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Abstract

This study explores whether increasing landscape complexity reduces weather-related
crop insurance losses. We utilize 2008-2018 county-level panel data with information
on landscape complexity, crop insurance losses (i.e., due to drought, excess heat, and
excess moisture), and a number of weather variables to achieve the study objective.
Linear fixed effect models are used in the empirical analysis. Our results suggest
that counties with greater landscape compositional complexity (e.g., higher Shannon
diversity index) and greater configurational complexity (e.g., lower largest patch index)
tend to have lower crop insurance losses due to excess heat or excess moisture. These
results indicate that enhancing the complexity of landcover can enhance resilience to
extreme weather events and facilitate adaptation to climate change.
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1 Introduction

Agricultural expansion and intensification have resulted in the simplification of Earth’s land-
scapes over time (Aguilar et al., 2015; Landis, 2017; Burchfield, Nelson, and Spangler, 2019).
In the United States (US), agriculture has covered more than 50% of the total land area,
with a significant portion of agricultural land devoted to only three crops: corn, soybeans,
and wheat (Bigelow and Borchers, 2012). This decline in landscape complexity has led to
various adverse environmental consequences, including reduced water quantity and qual-
ity, land degradation, and loss of species diversity (McDaniel, Tiemann, and Grandy, 2014;
Landis, 2017). Landscape complexity also influences essential ecosystem services that are
crucial for agriculture (such as pollination, pest regulation, and carbon storage) (Li et al.,
2009; Swinton et al., 2007; Duarte et al., 2018; Larsen and McComb, 2021).

Landscapes with higher levels of diversity and complexity have been shown to contribute
to improved crop productivity (Burchfield, Nelson, and Spangler, 2019; Renard and Tilman,
2019; Nelson and Burchfield, 2021). Specifically, increasing landcover diversity has been
associated with yield increases exceeding 10% for crops like corn and wheat. Moderately
complex and highly diverse landscape configurations are associated with corn and wheat
yield increases by more than 20% (Nelson and Burchfield, 2021). Therefore, enhancing land-
cover complexity presents a viable approach to improve crop productivity without further
agricultural expansion or intensification (Nelson and Burchfield, 2021). Such an approach
becomes particularly significant given the anticipated adverse impacts of climate change to
agricultural production.

A substantial body of literature has provided evidence that climate change negatively im-
pacts crop yields (Tack, Barkley, and Nalley, 2015; D’Agostino and Schlenker, 2016; Wang
et al., 2021). In US agriculture, over 30% of historical crop yield losses can be attributed to
extreme weather events, including droughts, extreme heat, and excess moisture (Skees, Bar-
nett, and Collier, 2008). As climate change continues to amplify the intensity and frequency

of these extreme events, understanding factors that can help mitigate the negative impact



of these events on agricultural production becomes more and more important. However,
little is known about how landscape complexity can affect production risks, particularly the
risks from more severe and more frequent extreme weather events that can be attributed to
climate change.

This study addresses the question of whether increasing landscape complexity can reduce
weather-related production losses in US agriculture. Specifically, we examine whether coun-
ties with higher landscape complexity are more likely to have lower crop insurance losses
due to three distinct extreme weather events: droughts, extreme heat, and excess moisture
(e.g., floods). Hence, this study aims to assess whether enhancing landscape complexity can
contribute to enhancing resilience to climate-change-induced weather events. To accomplish
this, we construct a county-level panel dataset with rich information on landscape complex-
ity, weather-related crop insurance losses, and weather conditions for the 2008-2018 period.
In particular, we collect information on two types of landscape complexity or diversity mea-
sures — compositional complexity and configurational complexity. Panel fixed effects (FE)
models are the primary approach used to examine the effect of landscape complexity on
crop insurance losses at the county-level. We believe that this estimation strategy allows
us to sufficiently account for potential unobserved confounders (i.e., due mainly to time-
invariant unobservables) and to reasonably identify the effects of landscape complexity on
crop insurance losses due to extreme weather events. We will also conduct several robustness
checks using alternative empirical specifications and estimation methods (e.g., a moment-
based instrumental variable (IV) model, and another “external-IV-free” approach) as next
steps.

As noted above, previous studies have examined the impact of landscape complexity on
ecosystem services and environment-related outcomes (Swinton et al., 2007; McDaniel, Tie-
mann, and Grandy, 2014; Landis, 2017; Duarte et al., 2018; Larsen and McComb, 2021), as
well as on crop productivity (Li et al., 2009; Burchfield, Nelson, and Spangler, 2019; Renard

and Tilman, 2019; Nelson and Burchfield, 2021). However, to the best of our knowledge, no



previous research has investigated how landscape complexity influences aggregate weather-
specific crop insurance losses. Since crop insurance losses can be considered as a measure
of production risk and resilience at the county-level (i.e., higher crop insurance losses is as-
sociated with higher risk or lower resilience), our study gives insights on whether landscape
complexity reduces risk and improves resilience in the agricultural sector. We primarily con-
tribute to the literature in this regard. To the best of our knowledge, our study is the first
to empirically investigate whether increasing landscape complexity reduces weather-related
production losses using long-term data across the US. Additionally, this study complements
existing scientific studies that argue that increasing landscape complexity enhances resilience
of agriculture to climate change. For example, Prokopy et al. (2020) suggest that increasing
the diversity of agricultural systems at the landscape level can address climate variability
and achieve sustainability goals.

The second main contribution of the current study is our use of a novel county-level data
set that allows us to quantitatively analyze the relationship between landscape complexity
and crop insurance losses over a wider geographical scope and over a longer time-series
coverage. Much of the agronomic studies only focus on crop diversity issues and are typically
conducted only for particular field locations and only for shorter time periods. Only a few
studies have used county-level data rather than field-scale data for landscape complexity
research (Burchfield, Nelson, and Spangler, 2019; Nelson and Burchfield, 2021) . Moreover,
we contribute to the literature by being one of the first to leverage innovative sources of
data to analyze the resilience effects of landscape complexity over time. Also, we are able
to merge new publicly available crop insurance data with county-level landscape complexity
data that allow us to examine the effects of landscape complexity on crop insurance losses
due to specific extreme weather events.

Our empirical results show that counties with greater landscape compositional complexity
(e.g., higher Shannon diversity index) and greater configurational complexity (e.g., lower

largest patch index) tend to have lower crop insurance losses due to excess heat or excess



moisture. These results underscore the potential of enhancing landcover complexity as a
means to enhance resilience against extreme weather events (especially for excess heat and
moisture events) and consequently better adapt to climate change. Given the belief that
climate change will likely increase the frequency and magnitude of extreme weather events
in the future, these findings have important policy implications, highlighting the need for
support and investment in federal or state conservation programs that promote and enhance

landscape diversity in rural areas.

2 Background

There are two common defining features of the landscape: landscape composition and land-
scape configuration. Landscape composition refers to the categories of landcover found on
a landscape), and landscape configuration refers to the spatial organization of landcover
categories (Nelson and Burchfield, 2021). As agricultural expansion and intensification have
greatly changed landscape, agriculturally driven landscape transformation includes a re-
duction in landscape compositional complexity (i.e., the number and quantity of landcover
categories on a landscape) and a reduction of landscape configurational complexity (i.e., how
landcover categories are arranged on a landscape) (Fahrig et al., 2011; Meehan et al., 2011).
Declining landscape complexity (i.e., both compositional complexity and configurational
complexity) has been shown to generate many negative impacts on the ecosystem services
related to agricultural production (e.g., water retention, pollination, pest management, and
climate change) (Fahrig et al., 2011; Tiemann et al., 2015).

When considering landscape complexity metrics, there are many options that can be
found in the literature (Turner, 1990; Schindler, Poirazidis, and Wrbka, 2008; Plexida et al.,
2014). Different metrics have their distinct characteristics regarding sensitivity to scale
and rare categories, as well as boundaries (Li and Wu, 2004; Plexida et al., 2014). In this

study, we follow Nelson and Burchfield (2021) where they measured landscape compositional



complexity using six metrics associated with the number or the predominance of landcover
categories across a landscape. They are as follows: Shannon diversity index, Simpson di-
versity index, richness, Shannon evenness index, Simpson evenness index, and percentage
natural cover. The detailed description of these metrics is presented in Table 1. Following
Nelson and Burchfield (2021), we measure landscape configurational complexity using four
metrics associated with the arrangement of landcover categories across the landscape (e.g.,
the size of landcover patches, shape of landcover patches or mixing of landcover categories
across the landscape). The four metrics include mean patch area, largest patch index, con-
tagion, and edge density. Table 1 also presents the detailed definition and description for

each configurational complexity metric.

3 Data Description

3.1 Crop Insurance Losses

The panel data constructed for this study comes from multiple sources, which are discussed
in turn below. As suggested in the previous section, we are interested in the effect of
landscape complexity on weather-related crop insurance losses. The main dependent variable
of interest is crop insurance losses due to a specific weather event (e.g., drought, excess
heat, or excess moisture). The sources for the crop insurance loss data used in the study
are from the US Department of Agriculture (USDA) Risk Management Agency (RMA)
Summary of Business (SOB) and Cause of Loss (COL) databases.! The datasets are based
on actual administrative information from all insurance policies handled by the federal crop
insurance program through the years, instead of collecting data from farm surveys. Thus, we
expect that there is less measurement error. We obtain the insurance data aggregated to the

county-crop level from 2008-2018. The SOB data contain information on total indemnities,

!The county-level crop insurance data from SOB and COL can be obtained
from the following two  websites: https://www.rma.usda.gov/SummaryOfBusiness  and
https://www.rma.usda.gov/SummaryOfBusiness/CauseOfLoss.



liabilities, and insured acres without disentangling the particular weather-related cause of
loss. The COL data contain indemnity amounts for specific causes of loss, such as those
due to drought, excess heat, and excess moisture (among others). The COL data also
have information on net determined acres, which refer to the number of acres with specific
weather-related indemnities.

Our dependent variables are created by combining information from the COL and SOB
data sets. We apply two measures of weather-related crop insurance losses: an “indemnity-
based” measure and an “acre-based” measure. The “indemnity-based” crop insurance loss
measure is represented by the loss cost ratio (LCR), which is calculated as the ratio of
total indemnities due to a specific weather-related cause (i.e., payment to the insured due to
losses caused by a specific weather event), over total liabilities (i.e., the total dollar amount
of all insurance protection outstanding). The LCR measures the proportion of total possible
payouts that are paid for a specific weather-related cause. The “acre-based” crop insurance
loss measure is represented by the loss acres ratio (LAR), which is calculated as the ratio of
acres with weather-related indemnities (i.e., acres with crop insurance losses due to a specific

weather event) over the total insured acres at the county level.

3.2 Landscape Complexity Indexes

After compiling the crop insurance loss data, we then collect the data needed to construct
several measures of landscape complexity, which is our main independent variable of interest.
As we mentioned in the previous section, following Nelson and Burchfield (2021), we apply
several metrics of landscape compositional and configurational complexity (see Table 1). We
use the USDA National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL)
as our indicator of landcover. This dataset classifies landcover at a 30 m resolution nationwide

2

from 2008 to present using satellite imagery and extensive ground truth data.” Given its

relatively high resolution, full coverage and historical availability, it is the best available data

2The landscape indexes from the CDL data can be obtained through the landscapemetrics package in R
(Nelson and Burchfield, 2021).



for understanding agriculture landcover across the US (Nelson and Burchfield, 2021).

We measure landscape compositional complexity using a set of six metrics (i.e., Shannon
diversity index, Simpson diversity index, richness, Shannon evenness index, Simpson even-
ness index, and percentage natural cover) and measure configurational complexity using a
set of four metrics (i.e., mean patch area, largest patch index, contagion, and edge density).?
Our current analysis focuses on the Shannon diversity index as an index for compositional
complexity and the largest patch index as an index for configurational complexity. The
Shannon diversity index is a measure of the abundance and evenness of landcover categories.
This index is sensitive to rare landcover categories and higher values indicate higher compo-
sitional complexity. The largest patch index is a measure of patch dominance representing
the percentage of the landscape covered by the single largest patch. Higher values of the
large patch index generally indicate lower configurational complexity (Nelson and Burch-
field, 2021). All the other landscape complexity indexes listed in Table 1 will be applied for

sensitivity analysis in our next steps.

3.3 Weather Variables

In addition to data on crop insurance losses and landscape complexity, we utilize several
weather variables from the Parameter Regression Independent Slopes Model (PRISM) cli-
mate group to serve as controls in our empirical analysis. There are time-county varying
observable factors that can influence landscape transformation. Consistent with the ap-
proach used in Schlenker and Roberts (2009), the following weather variables are utilized in
our study: degree days for extreme heat (“heating degree days (HDD)”), degree days for
moderate heat (“growing degree days (GDD)”), and precipitation. The two degree day mea-
sures provide information on the number of days a crop is exposed to certain temperature
ranges. We follow the method in Schlenker and Roberts (2009) to calculate HDD and GDD.

We use degree days above 29°C as the measure for extreme heat and between 10-29°C as

3The details of each landscape complexity metric are shown in Table 1 and described in the Background
section.



the measure of moderate heat. These temperature cutoffs have been widely used in climate
econometrics literature (Annan and Schlenker, 2015; Wang et al., 2021). The degree day
measures are the sums of daily exposures over the May-September growing season. The
precipitation variable represents the cumulative sum of precipitation received (in m) over
the May-September growing season.

We merge the county-level aggregates of these weather variables together with crop in-
surance losses and landscape complexity measures to generate the panel data set used in
this study (n = 29,486). Descriptive statistics of the main variables used in the empirical
analysis are summarized in Table 2. Figures 1 and 2 present the spatial distribution of land-
scape complexity across counties in the US based on the two indexes (i.e., Shannon diversity
index and largest patch index). Landscape complexity varies greatly in the spatial dimen-
sion. Compositional complexity tends to be higher in northern and southeastern regions.

Configurational complexity tends to be higher in eastern regions than in the western regions.

4 Empirical Methods

For our main empirical specification, we employ a linear panel data model with county
fixed effects. We separately regress drought, excess heat, and excess moisture-related crop
insurance loss measures (LCR and LAR) on landscape complexity indexes, HDD, GDD,
precipitation, precipitation squared, and an overall linear time trend. More formally, we
estimate the following empirical specification:

Lossiy = Po + 1 LCi + Wi + i + AT} + €4 (1)
where Loss; represents the LCR or LAR measures for a specific cause of loss (i.e., drought,
excess heat, or excess moisture) in county ¢ and year ¢, LC}; is one of the landscape complexity
indicators (i.e., Shannon diversity index, or largest patch index), W;; is the set of weather
variables (i.e., HDD, GDD, precipitation, precipitation squared), «; represents county fixed

effects, T; is a linear time trend variable, and ¢;; is the idiosyncratic error term. The coefficient



of interest is 5;. Note that the weather variables used as controls are consistent with previous
studies that analyze nonlinear effects of weather on crop yield outcomes (Schlenker and
Roberts, 2006, 2009; Annan and Schlenker, 2015).

We mainly utilized a linear fixed effects (FE) regression model to estimate equation (1).
Using this estimation strategy allows us to better account for potential unobserved con-
founders caused by unobserved linear-additive county-specific unobservables. For example,
location-specific geographic conditions that are largely time-invariant, such as topography
and soil type, would be likely correlated to crop insurance losses and landscape complexity.
Furthermore, the time trend variable is included to capture unobserved technological growth
over time. Additionally, standard error clustering by county can be regarded as robust
to heteroscedasticity, and spatial correlation of the error terms across counties (Cameron,

Gelbach, and Miller, 2011).

5 Results and Discussions

Results from linear panel FE regressions of crop insurance losses as functions of landscape
compositional or landscape configurational complexity are presented in Tables 3 and 4. For
the LCR runs, the parameter estimates for the Shannon diversity index variable indicate that
counties with higher landscape compositional complexity, as reflected by a greater Shannon
diversity index, have statistically lower LCR due to excess heat (at the 1% significance level).
However, no statistically significant relationship is observed between landscape compositional
complexity and LCRs associated with drought or excess moisture. For the LAR regressions,
the estimated parameters indicate that counties with higher landscape compositional com-
plexity have statistically lower LARs due to excess heat and excess moisture (at the 1% level
of significance). However, there is no statistically significant relationship between landscape
compositional complexity and drought-related LARs.

In Table 4, we examine the impact of landscape configurational complexity on weather-



related crop insurance losses. Recall that we use the largest patch index as the main measure
of configurational complexity, where higher values of this index means lower configurational
complexity. Our analysis reveals that county-level landscape configurational complexity (i.e.,
the largest patch index) has a positive and statistically significant relationship with both LCR
and LAR due to excess moisture. Specifically, counties with greater configurational complex-
ity (e.g., lower largest patch index) tend to have a lower proportion of insured payment and
acres with losses due to excess moisture. Conversely, counties with greater configurational
complexity tend to have significantly larger LCR and LAR due to drought. This means that
higher configurational complexity contributes to higher losses due to drought. However, we
do not find any statistically significant effects of configurational complexity on LCR and
LAR related to excessive heat.

These findings indicate that increasing compositional landscape complexity likely has
more significant loss mitigation effects against excess heat and excess moisture events (like
floods). While increasing configurational landscape complexity appears to have a greater im-
pact only on mitigating losses associated with excess moisture events. Overall, our findings
suggest that enhancing the complexity of landcover provides a potential way to bolster re-
silience to extreme weather events (especially for excess heat and moisture events) and adapt
to climate change. Given the belief that climate change will likely increase the frequency and
magnitude of extreme weather events in the future, this finding points to important policy
implications in terms of justifying support for federal or state conservation programs aimed
at maintaining or enhancing landscape diversity in rural areas.

The main findings presented above align with previous ecological and agronomic liter-
ature, which consistently indicates a positive correlation between landscape diversity and
crop yields (Dainese et al., 2019; Grab et al., 2018; Martin et al., 2019; Burchfield, Nelson,
and Spangler, 2019; Nelson and Burchfield, 2021). This relationship implies that increasing
landscape diversity can enhance agricultural productivity and contribute to the resilience of

farming systems in the face of climate shocks. Furthermore, our regression analysis strongly
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supports the notion that higher landscape compositional complexity can enhance farms’ re-
silience against excess heat and excess moisture events, while increased configurational com-
plexity is effective in mitigating excessive moisture events. This finding further reinforces
the idea that enhancing the diversity of agricultural systems at the landscape level can help
address challenges arising from climate variability (Prokopy et al., 2020). In addition, tar-
geting specific types of landscape complexity (compositional complexity or configurational
complexity) maybe useful when different regions are confronted with different types of ex-
treme weather events (e.g., regions with more frequent occurence of excess moisture may
benefit more from increasing compositional complexity).

Regarding the weather variables considered as controls, the estimated county-level effects
align closely with expectations. Specifically, we observe a nonlinear effect of the degree days
measures (i.e., crop growth requires a certain level of heat, up to a threshold, for optimal
development. Beyond this threshold, damage to the crops occurs). In Tables 3 and 4, we find
that increased incidence of extreme heat (i.e., higher HDD) tends to increase the drought
and heat-related losses, whereas GDD has a negative and statistically significant estimated
coefficient for the crop insurance losses due to all the three causes (i.e., moderate temper-
atures reduce extreme weather related losses). Concerning the precipitation variables, the
parameters generally exhibit a “U-shaped” pattern of behavior. For instance, as precipitation
increases from zero, excess moisture-related losses tend to decrease initially. However, after
reaching a certain “turning point,” higher levels of precipitation contribute to an increase in

excess moisture-related losses.

6 Conclusions

This study examines the impact of landscape complexity on weather-related crop insurance
losses. To achieve this objective, we construct a unique county-level panel dataset covering

the period from 2008 to 2018. Our approach involves merging a novel county-level dataset on
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landscape complexity with publicly available crop insurance loss and weather data. Empirical
analysis is conducted using linear panel fixed-effects models. The findings of our empirical
analysis suggest that counties with greater landscape compositional complexity and greater
configurational complexity tend to have lower crop insurance losses due to excess heat or
excess moisture. These results underscore the potential of landscape complexity as a factor
contributing to the mitigation of weather-related crop insurance losses. However, we did
not find evidence that increasing compositional or configurational complexity will enhance
drought resilience.

The findings from our study point to several policy implications. First, enhancing the
complexity of land cover presents a promising strategy for bolstering resilience to extreme
weather events and adapting to climate change. To achieve this, various measures can
be considered, such as implementing cover crops, substituting input-intensive corn-soybean
areas with perennial bioenergy crops, and adopting nutrient-saving practices targeted at
less productive and highly vulnerable lands (Prokopy et al., 2020). Second, farmers play
a crucial role in determining the composition of species within a landscape and deciding
whether to actively pursue efforts to increase landscape complexity. Therefore, it is essential
for governmental and non-governmental agencies to develop effective policies and support-
ive instruments that encourage farmers to contribute to landscape diversification. Third,
government support for further research is needed to expand our understanding of the field-
level impacts of landscape diversification on climate change and risk resilience, which can in
turn provide valuable insights for both producers and policymakers, enabling them to make
informed decisions.

While our research represents a step forward in understanding the relationship between
landscape complexity and climate-related production losses, it is essential to acknowledge
that this study is still ongoing, and there are several limitations and areas that warrant
future investigation. First, although panel fixed effects models serve as our primary ap-

proach, effectively accounting for potential unobserved time-invariant confounding factors,
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we plan to conduct further robustness checks using alternative empirical specifications in
the subsequent stages of this study. Second, our current analysis focuses on a single index
for each of the two features of landscape complexity, namely compositional complexity and
configurational complexity. To gain a more comprehensive understanding, we intend to ex-
amine the impact of landscape complexity on insurance losses by incorporating alternative
indicators of landscape complexity, as outlined in Nelson and Burchfield (2021). Third, this
paper specifically concentrates on crop insurance production loss data in the United States,
which we believe provides a valid dataset enabling separate estimation of the effects of land-
scape complexity on losses attributed to specific weather events. However, we also recognize
the importance of perhaps considering a county-level crop yield datasets (instead of crop
insurance loss data) to gain further insights into the potential heterogeneity of landscape
complexity effects yields conditional on different types of weather conditions. We leave all

these suggested research directions in the subsequent phases of this study.
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Figure 1: Spatial variation in compositional complexity across counties in the United States.
Values presented are the average across all years (2008-2018) for the Shannon diversity index

Compositional Complexity: Shannon diversity index (SHDI)
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Figure 2: Spatial variation in configurational complexity across counties in the United States.
Values presented are the average across all years (2008-2018) for the largest patch index

Configurational Complexity: Largest Patch Index (LPI)
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Table 1: Landscape Complexity Metrics

Type

Index

Description

Compositional Shannon

complexity

diversity
index
Simpson
diversity
index

Richness

Shannon
evenness
index

Simpson
evenness
index

Percentage
natural
cover

A measure of the abundance and evenness of landcover cat-
egories. This index is sensitive to rare landcover categories.
Higher values indicate higher complexity.

A diversity measure that considers the abundance and even-
ness of landcover categories. This index is not sensitive to
rare landcover categories. Higher values generally indicate
higher complexity.

A measure of the abundance of categories. Higher values
generally indicate higher complexity.

A measure of diversity or dominance calculated as the ratio
between the Shannon diversity index and the theoretical
maximum of this index. Higher values generally indicate
higher complexity.

A measure of diversity or dominance calculated as the ra-
tio between the Simpson diversity index and the theoretical
maximum of this index. Higher values generally indicate
higher complexity.

A simple measure of the predominance of undeveloped land-
covers on a landscape. Higher values generally indicate
lower complexity.

Configurational Mean

complexity

patch area
Largest
patch  in-
dex
Contagion

Edge den-
sity

A measure of patch structure. Higher values generally indi-
cate lower complexity.

A measure of patch dominance representing the percentage
of the landscape covered by the single largest patch. Higher
values generally indicate lower complexity.

A measure of dispersion and interspersion of landcover
classes where a high proportion of like adjacencies and an
uneven distribution of pairwise adjacencies produces a high
contagion value. Higher values generally indicate lower com-
plexity.

A measure of the patchiness of the landscape. Higher values
generally indicate higher complexity.

Note: This table of landscape complexity metrics follows Nelson and Burchfield (2021).
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