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The Geography of Climate Insecurity: Current State and Future Prospects for Northern Nigeria

Chun Song, Antonio Scognamillo, Marina Mastrorillo, Anna Belli, Victor Villa, Ada Ignaciuk, Grazia Pacillo, Elisabetta Gotor

Abstract

This paper presents a geographical characterization of the current and future climate insecurity landscape
at local level in Northern Nigeria, with an emphasis on the spatially varying effect of cereal prices on
moderating the climate-conflict association. Complex local contexts in the study region challenge the
spatial stationarity assumption made in previous studies. We take one step further and estimate
geographically weighted regressions that account for spatial regime shifts to improve model performance
and offer richer insights. Based on monthly data from 257 Local Government Areas (LGA) over 2016-
2019, results corroborate that on average, the positive empirical association between temperature anomalies
and violent conflicts is strengthened when prices of rice and maize increase in the wake of temperature
anomalies. The magnitude of this amplifying effect at local level, however, can be three times greater than
the average effect at national level assuming spatial homogeneity. The LGA-specific estimates identify and
contextualize the climate insecurity hotspots, which are then integrated with climatic projections to
extrapolate the possible trajectories of climate-related conflicts to the near term (2030-2040). The empirical
analysis highlights the need to develop localized, forward-looking evidence for prioritizing preventative

action and fostering climate-resilient peace in Northern Nigeria and similar vulnerable regions.

Keywords: spatial heterogeneity, conflict, temperature anomalies, agricultural commodity prices, Nigeria

1. Introduction

In Africa, agriculture-relevant climate hazards may interact with existing vulnerabilities in agrifood systems
and indirectly exacerbate insecurities. This is because the majority of the African population depends on
rainfed agriculture (Freeman, 2017) and their access to stable food markets are limited (Kakpo, Mills, &
Brunelin, 2022). Abnormal rises in temperature during crop growing seasons have been responsible for
yield losses (Barrios, Ouattara, & Strobl, 2008), the adverse influences on incomes and food affordability
may reduce the opportunity cost of joining conflicts (Maystadt & Ecker, 2014) and trigger social unrest,

grievances (Bush, 2010), and violence (Berazneva & Lee, 2013).

Within a country, the hazard of climate shocks and its disruption on the agri-food system are often not
evenly distributed (Schlenker & Lobell, 2010). Due to each region’s distinct and unique combination of
socio-economic and agricultural-related characteristics, vulnerability in food system does not necessarily

coincide with where the shocks are more severe (Ide, 2017). In fact, the presence of vulnerability may
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condition on a large group of location-specific features, both observable (such as market prices,
infrastructure, agricultural production, natural resources, and historic conflicts) and unobservable (such as
the level of market integration, community and inter-tribal dynamics, informal resource sharing and support
system, political institution, local conflict resolution mechanism, and social cohesion). While in some
Western African countries may be relatively homogeneous internally, other countries like Nigeria often
have considerable internal diversity stemming from social-economic and agroecological complexity.
Characterizing the geographical dispersion of climate security is therefore critical to improve our

understanding of local vulnerability to climate impacts in Nigeria and similar countries.

The spatial dispersion characterizing the climate insecurity landscape can bring two challenges. (1)
Practically, spatial dispersion implies that peacebuilding efforts and humanitarian intervention will require
localized analysis and tailored support. As emphasized in the 6" IPCC Report on Climate Change 2022,
there is the “urgency of holistically addressing climate-related vulnerabilities as well as conflict, to sustain
peace and development in line with context specificity.” (2) Empirical, it is difficult to model explicitly all
the observable and unobservable location-specific features that influence vulnerability while also
accounting for similarity among neighboring areas in a flexible yet tractable framework. Additional
complexity comes from the temporal dimension. Climate insecurity may be aggravated by other root causes
of violence and persistent poverty in currently conflict-affected communities to threaten peace and
development, but they may also manifest in the future in different areas that are currently less conflict

affected but are more susceptible to climate variabilities.

Extensive research has been conducted on the relationship between climate and conflict and how it
manifests itself through the influence of the agricultural market. The majority of findings demonstrate that
extreme weather events may not directly cause conflicts, but they may be indirectly linked to violent
incidents through a variety of channels (Miguel, Satyanath, & Sergenti, 2004); Maystadt & Ecker, 2014).
Quantitative results from this stream of research generate average impact of climate induced price change
on conflict, given historic observations of climate hazards (for example, (Maystadt & Ecker, 2014). Others,
such as Harari & Ferrara (2018)<! establish the climate-conflict relation at a disaggregated level (cell).
Their analysis shows that weather shocks during the crop growing season negatively affect civil conflict,
assuming key estimated parameters are constant across locations. Where local contexts vary only to a
limited extent, assuming constant marginal effect of climate-related price change on conflict may be
informative. In other cases, focusing on the average effect of price change may veil local conditions. VVesco
etal (2021) focus on the important role of spatial heterogeneity in the distribution of agricultural production
and discovered that climate extremes and crop production concentration increase the predicted likelihood

of conflict. Yet their empirical model assumes that the marginal impact of agricultural production exerts a
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constant effect, and the country-level analysis prevents the illustration of a more granular picture that could
help inform targeted intervention at local level.

This study offers a spatial depiction of the current state and future prospects of climate-conflict association
in Nigeria, focusing on how agricultural price changes following weather shocks may strengthen this
association. We characterize this pattern in northern Nigeria over the period 2016-2019. Climate shocks
are captured by anomalies in maximum temperature. The estimations take the smallest administration in
Nigeria as the unit of observation, and then regress the incidence of violent conflict on temperature
anomalies, staple food prices (rice, maize, sorghum and millet), and the interactions of these two variables.
This is done by locally weighted regressions, which use each location’s own information, and the weighted

information from neighboring locations to account for spatial heterogeneity and autocorrelations.

This paper complements the empirical climate-conflict literature in three directions. First, we explore
within-country heterogeneity embedded in climate-conflict relations through a spatially explicit framework.
Compared to previous contributions, we estimate the locally varying relationship between climate, conflict,
and agricultural commodity prices, which robustly improves the predictive performance of the model
compared to models that impose homogeneity. Second, as an extension to the existing literature that relies
on historic observations of climate data, we incorporate climate predictions to extrapolate future trajectories
of climate insecurity. In some areas, the dry conditions are projected to be more severe than the national
average. Accounting for this additional source of heterogeneity constitutes an important contribution that
brings our understanding of the climate security landscape one step closer to possible future conditions. An
additional novelty relates to the careful validation and interpretation of the predictive uncertainty beside

point estimates to overcome the inferential caveat of the methods.

The estimations from geographically weighted regression (Brunsdon, 1996) produce two novel sets of
results. First, the results imply that districts are heterogeneous, and that both observed and unobserved
factors can condition the effect of the agricultural market in shaping the climate security association. There
is systematic dispersion across locations in terms of how the association between temperature anomalies
and conflict is amplified when staple crop prices increase following temperature anomalies, and the
variability is unlikely driven by overparameterization. We also observe that Zamfara State and the northern
part of Niger State have the highest risk of evolving into future hotspots of climate-related conflicts. Second,
the climate security landscape is then contextualized with socio-demographic layers and integrated with
climate projection to show diverse future trends in climate-driven price shocks. For example, temperature
anomalies exert a harmful effect, especially in north-eastern regions such as Borno and Sokoto states, where
areas have been plagued by bandit conflicts between the state government and different gangs and ethnic

militias, as well as herder-farmer/herder-herder conflicts (Chukwuma, 2020). Although the empirical
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analysis is conducted using data from northern Nigeria, our methodological framework can be extended to
other regions to help provide locally pertinent policy evidence for the development of climate-resilient
peace in similar contexts, or to study the moderating effect of other possible intermediate factors through
which climate variability may be associated with conflict.Second, the climate security landscape is then
contextualized with socio-demographic layers and integrated with climate projection to show diverse future
trends in climate-driven price shocks. For example, temperature anomalies exert a harmful effect, especially
in north-eastern regions such as Borno and Sokoto states, where areas have been plagued by bandit conflicts
between the state government and different gangs and ethnic militias, as well as herder-farmer/herder-
herder conflicts (Chukwuma, 2020). Although the empirical analysis is conducted using data from northern
Nigeria, our methodological framework can be extended to other regions to help provide locally pertinent
policy evidence for building climate-resilient peace in similar contexts, or to study the moderating effect of

other possible intermediate factors through which climate variability may be associated with conflict.

The remainder of this study is structured as follows: In Section 2, we summarize the background that
motivates the focus on spatial heterogeneity, followed by a review of the conflict-climate association and
the role of agricultural commaodity prices in the context of Nigeria. Section 3 describes the empirical
motivation and strategy to extract local estimates using geographically weighted regression (3.1), the
selection of observed and anticipatory hotspots (3.2), the rationale and process to incorporate future climatic
variability (3.3), and robustness check strategies (3.4). Section 4 begins with a description of the study area
selection (4.1) and introduces the variables and data sources (4.2). Section 5 presents the main results at
aggregate level and the granular variability (5.1), the selection of current and anticipatory climate insecurity
hotspots and their social-demographic characteristics (5.2), the trajectory of future climate-conflict linkage
given predicted climatic conditions (5.3), and robustness check using different accumulation period of
temperature anomaly, different spatial kernels, and with permutation based econometric diagnostic (5.4).

Section 6 concludes.

2. Background

Northern Nigeria has been plagued by violence and instability that seriously hamper the development and
livelihood. The conflict has been fueled by a number of factors including political and economic
marginalization, religious extremism, and ethnic tensions. Banditry and terrorism have persistently plagued
the Northern regions (Nextier, 2022). In 2009, Jama‘atu Ahlis Sunna Lidda‘awati Wal-Jihad (People
Committed to the Propagation of the Prophets Teaching and Jihad) also known as Boko Haram, radicalized
and became violent, while in 2012, Jama‘atu Asaril Muslimina Biladis Sudan (Vanguards for the Protection

of Muslims in Black Africa), often referred to as Ansaru, emerged as a split of Boko Haram. As a result, in
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2013, the Nigerian government launched large-scale military campaigns against Boko Haram and Ansaru,
backed by a Joint Task Force of police, military, and civilians providing intelligence, and declared states of
emergency in Adamawa, Borno and Yobe states.

The situation has been further complicated by the scarcity of natural resources and pressure from climate
change. North-western states near the Lake Chad have reported increases in the frequency and duration fo
droughts over the last 40 years which has been attributed primarily to rising temperatures (World Bank,
2021). In the northern part of the country, the average maximal temperature has increased over the past
fifty years. Since the last significant drought in 1983, the average temperature increases from 2.9°C to 5.7°C
(Federal Ministry of Environment, 2021). The rising temperature has caused an adverse impact on the
agricultural sector which constitutes more than 20% of the national GDP and 39% of the workforce
(USAID, 2022). For example, drought is one of the major constraints to crop production, especially rice
and maize (Kamai & Omoigui, 2020).

Climate-induced production failures have led to income shocks and commodity price fluctuations
(Olurounbi, 2021). Alongside political or religious mobilization and competition over resources, this may
be associated with instability and insecurity (Fudjumdjum, Leal Filho, & Ayal, 2019). For example, in
Borno State, the armed conflict involving Boko Haram has gained momentum since 2009. Responses by
state security forces and vigilante groups have led to forced mobility, food insecurity, and violence (Day &
Caus, 2020). In this setting, climate-related livelihood losses have not only escalated organized crime (Nett
& Rittinger, 2017) but also made local populations more susceptible to recruitment (Ewi & Salifu, 2017).
Still in Northern Nigeria, drought and shrinking river bodies are some of the leading causes of clashes

between pastoralists and farmers (Olurounbi, 2021).

Studies on the price-conflict interaction capture two channels linking agricultural market vulnerability to
conflict. Consistent with the opportunity cost theory, for producers, higher commaodity prices increase their
opportunity cost of joining conflict and could reduce conflict, while the opposite is true for consumers
(Abidoye & Cali, 2021). Previous literature has also indicated that the agricultural commodity markets in
African including Nigeria can be characterized by limited absorbing capacity of shocks, low farmer
revenues, low-income consumers, and high consumer food prices (Bergquist & Dinerstein, 2020). Acute
food and nutrition insecurity could lead to widespread desperation and tip the scale towards acts of violence
by stoking existing tensions (Von Uexkull, 2014). For instance, in remote and agricultural areas in Northern
Nigeria, the most affected households by climate-induced market shocks are primarily subsistence farmers
who face a low opportunity cost for engaging in anti-social behavior. They also tend to spend a
disproportionate share of their income on basic foods. As such, volatility in staple food availability and

high prices in relation to income can be especially triggering for social upheavals (Bellemare, 2015).
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Literature also indicates that in Nigeria, the impact of climate change on major crop production and market
prices may vary considerably between regions due to its diverse agroecological landscape and political
fragmentation, and the same climate stressors can cause different levels of price (Bosello, Campagnolo, &
Cervigni, 2018).

3. Empirical strategy

3.1 Geographically weighted regressions

This study aims to examine the empirical relationship between climatic shocks, agricultural prices, and
violent conflicts in Northern Nigeria, to determine if such a relationship exhibits spatial heterogeneity
across districts. Besides the rationale and background outlined in Section 2, our emphasis on spatial
heterogeneity is also motivated by a few important empirical factors. First, conflicts in Northern Nigeria
are highly concentrated in a few areas. Between 2016 and 2019, we observe 1,925 violent conflicts in total
and 60% occurred in 12 LGAs. Rabah, an LGA in Sokoto State, for instance, experienced five times more
conflict than an average LGA. Second, the occurrence of climate variability has historically been more
prevalent in the northeast part. For these reasons, assuming the empirical relationship between climatic
shocks, agricultural prices, and violent conflicts in each location is the same as northern Nigeria average

may generate upward or downward bias for local implications.

Possible variations in relationships over space, such as those described above, are referred to as spatial
nonstationarity. Econometrically, it requires the estimation of locally varying processes that allows regime
shift, which motivates us to use geographically weighted regression, a useful method for exploring possible
spatial heterogeneity. Geographically weighted regression employs spatial weights to determine the
relationship between climatic stressors, agricultural commodity prices, and violent conflicts. These
geographical weights are relatively greater for observations located close to the regression point than for
those located further away. This method allows examining the spatial variation of estimates and comparing
the results to those estimated through a global model. It also implicitly takes into account the spatial
autocorrelation in neighboring areas because agricultural markets can be geographically integrated and

price shocks in one region can affect neighboring regions.

We examine the location-dependent association between crop prices changes in the wake of temperature
anomaly and conflict. Four separate models are estimated for rice, maize, sorghum, and millet, respectively.
For each crop equation, the price of major substitutes crop is controlled. Since rice and maize are the major
staple food in Nigeria, for the rice equation, maize price is controlled and for the maize equation, rice price

is controlled. For sorghum and millet, both rice and maize prices are controlled on the right-hand side.
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In all four equations, Conflict;,, stands for the number of conflicts in district i in month m. g (i) are the
location-specific parameters to be estimated. The key parameter of interest is the parameter for interaction
term of crop prices and temperature anomaly. Larger estimated coefficient suggests greater increase in
conflict frequency in the face of climate-induced price change. Since conflict is a count variable and cannot
take negative values, the function is estimated through Poisson regression. Fixed effects at the state level
are included, capturing important unobservable characteristics such as local endowment, community
informal resource sharing and support system, political institutions, traditional conflict resolution
mechanism, social cohesion and that may influence violent conflicts but do not change or change only
slowly over time. Estimated coefficients from the equation (1) to (4) are extracted for each LGA. The key
parameter of interest is the parameter for interaction term of crop prices and temperature anomaly. Larger
estimated coefficient suggests greater increase in conflict frequency in the face of climate-induced price

change.

Equations (1) to (4) are estimated for each LGA using observations from neighboring LGAs through a
kernel function. Two important parameters are involved in the estimation: The size of “neighborhood” is
determined by kernel bandwidth, and the importance of each neighbor is determined by a weighting
function. The size of bandwidth, which is the distance (calculated as the distance between LGA centroids)
beyond which a value of zero is assigned to weigh LGA, can directly alter parameter estimates and affect
model performance. Larger bandwidths include a larger number of LGAS receiving a non-zero weight and

more LGAs are used to fit a local regression. This is more appropriate where the data is sparse. To determine
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the optimal bandwidth, a cross-validation approach is applied which involves defining neighbor windows
to minimize both bias and variances. In the main specification, adaptive bandwidth is calculated such that
the size of neighborhood is adjusted according to data point sparsity. Denoting bandwidth as h, the weight

is a function of distance d between any two locations, specified in equation (5):
w(dy) =1—-(d;j/R)? if dij <h (5)

With local regression, estimated coefficients from the equation (1) to (4) are then extracted for each LGA.
Since the estimation is not model-dependent, this framework is also able to correctly characterize the
homogeneity and stationarity, if the relationship between temperature anomaly, agricultural commodity

price, and conflict displays such characteristics.

3.2 Observed and anticipatory hotpots selection

The framework also allows us to identify observed and anticipatory climate insecurity hotspots. Observed
climate insecurity hotspots are areas that are affected by conflicts and are highly sensitive to price shocks
induced by temperature anomaly episodes. Anticipatory hotspots are areas which are relatively less affected
by conflict but may become climate insecurity hotspots in the future given their high conflict-sensitivity to
the changing prices in the aftermath of temperature anomalies. For both types of hotspots, we only select

those of which the coefficient of the temperature-price interaction is significant at 10% level.

For observed climate insecurity hotspots, we further classify “medium” hotspots as districts that rank above
the median of the distribution of the interaction slope (i.e., the estimated association between temperature
anomaly-induced price changes and conflicts), and above the median of the distribution of the actual
monthly conflict, and “severe” hotspots as LGA that are above the 75 quantiles for he estimated coefficient
of interaction term and below 25 percentiles of average monthly conflicts. The selection of medium (severe)
anticipatory hotspots follows the same criteria, except that these LGA rank below the median (25%
guantile) of the distribution of the actual conflicts. Together, these two types of hotspots illustrate the
observed climate-conflict association conditional on shock-related crop prices changes, and the future

prospects of this association, should the market vulnerability evolve under worsening climate conditions.

3.3 Future climate-conflict extrapolation

Another source of heterogeneity comes from the location of future climate shocks, which can shed
important insights on the trajectory of climate-related conflicts in the near term. Collier et al (2008) suggest
that the combination of an already difficult climate, significant projected climate change, and the limited

adaptation capacity make Africa much more sensitive to expected future climate change than other regions.
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Within Northern Nigeria, the occurrence of dry conditions may also impact the study region differently.
Although the precise pattern of future high temperature for each area is not predictable, the northeast is
projected to experience the largest projected increase from present day climate by 2050. Taking this future
climatic condition into account when projecting potential influence on climate-related conflict can inform

how the climate insecurity landscape may evolve.

Following previous practices, we focus on the near term (2030-2040) to refrain from extrapolating the
results too far into the future where there may be possibilities for food system transformation and adaptation
(Harari & Ferrara, 2018). Further in the future, the uncertainty with respect to the overall structure of the
agriculture sector and the way food systems will have transformed may impact the results presented here.
According to the World Climate Research Programme’s Sixth Coupled Model Intercomparison Project,
known as CMIP6 (O’Neill et al., 2016), in Representative Concentration Pathway (RCP) 4.5 emission
scenario, the total number of days in Nigeria with high temperatures (defined as days in a year during which
the temperature is above 35 degrees Celsius) will increase by 17 days with median probability by 2030, and
this number will increase by 29 days by 2040. The number of days with temperature higher than 35-degree
Celsius may be a good proxy for future climate conditions where temperature may likely to be abnormally
high. In fact, most of high temperature conditions are anticipated not only in Borno state, which already
experiences frequent temperature anomalies during the study period of 2016-2019, but also in north-western
Nigeria, including Sokoto, Kebbi, and Zamfara States. These regions had relatively fewer high temperatures
episodes in the past, but are projected to face high stress in future climate conditions, especially for the next
20 years. We first derive the total number of days with temperature higher than 35-degree Celsius for each
district in 2030 and 2040, this number is compared with that in 2019 to calculate the percentage increase in
high temperature days. This district-specific projection information is multiplied by the estimated marginal
parameters of the interaction term from the main specification to get the estimated increase in conflict
conditional on price increase,c8; assuming that the percentage change in price will likely follow similar
trajectory in the future as in the historic period. We repeat the exercise in the right panel in Figure 2 on
three selected LGAs that have representative trajectories of estimated percentage increase in violent

conflict.

3.4 Robustness checks and placebo tests

Robustness checks

To test whether our analysis is sensitive to longer periods of temperature anomaly, we repeat the main
model, but this time use a six-month accumulation period of temperature anomalies. Since the spatial kernel

can influence the model's performance directly, as a further robustness check, we also apply different
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bandwidth selections through cross-validation with fixed bandwidth and different kernel functions. We also
apply different weighting functions besides Gaussian kernels.

Placebo test

Due to the locally weighted regression, observations are used repeatedly, and it is more likely that random
noise is mis-interpreted as actual trend. Moreover, to test if the results are generated from spurious
regression, we conduct permutation based econometric diagnostic tests (similar to placebo tests) using
randomly generated spatial pattern. The permutation is based on random spatial coordinates. If the spatial
heterogeneity is just an artifact of non-linearity or random noise in price, one would see the main results

located on the center of the random permutation distribution.

4. Data

4.1 Geographical scope of this analysis

The geographical scope of this analysis is northern Nigeria. We focus on this region for several contextual
considerations. As described in the Background section, this region is particularly vulnerable to shocks and
stressors. Second, the majority of agricultural commodity data is available for northern Nigeria. Out of the
40 agricultural commodity markets monitored by World Food Programme, 37 are located in 29 Local
Government Areas (LGA) in the north, particularly in Abuja, along the Benue River and Niger River, and
from the Jos Plateau to the northern border between Nigeria and Niger. Second, most of the violent conflicts
also occur in the northern LGAs. For example, Maiduguri has witnessed a disproportionately large number
of conflicts between 2016 and 2019. From a policy perspective, climate-related security risks may be of
greater urgency in the north. Therefore, this study focuses on 257 northern LGAs from 13 states. The red
shaded areas in Figure 1 depict the study region. Red dots represent the location of agricultural commodity

markets.
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Figure 1. Study region

4.2 Variables

Violent conflicts

The dependent variable is the number of violent civil conflicts at the LGA level that occurred each month
between 2016 and 2019. The conflict data is obtained from the Armed Conflict Location & Event Data
Project (ACLED) (Raleigh, Linke, Hegre, & Karlsen, 2010) which has been widely adopted in previous
climate-conflict studies (for example, Maystadt & Ecker, 2014). ACLED is a disaggregated dataset that
collects the dates, actors, locations, and types of reported violence (Raleigh, Linke, Hegre, & Karlsen,
2010). It has six event types and 25 sub-event types of conflict. This enables us to concentrate on the types
of conflict that are most relevant to climate-induced conflict measurement. Conflict in this study is defined
as violence against civilians, explosions and remote violence, and battles. On average, between 2016 and
2019, each LGA experienced an average of 1.7 conflicts per month. Figure Al in the Appendix displays
the average number of monthly conflicts in the region of study. More conflicts occur in the north-eastern
and north-western areas, especially northern Rabah in Sokoto, Gwoza and Maiduguri in the State of Borno,
and Rafi in the state of Niger. Boko Haram has been one of the major actors involved in conflicts primarily
fought between illegal arms/ethnic militias and state governments. In contrast, the middle region of Kano

State and the western part of Bauchi are less conflict-affected.

Climate variability
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The climate variability is captured by the maximum temperature anomalies for the three and six months
preceding the date on which agricultural commodity prices were recorded. A maximum temperature
anomaly refers to a deviation from the long-term average temperature. A positive anomaly indicates that
the observed temperature is warmer than the long-term average, whereas a negative anomaly indicates the
opposite. Warmer temperatures can increase evaporation, thereby reducing surface water and drying out
soil and vegetation. In the main specification, the variable temperature anomaly is an indicator variable that
takes value 1 for three-month anomaly temperature being positive. In robustness check, this variable takes
value 1 for six-month anomaly temperature being positive. Between 2016 and 2019, major temperature

anomaly episodes occurred in the Borno and Kaduna States, especially in Igabi, Kauru, and Chikun District.
Agricultural prices

We focus on four crop commodities that are locally produced in Nigeria: rice, maize, sorghum, and millet.
These crops are Nigeria's major staple food. The original monthly crop price data is assembled from the
World Food Programme (WFP) Price Database, which consists of 37 markets where WFP monitors and
collects price information. Given that these are the primary agricultural commodity trading markets, it is
reasonable to assume that both buyers and sellers may cross state and LGAs borders to reach these spatially
connected markets (Hastings, Phillips, & Ubilava, 2022). To account for this, prices are interpolated using
inverse distance weighting, a spatial statistical method that uses known values (i.e., where we have market
data) to estimate the value at an unknown point (the areas without market data). Formally, the spatially

interpolated prices price(x) have the following form:

1 .
§V=1d(x—xi)2 *price(x;) _
price(x) = . 1 if 0<d(x,x;) <50kmfori=1,2..N
=1d(x, x;)?
price; if d(x,x;) =0

Where x denotes an interpolated point where market price information is not available, x; is an interpolating
point where market price information is available, d is the distance from the known market point x; to the
unknown point x, N is the total number of known markets points used in interpolation and in our case
equals 37. The interpolated price raster is then averaged by LGA for each month. We refrain from
interpolating too far into areas without price information and we only interpolate each point within 50 km
distance from each market point to reflect a reasonable geographical scope of trade. Figure A2 in the
Appendix shows the average interpolated prices of rice (top left) maize (top right) sorghum (bottom left)
and millet (bottom right) between 2016 and 2019. Table Al in the Appendix presents the summary statistics

of all key variables including prices, violent conflicts, and temperature anomalies.
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5. Results

5.1 Main estimation results

Table 1 summarizes the main findings from both the global and local Poisson regressions. We begin with
the “global” parameters which represent the average relationship in northern Nigeria between abnormal
temperatures, prices volatility and conflicts estimated through Poisson regression using all the observations
(non-weighted). The key variable of interest is the interaction term Three-month Temperature
anomaly=1xPrice, of which the coefficients are significant for rice and maize. The positive sign suggests
that the association between temperature anomaly and conflict is amplified when rice and maize prices rise
following a temperature anomaly episode. On average, the price of rice increases from 0.63 USD/kg to
0.71 USD/kg following a temperature anomaly, maize increases from 0.24 USD/kg to 0.28 USD/Kg,
sorghum from 0.25 USD/kg to 0.31 USD/kg, and millet from 0.27 USD/kg to 0.31 USD/kg. These mean
differences are all significant at 1%. With these observed price changes, holding everything else constant,
at the observed price change before and after a temperature anomaly for each crop, the number of conflicts
increased approximately by 11.5% with respect to rice price change, 21.5% with respect to maize price

change, 29% with respect to sorghum price change, and 22.5% with respect to millet price change.

The global Poisson regression offers a useful depiction of the overall landscape across the study region.
The results from geographically weighted Poisson regressions picture the local dispersion and show the
improvement in model performance compared to the non-weighted global model. Econometrically, local
regressions improve the goodness of fit across models and the information criteria also favor local models
for all four crops, with greater R square. The consistently smaller AIC implies that the local models
outperform in all four models. Second, since the parameters vary by location, the minimum, median, mean
and maximum of these local parameters are reported to characterize the distribution. For all four crops, the

coefficients of interest show considerable disperse pattern.

Figure 2 plots the coefficient of the interaction term extracted from the geographical regression (left), its
standard error (middle) and the percentage increase in conflict associated with price increase following
temperature anomaly, evaluated at the observed level of price change (right). By virtually examining the
coefficient of the interaction term coefficient, for all the four staple crops, there is a complex surface of
marginal effect. For instance, the coefficient of the rice price-temperature anomaly interaction term ranges
from 0.2 to 4.08. The geographical non-stationarity in the price-temperature nexus is also corroborated by
the fact that the standard deviation of the spatially varying parameter estimates for the interaction term (1.27
for rice, as an example) can be up to three times greater than the standard deviation of global parameter
estimate (0.42 for rice, reported in Table 1).
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Table 1. Estimation results from main model

Rice Maize Sorghum Millet
ESTIMATOR Poisson Poisson Poisson Poisson Poisson Poisson Poisson Poisson
(Global) (GWR) (Global) (GWR) (Global) (GWR) (Global) (GWR)
Min 0.20 Min 1.14 Min 1.01 Min 1.02
m{ﬁ;eﬁ’ﬂﬁz 1.44**  Median 3.05 2.38*** Median 224 118  Median 217 119  Median 262
anomaly=1 x Price (0.42)  Mean 241 (0.71)  Mean 233 (0.62)  Mean 231 (0.77)  Mean 2460
Max 4.08 Max 3.62 Max 3.69 Max 4.15
State FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES
Month FE YES YES YES YES YES YES YES YES
Control: maize price YES YES / YES YES YES YES
Control: rice price / / YES YES YES YES YES YES
Bandwidth / Adaptive / Adaptive / Adaptive / Adaptive
R-square 0.16 0.22 0.17 0.23 0.15 0.27 0.16 0.22
AIC 1277 1230 1267 1216 1165 1121 1208 1160
Number of Obs. 951 951 951 951 845 845 896 896

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors for global models are in parathesis. Global estimator refers to the Poisson fixed effect model that uses
all the data points. The dependent variable is the number of monthly violent conflicts. Excluding months for which only one agricultural market information is
available. Temperature anomaly is a dummy variable equals one if three-month temperature anomaly is above 0. The estimation uses 257 northern LGAs from 13
States. The unit of analysis is LGA-month for both global Poisson fixed effect regression and the GWR Poisson regression estimates. All models include state level
fixed effects and month fixed effects. Bandwidth based on cross-validation.

15



Both positive and negative spatial autocorrelation in the estimated interaction term parameters can be found
for the mediating effect of maize price. The positive autocorrelation is consistent with our expectation, as
adjacent areas may share more similarities in these abovementioned features, thus demonstrating similar
responses to the adverse impacts. On the other hand, among several adjacent LGAs in Kano and Kaduna
states, the impact of maize price changes following temperature anomaly episodes can differ significantly.
This could be due to the spatial distribution of maize production in Northern Nigeria, since Kaduna State
is Nigeria's largest producer of maize and its market infrastructure is more formalized, potentially allowing
for easier adjustment to production shocks and a smaller impact from income shocks. Moreover, the trend
surface of this complexity cannot be represented by a simple linear or quadratic global trend, implying the

precision gain from estimating local relationships.

Besides the points estimates, the statistical inferences of the local parameters are visualized in the middle
panel of Figure 2 which shows clearly that the standard errors are not uniformly distributed and are larger
for areas in the southern part of the Borno state for rice, maize, and millet and larger in the western states,
including Zamfara and Sokoto for sorghum, and the point estimates for those areas are less precise. For
areas with small standard error, such as the eastern districts with respect to the marginal effect of sorghum
price, we have higher confidence that the observed spatial heterogeneity is more likely driven by actual

differences in spatial pattern rather than random local idiosyncrasies.

The right panel of Figure 2 depicts the percentage increase in conflict conditional on the observed level of
price change following temperature anomalies. Given the observed degree of price increases, the conflict
increase is greatest in Borno State for rice and millet and larger in Sokoto State for maize. Visual
examination reveals a clear and sharp regime change for percentage increase in conflict conditional on the
observed level of price change following temperature anomalies for rice, sorghum, and millet: the values
decrease quickly along the east and west boundaries of Yobe, Borno, and Gombe states, especially across

the northern part of the Borno State boundary.
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Figure 2 Estimation results (three-month temperature anomalies)

Notes: Estimated coefficient of the interaction term between crop prices and temperature anomaly (left panel for four crops) standard error of the interaction
term coefficient (middle panel) and predicted percentage increase in conflict evaluated at the observed level of price change (right panel).



5.2 Observed and anticipatory hotspots of climate insecurity

Having established more confidence in the validity of the localized results and the statistical uncertainty,
the district specific parameters are then extracted for selecting observed and anticipatory climate insecurity
hotspots. The districts shaded in red and brown colors in Figure A4 in the Appendix show the locations of
observed climate insecurity hotspots at medium and severe level, respectively. The location of these
observed hotspots is largely robust. Conflicts have primarily occurred in the north, which has been plagued
by bandit conflicts between the state's government and various militias, as well as herder-farmer conflicts
(Chukwuma, 2020). Borno State had the most frequent temperature anomaly during the study period and
also most susceptible to price volatilities. As consistent with previous evidence (Last, 2018), observed
hotspots exbibit mainly in the eastern part of Sokoto state, where large, forested areas allow for concealment
and the formation of camps deep within the forest, which are inaccessible to unprepared police and military

personnel.

Figure A5, on the other hand, illustrates the location of the anticipatory hotspots, clustering in Bauchi,
Jigawa, State and Kano State. Bauchi State is one of the major producers of rice in Nigeria thus it is
particularly impacted by abnormal climate conditions. These areas are relatively less conflict-affected if
compared to the climate insecurity hotspots but due to their sensitiveness to climate-induced price shocks,

they may become future hotspots if adverse climate conditions become more common in these areas.

From Figure 2, Figure A4 and A5, districts that demonstrate high susceptibility to climate-induced market
shocks (i.e., larger coefficient of the interaction term between climate shock and agricultural prices) exhibit
apparent clustering patterns. This motivates us to overlay hotspots with other layers that policy makers
consider important and explore the spatial pattern. Figure A6 displays four important socio-economic and
demographic variables measured in the year 2018, including proximity to water (top left), ethnicity diversity
(top right), irrigation intensity (bottom left) and urban population (bottom right) compiled from the
Demographic and Health Surveys (DHS). The observed climate insecurity hotspots tend to concentrate
around regions that are close to water sources and have lower urban population. The former may be linked
with resource-driven disputes. Agricultural production is heavily dependent on water resources especially
following temperature anomaly, thus proximity to water may induce more climate-related conflict mediated
by agricultural price changes. Yet none of the variables alone offers sufficient explanation for the location
of hotspots and we find neither clear and linear correlation between the layers and the clustering of conflict

nor any significant marginal effect of the interaction term of temperature anomaly and prices.
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5.3 Future prospects of climate-related conflict: 2030-2040

Our analysis so far has focused on the impact of past climate variability using historic observations of
temperature anomalies. Figure 3 presents the trajectory for three representative districts. The vertical axis
in the graphs shows the estimated percentage increase in conflict associated with projected percentage
increase in high temperature. Positive number indicates a positive linkage between temperature anomaly
and conflict mediated by agricultural prices, as predicted from the model. The Maiduguri district, a current
hotspot of climate insecurity located in the Borno State, is expected to experience higher climate-related
conflict mediated by agricultural prices, although the percentage increase in conflicts is expected to slow
down after 2030. In the Bade district the association between high temperature and conflict is expected to
continue to be weak and statistically insignificant, while in Zurmi district such association may increase
given future temperature conditions. This exercise showcases that the future climate change conditions
should also be taken into account both in projecting the spatial distribution of the climate-conflict

associations as well as in framing corresponding prioritization strategy to mitigate climate-related conflicts.
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Figure 3. Estimated percentage increase in conflict with future climate conditions.

Notes: Estimated percentage increase in conflict with future climate conditions under RCP 4.5 with 95% confidence intervals. A Representative
Concentration Pathway (RCP) is a greenhouse gas concentration trajectory adopted by the IPCC. RCP 4.5 is described by the IPCC as an
intermediate scenario. RCP 4.5 is the most probable baseline scenario (no climate policies) taking into account the exhaustible character of non-
renewable fuels
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5.4 Robustness check and diagnostics

It is possible that the effect of temperature anomaly may have a longer lagged effect on agricultural
commodity market and conflict. As the robustness check, we repeat the above estimation using six-month
temperature anomalies. The results are reported in Table Al in the appendix. There is robust and positive
association (except for some areas with respect to rice prices and maize prices that have negative
coefficients) between price changes and conflict in the face of temperature anomalies. The results confirm
that conflict is amplified when crop prices rise following an abnormal maximum temperature episode.
Moreover, the effects of six-month temperature anomalies are smaller and tend to be insignificant compared
to three-month, suggesting the effect of climate-induced price shock on conflict may be rapid and
contemporaneous. On average, at the observed crop price change before and after the temperature anomaly
for each crop, the associated conflict increased approximately 3.3% with respect to rice price change, 5.0%
with respect to maize price change, 6.6% with respect to sorghum price change, and 3.3% with respect to

millet price change.

Figure A6 shows the number of significant local estimates on the permutation based empirical distribution.
For all the four crops, the distribution clusters at zero as we expect. For rice and maize, the number of
significant local estimates are located at the right end, suggesting the spatial effect we observe is very likely
the results of spatial heterogeneity rather than non-linearity or coincidence, or overfitting.

Figure A3 in the Appendix plots the areas where the net marginal effect of the temperature anomaly,
conditional on the respective local price level, is positive and significant. In most of the eastern regions,
temperature anomalies display a significant harmful net marginal effect. For rice, sorghum, and millet,
temperature anomalies exert harmful effects in most eastern regions, including Borno, Yobe, and Niger
State.

We further use different bandwidths and different kernel functions in the estimation. The results are largely
robust, except that with a Gaussian kernel and fixed bandwidth, the average effect of the interaction term
with rice is no longer significant. Moreover, the main specification outperforms these models in terms of
AIC. The average fixed bandwidth distance is 75 km. The densities of the local parameters are reported in
Figure A8 in the Appendix. Also, since the crop market prices used in this analysis are wholesale crop
prices and rising food prices may pose a stronger shock to net consumers, the empirical associations we
have discovered so far may be stronger for areas that are likely to be buyers of these crops. Therefore, we
repeat the main model shown in Table 1, this time restricting the subsample to only areas that have a crop

market. This leaves 37 markets, and the local results are greater than the model using all observations.
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6. Conclusion and policy implications

Evidence shows that pressure from climatic shocks may indirectly intensify conflict in vulnerable areas,
conditional on several moderating factors, including agricultural commodity prices. In previous studies,
such relationships were assumed to be spatially constant or follow the same underlying process. Yet,
depending on the extent of spatial disparity among these interrelated factors, the same level of climate
shocks at two locations may elicit different degrees of market responses associated with climate-related
conflict. To capture this spatial non-stationarity, this study presents a spatially explicit framework that
characterizes the current and future climate insecurity landscape in Northern Nigeria, where the complex

local contexts challenge the validity of the spatial stationarity assumption.

Through estimating local regressions in the time span examined (2016-2019), we find that temperature
anomalies on average exert a harmful effect across northern Nigeria when staple crop prices rise following
a temperature anomaly episode, especially in the north-eastern regions, which is significant for rice and
maize. The findings imply that the strength of the climate-market-conflict nexus is heterogeneous and that
unobserved geopolitical and social-economic factors can condition the effect of agricultural markets in
affecting conflict in the face of climate shocks. This is consistent with the evidence that in these areas, in
response to environmental deterioration and a lack of water and arable land, communities competed
viciously for these limited resources. Unemployment, widespread poverty, and weak local governments
have further enabled a steady flow of destitute individuals to engage in criminal activity to make a living.
In a vulnerable context with geographical and social-economic fragmentation, where conflicts are
concentrated in a few areas and agricultural markets are unevenly distributed, relaxing the assumption of
stationarity such that the regional-specific effect is allowed to be driven by the different underlying spatial

processes can offer richer insights.

Interestingly, the magnitude of this amplifying effect can exhibit both positive spatial autocorrelation
patterns, where neighboring areas show similar susceptibility to climate-related price changes, and negative
spatial autocorrelation, where adjacent areas show drastically different sensitivity to such price changes,
emphasizing the importance of localized market-related peacebuilding efforts. Temperature anomalies
exert significant harmful influences on violence in most regions. Besides the coefficient estimated,
visualization of the standard error also provides guidance on the uncertainty of these parameters and on

where the estimation results should be interpreted with caution.

From a policy perspective, the evidence generated is expected to support the design and targeting of policies
aimed at reducing the surge and the exacerbation of conflicts in the aftermath of temperature anomalies and

other extreme weather events. Under limited resources and complex local contexts, identifying hotspots

22



more vulnerable to rising insecurity risks is critical for informing targeted interventions. In particular, the
selection of anticipatory hotspots foreshadows a possibility in which regions that are currently not sites for
chronic conflict may be potentially redefined as climate-insecure hotspots in the future. For instance, early
warning systems may pay greater attention to the level of food prices and target food price stabilization

efforts in conflict-vulnerable districts (Minot, 2014).

Looking forward, climate change is anticipated to continue to apply pressure to food systems in the form
of production losses that may lead to increases in food prices (Bosello, Campagnolo, & Cervigni, 2018)ce
The distribution of future vulnerability may diverge from its current pattern and the interaction of temporal
and spatial heterogeneity complicates the understanding of how climate security landscape might evolve in
the future. In fact, climate change scenarios suggest a warmer climate in the future of Nigeria and the

location of climate hazard especially temperature anomaly may diverge from current occurrence.

Some caveats should be taken into account regarding the generalizability of the results. First, our spatial
heterogeneity analysis offers an explorative presentation of the diverse landscape of climate-related
conflicts following temperature anomalies. It is not designed as an explanatory method to unpack the
mechanism that generates the dispersion. Relatedly, our empirical model estimates a reduced-form
relationship between climate shock and conflicts conditional on crop market prices. Evidence shows that
conflict can lead to rising food prices (Anderson, 2021) and hinder staple food supply, compounding
challenges for households trying to buy and sell food and livestock (Justino, 2011). Attempts to mitigate
the concern on reverse causality include using forwarded conflict variables, proper fixed effects, or IV
approach. Yet two stage least squared approach using weather variable as IV may suffer several major
limitations outlined in recent study (Mellon, 2022) as extreme weather events rarely operate through only
one channel in affecting conflicts. Due to these reasons, we do not attempt to provide a causal interpretation
of the price channel through which climate impact on conflict operates, and our estimate represents the
moderator role of crop price on climate-conflict relations under certain plausible assumptions. Nonetheless,
relaxing the strong exogeneity assumption made in IV estimation and adopt alternative framework such as
the causal mediation analysis may improve the validity of estimation and aid in the causal comprehension
of climate-conflict nexus, particularly those involving agri-food system channels. Second, one caveat
associated with GWR is the repeated use of observations through the moving window of the spatial kernel
function at each regression point. Although the risk of over-exploitation of the variability is minimized
through careful diagnostics, the sparsity of the data limits the precision of point estimates and goodness of
fit. Finally, due to limitations on projected temperature anomaly, we are only able to proxy the future
climate shock using projected increase in number of high temperature days, which offers a reasonable

approximation of spatial heterogeneity in climate shock frequency in the near term compared to historic

23



period, yet we acknowledge this is not precisely the same as increase in temperature anomalies. We
acknowledge that because of these constraints, this study cannot provide a comprehensive picture of the
dynamics of prices, temperature anomalies, and conflicts in Northern Nigeria. Additional research would
benefit from more complete market data and more information on covariates such as displacement that
could exacerbate armed conflict across regions. For these limitations, we consider our depiction of current
and future climate security landscape through geographical framework and the hotspots selection as work

in progress and encourage practitioners and researchers to contribute.
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Figure A2. Average interpolated agricultural commodity prices
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Notes: Price of four major staple crops measured in USD/kg. Rice (top left) maize (top right) sorghum
(bottom left) millet (bottom right). All crops are locally produced varieties. Months with prices only available
in one market in the northern region are excluded. Maize prices include regular maize, yellow maize, and
white maize prices. Sorghum prices include regular sorghum, brown sorghum, and white sorghum.

Table Al. Summary statistics

Variable Observations Mean  Std. dev. Min Max
Rice price ($/Kg) 1,040 0.71 0.19 0.38 1.62
Maize price ($/Kg) 1,019 0.28 0.09 0.17 0.46
Sorghum price ($/Kg) 934 0.31 0.12 0.15 0.71
Millet price ($/Kg) 985 0.32 0.10 0.17 0.73
Violent conflicts 1,109 1.73 1.80 0.00 15.00
Temperature anomalies 3 month 1,109 0.00 0.61 -1.74 1.75
Temperature anomalies 6 month 1,109 0.01 0.44 -0.94 1.34
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Figure A3. LGAs where temperature anomaly exerts significant and harmful net effects on conflict.

Note: areas where the net marginal effect of temperature anomaly, conditional on respective local price level, is
positive and significant. In most of the eastern regions, temperature anomaly displays a harmful net marginal effect.
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Figure A4. Observed climate insecurity hotspots.

Notes: Current climate insecurity hotspots using estimated parameters from the main model. Red spots are LGA that
are above the median for both the estimated coefficient of interaction and average monthly conflicts, brown spots
are LGA that are above the 75 quantiles for both the estimated coefficient of interaction and average monthly
conflicts.
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Figure A5. Climate insecurity hotspots

Notes: Anticipatory climate insecurity hotspots using estimated parameters from the main model. Orange spots are
LGA that are above the median for estimated coefficient of interaction and below median for the average monthly
conflicts, brown spots are LGA that are above the 75 quantiles for he estimated coefficient of interaction term and
below 25 percentiles of average monthly conflicts.
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Figure A6. Social-economic and demographical characteristics

Notes: socio-economic and demographic variables measured in the year 2018, including proximity to water measured
in km (top left), ethnicity diversity measured as standardized number of different ethnicities in each district (top right),
irrigation intensity measured as percentage of land covered by irrigation (bottom left) and urban population measured
by percentage of urban population in total population (bottom right).
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Table 3 Estimation results (six-month temperature anomalies)

Rice Maize Sorghum Millet
ESTIMATOR Poisson Poisson Poisson Poisson Poisson Poisson Poisson Poisson
(Global) (GWR) (Global) (GWR) (Global) (GWR) (Global) (GWR)
- " Min -11 Min -1.69 Min -0.7 Min -0.9
Temperature 057  Median 03 pge  Median 099  Median 007 og7  Medan 015
anomaly=1 x Price Mean 0.4 Mean Mean  0.65 Mean 0.5
Max 1.3 Max Max 1.03 Max 1.9
State FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES
Month FE YES YES YES YES YES YES YES YES
Control: maize price YES YES / YES YES YES YES
Control: rice price / / YES YES YES YES YES YES
R-square 0.17 0.25 0.17 0.22 0.15 0.20 0.15 0.22
AlC 1274 1226 1271 1225 1166 1131 1206 1168
Number of Obs. 951 951 951 951 845 845 896 896

Notes: *** p<0.01, ** p<0.05, * p<0.1. Global estimator refers to the Poisson fixed effect model that uses all the data points. The dependent variable is the number
of monthly violent conflicts. Exclude months with only one agricultural market information available. Temperature anomaly is a dummy variable equals one if
three-month temperature anomaly is above 0. The estimation uses 257 northern LGAs from 13 States. The unit of analysis is LGA-month for both global Poisson
fixed effect regression and the GWR Poisson regression estimates. All models include state level fixed effects and month fixed effects. Bandwidth based on cross-

validation.
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Figure A7. Diagnostics of local parameters: number of significant estimates
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Figure A8. Robustness check using different spatial kernels.
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