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Abstract

This study applies the causal random forest approach to investigate the extent to which persistent
warming temperatures might induce farmers to utilize cover crops. Causal random forests is a
novel statistical approach that allows for consistent and flexible estimation of heterogeneous
treatment effects. The causal random forest technique is then applied to a unique satellite-based
panel data set on cover crop adoption at pixel-level resolution. On average, we find evidence that
being exposed to higher-than-average maximum temperatures at the end of the harvest season for
multiple consecutive years influence farmers’ decisions to utilize cover crops. Moreover, our
causal random forest analysis suggest that there is heterogeneity in the effect of persistent end-
of-season heat events, and the heterogeneity is likely driven by precipitation and drought
conditions at different points of the growing season. The evidence points to farmers increasingly
utilizing cover crops voluntarily as weather patterns associated with global warming become
increasingly common.

Keywords: Causal machine learning, extreme heat, generalized random forest, treatment effect
heterogeneity
JEL Classifications: C8, Q12, Q18



1. Introduction

Climate change has become an important issue for agricultural production (Tack et al., 2015;
Urban et al., 2015; D'Agostino and Schlenker, 2016). A large and growing literature has shown
that extreme temperatures have negative effects on crop yields and will likely bring dramatic
shifts in production agriculture (Burke and Emerick, 2016; Carleton and Hsiang, 2016; Chen et
al., 2016; Zhang et al., 2017). For example, a warming increase of 2°C is expected to reduce
agricultural output by almost 25% (IPCC, 2014). In addition, higher temperatures are predicted
to lead to more intense rainfall events and greater occurrence of severe soil erosion and soil
nutrient loss (Nearing et al., 2004; O'Neal et al., 2015). Therefore, reducing greenhouse gas
(GHG) emissions and sequestering carbon in agriculture have been an important policy goal for a
number of countries in order to mitigate the adverse effects of global warming. For instance, the
United States (US) Department of Agriculture (USDA) recently provided up to $1 billion for
pilot projects that would support adoption of climate-smart practices (including cover crops),
with the intent of helping reduce the adverse impacts of climate-change-induced weather events
(USDA, 2022).

Planting cover crops is regarded as a climate-smart soil health practice that can contribute
to climate resilience in agriculture. Cover cropping as a practice has become increasingly
relevant over the last decade as global warming changes the climate in which crops are grown
(Arbuckle and Roesch-McNally, 2015; Kaye and Quemada, 2017; Olson et al, 2017; Shackelford
et al, 2019). Cover crops are typically legumes, grasses, and brassicas that are planted to cover
the soil between the growing seasons of regular crop production (Schnepf and Cox, 2006;
Arbuckle and Roesch-McNally, 2015). Planting cover crops is expected to improve soil structure

and soil health by increasing carbon sequestration potential and enhancing moisture infiltration



and retention capacity (Lal, 2015). In addition, cover crops are often depicted as a win-win
practice for both economic productivity and the environment. It has been shown that cover crops
have the potential to increase long-term crop yields and reduce the input costs of tillage and
fertilization (Montgomery, 2017; Shackelford et al., 2019). In addition, cover crops has the
potential to provide large-scale environmental benefits by reducing soil erosion, assimilating
excess nutrients, improving water quality, and providing habitat for beneficial insects and
pollinators (Snapp et al., 2005; Schnepf and Cox, 2006; Tonitto et al., 2006; Laloy and Bielders,
2010; Castellano et al., 2012; Kladivko et al., 2014; Poeplau and Don, 2015; Hanrahan et al.,
2018).

Despite the potential productivity and environmental benefits from planting cover crops,
adoption of this soil health practice remains limited in the US. The 2017 US Census of
Agriculture indicate that cover crop acres are only about 3.9% of all cropland acres nationwide
(Zulauf and Brown, 2019). Previous literature has identified a range of factors that affect
farmers’ decision to adopt cover crops, as well as the challenges that may explain the relatively
low adoption rate. Farmers’ adoption of cover crops is mainly motivated by the private benefits
of improving soil health and reducing soil erosion (Arbuckle and Roesch-McNally, 2015). In
contrast, some studies suggest that uncertainty of net economic returns or cash crop yields in the
short run is a barrier to the adoption of cover crops (Schipanski et al., 2014; Bergtold et al.,
2017). Other possible factors associated with relatively low cover crop adoption in the US
include biophysical factors (e.g., operating on steeper slopes, complementarity with other
practices) (Lee and McCann, 2019), structural factors (e.g., farm size, lack of time or equipment)
(Arbuckle and Roesch-McNally, 2015; Dunn et al., 2016; Roesch-McNally et al., 2018a, b), and

policy support (Dunn et al., 2016; Park et al., 2022).



The objective of this study is to investigate whether farmers’ decision to adopt cover crops
is influenced by occurrence of persistent warming events (i.e., multiple years of high
temperatures at harvest). We utilize a large-scale satellite data set that has cover crop adoption
information at the pixel level for soybean fields in Indiana for the 2008-2015 period (Seifert et
al., 2019). The cover crop data is then merged with pixel-level weather variables (i.e., from the
Daymet data set (see Thornton et al., 2014)), yield information, and soil quality measures (i.e.,
the National Commodity Crop Productivity Index (NCCPI)). A causal random forest estimation
procedure is then used to estimate the impact of warming events on cover crop usage by farmers.
Causal random forests allow for estimation and investigation of heterogeneous causal treatment
effects.

There are very few studies that have investigated the relationship between farmers’
adoption of cover crops and climate change (Gardezi and Arbuckle 2019; Lee and McCann
2019; Yoder et al., 2021; Dong, 2022; Kathage et al., 2022). Farmers’ cover crop adoption
decisions in response to weather events associated with climate change are found to be mixed
(Yoder et al., 2021). Some research suggests that farmers are motivated to adopt cover crops
after experiencing particularly acute climate risks, such as greater precipitation (Lee and
McCann, 2019). However, other research finds that climate change considerations do not play a
significant role in farmers’ decisions regarding cover crop adoption (Kathage et al., 2022). Dong
(2022) also find that previous occurrence of drought events do not affect farmers’ cover crop
adoption decisions. In addition, some studies suggest that cover crops are inadequate to address
climate change impacts (Arbuckle and Roesch-McNally, 2015; Houser and Stuart., 2020). Others
also suggest that planting cover crop introduce new risks and management difficulties, which can

exacerbate climate change’s negative impact on agricultural production (Roesch-McNally et al.,



2018a). Overall, this literature indicates that farmers can be motivated to adopt cover crops in
order to address climate risks, but at the same time, they can also be discouraged from adopting
cover crops due to uncertainty in its benefits and possible introduction of new management risks
(Yoder et al., 2021).

Despite the existing literature on cover crop adoption and climate risks, to the best of our
knowledge, there has been no study that quantitatively examines how farmers’ adoption of cover
crops is affected by persistent occurrence of extreme heat events. We contribute to the literature
in this regard. Previous literature typically evaluates the effects of general climate change
considerations or specific weather events (such as excessive precipitation and drought, rather
than persistent multi-year extreme heat events) on cover crop adoption. We focus on persistent
extreme heat events since higher temperatures are directly correlated with global warming and
they are always accompanied by frequent occurrences of other adverse events, such as soil
erosion. This study also complements existing agronomic studies arguing that cover crops
improve soil physical properties over time, which in turn enhance resilience to extreme heat
events and mitigate soil erosion. For example, agronomists have argued that cover crops can
modulate extremes in soil temperature in hotter regions and thus adapt to climate change (Kaye
and Quemada, 2017). To be specific, cover crop residues can reduce soil temperatures
(Scholberg et al., 2010) and standing cover crops reduce the amplitude of temperature variation
because of the increased boundary layer effect of the canopy compared to bare soil (Dabney et
al., 2001). In addition, erosion control is one of the core services that cover crops are typically
seen to provide (Prado Wildner et al., 2004).

Second, we also contribute to the literature through the application of the causal random

forest approach on a unique remote-sensing based data (i.e., from satellites) at a disaggregate



pixel level. The causal random forest approach is a relatively new machine learning approach
that allows for assessing heterogeneous causal relationships (i.e., as compared to traditional
machine learning methods that are more concerned with prediction). To the best of our
knowledge, only one recent study has used this method in the context of cover crop use (Deines
et al., 2022). Traditional statistical approaches are limited to estimating average treatment
effects, which can hide significant variation in how the treatment impacts different observations.
Moreover, the use of a dense pixel-level data set based on satellite images is also a contribution
since only a few studies have used satellite-based cover crop information for economic analysis
(Seifert et al., 2019; Chen et al., 2021; Connor et al., 2021). Most studies that have examined
cover crop adoption typically use either survey data sets (Lee and McCann 2019) or more
aggregate (e.g., county-level) data sets (Chen et al., 2021; Connor et al., 2021; Chen et al. 2023).
Lastly, since our study examines whether experiencing persistent higher-than-average
maximum temperature events for multiple consecutive years would encourage (or discourage)
farmers to adopt cover crops, we also contribute to the literature that have investigated how
experiencing recent extreme events can influence economic decision-making. There is a large
literature showing how people’s recent extreme experience has a role to play in the evaluation of
subsequent choices, especially in different types of insurance markets (Cai and Song, 2017;
Kousky, 2017; Bjerge and Trifkovic, 2018; Che et al., 2020). The general finding of these studies
is that farmers are more likely to buy insurance (or use a risk mitigating instrument) after
experiencing extreme weather events. Therefore, our study provides another context for which to
evaluate whether recent extreme weather events influence adoption of cover crops (i.e., a
practice that the agronomic literature consider a tool that can help manage or mitigate climate-

related risks, much like crop insurance).



Findings from this study suggest that being exposed to persistent higher-than-average
maximum temperatures at the end of the harvest season likely induces farmers to utilize cover
crops in their production system. We find evidence that this treatment effect is heterogenous and
this heterogeneity appears to be driven by precipitation and drought conditions at various points
in the growing season. The evidence points to farmers increasingly utilizing cover crops
voluntarily as weather patterns associated with global warming (i.e., persistent high
temperatures) become increasingly common. This insight can help provide a better
understanding of farmer cover crop adoption behavior, and may help various institutions
interested in encouraging more cover crop use (e.g., non-profit conservation groups,
conservation-oriented government agencies, and university extension & outreach programs),
especially with regards to targeting the timing and location of their educational programming.
2. Data and Empirical Approach
2.1 Data Description
The data for this study was created from satellite imagery as detailed in Seifert et al. (2019).
Seifert et al. (2019) kindly provided their dataset for use in this study. For our analysis, we
specifically focus on yearly data for soybeans in Indiana from 2008 to 2015. Individual
observations are satellite imagery pixels corresponding to a growing season for a particular year.
Individual pixels are 30m x 30m in size.

Cover crop use (CC) is the main dependent variable of interest in this study. It is a binary
variable indicating whether cover crop usage is detected for a particular pixel before the next
planting season. Detailed descriptions of how the cover crop data was generated can be found in
Seifert et al. (2019). As reported in Seifert et al. (2019), the satellite-based data set developed

had an out-of-sample accuracy of 91.2% and compares favorably with temporal and spatial



trends observed in other third-party cover crop data sets (i.e., those from the Environmental
Working Group (EWG) and USDA Natural Resource Conservation Service (NRCS)).

Aside from the main cover crop dependent variable, the Seifert et al. (2019) study also
utilized the Daymet gridded daily weather information (see Thronton et al, 2014) to produce
weather data that corresponds to the individual pixel-level observations for cover crops. In
particular the weather variables in the data set includes the following: precipitation (PRCP) in
meters, maximum temperature (TMAX) in °C, minimum temperature (TMIN) in °C, and vapor
pressure (VP) and vapor pressure deficit (VPD) measures (both in kPa) for drought conditions.
Each weather variable is measured before planting (PRE-PLANT), early in the season (EARLY),
mid-season (MID), and at the end of the season (END). That is, there are four weather
measurements at various points of the year. The summary statistics for the weather variables in
the data are presented in Table 1.

Given our interest in the impact of persistent heat events on cover crop adoption decisions,
it is critical to first define the “treatment” variables that correspond to occurrence of persistent
heat events. Thus, based on the pixed-level weather data in Seifert et al. (2019), we create three
binary treatment variables that correspond to whether or not a particular pixel-year observation
experienced above average maximum temperatures at the end of the season for: (i) three
consecutive years (TMAX_END3), (ii) four consecutive years (TMAX_END4);, and (iii) five
consecutive years (TMAX_ENDD5) (i.e., that is, TMAX_END_J where J = 3, 4, 5). These three
treatment variables are our main independent variables of interest. While above-average
temperatures may occur and have different impacts at different points in the farming season, this
study examines above-average maximum temperatures at the end of the season. The reason is

that this is the most recent weather event prior to the farmers’ decision to use cover crop (or not).



Hence, it is reasonable to expect that these end-of-season heat events are the most likely to have
an impact on cover crop utilization before the start of the next growing season. Note that the
average maximum temperature is taken over the sample period to avoid increasing numbers of
consecutive years with above-average maximum temperatures. Furthermore, these weather
events are expected to be plausibly exogenous so that the effects estimated by the causal random
forests will likely be consistent and unbiased.

In addition to the cover crop, weather, and treatment variables described above, the Seifert
et al. (2019) data set utilized also includes two measures of soil quality — (i) a measure of water
holding capacity (WHC) at the root zone, and (ii) a soil productivity measure called the National
Commaodity Crop Productivity Index (NCCPI) version 2 from the USDA NRCS’ Soil Survey
Geographic Database (SSURGO). We also use these two soil measures as observable covariates
in the causal forest analysis. The summary statistics for the cover crop adoption variable, the
three treatment variables, and the two soil quality measures are presented in Table 2.

2.2 Empirical Approach: Causal Random Forests
To explore the potential impacts of persistent end-of-season heat events on cover crop utilization

(CC,,), we are conceptually interested in estimating an empirical specification of the form:

CC, = f(TMAX _END _J,, X,, 14,8, +&, 1)

it?
where CC, is a binary cover crop use variable for pixel i in yeart, TMAX _END_ J, is the
binary “treatment” variable representing persistent end-of-season heat events over J consecutive

years (i.e, J =3, 4,5)," X, is a vector of observable covariates (e.g., which includes the weather

variables (see Table 1), the soybean yields (see Table 2), and the soil quality measures (see Table

LWith J = 3, 4, 5, equation (1) is estimated three times — for three consecutive years of above average heat events (J
= 3), for four consecutive years of above average heat events (J = 4), and for five consecutive years of above
average heat events (J = 5).



2)), w4 is an unobservable time-invariant pixel-level effect, o, is an unobservable year effect,
and ¢, is an idiosyncratic error term. The “treatment effect” of persistent above average heat
events (i.e., TMAX _END _J,, in equation 1) is then estimated using a recently developed

machine learning algorithm called the causal random forest approach (Athey et al., 2019).2
The causal random forest approach can estimate non-linear and non-parametric
heterogeneous treatment effects (as in the general form in equation 1) when the treatment

propensity is dependent on observable variables (like X, ), but treatment is exogenous with

respect to unobserved variables. The non-linear and non-parametric nature of the approach
contributes to its flexibility in estimation and reduces the risk of misspecification since one does
not need to assume a specific parametric fuctional forms (that may or may not allow for non-
linearity). The causal random forest procedure also allows for calculating the variance of the
non-linear, non-parametric heterogeneous treatment effect, which then permits statistical
inference on the estimated treatment effects (i.e., which is an improvement over traditional
nonparametric methods that usually do not allow for statistical inference). Moreover, the causal
random forest method makes it possible to identify the most important observable variables (in

the vector X, ) that most likely drives the heterogeneity in the estimated treatment effects.

Causal random forests are a recent adaptation of the classical random forest machine

learning algorithm, which generates consensus predictions from many individual classification or

2 The conceptual specification in (1) can also be expressed in the potential outcomes framework (see Imbens and
Rubin, 2015), where the treatment effect (more precisely called the conditional average treatment effect (CATE)) is

defined as 7(x) = E[Yi1 —Yi° |Xi = x:l = u,(X) — u4,(X), where z(x ) is the difference in potential outcomes
between the treatment (1) and control (0) (i.e., the treatment effect) conditional on the observable covariates x. This
is then equivalent to the difference in the conditional means ( z, (X) — 1, (X)), assuming that the four underlying

assumptions of this framework holds (e.g., conditional independence, stable unit value assumption, overlap
assumption, and exogeneity of covariates).



regression trees (Breiman, 2001). Similar to the classical random forest approach in predictive
machine learning (Breiman, 2001), causal forests attempt to find “neighbourhoods” in the
covariate space, also known as recursive partitioning (i.e., partitioning the data for treatment
estimation). While a random forest is built from decision trees, a causal forest is built from
causal trees, where the causal trees learn a low-dimensional representation of treatment effect
heterogeneity. Importantly, the splitting criterion used in causal forests is optimized for finding
splits associated with treatment effect heterogeneity. Assuming that the treatment effect is
constant over a neighbourhood N(x), then it is possible to estimate the average treatment effect in
each neighborhood partition. The goal is to find tree “leaves” (i.e., the neighborhood defined by
the partitions), where the treatment effect is constant but is different from other “leaves.”
Therefore, a causal random “forest” is simply the average of a large number of causal trees,
where the trees differ due to subsampling (Athey and Imbens, 2019). To create a causal forest
from causal trees, it is necessary to estimate a weighting function and use the resulting weights to
solve a local generalized method of moments (GMM) model to estimate the average treatment
effect (conditional on the observable variables). To deal with overfitting, causal forests use an
“honesty” condition. A tree is considered “honest”, if for each training sample (i), it only uses
the response (;) to estimate the within-leaf treatment effect or to decide where to place the split,
but not both (Jacob, 2021). Sample-splitting is used to create honest trees, where half the data is
used to estimate the tree structure (i.e., a splitting subsample), and then the other half is used to
estimate the treatment effect in each leaf (i.e., an estimating subsample). The prediction of
treatment effects is the difference in the average outcomes between the treated and the control
observations of the estimating subsample in terminal leaves. Intuitively, causal forests are a kind

of matching approach where one aims to split the sample such that each leaf can be interpreted as
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a random experiment (conditional on controls) from which treatment effects can be calculated
per leaf.

Using honest trees also allows for asymptotic normality in the estimator used to estimate the
variance of the estimates, which then allows for reliable confidence intervals of the parameters
estimated (Wager and Athey, 2018). This is important, because to obtain an accurate estimate,
the bias should asymptotically disappear, such that the confidence intervals are minimized. Since
the bias vanishes asymptotically, the causal forest estimates are consistent and asymptotically
Gaussian, which means that together with the estimator for the asymptotic variance (honest
trees), valid confidence intervals are ensured.

More broadly (and for a more general intuition of the approach), causal random forests
estimate treatment effects by comparing outcomes for each treatment sample against available
control samples which are weighted based on their similarity to the the treatment sample. Thus,
in our study, the causal random forest procedure allow us to use each pixel’s closest neighbor in
covariate space to generate a counterfactual cover crop outcome estimate under the “control”
scenario without recent persistent warming. Furthermore, causal forests guard against
confoundedness, including by unobserved variables, by using a “doubly robust” (“honest”)
treatment estimation method that combines treatment propensity weighting (i.e., in our case, how
likely is the pixel to experience persistent warming) and a procedure based on a model of the
expected outcome (i.e., in our case, whether or not to adopt cover crops). This approach
minimizes sensitivity to misspecification (Athey et al., 2019; Scharfstein et al., 1999). Causal
random forests also generate valid confidence intervals (as alluded to above), and are robust to
large number of covariates, nonlinear interactions, and overfitting without requiring an explicit

parametric model specification (Athey et al., 2019; Athey and Imbens, 2016; Belgiu and Dragu,
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2016; Wager and Athey, 2018). Recent studies have shown that causal random forests are better
able to detect and quantify heterogeneous treatment effects as compared to traditional
econometric methods (Baiardi and Naghi, 2020; Farbmacher et al., 2019; Strittmatter, 2019).

3. Results and Discussion

The estimated average treatment effects (ATES) from the causal random forests are presented in
Table 3. Specifically, we show the results for experiencing three, four, and five consecutive years
of above-average maximum temperatures at the end of the season. Note that each causal random
forest in our runs contains 400 individual trees. In addition, note that the methodology used to
estimate the average treatment effects is overlap-weighted. As indicated in Li et al. (2018), when
treatment propensity is characterized by poor overlap (i.e., propensities that are either very close
to zero or very close to one), the estimated average treatment effects tend to be unstable. Hence,
the overlap-weighted estimation procedure is necessary to avoid instability caused by treatment
propensities close to the endpoints.

In general, the estimated average treatment effects in Table 3 suggest that farmers with
fields (or pixels) experiencing persistent above-average maximum temperatures at harvest time
would have higher likelihood of adopting cover crops. The estimated treatment effects
(conditional on observable covariates) are statistically significant at the 1% level of significance.
Three consecutive years of above-average maximum temperatures at harvest increases the
probability of cover crop use by 0.8 percentage points. In addition, more years of persistent
warming experiences at harvest time consequently increases the likelihood of adopting cover
crops. For example, four consecutive years of above-average maximum temperatures at the end
of the season increases the probability of cover crop use by 1.3 percentage points, and five

consecutive years of persistently high temperatures at harvest increases the probability of cover
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crop use even more (i.e., by 4 percentage points). This pattern of results indicate that soybean
growers in Indiana likely respond to how frequent they experience heat events, and the more
frequent they experience above-average temperatures increases the probability that farmers will
use cover crops in their production system. We posit that this behavioral response may be due to
farmers’ knowing that cover crops’ can help modulate soil temperatures in the presence of
warming (see Scholberg et al., 2010 and Dabney et al., 2001). It is also possible that since
warming temperatures is often associated with soil erosion, the behavioral response to use cover
crops may also be related to anticipated soil erosion problems. That is, the persistent above
average temperatures may be a signal for impending soil erosion problems, and so farmers react
by using cover crops to help address (or preempt) potential future soil erosion issues (Prado
Wildner et al., 2004; Chen et al., 2023).

To better contextualize the magnitude of the estimated treatment effects, we conduct a
simple back-of-the-envelope calculation using cover crop adoption figures based on data from
the 2017 Census of Agriculture. Zulauf and Brown (2019) estimated that the cover crop adoption
rate in Indiana (for all crops) is around 7% based on the cover crop acreage reported in the 2017
Census of Agriculture. Based on our estimated treatment effects, a three-year heat event would
increase cover crop adoption in Indiana from 7% to 7.8%. This is about an 11.42% increase in
cover crop adoption rate due to three consecutive years of above average maximum temperatures
at harvest (i.e., 0.8 divided by 7). Moreover, a four-year heat event at harvest would result in a
18.57% increase in cover crop adoption, and a five-year heat event at harvest would result in a
57% increase in cover crop adoption. These estimate magnitudes indicate that the impact of
persistent above average temperatures on cover crop usage rates is economically meaningful.

Our causal random forest analysis also indicates that there is substantial heterogeneity in the
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estimated treatment effect of persistent above average temperatures at harvest. In Figures 1, 2,
and 3, we present the unweighted histograms of the estimated treatment effects based on the
causal random forests for the three, four, and five year persistent heat treatments. It is apparent
from these figures that the effect of experiencing multi-year above average temperatures at
harvest varies across observations in the sample. Moreover, the figures also suggest that the
variation tend to be larger (i.e., less narrow bell shaped curves) for the four and five year
treatment effect as compared to the three year treatment effect. This supports the notion that a
persistent warming event over five-years gives a “strong” signal for use of cover crops (e.g.,
more farmers wanting to adopt to address soil problems) such that the upper tail of the
distribution “spreads” to the right and increases heterogeneity of impact.

One advantage of the causal random forest approach is that it allows for calculation of a
simple measure of “variable importance” to see which observable variables are most closely
associated with the heterogeneity of the treatment effects. The variable importance measure we
use is a simple weighted sum of how many times a particular variable was used as the splitting
variable in each tree weighted by the depth at which the split occurred. Splits towards the top of
the tree are presumed to be more important for the heterogeneity of the treatment effect
compared to splits further down the tree. Splits are only considered down to a depth of 10 since
the individual trees are rather large, so calculating this measure for each full tree would be rather
time-consuming, and splits further down are unlikely to be very important. Figure 4 shows the
results of this measure. Higher numbers for variable importance indicate that the variable is
deemed as contributing more toward the heterogeneity in the treatment effect. The variable
importance across each weather event from the causal random forests are broadly similar with a

few exceptions. Surprisingly, usage of cover crops in the previous season and crop yield in the
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preceding season do not appear to be very important for the heterogeneity in the treatment
effects. Variables associated with drought conditions such as precipitation before planting, vapor
pressure early in the season, and the vapor pressure deficit at the end of the season are more
strongly associated with the heterogeneity in the treatment effects. The minimum temperate early
in the season also appears to be an important contributor, perhaps because it suggests to farmers
that there is a more permanent change in climate conditions rather than a temporary warm
weather event.

4. Conclusions

Although there have been numerous previous studies that explored factors that may affect cover
crop adoption, overall understanding of the nature and scope of the relationship between climate
risks and cover crop adoption remains limited. In this paper, we investigate the impact of
persistent adverse warming events on subsequent cover crop utilization. In particular, this study
examines how farmers’ adoption of cover crops responds after experiencing consecutive years of
above-average maximum temperatures at the end of the farming season. A causal random forest
approach applied to a unique pixel-level satellite-based data is used to determine whether
persistent warming events influence farmer adoption of cover cropping. Results from the causal
random forest analysis suggest that farmers do respond to experiencing persistent warming
events, and that this response is likely heterogeneous across observations in the sample. In
addition, we find that more years of experiencing warming events also lead to a larger effect on
cover crop adoption probabilities. Hence, it is likely that farmers will respond to warming
climates by adapting climate-smart practices like cover crops. We posit that cover crops’ ability
to manage soil temperatures and to address soil erosion in the presence of warming contributes to

this observed cover crop response of farmers to persistent warming temperatures.
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Results from our study point to a couple of policy implications. Since farmers will likely
increase cover crop use in response to persistent warming temperatures, this insight implies that
it may be important to target educational programming and conservation payment programs to
locations that have experienced warming events over the last several years. Based on our results,
farmers in these “warming” areas are already more likely to utilize cover crops. Thus,
educational programs about the resilience benefits of cover crops may help encourage more
farmers in the area to use cover crops. Conservation payment programs in these areas may also
push farmers “on the fence” about cover crops to ultimately use this practice in the presence of
warming events. Extension programming efforts would also likely be more fruitful in areas
already experiencing warming temperatures that can lead to soil health problems that cover crops
can help address.

While our research represents a step forward in understanding cover crop adoption and
climate risks, it is important to acknowledge study limitations and issues that deserve future
attention. First, even though our satellite-based data set covers a large scale pixel-level adoption
rate of cover crops in Indiana, we still do not consider other major agricultural production
regions in the United States. Second, we only focus on farmers’ responses after experiencing
extreme heat events. The analysis will be more comprehensive if one can conduct further studies
to show how farmers’ decisions would change after experiencing various climate events. Third,
our study has shown that consecutive heat events would increase the adoption of cover crops. We
have not explored whether farmers’ use of cover crops would respond to sudden weather shocks.

We leave all these suggested research directions for future work.
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Table 1: Summary Statistics for Weather Variables

Variable Nbr. of Obs. Min Median Mean Max  Std. Dev.
PRCP_PREPLANT 3,313,207 0.600 4300 4.891 15.567 2.569
PCRP_EARLY 3,313,207 0.780 4879 4850 9.264 1.282
PCRP_MID 3,313,207 0.803 4525 4470 8.254 1.103
PCRP_END 3,313,207 0.804 4072 4.045 7.163 0.842
TMAX_PREPLANT (°C) 3,313,207 12.67 1795 18.06 23.62 2.050
TMAX_EARLY (°C) 3,313,207 19.74 23.00 2314 27.79 1.423
TMAX_MID (°C) 3,313,207 21.17 2447 2464 29.86 1.488
TMAX_END (°C) 3,313,207 22.08 2529 2544 30.23 1.451
TMIN_PREPLANT (°C) 3,313,207 0.883 5.33 5.40 10.37 1.613
TMIN_EARLY (°C) 3,313,207 7.97 11.20 1123 15.74 1.284
TMIN_MID (°C) 3,313,207 9.36 1284 1286 17.30 1.319
TMIN_END (°C) 3,313,207 10.43 1353 1356 18.03 1.252
VP_PREPLANT 3,313,207 561.3 933.3 937.0 1,290.7 114.33
VP_EARLY 3,313,207 960 1421 1424 1,882 123.35
VP_MID 3,313,207 1,077 1575 1579 2,076 137.34
VP_END 3,313,207 1,127 1635 1639 2,130 136.14
VPD_PREPLANT 3,313,207 -91.25 16.31 3138 27041 55.637
VPD_EARLY 3,313,207 -192.36 -90.12 -77.29 457.18 71.20
VPD_MID 3,313,207 -251.76 -113.27 -99.66 694.45 84.68
VPD_END 3,313,207 -244.84 -106.07 -87.98 823.19 86.45
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Table 2: Summary Statistics for the Cover Crop, Treatment, and Soil Quality

Variables
Variable Nbr. of Min Median Mean Max Std.
Obs. Dev.
Cover Crop Usage (CC) 3,313,207 0 0 0.264 1 0.441
TMAX_END3 2,503,014 0 0 0.168 1 0.374
TMAX _END4 2,104,253 0 0 0.086 1 0.280
TMAX_ENDS5 1,596,890 0 0 0.051 1 0.220
Yield (bu/ac) 3,313,207 10 64.16 6174 100 12.244
SSURGO WHC 3,313,207 0 201 200.4 742 73.560
SSURGO NCCPI 3,313,207 0 0.614 0.592 0.988 0.204
Year: 2008 385,978
Year: 2009 424,215
Year: 2010 398,761
Year: 2011 507,363
Year: 2012 219,451
Year: 2013 449,740
Year: 2014 392,450
Year: 2015 535,249
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Table 3: Overlap-Weighted Average Treatment Effects (ATES)

Three Consec. Four Consec. Five Consec.
Overlap-Weighted ATE 0.008*** 0.013*** 0.040***
(0.0010) (0.0017) (0.0028)
Other Weather Controls Yes Yes Yes
Year Effects Yes Yes Yes
Number of Observations 2,503,014 2,104,253 1,595,890

*** ndicates p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1
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Figure 1: Histogram of the unweighted distribution of treatments effects for 3
consecutive above-average TMAX_END
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Figure 2: Histogram of the unweighted distribution of treatments effects for 4
consecutive above-average TMAX_END
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