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Abstract

Social learning and diffusion of innovations through peers can be a key component
of the agroecological transition, as it contributes to the generalization of good prac-
tices and improves the efficiency of public policies by increasing the number of farmers
reached without additional cost. We evaluated the spillover effects of a pesticide re-
duction scheme implemented in France during the 2010s, which was designed to train
farmers in pesticide-saving farming practices and encourage knowledge diffusion beyond
the scope of farms enrolled in the program. We applied a quasi-experimental approach
to pseudo-panel data collected at national scale and found that doubling the proportion
of participants would reduce pesticide use by about 10% within representative cohorts
on average. Besides, we found an additional effect of similar magnitude on farms that
report having participated to demonstration visits to the farms trained by the program.
These results suggest that agricultural training programs are likely to generate spillover

effects at lower cost.
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1 Introduction

Peer effects are a subject of increasing attention in many areas of economic research. Peer
influence can create social multiplier effects, whereby an initial investment targeting one
small group can lead to larger changes, as individuals close to the target group are directly
influenced by its actions. When it comes to the green transition, the spread of green agri-
cultural technologies is a central question. The adoption of a new technique often requires
specific technical assistance, which cannot easily be provided to all eligible farmers because
of the high costs it would entail. In this context, observational learning can thus play a
crucial role in the diffusion of new practices. The literature provides several examples of the
diffusion of agricultural innovations through social networks and peer effects in developing
countries (Conley and Udry, 2010; Benyishay and Mobarak, 2019; Caeiro, 2019). However,
there are many reasons why social learning might not ultimately happen. Moreover, it is
often difficult to identify and measure it accurately. To our knowledge, there is no prior evi-
dence of the diffusion of green practices through social learning in the context of developed
countries, where the challenge of agroecological transition is particularly important. We aim
at filling this gap by evaluating the spillover effects of a program designed to train farmers
in pesticide-saving practices and encourage knowledge diffusion beyond the scope of farms
enrolled in the program.

The shift towards more sustainable farming practices has become a central issue of agri-
cultural policy worldwide.! Water and soil pollution resulting from the extensive use of
pesticides indeed poses a serious threat to biodiversity as well as to the health of farmers and
consumers, which became a cause of growing concern in public opinion.? In response to grow-
ing concern about the risks associated with pesticide use, the French government enacted a

national plan in 2008, with the aim to reduce the use of pesticides by 50% overall by 2018.

!The European Commission made sustainable food production a priority of the European Green Deal,
with ambitious targets set for Member States by the Farm-to-Fork strategy in 2020. Farm-to-Fork objectives
include reducing the use and risk of chemical pesticide by 50% before 2030, and reducing by 50% the use
of the most hazardous pesticides by 2030. More recently, the first European Nature Restoration Law was
adopted in June 2022 by the European Commission, setting binding objectives to restore 80% of damaged

European ecosystems and further restraining the use of pesticides in agriculture.
2See Beketov et al. (2013) for a review of the substantive biodiversity loss in Western European and

Australian water streams due to contamination by pesticides; Sgolastra et al. (2020) for a specific review of
the effect of neonicotinoid insecticides on bees; and INSERM (2021) for a comprehensive study of the impact

of exposure to pesticides on human health.



As part of this plan, 3,000 volunteer farmers have been enrolled in a pilot program launched
in 2012 — the DEPHY network — and were provided with free technical assistance in order to
reduce pesticide use on their plot in a few years. Once trained, these farms were then invited
to open their doors for demonstration visits, with the aim of passing on the knowledge accu-
mulated during the program to neighboring farms that might be interested in learning these
new practices. Monitoring data from farms enrolled in the program indicate that they have
indeed succeeded in significantly reducing their use of pesticides in the space of a few years.
Two question remain, however, regarding the truly additional effect of the program. Firstly,
is there a real margin for improvement in the practices of these farms that have self-selected
in the program, compared to what they would have succeeded in doing outside the program?
Then, with regard to the visiting farms that only benefited from second-hand training (and
self-selected too), was this enough to trigger a real change in their practices afterwards?

We ran an empirical analysis built on repeated cross-sectional data about phytosanitary
practices collected from a representative sample of around 28,000 plots used for the cultivation
of field crops, which represent nearly 95% of the country’s utilized agricultural area. Following
the approach first popularized by Deaton (1985), we constructed a pseudo-panel of 64 cohorts
using three essential criteria when it comes to the choice of agricultural practices: crop type,
location and farm size. We then ran a fixed effects model regression to estimate the effects of
the program on pesticide use in the cohorts. Our results point to a significant impact of the
training program on pesticide use among both enrolled and visiting farms. In particular, we
found that doubling the proportion of enrolled farms in cohorts would reduce pesticide use
by 10% on average across cohorts. Besides, we evaluated spillovers of the program on farms
that reported having participated to visits at an enrolled farm and found again a significant
decrease in pesticide use of similar magnitude (while the proportion of visiting farms is higher
than the one of enrolled farms). This finding confirms the presence of knowledge spillovers in
the neighbourhood of enrolled farms, which suggests that providing free technical assistance
to peer networks can be effective in reducing pesticide use beyond the restricted circle of
the first beneficiaries of the program. This result thus highlights the importance of social
learning and the diffusion of knowledge to support transitions in the context of developed
countries, as has been demonstrated in other contexts.

We provide an overview of relevant studies in the literature that studied peer effects and
diffusion of agricultural practices through social learning in section 2. We then present the
empirical framework in section 3. We provide estimation results along with a discussion of

their interpretation in section 4, and explore robustness checks in section 5. Lastly, we discuss



our results and conclude.

2 Conceptual Framework

The adoption pattern of new agricultural practices through social networks of farmers has
become an increasingly important topic in the literature in recent years. First introduced
by Romer (1986) and Lucas (1988) as a factor of endogenous growth, social learning has
then been thoroughly studied in various microeconomics contexts. By social learning, we
here refer to the diffusion of knowledge and practices throughout social interactions between
economic agents. Social interactions are likely to affect individual behaviour through ob-
servational learning, information transmission, change of expectations, or a change of social
norms. Observational learning can reduce uncertainty and lead risk-averse agents to adopt
new technologies more easily, while social pressure within groups of agents lead them to
behave similarly. Manski (1993) identifies three mechanisms likely to drive social learning.
Firstly, there are endogenous interactions, by which the individual’s decision influences the
decision of others and which is precisely what we seek to identify when we speak of peer ef-
fects. Then, there are contextual interactions, due to the fact that individuals have particular
characteristics that can influence others’ outcomes, and correlated effects, due to the fact that
individuals are subject to common constraints. The simultaneity of these effects introduces
an identification issue for empirical studies of peer effects (the so-called endogenous effect).
When information about individual reference group is available, this “reflection” problem can
be solved by using a linear-in-means model (Manski, 1993; Bramoullé, Djebbari, and Fortin,
2009).

Other approaches have also been proposed in the literature on social learning in agricul-
tural contexts. For example, Foster and Rosenzweig (1995) provided empirical evidence of
learning from peers in the context of the “Green Revolution” in India by exploiting aggregated
data on the adoption of high-yielding seed varieties. More recently, field studies conducted
at the individual level have provided detailed evidence of the diffusion of new technologies
within farmers networks. Notably, Conley and Udry (2010) collected data about who farmers
know and talk to frequently to identify communication patterns in villages in Ghana. The
endogeneity of social ties with regards to farming practices threatens the identification of
peer effects, as farmers who have frequent interactions are likely to share some unobserved
traits that influence their likelihood to adopt new technologies. The authors address this

concern by exploiting the specific timing of pineapple planting to identify opportunities for



information transmission regarding the shift to pineapple crops. Their results show that
farmers are more likely to change their use of fertilizer after learning about the result of a
similar change implemented by an “information neighbor”, with stronger responses in cases
were the neighbor is an experienced farmer or a farmer with similar wealth level.

The occurrence of social learning has also been documented through the implementa-
tion of Randomized Control Trials (RCTs). Benyishay and Mobarak (2019) found evidence
of peer-to-peer learning in a study about technology adoption following a field experiment
in Malawi. They show that assigning a role of “communicator” about a new agricultural
technology to “peer farmers” is more efficient for promoting the technology to other farm-
ers than when the knowledge is provided by a government-employed extension worker or a
so-called “lead farmers” who are nevertheless more educated than the average farmer of the
village. This result goes to show that farmers are most convinced by the advice of others
who face agricultural conditions that are comparable to the conditions they face themselves
(their peers), rather than more distant people in their village. The authors conclude that the
social identity of the communicator influences others’ learning and adoption of agricultural
practices, and it thus is most efficient to design policies that address incentives to peers.

In a large-scale study conducted in Western Kenya between 2010 and 2011, Chandrasekhar
et al. (2022) found contrasting evidence on the adoption of different technologies within
farmer communities. They distributed blue spoons designed to help farmers measure the
right amount of fertilizers to use on their plots to randomly selected farmers, and found that
knowledge and ownership of the blue spoon did spread through social networks of friends
of the farmers that received it for free. However, interventions designed to encourage dis-
cussions about agricultural practices (cooperative meetings) and the distribution of coupons
to encourage fertilizer purchase and therefore increase the value of communication about
the blue spoon had no effect on the diffusion of the technology, whether among friends of
the treated farmers or more broadly among the clusters that attended the same meetings.
Findings report an increase in the knowledge of the blue spoon among farmers in the same
cluster than treated farmers, but not an increased take-up of the technology. This sug-
gest that the “subjective value” of knowledge differs based on the perceived reliability of the
farmer spreading the information. These findings highlight again the importance of targeting
the right individuals when trying to incentivize technology adoption through social learning
among farmers networks.

The present paper aims at studying potential knowledge diffusion in the context of pesti-

cide reduction in French farming. While peer effects in the diffusion of agricultural technology
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are well documented in developing countries, the evidence in European contexts is much more
scarce. Further, the literature focuses on the diffusion of technologies that aim to improve
productivity for adopting farmers. When looking at environmental policies, the benefits of
adoption are less obvious or at least not immediate for farmers. We thus can expect lower
adoption rates in such contexts, although the learning mechanisms may well be similar to
those described in the literature so far. The drivers of adoption of conservation practices in
agriculture, and more specifically the role of social norms and peer influence in driving adop-
tion, have not yet been clearly measured in the literature (Yoder et al., 2019). In a recent
study, Wang, Mohring, and Finger (2023) studied potential spillovers in the adoption of a
pesticide-free wheat production system by looking at social ties among farmers in Switzer-
land. The authors exploit asymmetry in social ties to differentiate between Manski’s peer
effects and contextual effects, and include a variety of controls in a cross-sectional regression
to account for likely confounding effects. Their results suggest that experienced farmers fa-
cilitate the adoption of innovative practices more than inexperienced farmers, these effects
being strengthened by peer effects. In the present paper, we tackle the identification issue
quite differently, taking advantage of the panel structure of the dataset spanning from 2011
to 2017, where we directly observe the first beneficiaries of the program (participating farms)
as well as the indirect beneficiaries (visiting farms).

The French DEPHY network was designed to encourage social learning by placing par-
ticipants in groups of ten to twelve peers, supervised by an agricultural engineer.® In this
context, the decisions of the individuals within each group may just as well be determined
by a peer effect as by the influence of the engineer on each member of the group. How-
ever, the impact of demonstration visits on attendees can only be driven by the knowledge
shared by DEPHY farmers during the event, as no other interventions confound this effect
and the attendees do not directly benefit from advice given by agricultural engineers. We
use a quasi-experimental method to identify separately the direct (i.e. being a participating
farm) and indirect (i.e. attending a demonstration visit hosted by a DEPHY farm) effects
of the program on pesticide use. Our empirical strategy mimics a partial population design
(Moffitt et al., 2001), where only a fraction of the total population of farmers is enrolled in
the program and another fraction is exposed to spillovers through demonstration visits, while
the remaining farmers are supposedly unaffected by the program. Such design allows us to

control for confounding factors that may drive outcomes of both participating and visiting

3A detailed description of the program can be found in Appendix A.



farms.

3 Empirical Framework

First, we made use of repeated cross-sectional French survey data about agricultural practices,
collected from a representative sample of farmers, to build a pseudo-panel of cohorts. We
then applied the fixed-effect estimator to a panel data model to estimate the direct effect of

the DEPHY program as well as spillover effects on pesticide use across cohorts.

3.1 Data

The dedicated statistical and prospective service of the French Ministry in charge of Agri-
culture produces extensive surveys of agricultural practices on a regular basis, which are
available upon authorization from the Ministry. The agricultural practices surveys cover rep-
resentative samples of plots for various types of crops, including field crops.* The most recent
iterations of the agricultural practices survey for field crops were in 2011 and 2017,°> with
an additional so-called intermediary survey conducted in 2014, specifically on phytosanitary
practices. Our database therefore includes one observation prior to the start of the program
(2011) and two observations of practices during the program (2014 and 2017). The surveys

also include questions about labels and environmental schemes.

3.2 Outcome and Control Variables

We considered two measures of pesticide use: the Treatment Frequency Index (TFI) and
the number of Application Rounds (APP). The TFI was developed in the 1980s in Denmark
and is now widely used worldwide, including by French policymakers as the main monitoring
indicator of the Ecophyto plan (Pingault et al., 2009). It captures the number of reference

doses applied per hectare, taking into account the recommended dosage for each product, as

4A detailed description of data sources is provided in the Appendix B. The sampling procedure follows
a two-step procedures. First, field crop farms are stratified depending on whether they practice organic
farming, their location (at the department level for non-organic farms and regional level for organic farms)
and the total cultivated area of the farm. Then, farms are randomly selected within each strata and plots
are randomly selected among these farms. The number of farms and plots selected per strata is calculated
based on the relative importance of each strata in the national distribution of farms. The selected plots can

be re-weighted to extrapolate characteristics and draw conclusion at the national scale.
5The scope of the surveys evolved over time to include more species and also cover more plots.



well as the Share of Treated Area (STA), i.e. the surface to which the product is applied. In
the survey, the TFI is computed as follows:

AD;
RD,

TFI; = x STA;, (1)

with ¢ refers to the product, AD; is the applied dose of product 7, RD; is its reference dose
and STA; the share of treated area, i.e. the area treated with chemicals expressed as a
proportion of the utilised agricultural area. Based on this formula, the TFT is set to be equal
to 1 when the product is applied as defined in the reference dose to the whole surface area of
the plot. It thus gives a good indication about pesticide pressure, provided that the farmer
used the recommended dose, information which however remains unobserved.

While the TFI was computed for each chemical product (herbicides, fungicides, insecti-
cides), for the purpose of the present analysis we focused on the aggregated TFI, which cap-
tures the overall change of practices, since the specific products through which this change
occurs, if any, is beyond the scope of our analysis and is more of an agronomic question.
More specifically, we focused on chemical TFI, excluding “organic pesticides” (i.e. pest man-
agement products that rely on natural active products such as copper) since the program
promotes the reduction of chemical pesticides, not of organic systems.

We then further decomposed the terms of equation 1:

with D; the dose of active product in product ¢ and AP P; the number of pesticide application
rounds. By doing so, we looked at the number of application rounds APP; as an additional
outcome to explore a potential channel that could drive TFI reduction. As the reference dose
is fixed for a given period, a change of T'F'I; without any change of APP; nor ST A; would
thus be attributed to a change of D;, which we do not observe directly.

The surveys also includes some questions about labels and environmental schemes ac-
cording to which each plot is cultivated. We used this information to build control variables
that equal to 1 if the plot is cultivated according to the organic label requirements, and 0

otherwise.

3.3 Treatment Variables

Around 1,200 French farms entered the program before 2013. The 2014 and 2017 surveys

provide us with two important pieces of information about the surveyed plot, namely, whether
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the farmer is a participant in the DEPHY program or whether he has already participated
in a demonstration visit offered by the DEPHY program. We thus built two binary treat-
ment variables that measure direct or indirect participation in the program. The first level
of treatment (hereafter T1) is the membership to the DEPHY network, materialized by the
agreement with the DEPHY terms of reference (the so-called cahier des charges). The 2017
agricultural practices questionnaire includes a question about commitment of the respon-
dent’s farm to DEPHY, which we used to identify direct participants in the program. For
the year 2014, DEPHY participants were identified through data directly collected by the
Ecophyto plan.® In our data, the treatment variable T1 then equals one if the farmer was a
member of the program in 2014 or 2017 and zero elsewhere.

We then investigated knowledge and information spillovers through the construction of
another treatment variable, T2, taking on the value of one for non-members who attended
demonstration visits. We used the information collected during the 2014 and 2017 surveys to
build T2. The two levels of treatment (T1 and T2) are mutually exclusive, so that the same
farm cannot be both a direct beneficiary of the program and attend the visits organized by

the program.

3.4 Construction of the pseudo-panel database

Deaton (1985) theorized the pseudo-panel approach as a way to aggregate observations into
cohorts, with each cohort being representative of a segment of the population that can then
be observed at different dates. The robustness of this approach has since then been well
established (Moffitt, 1993; Verbeek, 1996; Gardes et al., 2005). From the repeated cross-
sections available for the years 2011, 2014 and 2017, we followed this approach to build

cohorts along three defining criteria:

1. Farm location: six regions were defined according to their climatic and soil character-

istics, see Figure C.2 in Appendix C.
2. Crop type: six types of crops, see Figure C.3 in Appendix C.

3. Utilized Agricultural Area (UAA): two groups were defined using a cutoff at 150ha, see
Figure C.4 in Appendix C.

6 Agrosyst data accessed in May 2017.



In theory, this procedure would have generated 72 cohorts per year. In practice however, as
some categories were empty, we ended up with 52 cohorts in 2006, 64 cohorts in 2011 and

2017 and 62 in 2014. The average cohort size is around 330 farms each year (Table 1).

Table 1: Cohort characteristics

Number of Number of Cohort size
farms cohorts Mean SE  Min Max
2011 20,800 64 325 33829 9 1,682
2014 20,646 62 333 29327 27 1,603
2017 21,056 64 329 24941 28 1,227

Notes: SE, Min and Max for standard error, minimum and

maximum value of the cohort size, respectively.

We then took these cohorts as units of observation, aggregating the variables of interest
within each of them. When it comes to the treatment variables, we thus computed the
share of treated individuals within each cohort. The two treatment variables are therefore
defined as the share of participating farms (T1) and the share of visiting farms (T2) within
each cohort. Both treatment variables are set to 0 in 2011, as enrollment in the program

effectively began in 2012.

3.5 Model specification and estimator
Our main model specification is described in Equation 3:
Yoo = a+ BiT 0 + BT 2 + pre + v + 7 Xt + €t (3)

where ¢ denotes the cohort and ¢ the year; u. and v; are respectively cohort and year fixed
effects; X is the vector of control variables; «, 1, £2, v are the parameters to be estimated,
and €. is the error term.

We also ran a specification that includes time-by-treatment interactions in Equation 4:
Yu=a+ 51T1y x Year; + 51244 x Year; + pe + vy + v Xt + €ct, (4)

Finally, we further explored the cross-effects of T1 and T2 by estimating Equation 5. This
allows us in particular to check whether the level of T1 influences the impact of T2; that

is, if having a larger proportion of participating farms in the cohort increases the impact of
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demonstration visits — which could happen for example if neighboring farms could visit two

DEPHY farms rather than one alone because of their high concentration:

Yoo = o+ BT + BT 2 + BT 1ot X T2 + pe + v + 7 Xt + €t (5)

4 Results

4.1 Descriptive Statistics

This section briefly presents the main characteristics of the farms included in the initial

sample and the main characteristics of the cohorts constructed by aggregating the farms.

Farm Data

The main characteristics of the 20,000 plots used to construct the cohorts are presented in
Table 2. The average overall Utilized Agricultural Area (UAA) increased over the period to
reach 145 hectares in 2017, and so did the average plot surface, which reaches 7 hectares. The
number of application rounds (APP) remained stable, around 5 per year, and the treatment
frequency index for all chemical pesticides (TFI) increased on average over the period, going
from 3 to 4 on average. The share of organic plots increased between 2011 and 2014 and
remained stable between 2014 and 2017. Lastly, the proportion of farms that joined the
DEPHY program increase over time (1% in 2014 and 2% in 2017) and as well as the proportion
of visiting farms (6% in 2014 and 7% in 2017).

Table 2: Farm characteristics

2011 2014 2017
Mean SE  Mean SE  Mean SE

UAA (ha) 120.66 90.30 134.40 99.07 145.85 97.76
Plot surface (ha) 413 513 6.66 6.77 7.13  7.08
APP 512 516 562 569 495  4.69
TFI 299 3.04 315 332 392 337
Organic farming = 1 0.05 022 006 024 006 0.23
T1. Participating farm = 1 0 0 0.01 0.07  0.02 0.14
T2. Visiting farm = 1 0 0 0.06 024  0.07  0.26
Observations 20,827 20,666 21,071

10



The distribution of chemical TFI among DEPHY farms (whether participating or visiting
ones) in 2014 and 2017 is displayed in Figure 1. Quite surprisingly, DEPHY farms are not
characterised by lower TFI in either of the two years, whereas one might have expected that
the first farms enrolled would also be those whose efforts to reduce the use of pesticides
would be the lowest. This is however consistent with the stated strategy of the program not
to recruit farms that were already performing better than the rest of French farms in terms

of pesticide use.

Figure 1: Distribution of chemical TFI for DEPHY vs. non-DEPHY farms, 2011 to 2017
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Note: T1 refers to participating farms and T2 to visiting farms.

Cohort Data

The distribution of treated farms within the cohorts is displayed in Figure 2, with summary
statistics presented in Table 3. The proportion of participating farms (7'1 = 1) ranges from
0% to 3.03% in 2014, and from 0% to 8% in 2017. The proportion of visiting farms (72 = 1)
is always greater than 0 in all cohorts, as it ranges from 0.99% to 16.48% in 2014 and from
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1.80% to 22.17% in 2017. Figure 3 moreover shows that the share of participating farms
and of visiting farms in each cohort does not seem to be strongly correlated, which suggest
that the proportion of participating farms may not determine the intensity of spillovers in a
given cohort. Additional descriptive statistics about the cohorts are provided in Appendix C
(Figures C.5, C.6 and C.7.)

Table 3: Proportion of treated farms in the sample

2014 2017
Participating farms: 71 =1
Average share (%) 0.56 2.26
(Standard Error) (0.59) (1.67)
[Minimum;Maximum] [0.00;3.03]  [0.00;8.00]
Visiting farms: 72 =1
Average share (%) 6.67 7.67
(Standard Error) (3.49) (4.32)
[Minimum;Maximum] (0.99;16.48]  [1.80;22.17]

12



Figure 2: Proportion of treated farms in each cohort
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4.2 Estimation Results

Following Bellemare and Wichman (2020), we applied an Inverse Hyperbolic Sine (IHS)
transformation in order to compute elasticities and account for the high number of 0 in our
data. This transformation also reduces the likely impact of outliers and heteroskedasticity,
if any, on estimation results. As a result, the estimated coefficient of the treatment variable
can be interpreted here as the effect on the outcome of a one-percent increase in the share
of treated farms in the cohort. We also followed Gardes et al. (2005) who investigated the
potential heteroskedasticity issue caused by the aggregation of data into cohorts of different
size and brought to light the necessity to use robust standard errors in regression models,
which we applied throughout the analysis.

Results of the estimation of Equations 3 and 4 are presented in Table 4.

14



Table 4: Direct and spillover effects on pesticide use (Equations 3 and 4)

1) @) 3) ()
TFI TFI APP APP
T1 -0.0772%** 0.0130
(0.0208) (0.0218)
T2 -0.0551** -0.0496
(0.0266) (0.0318)
T1 x 2014 -0.0299 0.0217
(0.0324) (0.0401)
T1 x 2017 -0.0966*** 0.0089
(0.0233) (0.0253)
T2 x 2014 -0.0148 0.0022
(0.0246) (0.0291)
T2 x 2017 -0.1132%#* -0.1119%**
(0.0327) (0.0390)
Constant 1.8926%**  1.8904***  2.3880*** 2.3883***
(0.0230) (0.0218) (0.0251) (0.0224)
Organic label Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
N 190 190 190 190

Notes: T1 is the proportion of participating farms in the cohort and T2

is the proportion of visiting farms in the cohort. All variables are in THS.

Reference year is 2011. Robust Standard Errors at the cohort level in parenthesis.

*p<0.10, ** p < 0.05, *** p < 0.01

Impact on participating farms (direct effect)

Table 4 shows that the marginal effect T1 on chemical TF1I is negative and significant at the
1% level overall (column 1). When looking at the year by year effect, it is only significant in
2017. This shows a significant impact of the DEPHY network on pesticide use which was not
yet present in 2014, as the implementation of the program had just begun. The magnitude

of the coefficient in 2017 is roughly of 0.1, meaning that increasing the share of T1 farms in
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a cohort by 1% is associated on average with a decrease of TFI of 0.1%. Doubling the share
of T1 farms in the cohorts (i.e., increasing it by 100%) would thus imply a 10% reduction of
TFI.

The effects on the number of application rounds are not significant regardless of the year.
This suggest that the underlying mechanism behind the decrease in TFT is not driven by a
change in the number of pesticide application (APP). Therefore, this result suggests that the
impact of the DEPHY network on pesticide use is mostly driven by a change in the doses of
pesticides applied by T1 farmers.

Impact on visiting farms (spillover effect)

Table 4 reports a significant negative effect of T2 on TFI, which occurs between 2014 and
2017. Similar to the impact of T1, the year by year interaction shows that the impact of visits
and demonstration days became clearly established after the program had been implemented
for some years. The magnitude of the effect is similar to that of T1: it is slightly higher than
—0.1, meaning that doubling the share of T2 farms would lead to a decrease of TFI by 10%.

Interestingly, the coefficient associated with the impact of T2 on application rounds be-
tween 2014 and 2017 is significantly negative, while the effect of T1 on this outcome during
the same period is indistinguishable from 0. While this could suggest that T2 farms reduce
pesticide use through different channels than T1 farms, it is more likely that the effect on
treatment frequency is estimated more precisely for T2 farms than for T1. Indeed, T2 farms
represent a larger share of the cohorts than T1 farms, and their effect is estimated more pre-
cisely. This would imply that the lack of effect on number of application rounds we observe
for T'1 farms is due to a lack of precision in our data, rather to a lack of impact in reality.

Our results show that increasing the number of T2 farms is a relevant channel to further
induce pesticide reduction among farmers. However, increasing the number of farmers that
attend visits and demonstration days held by participating farms creates a burden for the
hosting farms. We explore the relationship between T1 and T2 by estimating Equation 5.
Results are displayed in Table 5.

16



Table 5: Cross-effects on pesticide use (Equation 5)

(1) (2)

TFI APP
T1 0.1441** 0.2993***
(0.0555) (0.0624)
T2 0.0380 0.0708%**
(0.0262) (0.0225)
T1 x T2 -0.0893*** -0.1155%**
(0.0204) (0.0225)
Constant 1.8958%** 2.3922%¥*
(0.0210) (0.0197)
Organic label Yes Yes
Year FE Yes Yes
Cohort FE Yes Yes
N 190 190

Notes: The dependent variables and all quantitative
explanatory variables are in THS.
Robust Standard Errors at the cohort level in parenthesis.

* p < 0.10, ** p < 0.05, *** p < 0.01

We also use the estimates from Table 5 to compute the marginal effect of T2 conditional
on several levels of T1. Results are displayed in Figure 3. We find that, when estimated at
the average share of T1 in the cohorts in 2017, the effect of T2 on both TFI and number
of application rounds is negative and significant. This is consistent with previous results
reported in Table 4. Further, Figure 3 depicts the evolution of the impact of T2 when T1
increases: the higher the share of T1 farms, the more pronounced the impact of T2 farms.
Increasing the share of T1 in the population allows for more visits and demonstration days,
which increases the impact of T2. However, this relationship is not linear (recall that we
apply an THS transformation to our dependent and explanatory variables). The marginal
effect of T2 when T1 is equal to 10% of the population is roughly 0.24, meaning that for this
level of T'1, doubling the share of T2 farms would lead to a TFI reduction of 24%. For T1
equal 20% of the population, this suggests that doubling the share of T2 farms would lead
to a TFI reduction of roughly 30%.
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Figure 3: Marginal effect of T2 conditional on T1
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5 Discussion and Robustness Checks

5.1 Other Pesticide Reduction Schemes

One concern with our identification strategy is the existence of time-varying factors that
would influence both DEPHY take-up rate within a cohort and pesticide use. For instance, if
there existed a specific regional communication strategy for the reduction of pesticides that
targets farms of a given size that produce a certain type of crops, this would encourage all
farms of the cohort defined by the intersection of these characteristics to reduce pesticide
use, and also encourage farms to apply to join the DEPHY network. However, it seems
unlikely that such campaigns would be conducted randomly. We can plausibly assume that
the occurrence of a campaign would be correlated with underlying cohort characteristics that

would be absorbed by the cohort fixed effects in the regression model. Moreover, it is more
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likely that information campaigns would be conducted at a larger scale and be (at least
partly) absorbed by year fixed effects. And lastly, the number of farms that are able to join
the network is limited, making it unlikely that it can drastically increase due to a competing
pesticide reduction campaign.

However, we introduced an additional control variable in the regression in order to further
control for potential confounding factors: the share of farms in the cohorts that are enrolled in
pesticide-related Agro-Environmental Schemes (AES) in 2011 and 2014, which became Agro-
Environmental and Climate Schemes in 2015. These European measures provide subsidies
for farms that are committed to environmental practices, and the share of pesticide AES
farms in each cohort could be correlated with pest management practices and with the share
of DEPHY farms. Indeed, the two programs are not mutually exclusive and can attract
similar farmers. As explained in Section 4.1, the variable that captures enrollment in these
schemes differs in 2017 and in the two previous survey years due to the evolution of the
legislation. We present results using the variable that captures specifically enrollment in
pesticide related schemes in Table 6 below, and results with enrollment in a generic scheme
in 2017 in Table D.2 in Appendix D. Our results are robust to the addition of this new control

variable.
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Table 6: Direct and spillover effects on pesticide use (Equations 3 and 4 including additional

controls)

(1) (2) (3) (4)
TFI TFI APP APP
T1 -0.0734%+* 0.0171
(0.0203) (0.0205)
T2 -0.0552%** -0.0497
(0.0252) (0.0300)
T1 x 2014 -0.0436 0.0005
(0.0332) (0.0387)
T1 x 2017 -0.0879*** 0.0225
(0.0250) (0.0277)
T2 x 2014 -0.0142 0.0031
(0.0248) (0.0293)
T2 x 2017 -0.1102%%* -0.1073%**
(0.0317) (0.0355)
Constant 1.8662***  1.8751***  2.3586***  2.3643***
(0.0274) (0.0269) (0.0306) (0.0291)
Organic label Yes Yes Yes Yes
Pesticide AES Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
N 190 190 190 190

Notes: The dependent variables and all quantitative explanatory variables

are in THS. Reference year is 2011.

Robust Standard Errors clustered at the cohort level in parenthesis.

* p < 0.10, ** p < 0.05, *** p < 0.01

5.2 Small Cohorts

Another potential concern is that while the average cohort size for both years is high enough

to ensure that the average outcomes within cohorts are representative of the true population,

some cohorts are constructed based on a small number of observations. This can bias our
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results if this small cohort size is the result of the sampling design and the cohorts are not
representative of the true population defined along the three criteria. However, a small cohort
size can also simply be due to the small number of farms fitting into the given intersection
of the three criteria in the population. In this case, the small cohorts are representative of
an actual small part of the agricultural population and give an accurate representation of its
practices. Upon investigation of the detailed characteristics of these small cohorts, we chose
to include them in the main estimations, and excluded them as a robustness check.

We found five distinct small cohorts in our sample. As cohort size varies throughout the
years, some cohorts have fewer than 50 observations in some years and not others, while
some cohorts are small in multiple years of our pseudo-panel. In total, they amount to ten
observations over the years. They are presented in Table 7. We reran the same estimations
after excluding them from the sample. Results are reported in Table 8 below. Overall, they
do not contradict previous findings, which suggest that the presence of very small cohorts in

the sample does not affect the validity of ours analysis.

Table 7: Small cohorts (n < 50)

Number of occurrences

C-E Potatoes 150+ha

N-E Potatoes 0-150ha

S-E Industrial crops 150+ha
S-E Protein crops 150+ha
W Potatoes 150+ha

Total 10

N DN W N
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Table 8: Direct and spillover effects on pesticide use without small cohorts (Equations 3 and

4)
(1) (2) (3) (4)
TFI TFI APP APP
T1 -0.0919%+* -0.0084
(0.0234) (0.0208)
T2 -0.0356 -0.0172
(0.0261) (0.0260)
T1 x 2014 -0.0169 0.0202
(0.0315) (0.0399)
T1 x 2017 -0.1189%** -0.0149
(0.0221) (0.0193)
T2 x 2014 -0.0126 0.0129
(0.0241) (0.0292)
T2 x 2017 -0.0882%** -0.0692**
(0.0314) (0.0289)
Constant 1.8785%**  1.8723***  2.4002***  2.3961***
(0.0245) (0.0237) (0.0230) (0.0221)
Organic label Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
N 180 180 180 180

Notes: The dependent variables and all quantitative explanatory variables
are in THS. Reference year is 2011.
Robust Standard Errors clustered at the cohort level in parenthesis.

* p<0.10, ** p < 0.05, *** p < 0.01

5.3 Specification Check

Our main analysis relies on the estimation of Equation 5, in which both T1 and T2 farms are
included. The rationale behind this specification is that T1 and T2 are correlated since they
both depend on the intensity of the implementation of the DEPHY program in a given region

and for a given type of farms, as we rely on farm characteristics to build our pseudo-panel.
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Therefore, we cannot estimate the impact of T1 and T2 separately as we would then likely
introduce an omitted variable bias.

However, including both variables in our model introduces a risk of having a bad control
(Angrist and Pischke, 2009): indeed, demonstrations and visits can be interpreted as a
channel through which DEPHY members (T'1 = 1) achieve pesticide reduction in their cohort.
This concern is partly alleviated by the fact that, by construction, our T2 variable is not
limited to farmers that attended a demonstration or visit organized by a participating farm
from their cohort, since our data does not allow us to identify which demonstration or visit
T2 farmers have attended. The link between T1 and T2 in each cohort is therefore not
systematic, even if it is likely that farmers would rather chose to visit nearby farms that
closely resemble their own.

In order to test whether our results are confounded by the simultaneous inclusion of T1
and T2 in our model, we build two alternative pseudo-panels in which we exclude participating
farms (T1 = 1) and visiting farms (72 = 1) respectively before aggregating the data. This
allows us to test the impact of T1 on pesticide use in a hypothetical context where there is
no demonstration or visits, and similarly, to test the impact of T2 in a context without T1.
While none of these two cases reflect the reality of the DEPHY program, they allow us to
compute the “pure” effect of each level of treatment independently.

We estimate Equation 6 on an alternative pseudo-panel dataset from which we excluded
visiting farms (72 = 1), and Equation 8 on an alternative pseudo-panel dataset from which

we excluded participating farms (7'1 = 1).

Yoo =a+ BT1q + pe + vy + v Xt + €t (6)
Yo =a+ 01Ty + 52Tl x Year; + pe + vy + v Xt + €at, (7)
Yoo = a+ BT2 + pre + v + 7 Xt + €t (8)
Yoo = a+ 51124 + o124 x Year; + pre + v + v Xet + €t 9)

Results are presented in Tables 9 and 10. The ( coefficient associated with T1 alone is
negative and statistically significant at the 1% level when considering the impact on chemical
TFI, but not for the number of application rounds. As in our main findings, the effect occurs
between 2014 and 2017. As for T2, its impact on TFI is negative and significant at the 1%
level, and its impact on the number of application rounds is also negative and significant at
the 10% level. Both effects occur between 2014 and 2017. The magnitude of the effect is
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in line with our previous findings when looking at the average share of T1 and T2 in the
cohorts. These results confirm the presence of a direct (T1) and spillover (T2) impact of the
DEPHY network on TFIL.

Table 9: Direct effect on pesticide use, excluding visiting farms from the individual data

1) (2) (3) (4)
TFI TFI APP APP
T1 -0.0776%** 0.0056
(0.0217) (0.0225)
T1 x 2014 -0.0108 0.0417
(0.0319) (0.0314)
T1 x 2017 -0.1057*** -0.0096
(0.0248) (0.0268)
Constant 1.8694***F  1.8674***  2.3645%**  2.3634%**
(0.0246) (0.0248) (0.0245) (0.0243)
Organic label Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
N 190 190 190 190

Notes: The dependent variables and all quantitative explanatory variables
are in IHS. Reference year is 2011.
Robust Standard Errors clustered at the cohort level in parenthesis.

*p<0.10, ** p < 0.05, *** p < 0.01
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Table 10: Spillover effects on pesticide use, excluding participating farms from the individual

data

(1)

(2) (3) (4)

TFI TFI APP APP
T2 -0.0638*** -0.0512%*
(0.0233) (0.0300)
T2 x 2014 -0.0114 0.0008
(0.0240) (0.0272)
T2 x 2017 -0.1242%#* -0.1113%#*
(0.0300) (0.0354)
Constant 1.8681°*FF*  1.8700%**  2.3585%*F*  2.3604***
(0.0242) (0.0235) (0.0262) (0.0241)
Organic label Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
N 190 190 190 190

Notes: The dependent variables and all quantitative explanatory variables
are in IHS. Reference year is 2011.
Robust Standard Errors clustered at the cohort level in parenthesis.

* p < 0.10, ** p < 0.05, *** p < 0.01

5.4 Replication on Vineyards

Our cross-sectional data does not allow us to analyze DEPHY spillovers at the individual
level, as we aggregate the data to form a pseudo-panel in order to be able to introduce fixed
effects. The surveys we exploited to build this pseudo-panel are also ran on different types of
crops, and the vineyard survey is implemented on a panel of 4,057 crops. Lapierre, Sauquet,
and Subervie (2019) exploit this survey and merge it with detailed data collected by the
DEPHY network to compute the impact of the program on TFI. We extend their analysis
by exploring the spillovers of the program through visits and demonstration days (T2). We
do not present results for participating farms (T1), as this information is not available in
our data. We estimate Equations 10 and 11, where ¢ denotes individual crops. We extend

the analysis to a third measure of pesticide use, the share of treated area (STA), which
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is specifically relevant here as reducing intra-row treatments is a strong lever of pesticide

reduction in vineyards.

Yii = a+ BT2 + i + vy + v X + €, (10)
Y;t = o+ ﬁszit + 52T2it X Yeart + p + v+ VXit + €;¢. (11)

Results are presented in Table 11. Column (1) reports a negative and significant effect of
T2 on chemical TFI in vineyards, which confirms the existence of knowledge and information
spillovers through the visit and demonstration days organized by DEPHY farms. Column
(2) shows that this effect became apparent as soon as 2013. This contrasts with our findings
on field crop farming, where the effect only occurred after 2014. Here, the effect can be
interpreted directly at the individual level: attending a visit or demonstration day organised
by a participating farm reduces chemical TFI by approximately 0.4 points for vineyards.
When looking at sub-components of TFI, we find a negative and significant effect of T2 on
the share of treated area. On the other hand, the overall effect on the number of application
rounds is insignificant. Overall, these results are consistent with our main findings on field

crops farming.
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Table 11: Spillover effects on pesticide use on T2, vineyards

(1) (2) (3) (4) (5) (6)

TFI TFI APP APP STA STA
T2 -0.4164%** -0.0934 -0.4073**
(0.1399) (0.2078) (0.1932)
T2 x 2013 -0.4274%* -0.4905%** -0.4454*
(0.1835) (0.2311) (0.2470)
T2 x 2016 -0.4061** 0.2791 -0.3715
(0.1967) (0.3072) (0.2637)
Constant 12.3443**%  12.3443%FF  16.3332***  16.3330%**  94.5476*** 94 .5476%**
(0.0435) (0.0435) (0.0649) (0.0649) (0.0571) (0.0571)
Organic label Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes Yes Yes
N 12,171 12,171 12,171 12,171 12,171 12,171

Notes: Robust Standard Errors at the individual level in parenthesis. Reference year is 2010.

*p<0.10, ** p < 0.05, *** p < 0.01

6 Conclusion

We explored the effects of the DEPHY network on pesticide use in field crop farming and
found conclusive evidence of its impact on chemical TFI. Our results show that doubling
the proportion of farms enrolled in the DEPHY network would reduce chemical TFI by 10%
on average. This result suggests that providing technical assistance to peer networks can be
effective in significantly reducing pesticide use, which is a key finding for future agro-ecological
policies.

Moreover, we found that the impact of the DEPHY program is not limited solely to mem-
bers of the network: non-members that report having participated to a visit or a demon-
stration held at a participating farm also changed their pest management practices due to
the program. Indeed, our analysis shows that the marginal effect of increasing the share of
farms participating in such DEPHY events on chemical TFI is negative and significant. The

magnitude of the effect is similar to that of being directly enrolled in the program: without
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increasing the number of farmers enrolled in the program, doubling the number of visiting
farms would reduce chemical TFI by 10% on average. The effect grows larger as the share
of DEPHY farms increases. This finding is in line with the literature on peer effects and
social spillovers in agriculture in developing countries. It suggests that investing resources
to assist the transition of some farmers to more ecological practices can have repercussions
throughout their communities and contribute to a broader change of practices at a larger
scale.

The main contribution of this paper to the economic literature on agricultural practices
and social learning is to showcase evidence of the direct and indirect impact of a peer network
with technological assistance program on agricultural practices. Future research could focus
on building a measure of spatial spillovers and explore further their impact on pesticide use,
following the approach developed by Missirian (2020). Another possible follow-up on this
research would be to measure other forms of social spillovers, by looking at farms that share
a membership to a cooperative agricultural structure with a participating farm for instance.
This would be a way to identify farmers that regularly interact with DEPHY members and
then questions whether or not these interactions led to change of pest management practices.

In terms of policy recommendations, this paper confirms the validity of the rationale
behind the implementation of the DEPHY network and provides support for the extension of
both the number of farms directly involved in the network and the number of farms reached
through demonstration days. This is encouraging for the future of agro-ecological policies
and in line with recent developments of the Ecophyto Plan, which has set the goal in 2019 to
expand the DEPHY network from 3,000 to 30,000 farms. The objective of these “Ecophyto
30,000 groups” is to generalize the findings from the DEPHY network to a larger scale and
continue to work on innovative and sustainable ways to reduce reliance on chemical pesticides

in French agriculture.
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A Appendix A

A.1 The DEPHY Network

Since 2012, the French Ecophyto plan finances the DEPHY (Demonstrate, Experiment and
Produce references on low pHYtosanitary systems) program, a national peer-network of 3000
farms committed to reducing pesticide use with the technical help of trained advisors. Mem-
ber farms voluntarily joined the program between 2011 and 2016. They share the same goal
to reduce pesticide use, and experiment various methods to find alternative pest manage-
ment techniques. They share their good practices through technical leaflets openly available
online, demonstrations held at their farms, educational videos and presentation at regional
or national events. The network covers the main types of crops cultivated throughout France
(arboriculture, vegetable crops, tropical crops, horticulture, field crops — polyculture and
breeding, viticulture). The success of the program rests on farmers willingness to implement
innovative pest management methods. The program aims to provide relevant advice to farm-
ers in order to help their transition away from pesticide use and also relies on its networking
aspect to foster peer-to-peer learning within DEPHY groups. The program only offers free
technical assistance, no financial support.

The program’s monitoring data points to an overall reduction of pesticide use by DEPHY
members since joining the network.” However, this is not sufficient evidence to judge the
impact of the program, as the choice to join the network is likely to be driven by intrinsic
motivation to shift towards more eco-friendly agricultural practices and the pesticide reduc-
tion observed in the network could be the result of members’ initial drive to change their
production systems in favor of more sustainable ones. The methodological challenge for the
evaluator therefore consists in implementing an identification strategy making it possible to
distinguish the effects of enrolling some specific farms from the effects of the program itself.

The distribution of DEPHY field crops groups — polyculture and breeding — throughout
France is displayed in Figure A.1.

“Reports published on the Ecophyto website show a decrease in the use of pesticides for network members:
https://ecophytopic.fr/sites/default/files/2021-06 /Evolution IFT_DEPHY _FERME_2019_VF.pdf
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Figure A.1: Map of the 133 field crops groups — polyculture and breeding DEPHY groups,
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Another key component of the DEPHY network is its contribution to knowledge pro-
duction through openly accessible reports on the techniques used within the network. The
program also organizes national and regional events as well as visits of successful DEPHY
farms to promote good practices for pesticide reduction. One can therefore expect DEPHY
to have impacts on farms that are not enrolled in the program but who use resources pro-
duced by the network to reduce their own reliance on pesticides. Further, DEPHY farms
are supposed to serve as examples and promote environmentally-friendly practices to their
peers through informal channels. Therefore, one can also expect that the network generated

peer effects that encouraged non-member farms, located near DEPHY farms and therefore
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having the possibility of interacting informally with the direct beneficiaries of the program,
to change their agricultural practices. These spillovers are particularly relevant from a policy
perspective, as they can potentially multiply the impact of the program for a low additional

cost.
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B Appendix B

B.1 Data description

Table B.1: Characteristics of farm practices surveys

Survey year Number of Extrapolated surface Crop species
plots (% of total crop covered
surface)
2011 25,420 90% Soft wheat, hard wheat, barley,

triticale, rapeseed, sunflower,
protein peas , fodder corn, grain corn,
sugar beet, potato, sugar cane

temporary meadow, permanent meadow

2014 21,054 90% Soft wheat, hard wheat, barley,
(reduced triticale, rapeseed, sunflower,
survey) protein peas , fodder corn, grain corn,

sugar beet, potato, sugar cane

2017 27,958 90% Soft wheat, hard wheat, barley,
triticale, rapeseed, sunflower,
protein peas , fodder corn, grain corn,
sugar beet, potato, sugar cane,
temporary meadow, permanent meadow,
faba bean, soybean, fibre flax,
oilseed flax, cereal mix, protein crops mix,

forage mix

Source: AGRESTE.
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C Appendix C
C.1 Construction of the Pseudo-Panel Database

Figure C.2: Distribution of observations among regions
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Figure C.3: Distribution of observations among crop types
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Figure C.4: Distribution of observations depending on total UAA
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Figure C.5: Percentage of treated T1 and T2 farms in each cohort broken down by regions

Distribution of treated farms in 2014
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Note: The share of T1 farms is indicated by the opaque bars and the share of T2 farms in the more

transparent shades.
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Figure C.6: Percentage of treated T1 and T2 farms in each cohort broken down by crop type

Distribution of treated farms in 2014
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Note: The share of T1 farms is indicated by the opaque bars and the share of T2 farms in the more

transparent shades.
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Figure C.7: Percentage of treated T1 and T2 farms in each cohort broken down by farm size

(cutoff at 150ha)
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Note: The share of T1 farms is indicated by the opaque bars and the share of T2 farms in the more

transparent shades.
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D Appendix D

D.1 Alternative AES control

We control for an alternative measure of enrollment in an AES, which is equal to one if the
plot is in a pesticide AES for the years 2011 and 2014 and equal to one if the plot is in any

AES in 2017. This measure accounts for the evolution of the definition of the schemes.

Table D.2: Pseudo panel regression of pesticide use on T1 and T2, generic AES control

(1) (2)

(3) (4)

TFI TFI APP APP
T1 -0.0621*+* 0.0255
(0.0190) (0.0208)
T2 -0.0539** -0.0486*
(0.0235) (0.0288)
T1 x 2014 -0.0471 0.0064
(0.0320) (0.0378)
T1 x 2017 -0.0730%** 0.0300
(0.0239) (0.0274)
T2 x 2014 -0.0171 0.0001
(0.0259) (0.0301)
T2 x 2017 -0.1016%** -0.1016%**
(0.0277) (0.0328)
Constant 1.8427FF*  1.8527*F*  2.3463%F*  2.3546%**
(0.0277) (0.0280) (0.0308) (0.0298)
Organic label Yes Yes Yes Yes
Generic AES Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Cohort FE Yes Yes Yes Yes
N 190 190 190 190

Notes: The dependent variables and all quantitative explanatory variables

are in THS. Reference year is 2011.

Robust Standard Errors in parenthesis.

* p<0.10, ** p < 0.05, *** p < 0.01
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