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Abstract

Using weekly data from 2018 to 2022, we conduct historical decomposition and
counterfactual analysis based on a SVAR model. We show urea fertilizer price changes are
affected mainly by market-specific supply-demand shocks. The energy prices had a
minimal impact on urea fertilizer prices during most of the sample period but contributed
significantly to the urea price spike in 2021. No evidence suggests precautionary demand
measured by inventories and corn price changes led to large fluctuations in urea prices

during the sample period.
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Introduction

Fertilizer prices have been rising significantly since the end of 2020 and broke new records
in 2022. As fertilizers are essential inputs for major agricultural commodities, high
fertilizer prices add further to fears over food security in both developed and developing
countries. While fertilizer supply shortages fueled by the Ukraine-Russia conflict are a
major factor contributing to surging fertilizer prices, soaring fertilizers prices are also
driven by serval pre-existing factors, including rising energy costs, strong demand driven
by profitable crop prices, reduced production capacity in major producing countries, etc.
A better understanding of the causes of fertilizer spikes will have important implications

for policymakers and market practitioners.

This paper uses a structural vector autoregression (SVAR) model to decompose
Chinese urea fertilizer prices into a set of economic factors and measure their relative
contributions to historical urea price movements. Previous studies on fertilizer prices have
focused on the price transmissions between natural gas, fertilizer and corn markets (Etienne,
Trujillo-Barrera, and Wiggins 2016), price transmissions between the U.S. and Middle East
markets (Hu and Wade 2017), and spatial and vertical price relationships in the U.S.
fertilizer industry (Bekkerman, Gumbley, and Brester 2021). We contribute to the literature
in two ways. First, while previous studies have mainly focused on the U.S. fertilizer market,
we investigate the Chinese fertilizer market, as China is one of the world's largest fertilizer
producers, users, and major exporters. Second, previous studies depend on reduced form
models to investigate the price relationships between fertilizer, agricultural commodity,
and energy prices. We instead develop a SVAR model and adopt Rigobon's (2003)
heteroskedasticity based identification approach to identify the contemporaneous effects
of a set of economic factors, including market-specific net supply shocks, precautionary
demand, and grain and energy prices. Limited studies have used inventories to explain
fertilizer prices due to data availability, although it is a key explanatory variable for storage
commodity prices. Hu and Brorsen (2017) showed that urea markets are thin markets as
the major traders in urea markets are large international companies and formula pricing is
common. We solve this problem by using privately collected Chinese urea inventory data

that are widely used by traders.



Using weekly data from 2018 to 2022, we conduct historical decomposition and
counterfactual analysis based on a SVAR model. We show urea fertilizer price changes are
affected mainly by net supply shocks. The energy prices had a minimal impact on urea
fertilizer prices during most of the sample period but contributed significantly to the urea
price spike in 2021. No evidence suggests precautionary demand measured by inventories
and corn price changes led to large fluctuations in urea prices during the sample period.
The findings of this study will provide valuable insights for policymakers and stakeholders
related to the agricultural industry in China.

Related Literature

Hu and Brorsen (2017) showed that the U.S. fertilizer industry is a thinly traded market,
and formula pricing is commonly used in the industry. Etienne, Trujillo-Barrera, and
Wiggins (2016) discovered significant linkages between the U.S. corn market and the
nitrogen fertilizer market. However, they found no significant linkages between U.S.
natural gas and nitrogen fertilizer prices, which can be attributed to the market power.
Geman and Eleuterio (2016) found a long-term price relationship between ammonia and
corn prices in the U.S. markets. However, their results indicated that fertilizer prices do not
respond to corn price changes in the short term due to market power in the U.S. fertilizer
industry. Bekkerman, Gumbley, and Brester (2021) showed that long-run fertilizer price
adjustments became faster, and short-run price dynamics became more responsive to corn

markets and less affected by natural gas prices due to biofuel policies.

Background

* China was the world’s largest urea producer and a major exporter (#4) during
2018-2021, with a 31% share of global production and 9% share of global
exports.

* In China, about 3/4 of urea production used coal as the main feedstock,
accounting for 1-2% of total domestic coal consumption. 7% of the coal supply
comes from imports.

» About 1/4 urea production used natural gas, accounting for 5% natural gas
domestic consumption. More than 40% of the natural gas supply comes from
imports.

* 8% of China’s urea was exported during 2018-2021.



* More than 60% of China’s urea domestic consumption was for agricultural
purposes (direct application or synthetic fertilizers), and the rest was for industrial
use.

» Corn was the largest contributor to China’s nitrogen fertilizer use, with a 23%
share in 2018, followed by vegetables (21%), rice (17%), and wheat (16%).

Phase 1 (prior to 2018): supply-side reform and decreased production

China's urea production capacity peaked in 2015. In response, the government started a
supply-side reform to cut out inefficient capacity. This caused production capacity to drop
from 87M tons in 2015 to 75.54M tons in 2018. Consequently, urea prices increased and
hit a five-year high by the end of 2021.

Phase 2 (2019-2020): recovered production and weak demand

During this period, urea producers increased production in response to profitable margins,
while industrial and agricultural demand was limited by several environmental regulations.
Consequently, urea prices steadily decreased. In early 2020, urea prices hit a five-year low
due to the COVID-19 pandemic outbreak, which disrupted production and curbed both

domestic and global demand.
Phase 3 (2021-2022): multiple shocks and increasingly volatile prices

From 2021 to 2022, Chinese urea prices experienced a run-up and reached a record high
due to various market shocks. In the first half of 2021, as the pandemic eased, there was a
rapid recovery in industrial and agricultural demand, which led to a historic low in urea
inventory. In July 2021, a shortage in coal supply caused a sharp increase in coal prices
and drove up the production costs of urea fertilizer. To address domestic demand, China
tightened fertilizer export inspections in October 2021. However, the war between Russia
and Ukraine in February 2022, coupled with economic sanctions, resulted in reduced
fertilizer exports from Russia and caused natural gas prices to soar. This further worsened
an already tight global fertilizer supply and production costs, ultimately leading to record-

high urea prices in mid-2022.



Econometric Model

To characterize the relationship between factors contributing to variations in urea prices,
we introduce the structural vector autoregressive regression (SVAR) model. Next, we
describe the identification scheme that is based on changes in variances.

The SVAR model

We consider a reduced-form VAR model of order p,

Ve = A1Ye1 T AYe o+ F ApYe—p T Uy, (D
where y, represents a vector of observable variablesand u, is a vector of reduced-form
shocks that have a constant variance-covariance and zero means. The SVAR model can be
obtained by rewriting the reduced-form shocks as a linear combination of the structural
shocks,

Ve = A1Ye-1 + Ayio + -+ ApYep + Bey, (2)
where u; = Be; and €, is a vector of structural shocks that have zero means and a diagonal
variance-covariance matrix. Since structural shocks are instantaneously uncorrelated, the
matrix B can be interpreted as the instantaneous effects of structural shocks on the
observed variables. Without loss of generality, B is chosen such that €, has an identity
variance-covariance matrix, i.e., E(e;€{) = L. = Ix. Then, the variance-covariance of the
reduced-form shocks is E (u;u;) = £, = BB'.

The central goal of an SVAR analysis is to identify matrix B from X,,, where X,
can be estimated from the data. However, B cannot be uniquely identified without
imposing further restrictions, given that X,, has K (K + 1)/2 different elements while B
has K2 different elements. Therefore, at least K(K — 1)/2 restrictions are required to
identify B and accurately define the shocks. A common identification approach relies on
exclusion restrictions that specify certain variables as exogenous to the other variables
based on economic rationale (e.g., Killian and Murphy 2014, Janzen, Smith, and Carter
2013, Bruno, Biiyiiksahin, and Robe, 2017). However, these restrictions may be subjective
or arbitrary, since more than one set of just-identifying restrictions that lead to identical
reduced-forms may exist and cannot be tested against the data (L (tkepohl and Netsunajev,
2017). Here, we adopt a data-driven identification approach, specifically, identification

based on changes in variances.



Variance-based identification

Empirical studies have established that commaodity prices undergo phases of volatility and
calmness, which is known as heteroskedasticity (Bollerslev, 1987). Previous studies that
adopted Rigobon’s (2003) heteroskedasticity identification approach assume an exogenous
change in variance. However, in practice, shifts in volatility are more likely to be a graduate
process than a structural change. This is particularly true in our case. Hence, we follow
L ttkepohl and Netsunajev (2017) to employ an identification scheme via smooth transition
covariances. The variance-covariance of reduced-form shocks u; is assumed to consist of
two regimes (Z; and X,), and the transition from one regimen to the other is governed by
a non-linear function. Specifically,

E(ugug) = (1 - G(St))21 + G(sp)Zy, (3)
where G (+) is the transition function and s; is the transition variable. The two variance-
covariance matrices can be decomposed as £, = BB’ and ¥, = BAB', where A = diag
(A4,...,Ag) is a diagonal matrix that captures the change in variance-covariance of
structural shocks. In the first regime, the structural shocks have unit variance, while in the
second regime, the variances are given by the diagonal elements of A. As such, A is the
ratio of variance of the second regime to that of the first regime. To uniquely identify the
structural shocks, it is necessary that all diagonal elements of A are distinct, which can be
tested using pairwise Wald-type tests (LUkepohl and Netsunajev, 2017).

We use a deterministic transition variable (s, = t) and a logistic function proposed

by Maddala (1977) as the transition function,
Gy, ct) = (4)

where y is the slope of the function and c is the time point of transition. A deterministic

14 ee(t=0)’

transition variable is plausible when the first and the second parts of the sample periods are
associated with different volatility levels and there is a transmission period between the
two volatility states. As shown in Liikepohl and Netsunajev (2017), the parameters (B, A,
¥, and c¢) can be estimated by maximizing the log-likelihood using an iterative algorithm.
Given the estimated B, we conduct an impulse response analysis to evaluate the
impact of each of those structural shocks and determine their contributions using historical

variance decomposition.



Choice of Variables

We propose a SVAR model to disentangle the effects of input cost variations, changes in
market-specific contemporaneous supply-demand conditions, precautionary demand for
physical inventories, and agricultural commodity price changes. In this section, we
explicate our rationale for selecting these variables and underscore their significance in our
analytical framework.

Input costs

The production of urea is a process that requires a significant amount of energy, obtained
through the consumption of raw energy inputs such as natural gas and coal, as well as
through the heating and transportation processes (Hu and Brorsen, 2017). In China, a
country that heavily relies on coal, approximately three-quarters of the urea produced is
made using coal, while the remaining portion uses natural gas. An early study by Etienne,
Trujillo-Barrera, and Wiggins (2016) investigated price and volatility transmission
between the U.S. natural gas, nitrogen fertilizer, and corn markets and found no significant
linkages between natural gas and nitrogen fertilizer prices. They argued that the price
transmission between natural gas and fertilizer markets is curbed by the industrial power
in the U.S. fertilizer market. In our main analysis, we use coal price variations to capture
changes in urea fertilizer input costs, as coal is the main feedstock to produce urea in China.
Some market analysts and news reports suggest that the surge in global natural gas prices,
fueled by the geopolitical turmoil of a war between Ukraine and Russia, has also
contributed to increased urea prices in China. Therefore, in a separate analysis, we replace
Chinese coal prices by European natural gas prices to investigate whether shocks to the
international energy market have affected the Chinese urea market following the breakout
of the war.

Agricultural commodity prices

As a neutral fertilizer, urea can be used for a variety of agricultural products, including
corn, wheat, rice, cotton, vegetables, etc.! Higher fertilizer prices may contribute to higher
crop prices due to increased operating cost. Conversely, higher crop prices incentivize

farmers to use more fertilizer, potentially driving up fertilizer prices. Etienne, Trujillo-

1 Soybeans are not reliant on nitrogen fertilizers.



Barrera, and Wiggins (2016) found significant bi-directional price and volatility
transmissions between ammonia fertilizer and corn prices in the U.S., with a stronger
influence from corn prices to ammonia fertilizer prices during a period of high corn prices
(2006-2014). Similarly, Geman and Eleuterio (2016) found a long-term price relationship
between ammonia and corn prices in the U.S. markets. However, their results indicated
that fertilizer prices do not respond to corn price changes in the short term due to market
power in the U.S. fertilizer industry. Using global food commodity and fertilizer prices,
Ott (2012) found that higher food commaodities prices influenced fertilizer prices but not
vice versa. In line with previous studies, we use corn prices to capture urea price variations
driven by agricultural demand. While wheat and rice are also major crops that reliant on
nitrogen fertilizer, their prices are distorted by price supports. China ended state stockpiling
and price support policies for corn in 2016 to allow the market to set prices, but our analysis
period starts from 2018.
Contemporaneous supply-demand conditions and precautionary demand
Urea is storable. Classic commodity storage models state that equilibrium prices reflect
both contemporaneous supply-demand conditions and the demand driven by the
anticipation of future commodity supply shortfalls (Working 1994, Williams and Wright
1991, Deaton and Laroque 1992, 1996). Firms that hold storable physical commodities
have an incentive to hoard for futures sales if they expect tighten supply and higher prices,
which is typically a speculative activity in physical storable commodity markets. Previous
studies that used SVAR models commonly include inventories as an important structural
factor to explain storable commodity price dynamics (e.g., Killian and Murphy 2014,
Janzen, Smith, and Carter 2013, Janzen et al. 2014, Bruno, Biiyiiksahin, and Robe, 2017).
There are two methods used in the literature to capture changes in inventory
conditions. The first is to obtain physical inventory levels directly. Typically, inventory
data can be obtained from official sources such as the Energy Information Administration
(EIA) for energy commodities or the United States Department of Agriculture (USDA) for
agricultural commodities. However, inventory data for physical commodities are also
available from industrial sources. For instance, Kilian (2022) advocates using the global
oil inventory series provided by the Energy Intelligence Group instead of similar data from

the EIA. Compared to agricultural output commodities, fertilizer market data are not



widely recorded by government agencies. For example, Hu and Brorsen (2017) as well as
Bekkerman, Gumbley, and Brester (2021) had to depend on urea fertilizer price data for
the U.S. inland markets and import ports from an industrial source given that the USDA
fertilizer price data are only available at the national level. Since there is no official Chinese
urea inventory data, we obtain urea producer inventories from OilChem, a leading energy
and petrochemical commodity data service provider in China?. As indicated by OilChem,
the data series are gathered from more than 99% of the urea producers in China.

Another widely used method to capture inventory fluctuations of storable
commodities is by using futures market calendar spreads as a proxy (e.g. Janzen, Smith,
and Carter 2013, Bruno, Biiyiiksahin, and Robe, 2017). The slope of the futures forward
curve reflects the marginal cost of storage, which increases with the level of storage (Fama
and French, 1987). However, we do not choose to use urea futures calendar spreads for two
reasons. First, China’s urea futures trading at Zhengzhou Commodity Exchange only
started in August 2019, and since our analysis ends in December 2022, a large proportion
of our sample period will be associated with an immature urea futures market. Besides, our
identification scheme depends on changes in variances, so it is important to include
sufficiently long periods for both tranquil and volatile regimes to achieve identification.
However, much of the time periods after August 2019 are associated with high volatility
in the markets examined (coal, urea, and corn).

Data

The data used in this analysis were obtained from different sources. Urea fertilizer and coal
prices are weekly retail urea and anthracite prices published by the Chinese Ministry of
Commerce. Corn prices are weekly average prices calculated using daily settlement prices
for the most actively traded corn futures contracts at the DCE in each month®. Natural gas

2 Qur data are not commercial inventories typically used in the literature as they only cover inventories held
by urea producers. We did not find available Chinese urea commercial inventory data. However, producer
inventories are widely tracked by market participants.

3 Nearby futures contracts are not always the most liquid contracts in Chinese futures markets. See

Xie and An (2022) for relevant discussion.
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prices are the rolling nearby weekly average European TTF natural gas futures prices.
Weekly urea inventory data are purchased from OilChem and include physical inventories
held by more than 99% of Chinese producers in China. The analysis covers the period from
January 2018 to December 2022, which is determined by the availability of inventory data.

Model estimation

We consider a four-dimensional VAR model with the vector of variables y, =
(4coal, Acorn, inventory, Aurea)’, where Acoal, Acorn, Aurea are log differences of
deseasonalized coal, corn, and urea prices, respectively; inventory is the linearly
detrended and deseasonalized urea producer inventory level in natural logarithm form*.
The Akaike Information Criterion (AIC) suggests including only 1 lag in the VAR system.
However, to account for residual serial correlation, we estimate a VAR model with 4 lags.

Previous SVAR studies on commodity price dynamics typically use a recursive
identification scheme or rely on exclusion restrictions that specify certain variables as
exogenous to the other variables based on economic rationale (e.g., Killian and Murphy
2014, Janzen, Smith, and Carter 2013, Bruno, Biiyiiksahin, and Robe, 2017). However,
conventional identification approach is challenging in our case because fertilizer,
agricultural commodities and energy markets are linked by the fertilizer industrial supply
chain. It would be too restrictive to assume that one market is exogenous to the other two
markets®. Hence, we estimate an unrestricted SVAR model and depend on a data-driven

identification scheme.
Estimation results

See tables 1-2 and figures 2 — 4.
Concluding Remarks

-Urea prices are mainly affected by market-specific supply demand.

4 We conducted unit root tests and found all price series are non-stationary during the sample period. We also
tried using all series in levels as suggested by Sim, Stock, and Watson (1990), however, the VAR model was
unstable and impulse response functions were explosive. To save space, these results are available upon
request.

5 For example, we imposed the restriction that the coal price, as a macroeconomic factor, is not
contemporaneously affected by the other two markets. However, the likelihood ratio test developed by Lanne
et al. (2010) suggested that the model was overrestricted at the 5% significant level.
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-Low producer inventory contrite to the price run-up in 2021, but not afterward.

-The urea fertilizer market is affected by the tail-risk of coal prices. Coal prices have limited
impact on urea fertilizer price changes during most of the sample period but contributed

significantly to the urea price spike occurred in late 2021.

-In the short-term, corn price changes have no significant influence on urea price variations.
Farmers' income was negatively affected because despite the increase in input costs, the

corn prices did not rise accordingly.

References

Bekkerman, A., Gumbley, T., & Brester, G. W. (2021). The Impacts of Biofuel Policies on
Spatial and Vertical Price Relationships in the US Fertilizer Industry. Applied
Economic Perspectives and Policy, 43(2), 802-822.

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative
prices and rates of return. The review of economics and statistics, 542-547.

Bruno, V. G., Biiyliksahin, B., & Robe, M. A. (2017). The financialization of
food?. American Journal of Agricultural Economics, 99(1), 243-264.

Deaton, A., & Laroque, G. (1992). On the behaviour of commodity prices. The review of
economic studies, 59(1), 1-23.

Deaton, A., & Laroque, G. (1996). Competitive storage and commodity price
dynamics. Journal of Political Economy, 104(5), 896-923.

Etienne, X. L., Trujillo-Barrera, A., & Wiggins, S. (2016). Price and volatility
transmissions between natural gas, fertilizer, and corn markets. Agricultural Finance
Review.

Fama, E. F., & French, K. R. (2016). Commodity futures prices: Some evidence on forecast

power, premiums, and the theory of storage. In The World Scientific Handbook of

12



Futures Markets (pp. 79-102).

Geman, H., & Eleuterio, P. V. (2013). Investing in fertilizer—mining companies in times of
food scarcity. Resources Policy, 38(4), 470-480.

Hu, Z., & Brorsen, B. W. (2017). Spatial price transmission and efficiency in the urea
market. Agribusiness, 33(1), 98-115.

Janzen, Joseph P, Aaron D Smith, and Colin A Carter. 2013. Commodity Price
Comovement: The Case of Cotton. In Working Paper, UC Davis.

Kilian, L., & Murphy, D. P. (2014). The role of inventories and speculative trading in the
global market for crude oil. Journal of Applied econometrics, 29(3), 454-478.

Kilian, L., & Zhou, X. (2022). The impact of rising oil prices on US inflation and inflation
expectations in 2020-23. Energy Economics, 113, 106228.

Liitkepohl, H., & NetSunajev, A. (2017). Structural vector autoregressions with
heteroskedasticity: A review of different volatility models. Econometrics and
statistics, 1, 2-18.

Liitkepohl, H., Meitz, M., NetSunajev, A., & Saikkonen, P. (2021). Testing identification
via heteroskedasticity in structural vector autoregressive models. The Econometrics
Journal, 24(1), 1-22.

Maddala, G. S. (1977). SELF-SELECTIVITY PROBLEMS IN ECONOMETRIC
MODELS.

Rigobon, R. (2003). On the measurement of the international propagation of shocks: is the
transmission stable?. Journal of International Economics, 61(2), 261-283.

Williams, J. C., & Wright, B. D. (1991). Storage and commodity markets. Cambridge

university press.

13



Urea Price

CNY per ton
B
a

Jan18 Jun18 Oct18 Mar19 July19 Dec19 May20 Oct20 Feb21 July21 Dec21 Apr22 Sep22

Coal Price

CNY per ton

930 B
842 et

Jan18 Jun18 Oct18 Mar19 July19 Dec19 May20 Oct20 Feb21 July21 Dec21 Apr22 Sep 22

TTF Natural Gas Price

Euro per MWh

Jan18 Jun18 Oct18 Mar19 July19 Dec19 May20 Oct20 Feb21 July21 Dec21 Apr22 Sep 22

Corn Price

CNY per ton
N
(=]
(=]
o

Jan18 Jun18 Oct18 Mar19 July19 Dec19 May20 Oct20 Feb21 July21 Dec21 Apr22 Sep22

Inventory

10,000 tons
e
~

Jan18 Jun18 Oct18 Mar19 July19 Dec19 May20 Oct20 Feb21 July21 Dec21 Apr22 Sep 22

Figure 1. Plots for weekly commodity prices and urea inventories, January 2018 to
December 2022

14



Transition Function
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Figure 2. Transition function for the SVAR model
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Figure 3. Historical decomposition of urea price changes
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Table 1. Structural Vector Autoregression Model Parameter Estimates

M

A

A3

B

0.959
(0.055)
-0.070
(0.078)
-0.003
(0.010)
0.150
(0.087)

0.056
(0.112)
1.397
(0.080)
-0.006
(0.028)
-0.054
(0.123)

0.324
(0.089)
0.021
(0.244)
0.207
(0.013)
-0.034
(0.076)

0.119
(0.169)
0.142
(0.188)
-0.058
(0.012)
0.675
(0.046)

A

7.620
(1.450)

1.177
(0.238)

0.435
(0.093)

2.986
(0.610)
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Table 2. Tests for Equality of Ai for the SVAR Model

Wald Statistic
M=h2 19.23"*
M=3 24.45™
M= 8.68""
=3 8.39™"
A= 7.65™
A3=h4 17.117
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