statistical Association. 

94(448): 1096–1120. 

Schipanski, M. E., Barbercheck, M., Douglas, M. R., Finney, D. M., Haider, K., Kaye, J.P., 

Kemanian, A.R., Mortensen, D.A., Ryan, M.R., Tooker, J. and White, C. (2014). A 

framework for evaluating ecosystem services provided by cover crops in agroecosystems. 

Agricultural Systems, 125:12–22. 

Schnepf, M., and Cox, C. (2006). Environmental benefits of conservation on cropland: the status 

of our knowledge. Soil and Water Conservation Society, Ankeny, IA. 

Scholberg, J., Dogliotti, S., Leoni, C., Cherr, C. M., Zotarelli, L., and Rossing, W. A. (2010). 

Cover crops for sustainable agrosystems in the Americas. Genetic Engineering, 

Biofertilisation, Soil Quality and Organic Farming, 23–58. 

Seifert, C. A., Azzari, G., and Lobell, D. B. (2019). Corrigendum: Satellite detection of cover 

crops and their effects on yield in the Midwestern United States. Environ. Res. Lett., 

14(3):1–14. 

Shackelford, G. E., Kelsey, R., and Dicks, L. V. (2019). Effects of cover crops on multiple 

ecosystem services: Ten meta-analyses of data from arable farmland in California and the 

Mediterranean. Land Use Policy 88:104204. 



 21 

Snapp, S.S., Swinton, S.M., Labarta, R., Mutch, D., Black, J.R., Leep, R., Nyiraneza, J. and 

O'neil, K. (2005). Evaluating cover crops for benefits, costs and performance within 

cropping system niches. Agronomy Journal, 97(1):322–332. 

Strittmatter, A. (2019). What is the value added by using causal machine learning methods in a 

welfare experiment evaluation? ArXiv. http://arxiv.org/abs/1812.06533v2 

Tack, J., Barkley, A., and Nalley, L. L. (2015). Effect of warming temperatures on U.S. wheat yields. 

Proceedings of the National Academy of Sciences, 112(22):6931–6936. 

Thornton P.E. R. Shrestha, Y. Wei, P.E. Thornton, S. Kao, and B.E. Wilson. 2014 Daymet: Daily 

Surface Weather Data on a 1 km Grid for North America, Version 2 (Oak Ridge, TN: Oak 

Ridge National Laboratory) 

Tonitto, C., David, M. B., and Drinkwater, L. E. (2006). Replacing bare fallows with cover crops in 

fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. 

Agriculture, Ecosystems & Environment 112(1):58–72. 

Urban, D. W., Sheffi ld, J., and Lobell, D. B. (2015). The impacts of future climate and carbon dioxide 

changes on the average and variability of us maize yields under two emission scenarios. 

Environmental Research Letters, 10(4):045003. 

U.S. Department of Agriculture (USDA). 2022. Partnerships for Climate‐Smart Commodities. 

Accessed December 07, 2022. https://www.usda.gov/climate-solutions/climate-smart-

commodities 

Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treatment effects 

using random forests. Journal of the American Statistical Association, 113(523):1228–

1242. 

Yoder, L., Houser, M., Bruce, A., Sullivan, A., and Farmer, J. (2021). Are climate risks 

encouraging cover crop adoption among farmers in the southern Wabash River Basin?. 

Land Use Policy, 102:105268. 

Zhang, P., Zhang, J., and Chen, M. (2017). Economic impacts of climate change on agriculture: 

The importance of additional climatic variables other than temperature and precipitation. 

Journal of Environmental Economics and Management, 83:8–31. 

Zulauf, C., and Brown B. (2019). Cover crops, 2017 U.S. Census of Agriculture. Farmdoc Daily 

9(135):1–3.  

https://www.usda.gov/climate-solutions/climate-smart-commodities
https://www.usda.gov/climate-solutions/climate-smart-commodities


 22 

Table 1: Summary Statistics for Weather Variables 

Variable Nbr. of Obs. Min Median Mean Max Std. Dev. 

PRCP_PREPLANT 3,313,207 0.600 4.300 4.891 15.567 2.569 

PCRP_EARLY 3,313,207 0.780 4.879 4.850 9.264 1.282 

PCRP_MID 3,313,207 0.803 4.525 4.470 8.254 1.103 

PCRP_END 3,313,207 0.804 4.072 4.045 7.163 0.842 

TMAX_PREPLANT (◦C) 3,313,207 12.67 17.95 18.06 23.62 2.050 

TMAX_EARLY (◦C) 3,313,207 19.74 23.00 23.14 27.79 1.423 

TMAX_MID (◦C) 3,313,207 21.17 24.47 24.64 29.86 1.488 

TMAX_END (◦C) 3,313,207 22.08 25.29 25.44 30.23 1.451 

TMIN_PREPLANT (◦C) 3,313,207 0.883 5.33 5.40 10.37 1.613 

TMIN_EARLY (◦C) 3,313,207 7.97 11.20 11.23 15.74 1.284 

TMIN_MID (◦C) 3,313,207 9.36 12.84 12.86 17.30 1.319 

TMIN_END (◦C) 3,313,207 10.43 13.53 13.56 18.03 1.252 

VP_PREPLANT 3,313,207 561.3 933.3 937.0 1,290.7 114.33 

VP_EARLY 3,313,207 960 1,421 1,424 1,882 123.35 

VP_MID 3,313,207 1,077 1,575 1,579 2,076 137.34 

VP_END 3,313,207 1,127 1,635 1,639 2,130 136.14 

VPD_PREPLANT 3,313,207 -91.25 16.31 31.38 270.41 55.637 

VPD_EARLY 3,313,207 -192.36 -90.12 -77.29 457.18 71.20 

VPD_MID 3,313,207 -251.76 -113.27 -99.66 694.45 84.68 

VPD_END 3,313,207 -244.84 -106.07 -87.98 823.19 86.45 
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Table 2: Summary Statistics for the Cover Crop, Treatment, and  Soil Quality 

Variables 

 

Variable Nbr. of 

Obs. 

Min Median Mean Max Std. 

Dev. 

Cover Crop Usage (CC) 3,313,207 0 0 0.264 1 0.441 

TMAX_END3 2,503,014 0 0 0.168 1 0.374 

TMAX_END4 2,104,253 0 0 0.086 1 0.280 

TMAX_END5 1,596,890 0 0 0.051 1 0.220 

Yield (bu/ac) 3,313,207 10 64.16 61.74 100 12.244 

SSURGO WHC 3,313,207 0 201 200.4 742 73.560 

SSURGO NCCPI 3,313,207 0 0.614 0.592 0.988 0.204 

Year: 2008 385,978  

Year: 2009 424,215 

Year: 2010 398,761 

Year: 2011 507,363 

Year: 2012 219,451 

Year: 2013 449,740 

Year: 2014 392,450 

Year: 2015 535,249 
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Table 3: Overlap-Weighted Average Treatment Effects (ATEs) 

 

 Three Consec. Four Consec. Five Consec. 

Overlap-Weighted ATE 0.008*** 0.013***  0.040*** 

 (0.0010) (0.0017) (0.0028) 

Other Weather Controls Yes Yes Yes 

Year Effects Yes Yes Yes 

Number of Observations 2,503,014 2,104,253 1,595,890 

*** indicates p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1 
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Figure 1: Histogram of the unweighted distribution of treatments effects for 3 

consecutive above-average TMAX_END 
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Figure 2: Histogram of the unweighted distribution of treatments effects for 4 

consecutive above-average TMAX_END 
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Figure 3: Histogram of the unweighted distribution of treatments effects for 5 

consecutive above-average TMAX_END 
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Figure 4: Variable Importance from the Causal Random Forests for each Weather Event 

Treatment Effect 
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