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Abstract 

Using weekly data from 2018 to 2022, we conduct historical decomposition and 

counterfactual analysis based on a SVAR model. We show urea fertilizer price changes are 

affected mainly by market-specific supply-demand shocks. The energy prices had a 

minimal impact on urea fertilizer prices during most of the sample period but contributed 

significantly to the urea price spike in 2021. No evidence suggests precautionary demand 

measured by inventories and corn price changes led to large fluctuations in urea prices 

during the sample period. 
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Introduction 

Fertilizer prices have been rising significantly since the end of 2020 and broke new records 

in 2022. As fertilizers are essential inputs for major agricultural commodities, high 

fertilizer prices add further to fears over food security in both developed and developing 

countries. While fertilizer supply shortages fueled by the Ukraine-Russia conflict are a 

major factor contributing to surging fertilizer prices, soaring fertilizers prices are also 

driven by serval pre-existing factors, including rising energy costs, strong demand driven 

by profitable crop prices, reduced production capacity in major producing countries, etc. 

A better understanding of the causes of fertilizer spikes will have important implications 

for policymakers and market practitioners. 

This paper uses a structural vector autoregression (SVAR) model to decompose 

Chinese urea fertilizer prices into a set of economic factors and measure their relative 

contributions to historical urea price movements. Previous studies on fertilizer prices have 

focused on the price transmissions between natural gas, fertilizer and corn markets (Etienne, 

Trujillo-Barrera, and Wiggins 2016), price transmissions between the U.S. and Middle East 

markets (Hu and Wade 2017), and spatial and vertical price relationships in the U.S. 

fertilizer industry (Bekkerman, Gumbley, and Brester 2021). We contribute to the literature 

in two ways. First, while previous studies have mainly focused on the U.S. fertilizer market, 

we investigate the Chinese fertilizer market, as China is one of the world's largest fertilizer 

producers, users, and major exporters. Second, previous studies depend on reduced form 

models to investigate the price relationships between fertilizer, agricultural commodity, 

and energy prices. We instead develop a SVAR model and adopt Rigobon's (2003) 

heteroskedasticity based identification approach to identify the contemporaneous effects 

of a set of economic factors, including market-specific net supply shocks, precautionary 

demand, and grain and energy prices. Limited studies have used inventories to explain 

fertilizer prices due to data availability, although it is a key explanatory variable for storage 

commodity prices. Hu and Brorsen (2017) showed that urea markets are thin markets as 

the major traders in urea markets are large international companies and formula pricing is 

common. We solve this problem by using privately collected Chinese urea inventory data 

that are widely used by traders. 
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Using weekly data from 2018 to 2022, we conduct historical decomposition and 

counterfactual analysis based on a SVAR model. We show urea fertilizer price changes are 

affected mainly by net supply shocks. The energy prices had a minimal impact on urea 

fertilizer prices during most of the sample period but contributed significantly to the urea 

price spike in 2021. No evidence suggests precautionary demand measured by inventories 

and corn price changes led to large fluctuations in urea prices during the sample period. 

The findings of this study will provide valuable insights for policymakers and stakeholders 

related to the agricultural industry in China. 

Related Literature 

Hu and Brorsen (2017) showed that the U.S. fertilizer industry is a thinly traded market, 

and formula pricing is commonly used in the industry. Etienne, Trujillo-Barrera, and 

Wiggins (2016) discovered significant linkages between the U.S. corn market and the 

nitrogen fertilizer market. However, they found no significant linkages between U.S. 

natural gas and nitrogen fertilizer prices, which can be attributed to the market power. 

Geman and Eleuterio (2016) found a long-term price relationship between ammonia and 

corn prices in the U.S. markets. However, their results indicated that fertilizer prices do not 

respond to corn price changes in the short term due to market power in the U.S. fertilizer 

industry. Bekkerman, Gumbley, and Brester (2021) showed that long-run fertilizer price 

adjustments became faster, and short-run price dynamics became more responsive to corn 

markets and less affected by natural gas prices due to biofuel policies. 

Background 

• China was the world’s largest urea producer and a major exporter (#4) during 

2018-2021, with a 31% share of global production and 9% share of global 

exports. 

• In China, about 3/4 of urea production used coal as the main feedstock, 

accounting for 1-2% of total domestic coal consumption. 7% of the coal supply 

comes from imports. 

• About 1/4 urea production used natural gas, accounting for 5% natural gas 

domestic consumption. More than 40% of the natural gas supply comes from 

imports. 

• 8% of China’s urea was exported during 2018-2021. 
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• More than 60% of China’s urea domestic consumption was for agricultural 

purposes (direct application or synthetic fertilizers), and the rest was for industrial 

use. 

• Corn was the largest contributor to China’s nitrogen fertilizer use, with a 23% 

share in 2018, followed by vegetables (21%), rice (17%), and wheat (16%). 

 

Phase 1 (prior to 2018): supply-side reform and decreased production 

China's urea production capacity peaked in 2015. In response, the government started a 

supply-side reform to cut out inefficient capacity. This caused production capacity to drop 

from 87M tons in 2015 to 75.54M tons in 2018. Consequently, urea prices increased and 

hit a five-year high by the end of 2021. 

Phase 2 (2019-2020): recovered production and weak demand 

During this period, urea producers increased production in response to profitable margins, 

while industrial and agricultural demand was limited by several environmental regulations. 

Consequently, urea prices steadily decreased. In early 2020, urea prices hit a five-year low 

due to the COVID-19 pandemic outbreak, which disrupted production and curbed both 

domestic and global demand. 

Phase 3 (2021-2022): multiple shocks and increasingly volatile prices  

From 2021 to 2022, Chinese urea prices experienced a run-up and reached a record high 

due to various market shocks. In the first half of 2021, as the pandemic eased, there was a 

rapid recovery in industrial and agricultural demand, which led to a historic low in urea 

inventory. In July 2021, a shortage in coal supply caused a sharp increase in coal prices 

and drove up the production costs of urea fertilizer. To address domestic demand, China 

tightened fertilizer export inspections in October 2021. However, the war between Russia 

and Ukraine in February 2022, coupled with economic sanctions, resulted in reduced 

fertilizer exports from Russia and caused natural gas prices to soar. This further worsened 

an already tight global fertilizer supply and production costs, ultimately leading to record-

high urea prices in mid-2022. 
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Econometric Model 

To characterize the relationship between factors contributing to variations in urea prices, 

we introduce the structural vector autoregressive regression (SVAR) model. Next, we 

describe the identification scheme that is based on changes in variances. 

The SVAR model 

We consider a reduced-form VAR model of order 𝑝, 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 +⋯+ 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡, (1) 

where 𝑦𝑡  represents a vector of observable variablesand 𝑢𝑡  is a vector of reduced-form 

shocks that have a constant variance-covariance and zero means. The SVAR model can be 

obtained by rewriting the reduced-form shocks as a linear combination of the structural 

shocks, 

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 +⋯+ 𝐴𝑝𝑦𝑡−𝑝 + 𝐵𝜖𝑡, (2) 

where 𝑢𝑡 = 𝐵𝜖𝑡 and 𝜖𝑡 is a vector of structural shocks that have zero means and a diagonal 

variance-covariance matrix. Since structural shocks are instantaneously uncorrelated, the 

matrix 𝐵  can be interpreted as the instantaneous effects of structural shocks on the 

observed variables. Without loss of generality, 𝐵 is chosen such that 𝜖𝑡  has an identity 

variance-covariance matrix, i.e., 𝐸(𝜖𝑡𝜖𝑡
′) = Σ𝜖 = 𝐼𝐾. Then, the variance-covariance of the 

reduced-form shocks is 𝐸(𝑢𝑡𝑢𝑡
′) = Σ𝑢 = 𝐵𝐵′.  

The central goal of an SVAR analysis is to identify matrix 𝐵 from Σ𝑢, where Σ𝑢 

can be estimated from the data. However, 𝐵  cannot be uniquely identified without 

imposing further restrictions, given that Σ𝑢  has 𝐾(𝐾 + 1)/2 different elements while 𝐵 

has 𝐾2  different elements. Therefore, at least 𝐾(𝐾 − 1)/2  restrictions are required to 

identify 𝐵 and accurately define the shocks. A common identification approach relies on 

exclusion restrictions that specify certain variables as exogenous to the other variables 

based on economic rationale (e.g., Killian and Murphy 2014, Janzen, Smith, and Carter 

2013, Bruno, Büyükşahin, and Robe, 2017). However, these restrictions may be subjective 

or arbitrary, since more than one set of just-identifying restrictions that lead to identical 

reduced-forms may exist and cannot be tested against the data (Lütkepohl and Netsunajev, 

2017). Here, we adopt a data-driven identification approach, specifically, identification 

based on changes in variances.  
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Variance-based identification 

Empirical studies have established that commodity prices undergo phases of volatility and 

calmness, which is known as heteroskedasticity (Bollerslev, 1987). Previous studies that 

adopted Rigobon’s (2003) heteroskedasticity identification approach assume an exogenous 

change in variance. However, in practice, shifts in volatility are more likely to be a graduate 

process than a structural change. This is particularly true in our case. Hence, we follow 

Lütkepohl and Netsunajev (2017) to employ an identification scheme via smooth transition 

covariances. The variance-covariance of reduced-form shocks 𝑢𝑡 is assumed to consist of 

two regimes (Σ1 and Σ2), and the transition from one regimen to the other is governed by 

a non-linear function. Specifically,  

𝐸(𝑢𝑡𝑢𝑡
′) = (1 − 𝐺(𝑠𝑡))Σ1 + 𝐺(𝑠𝑡)Σ2, (3) 

where 𝐺(⋅) is the transition function and 𝑠𝑡 is the transition variable. The two variance-

covariance matrices can be decomposed as Σ1 = 𝐵𝐵′  and Σ2 = 𝐵Λ𝐵′ , where Λ = diag 

(𝜆1, . . . , 𝜆𝐾 ) is a diagonal matrix that captures the change in variance-covariance of 

structural shocks. In the first regime, the structural shocks have unit variance, while in the 

second regime, the variances are given by the diagonal elements of Λ. As such, Λ is the 

ratio of variance of the second regime to that of the first regime. To uniquely identify the 

structural shocks, it is necessary that all diagonal elements of Λ are distinct, which can be 

tested using pairwise Wald-type tests (Lütkepohl and Netsunajev, 2017).  

We use a deterministic transition variable (𝑠𝑡 = 𝑡) and a logistic function proposed 

by Maddala (1977) as the transition function,  

𝐺(𝛾, 𝑐, 𝑡) =
1

1 + 𝑒−𝑒
𝛾(𝑡−𝑐)

, (4) 

where 𝛾 is the slope of the function and 𝑐 is the time point of transition. A deterministic 

transition variable is plausible when the first and the second parts of the sample periods are 

associated with different volatility levels and there is a transmission period between the 

two volatility states. As shown in Lütkepohl and Netsunajev (2017), the parameters (𝐵, Λ, 

𝛾, and 𝑐) can be estimated by maximizing the log-likelihood using an iterative algorithm.  

Given the estimated 𝐵, we conduct an impulse response analysis to evaluate the 

impact of each of those structural shocks and determine their contributions using historical 

variance decomposition. 
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Choice of Variables 

We propose a SVAR model to disentangle the effects of input cost variations, changes in 

market-specific contemporaneous supply-demand conditions, precautionary demand for 

physical inventories, and agricultural commodity price changes. In this section, we 

explicate our rationale for selecting these variables and underscore their significance in our 

analytical framework. 

Input costs 

The production of urea is a process that requires a significant amount of energy, obtained 

through the consumption of raw energy inputs such as natural gas and coal, as well as 

through the heating and transportation processes (Hu and Brorsen, 2017). In China, a 

country that heavily relies on coal, approximately three-quarters of the urea produced is 

made using coal, while the remaining portion uses natural gas. An early study by Etienne, 

Trujillo-Barrera, and Wiggins (2016) investigated price and volatility transmission 

between the U.S. natural gas, nitrogen fertilizer, and corn markets and found no significant 

linkages between natural gas and nitrogen fertilizer prices. They argued that the price 

transmission between natural gas and fertilizer markets is curbed by the industrial power 

in the U.S. fertilizer market. In our main analysis, we use coal price variations to capture 

changes in urea fertilizer input costs, as coal is the main feedstock to produce urea in China. 

Some market analysts and news reports suggest that the surge in global natural gas prices, 

fueled by the geopolitical turmoil of a war between Ukraine and Russia, has also 

contributed to increased urea prices in China. Therefore, in a separate analysis, we replace 

Chinese coal prices by European natural gas prices to investigate whether shocks to the 

international energy market have affected the Chinese urea market following the breakout 

of the war.   

Agricultural commodity prices 

As a neutral fertilizer, urea can be used for a variety of agricultural products, including 

corn, wheat, rice, cotton, vegetables, etc.1 Higher fertilizer prices may contribute to higher 

crop prices due to increased operating cost. Conversely, higher crop prices incentivize 

farmers to use more fertilizer, potentially driving up fertilizer prices. Etienne, Trujillo-

 
1 Soybeans are not reliant on nitrogen fertilizers.  
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Barrera, and Wiggins (2016) found significant bi-directional price and volatility 

transmissions between ammonia fertilizer and corn prices in the U.S., with a stronger 

influence from corn prices to ammonia fertilizer prices during a period of high corn prices 

(2006-2014). Similarly, Geman and Eleuterio (2016) found a long-term price relationship 

between ammonia and corn prices in the U.S. markets. However, their results indicated 

that fertilizer prices do not respond to corn price changes in the short term due to market 

power in the U.S. fertilizer industry. Using global food commodity and fertilizer prices, 

Ott (2012) found that higher food commodities prices influenced fertilizer prices but not 

vice versa. In line with previous studies, we use corn prices to capture urea price variations 

driven by agricultural demand. While wheat and rice are also major crops that reliant on 

nitrogen fertilizer, their prices are distorted by price supports. China ended state stockpiling 

and price support policies for corn in 2016 to allow the market to set prices, but our analysis 

period starts from 2018.  

Contemporaneous supply-demand conditions and precautionary demand 

Urea is storable. Classic commodity storage models state that equilibrium prices reflect 

both contemporaneous supply-demand conditions and the demand driven by the 

anticipation of future commodity supply shortfalls (Working 1994, Williams and Wright 

1991, Deaton and Laroque 1992, 1996). Firms that hold storable physical commodities 

have an incentive to hoard for futures sales if they expect tighten supply and higher prices, 

which is typically a speculative activity in physical storable commodity markets. Previous 

studies that used SVAR models commonly include inventories as an important structural 

factor to explain storable commodity price dynamics (e.g., Killian and Murphy 2014, 

Janzen, Smith, and Carter 2013, Janzen et al. 2014, Bruno, Büyükşahin, and Robe, 2017).  

There are two methods used in the literature to capture changes in inventory 

conditions. The first is to obtain physical inventory levels directly. Typically, inventory 

data can be obtained from official sources such as the Energy Information Administration 

(EIA) for energy commodities or the United States Department of Agriculture (USDA) for 

agricultural commodities. However, inventory data for physical commodities are also 

available from industrial sources. For instance, Kilian (2022) advocates using the global 

oil inventory series provided by the Energy Intelligence Group instead of similar data from 

the EIA. Compared to agricultural output commodities, fertilizer market data are not 
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widely recorded by government agencies. For example, Hu and Brorsen (2017) as well as  

Bekkerman, Gumbley, and Brester (2021) had to depend on urea fertilizer price data for 

the U.S. inland markets and import ports from an industrial source given that the USDA 

fertilizer price data are only available at the national level. Since there is no official Chinese 

urea inventory data, we obtain urea producer inventories from OilChem, a leading energy 

and petrochemical commodity data service provider in China2. As indicated by OilChem, 

the data series are gathered from more than 99% of the urea producers in China.  

Another widely used method to capture inventory fluctuations of storable 

commodities is by using futures market calendar spreads as a proxy (e.g. Janzen, Smith, 

and Carter 2013, Bruno, Büyükşahin, and Robe, 2017). The slope of the futures forward 

curve reflects the marginal cost of storage, which increases with the level of storage (Fama 

and French, 1987). However, we do not choose to use urea futures calendar spreads for two 

reasons. First, China’s urea futures trading at Zhengzhou Commodity Exchange only 

started in August 2019, and since our analysis ends in December 2022, a large proportion 

of our sample period will be associated with an immature urea futures market. Besides, our 

identification scheme depends on changes in variances, so it is important to include 

sufficiently long periods for both tranquil and volatile regimes to achieve identification.  

However, much of the time periods after August 2019 are associated with high volatility 

in the markets examined (coal, urea, and corn).  

Data 

The data used in this analysis were obtained from different sources. Urea fertilizer and coal 

prices are weekly retail urea and anthracite prices published by the Chinese Ministry of 

Commerce. Corn prices are weekly average prices calculated using daily settlement prices 

for the most actively traded corn futures contracts at the DCE in each month3. Natural gas 

 
2 Our data are not commercial inventories typically used in the literature as they only cover inventories held 

by urea producers. We did not find available Chinese urea commercial inventory data. However, producer 

inventories are widely tracked by market participants. 

3 Nearby futures contracts are not always the most liquid contracts in Chinese futures markets. See 

Xie and An (2022) for relevant discussion. 
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prices are the rolling nearby weekly average European TTF natural gas futures prices. 

Weekly urea inventory data are purchased from OilChem and include physical inventories 

held by more than 99% of Chinese producers in China. The analysis covers the period from 

January 2018 to December 2022, which is determined by the availability of inventory data.  

Model estimation 

We consider a four-dimensional VAR model with the vector of variables 𝑦𝑡 =

(𝛥𝑐𝑜𝑎𝑙, 𝛥𝑐𝑜𝑟𝑛, 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦, 𝛥𝑢𝑟𝑒𝑎)′, where 𝛥𝑐𝑜𝑎𝑙, 𝛥𝑐𝑜𝑟𝑛, 𝛥𝑢𝑟𝑒𝑎 are log differences of 

deseasonalized coal, corn, and urea prices, respectively; 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  is the linearly 

detrended and deseasonalized urea producer inventory level in natural logarithm form 4. 

The Akaike Information Criterion (AIC) suggests including only 1 lag in the VAR system. 

However, to account for residual serial correlation, we estimate a VAR model with 4 lags.  

Previous SVAR studies on commodity price dynamics typically use a recursive 

identification scheme or rely on exclusion restrictions that specify certain variables as 

exogenous to the other variables based on economic rationale (e.g., Killian and Murphy 

2014, Janzen, Smith, and Carter 2013, Bruno, Büyükşahin, and Robe, 2017). However, 

conventional identification approach is challenging in our case because fertilizer, 

agricultural commodities and energy markets are linked by the fertilizer industrial supply 

chain. It would be too restrictive to assume that one market is exogenous to the other two 

markets5. Hence, we estimate an unrestricted SVAR model and depend on a data-driven 

identification scheme.  

Estimation results 

See tables 1-2 and figures 2 – 4. 

Concluding Remarks 

-Urea prices are mainly affected by market-specific supply demand. 

 
4 We conducted unit root tests and found all price series are non-stationary during the sample period. We also 

tried using all series in levels as suggested by Sim, Stock, and Watson (1990), however, the VAR model was 

unstable and impulse response functions were explosive. To save space, these results are available upon 

request.   
5  For example, we imposed the restriction that the coal price, as a macroeconomic factor, is not 

contemporaneously affected by the other two markets. However, the likelihood ratio test developed by Lanne 

et al. (2010) suggested that the model was overrestricted at the 5% significant level. 
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-Low producer inventory contrite to the price run-up in 2021, but not afterward. 

-The urea fertilizer market is affected by the tail-risk of coal prices. Coal prices have limited 

impact on urea fertilizer price changes during most of the sample period but contributed 

significantly to the urea price spike occurred in late 2021.  

-In the short-term, corn price changes have no significant influence on urea price variations. 

Farmers' income was negatively affected because despite the increase in input costs, the 

corn prices did not rise accordingly. 
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Figure 1. Plots for weekly commodity prices and urea inventories, January 2018 to 

December 2022  
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Figure 2. Transition function for the SVAR model 
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Figure 3. Historical decomposition of urea price changes 
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Figure 4. Impulse response functions from the SVAR model   
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Table 1. Structural Vector Autoregression Model Parameter Estimates 

       λ1 λ2 λ3 λ4 

B 

 

0.959 

(0.055) 

0.056 

(0.112) 

0.324 

(0.089) 

0.119 

(0.169) 
 
Λ 

 

7.620 

(1.450) 
   

 
-0.070 

(0.078) 

1.397 

(0.080) 

0.021 

(0.244) 

0.142 

(0.188) 
   

1.177 

(0.238) 
  

 
-0.003 

(0.010) 

-0.006 

(0.028) 

0.207 

(0.013) 

-0.058 

(0.012) 
    

0.435 

(0.093) 
 

 
0.150 

(0.087) 

-0.054 

(0.123) 

-0.034 

(0.076) 

0.675 

(0.046) 
     

2.986 

(0.610) 
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Table 2. Tests for Equality of λi for the SVAR Model 

 Wald Statistic 

λ1=λ2 19.23***
 

λ1=λ3 24.45***
 

λ1=λ4 8.68***
 

λ2=λ3 8.39***
 

λ2=λ4 7.65**
 

λ3=λ4 17.11***
 

 

 

 


