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1 Introduction

Drought conditions are a major concern for global agricultural productivity affecting both
crop and livestock production. The increasing intensity and duration of drought has cat-
alyzed policy-makers and stakeholders to develop novel policy mechanisms to insure pro-
ducers against economic losses incurred due to drought (Wallander et al.,2013;|MacLach-
lan et al.,|2018). The success of these mechanisms is reflected in its capacity to mitigate
the negative effects of drought and the cost associated with such mitigation. However,
questions remain regarding whether government programs enable or distort producer
incentives for adaptation to changing weather conditions (Annan and Schlenker, 2015).
This paper contributes to this literature by assessing the impacts of a government pro-
gram designed to compensate U.S. livestock producers for forage production losses aris-
ing from persistent drought conditions. Specifically, we analyze the U.S. Department of
Agriculture’s (USDA) Livestock Forage Program (LFP), which provides financial compen-
sation to livestock producers affected by drought.

The impact of drought on the U.S. crop and livestock sectors is well documented
(Kuwayama et al., 2019; |Countryman et al., [2016). For the livestock sector, drought
conditions can prompt herd liquidation as producers respond to higher feed costs and
diminished forage availability. These short-run responses have long-run implications as
breeding stock inventories decline, restricting future livestock supplies. Figure [1|docu-
ments the relationship between drought conditions in the continental U.S., as reported
by the U.S. Drought Monitor, and the U.S. beef cattle herd size as reported by the the
USDA’s National Agricultural Statistics Service (NASS). Periods of more intense drought
are generally associated with reductions in the aggregate beef cattle herd size. The LFP
was designed to partially mitigate the negative effects of drought by providing payments
to livestock producers to partially covering feed costs affected by drought. Since 2008,

more than $9 billion in LFP payments have been distributed to livestock producers in



the U.S. LFP payments compensating livestock producers for drought related losses aris-
ing from historically dry conditions occurring between 2012 and 2013, constituted more
than 19% of total Federal Government direct farm program payments during 2012-13

(MacLachlan et al.,|2018).
[Figure 1 about here.]

Despite the relatively large Federal Government expenditures on the LFP, to our knowl-
edge no research has characterized the impacts of the program on livestock sector out-
comes. Our paper addresses this gap in the literature by empirically modeling how LFP
payments impact key livestock agriculture outcomes, notably county-level herd sizes.
Specifically, we use a quasi-experimental research design based on discrete program eli-
gibility criteria to assess the impact of the LFP. This approach compares livestock sector
outcomes in LFP eligible counties to counties that nearly reached LFP eligibility status
based on their drought classification as documented by the U.S. Drought Monitor. We
leverage a novel weighted matching two-way fixed effect estimator to assess the impact of
LFP eligibility on livestock sector outcomes (Imai et al., [2021). This empirical approach
provides a means to estimate treatment effects in scenarios where units of observation
move in and out of the treatment group through time (i.e., treatment reversal). This is
important in the context of this paper as LFP eligibility is based on annual drought con-
ditions and a given county may be LFP eligible for multiple non-sequential years in our
time period of analysis.

Our results indicate that LFP eligibility increases subsequent county-level beef cattle
herd size by approximately 1% compared to similar counties also experiencing drought
conditions but not eligible for LFP payments. These results demonstrate the efficacy of
the program in mitigating the short- and long-run economic costs imposed by drought
on the livestock sector. Specifically, by compensating producers whose forage production
is negatively affected by drought, the LFP potentially reduces the likelihood that live-

stock producers liquidate some of their herd in response to drought. Decreased rates of
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herd breeding stock liquidation in response to drought can increase producer current and
future profits as a larger breeding stock can increase future calf crops. Additionally, di-
minished rates of herd liquidation in response to drought can mitigate future variation in
consumer prices as large-scale herd liquidation decreases future supplies and increases
price.

(Imai et al.,2021))’s estimator has been implemented in several context such as, macroe-
conomics (Hope and Limberg|, 2022), health (Shiraef et al., 2022), political science (Kim
and Li} 2023) and forest conservation (West et al., 2022). Our study contributes to the
broader agricultural and applied economics literature by applying (Imai et al., [2021)’s
estimator, which is capable of addressing scenarios of treatment reversal in panel data
econometric models. Panel data methods are commonly used in the agricultural and ap-
plied economics literature to estimate treatment effects. Until recently most commonly
employed estimators were unable to estimate treatment effects in contexts where treat-
ment status changed through time. However, there are many scenarios relevant to agri-
cultural and applied economics where treatment reversal is common or possible (e.g.,
changing Farm Bill programs, conservation program eligibility, etc.). As such, the meth-
ods outlined in this paper constitute an important contribution to the literature by pro-
viding a guide for estimating treatment effects with panel data when treatment status
reversal is possible.

The paper proceeds as follows: in the next section we provide background and context
on the LFP, in the third section we describe our research design and the empirical model
used to estimate treatment effects, in the fourth and fifth sections we present our results
and conclude by interpreting their importance for the broader agricultural policy-making

landscape.



2 Background of the Livestock Forage Disaster Program

The Livestock Forage Disaster Program (LFP), which was initially established by the 2008
Farm Bill, provides compensation to livestock producers experiencing losses in forage due
to drought or wildﬁreﬂ Figure plots annual aggregate LFP payments between 2008 and
2022. LFP payments peaked in 2012 to more than $2 billion as the majority of the major
livestock production regions of the U.S. experienced unprecedented levels of drought

(Rippey, |2015).
[Figure 2 about here.]

The LFP authorized in the 2008 Farm Bill funded the program through 2011 and
imposed a previous risk management purchase requirement for eligibility. Specifically,
producers must have purchased private insurance, a policy through USDA’s Risk Man-
agement Agency, or coverage through the Noninsured Crop Disaster Assistance Program
to be eligible for LFP payments (MacLachlan et al [2018)). The LFP was suspended af-
ter 2011 until the passage of the 2014 Farm Bill which allowed for retroactive payments
to producers experiencing losses in 2012 and 2013. Additionally, the LFP authorized in
the 2014 Farm Bill ended the previous risk management purchase requirements for el-
igibility, opening program eligibility to nearly all U.S. livestock producers regardless of
enrollment in private or government insurance programs.

LFP payments cover livestock feed costs on a per-animal basis for eligible expected
losses due to droughtE| The USDA’s Farm Service Agency (FSA) administers the LFP and
annually sets species-specific per-animal payment rates as well as county-level eligible
grazing periods. To be eligible for LFP payments, the county a livestock producer oper-

ates within must experience drought conditions exceeding a given threshold during the

'Prior to the passage of the 2008 Farm Bill, forage losses were covered by Feed Indemnity Program,
LFP’s predecessor.

2LFP payments are also dispersed to livestock producers whose operations are affected by wildfire.
However, these wildfire payments are only available to cover fire losses occurring on federally managed
rangeland and are generally minimal compared to payments made for losses arising from drought.
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county’s eligible grazing period. County level drought conditions are classified weekly
by the U.S. Drought Monitor which designates 5 levels of increasing drought severity
ranging from ‘D0: abnormally dry’ to ‘D4: exceptional drought.’

Livestock producers become eligible for one month of LFP payments when the U.S.
drought monitor classifies at least some area of the county where they operate as ex-
periencing 8 or more weeks of consecutive severe drought (D2: severe drought) during
the county’s eligible grazing period. Increasing drought severity increases the number
of months of LFP payments a livestock producer is eligible to receive. For example, a
livestock producer operating in a county that experiences 4 consecutive weeks of excep-
tional drought (D4) during the eligible grazing period is eligible for 5 months of LFP
payments (see appendix ?? for more information on the LFP payment schedule). In 2022,
per-animal LFP monthly payments range from $122.95 per adult dairy cows and bulls to
$10.42 per reindeer (USDA-FSA, 2022).

To receive LFP payments an eligible livestock producer must submit an application to
their local USDA-FSA office within 30 calendar days after the end of the calendar year in
which the grazing loss occurred. Producers are also required to submit documentation
demonstrating evidence of loss as well as proof that the affected grazing or pastureland
is owned or leased. Contract producers are required to submit further documentation of

their grower contract.
[Figure 3 about here.]

Figure|3|maps the distribution of total county-level LFP payments between 2008 and
2022. Counties with the largest aggregate LFP payments primarily concentrate in the
western and central U.S. where drought conditions are generally more severe and com-
mon (Andreadis et al., 2005). Approximately 20% of counties in the continental U.S.
received no LFP payments between 2008 and 2022. These counties are primarily located
in the relatively more humid eastern U.S. and in urban counties (e.g., the Northeast and

Southern California).



3 Research Design and Empirical Model

In order to estimate the impact of the LFP program on the outcome of interest, our em-
pirical design exploits variation in county-level drought conditions timings. We leverage
plausibly exogenous LFP design characteristics to assess the impact of the program within
a quasi-experimental research design framework. Specifically, we use the 8 weeks of con-
secutive D2 drought LFP eligibility threshold to compare livestock sector outcomes in
‘treated’” (LFP eligible) counties to outcomes in nearby ‘control’ counties that also experi-
enced some level of D2 drought during the 2014 to 2022 time period.

The standard method for estimating causal effects from panel data is the two-way

linear fixed effects regression (TWFE) and takes the following form:

Yii=ai+y+BXi 1 +0rZi s &y, (1)

where Y;; denotes the log transformed annual beef cattle herd size in county i and year
t, and x; ; represents the LFP program indicator variable that equals 1 if county i in year
t received LFP payments. «; is the unobserved time-invariant county-specific effect and
y; is the unobserved year-specific effect. Z;; denotes a vector of time-varying covariates
and ¢;; is the error term. However, using TWFE approach to estimate the impact of the
LFP program on the outcome of interest faces three major empirical problems: the tim-
ing of treatment administration may differ across counties, each county may receive the
treatment multiple times, and each county can go in and out of the treatment condition
at different points in time.

Many recent studies have highlighted several important drawbacks of the TWEFE re-
gression for estimating causal effects (Sun and Abraham) 2021} Athey and Imbens, 2022;
De Chaisemartin and d’Haultfoeuille, 2020; |Goodman-Bacon, 2021). While many of
these studies assumed staggered adoption, our data requires an approach that extends

to a more general case, in which units can switch their treatment status multiple times



over time (Imai and Kim), 2021} |Imai et al.,[2021).

Figure [4]shows the treatment variation plot in which a red (blue) rectangle represents
a treated (control) county-year observation. We observed that many counties did not
receive the LFP payment from 2014 to 2022. Among those that did received the LFP
payment, most have moved in and out of the treatment group through time which is
a direct consequence of the LFP eligibility criteria based on annual drought conditions

reported by the U.S. Drought Monitor.
[Figure 4 about here.]

To deal with these threats to identification, we use a new econometric approach, Pan-
elMatch, that combines matching methods with a difference-in-difference estimator for
panel data analysis, relaxing the linearity assumption (Imai et al.,[2021). This technique
compares counties which received the LFP payment in year t (treated units) with counties
that have similar pre-treatment history but did not receive the LFP payment in the same
year t (control units). Moreover, PanelMatch allows to estimate how treatment effects
evolve over time and is more robust to model specification than TWFE. The proposed
method involves the following steps: Firstly, we identify a set of control observations that
share the same treatment history up to a pre-determined number of periods, for each
treated observation. This set of matched control observations is referred to as a matched
set. Subsequently, the matched set is refined by adjusting for observed confounding us-
ing standard matching and weighting techniques, to ensure that the treated and matched
control observations have similar covariate values. Lastly, the Difference-in-Difference
(DiD) estimator is applied to account for any underlying time trend.

Matched sets and causal quantity:
PanelMatch introduces two key parameters to identify the control units and to define
the causal quantity. These key parameters, F and L, identify the temporal extent of the

estimated causal impact and the number of periods of treatment history used to create



matched sets, respectively. We focus our analysis on the contemporaneous effect of the
LFP program, i.e., we set the parameter F to 0. We opt to estimate contemporaneous
treatment effects since counties treated in t may experience treatment reversal in ¢ + 1
while others continue to be treated. As such, estimating the effect of treatment in ¢ on
outcomes in t + 1 depends on treatment status in £ + 1.

In addition, the method also requires to select L which allows us to adjust for the
treatment histories. We define L = 2 which indicates that the control observations share
an identical treatment history up to 2 years. The selection of L is part of the identification
assumption and thus, it is important to assess whether previous treatment status may act
as a confounding variable that impacts both the current treatment and outcome (Imai
and Kim, 2019). Given the values of F and L, the average treatment effect on the treated

takes the following form:

8(F =0,L=2) = E{Y;(Xir = 1, Xj,01 = 0,{Xip)1,) = o)
Yit(Xie = 0, X1 = 0, X300} ) | X = 1, X = 0},
where counties that received the LFP payment in year t are the treated units (X;; = 1).
Hence, Y;;(X;; = 1,X;;-1 =0, {Xi,t—l}lez) is the potential outcome for counties that re-
ceived the LFP payment and Y; ;(X;; =0,X;; 1 =0, {Xi,t_l}fﬂ) is the counterfactual poten-
tial outcome. Thus, o(F = 0,L = 2) represents the contemporaneous causal effect of the
LFP program assuming that the potential outcome depends on the treatment history up
to four years back. Importantly, PanelMatch assumes no spillover effects. Thus, a county’s
potential outcomes are only affected by its own treatment history.
As the counterfactual outcome for treated counties cannot be observed, the potential

outcome for counties that did not receive the LFP payment is used:



5(P =0,L= 2) = E{[Yi,t(Xi,t = 11Xi,t—1 =0, {Xi,t—l}szz) |Xi,t = 11Xi,t—1 = 0] - (3)
[Y; 1(Xi s =0,X;1 = 0,{X; ;1)) | Xip = 0,X; ;-1 = 0]},

PanelMatch relaxes the unconfoundedness assumption but, as TWFE, assumes a par-
allel trend in the outcome variable after conditioning on the treatment, outcome and
covariate histories.

Once the value of L is determined, we construct the matched set of control units for
each treated county. The counties included in the matched set and the treated county
share exactly the same treatment history from time ¢ — L to t — 1. It is worth emphasizing
that the matched sets only include observations from the same time period, which implies

exact matching concerning the time period. Thus, the matched set is defined as:

-’ ., .
Mit:{l o1 il,Xi’t:O,Xi’t’:Xit’

forallt =t—1,..,t—L)

Refining the matched sets:

The matched sets defined in equation |4/ only control for the treatment history. However,
the parallel trend assumption implies to adjust for other confounders. Thus, matching
techniques are implemented to account for additional time-varying covariates and refine
the matched sets. The general idea is to select a subset of control counties within the
initial matched set that are most similar to the treated county in terms of the observed
covariates. Matching methods are intuitive tools to deal with selection into treatment, re-
duce model dependence and offer diagnostics for the assessment of the matches (Rubin),
2006; Ho et al., 2007). In addition, combining matching with fixed effects panel regres-
sion has become increasingly common to estimate the impact of conservation programs

when randomization is not possible (Jones and Lewis| 2015} |[Ferraro and Miranda, [2017;



Rosenberg|, 2020).

DiD estimator:

Assuming that parallel trends hold between treated counties and their matched compari-
son counties after conditioning on treatment history, lagged LFP payments, and covaraite
history, PanelMatch provides a nonparametric generalization of DiD estimator for the
causal effect of the LFP on the livestock sector (equation [2). To do this, for each treated
county the refined matched sets provides the control units to estimate the counterfactual
outcome. We follow the method proposed by [Imai et al.[(2021) to compute the standard

errors via a bootstrapping procedure with 2,000 iterations.

4 Data

To estimate the econometric model outlined in section |3 we integrate data on LFP pro-
gram characteristics, LFP payments, drought conditions reported by the U.S. Drought
Monitor, and livestock stocking rates. Joining these data allows sorting counties into
treatment (LFP eligible) and control (LFP ineligible) groups to facilitate an assessment of
the impact of LFP payments on subsequent county level stocking rates.

The process of generating the data used in this paper’s analysis begins with matching
county-level eligible grazing periods to weekly drought severity data released by the U.S.
Drought Monitor. USDA-FSA annually releases county-level data on LFP eligible graz-
ing periods for 13 differing pasture types which, in some cases, have differing eligibility
periods. We focus on three of the most common pasture types: native pasture, full sea-
son improved pasture, and warm season improved pasture. Together these pasture types
account for more than 94% of all LFP payments distributed between 2019 and 2022E|
Native pasture and warm season improved pasture always have identical grazing periods
for a given county while the LFP eligibility period for full season improved generally is

longer, encapsulating some if not all of the eligibility period for native pasture and warm

3Data on LFP payments by pasture type are not available prior to 2019.
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season improved. For example, the native pasture/warm season improved eligibility pe-
riod for Florida’s Orange County is March 15" to October 15" while the eligibility period
for full season improved extends from December 1% to October 15" It is relatively com-
mon for counties in temperate climates to have full season improved eligibility periods
which begin before the calendar year.

Once each county’s eligible grazing period is determined, we match those eligibility
periods to weekly drought intensity data reported by the U.S. Drought Monitor. Specifi-
cally, we calculate for each county-year the number of consecutive weeks of D1, D2, D3,
and D4 drought experienced within the county during the LFP eligibility period. We
then use these data paired with county-level LFP payment data to determine treatment
and control counties. We consider a treatment county to be those that experience at least
8 consecutive weeks of D2 drought during their eligible grazing period (the minimum
criteria to receive one month of LFP payments) and received a non-zero quantity of LFP
payments. We determine treatment status based on both eligibility and receipt of LFP
payments as we are primarily interested in the the impact of LFP payments on livestock
sector outcomes. Control group counties are those that experience 7 or fewer weeks of
consecutive D2 drought during at least one county eligibility period between 2014 and
2022.

The key outcome variable for our analysis of LFP is log transformed county-level an-
nual beef cattle herd size as reported by USDA’s National Agricultural Statistics Service
(NASS). Specifically, we join the county-level beef cattle herd size reported for the first
of January of a given year to the treatment and control status of the county the previous
year. For example, if a given county’s reported beef cattle herd size in January 2021 is
2,000 head, then 2,000 head is used as the outcome variable for that county in 2020. This
approach allows our analysis to capture changes in county herd size in response to LFP
eligibility. LFP benefits are available to sheep, dairy, goat, and other livestock producers.

We opt to focus exclusively on beef cattle based on data availability and the importance
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of the beef cattle industry for the broader U.S. agricultural sector. Namely, county-level
annual herd size estimates are only available for beef and dairy cattle and, as of 2016,
the beef cattle industry comprised the largest share of cash receipts of all U.S. agricul-
tural commodities (USDA-NASS) 2016). We focus specifically on the beef cattle industry,
rather than looking at both the dairy and beef cattle industries, as herd liquidation in

response to drought is most common among beef cattle producers (Leister et al., 2015).

[Table 1 about here.]

4.1 Covariates to Determine Matched Sets

As outlined in section [3| our empirical approach for estimating the impact of LFP in-
volves created matched sets of counties based on previous treatment and control status.
We leverage a suite of covariates to ensure that control group counties matched to a given
treatment group county are similar in terms of their beef cattle production system to the
treatment county. Specifically, we match control group counties to a treatment county
based on the following covariates: the percent of county harvest hay acreage that is ir-
rigated, the percent of county agricultural land that is pasture, the average county-level
pasture rental rate, total average growing season precipitation, average growing season
daily maximum temperature, percent of sandy soil, and percent of silt soil.

County-level annual LFP payment data were obtained from USDA-FSA. Data on per-
cent of total county hay acreage that is irrigated and percent of total agricultural land
in pasture were drawn from the 2017 Census of Agriculture as reported by USDA-NASS.
The county average pasture rental rate is also from USDA-NASS and represents the rental
averaging annual rates between 2014 and 2022. Average county growing season precipi-
tation and average maximum temperature were obtained by aggregating PRISM 30-year
normals data, which characterize the period between 1991 and 2020, to the county level
(PRISM, [2023). Data on county-level soil characteristics, i.e., percent of sandy soil and

percent of silt soil, were drawn from [Yun and Gramig| (2019). Tabld]l| presents summary
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statistics for the primary outcome variable of interest, log transformed cattle herd size, as

well as the suite of covariates used to determine matching sets.

5 Results

Here we present results from the matching model outlined in section Specifically,
we use the econometric model to estimate the average treatment effect of the LFP on
eligible counties that received LFP payments. We opt to estimate treatment effects among
treated counties (i.e., average treatment effect on the treated) given that were interested in
how livestock sector outcomes differ in LFP eligible counties from LFP ineligible counties
that also experienced some level of drought, rather than the aggregate impact of the LFP
among both LFP eligible and ineligible counties.

Figure 5| presents point estimates and bootstrapped 95% confidence intervals for four
differing model specifications. Specifically, we vary the suite of covariates used to re-
fine and weight the matched sets pairing treatment and control counties. The covariate
used to refine matched sets in each specification are as follows: 1) weeks of D2 drought
in a given year’s LFP eligibility period, 2) weeks of D2 drought and as county average
temperature and precipitation, 3) weeks of D2 drought, county average temperature and
precipitation, and county soil characteristics 4) weeks of D2 drought, county average tem-
perature and precipitation, county soil characteristics, and county livestock sector vari-
ables (i.e., percent of hay irrigated, percent of agricultural land in pasture, and average

pasture rental rate).
[Figure 5 about here.]

All model specification except the 4", which includes the largest set of covariates for
matched set refinement, yield statistically significant point estimates for treatment ef-
fects. These estimated treatment effects for the LFP range between 1% and 1.5% suggest-

ing that the LFP increases county-level beef cattle herd sizes by a small but economically
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significant margin compared to similar counties that also experienced drought condi-
tions between 2014 and 2022. Overall our results demonstrate that the LFP does influ-
ence stocking and liquidation decisions among livestock producers, potentially mitigat-

ing some of the economic costs of drought borne by livestock producers.

6 Conclusion

This paper aims to characterize the effect of a agricultural risk management program tai-
lored to aid livestock producers impacted by drought. Specifically, we explore how the
USDA’s Livestock Forage Disaster Program, which provides payments to livestock pro-
ducers located in counties where the severity of drought conditions exceeds predefined
criteria, affects subsequent producer stocking and liquidation decisions.

This research contributes to the applied and agricultural economics literature by ap-
plying a novel methodology to evaluate the impact of a under-studied risk management
program. Despite the significant government expenditures used to fund the LFP, to our
knowledge no research has empirically modeled whether the program alters livestock
producer decision-making or instead constitutes a simple income transfer. This distinc-
tion is important if the program aims to generate benefits outside of the livestock sector,
namely by diminishing future consumer meat price increases created by herd liquidation
in response to drought. If the program does not alter livestock producer decision mak-
ing, then these program benefits likely do not accrue to the general public. Our results
demonstrate that this is not the case. Rather, we find that LFP eligibility and payment
does positively impact subsequent county-level herd sizes, suggesting that the program
does mitigate some of the drought induced variation in cattle herd size and resultant
future meat prices.

The methodology used to estimate the treatment effect of the LFP also constitutes a

contribution to the broader literature. Specifically, we leverage a novel weighted match-
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ing estimator to assess LFP treatment effects with panel data (Imai et al., 2021). Impor-
tantly, this estimator facilitates modeling treatment effects in contexts where units on
observation can be treated in multiple, nonsequential time periods i.e., treatment rever-
sal. This is important as most of the panel data treatment effect estimators used in the
literature are not suitable for contexts where staggered treatment reversal is possible.
However, treatment reversal is relevant to many arenas of agricultural economics as eli-
gibility for many government programs focusing on conservation and technical/financial
assistance vary across producers and geography and can change significantly with the
passage of new legislation (i.e., Farm Bills).

This research is part of a broader literature exploring how agricultural producers re-
spond and adapt to evolving climate conditions. This literature has raised important
questions regarding how government subsidized risk management programs crowd-out
or disincentivize producer adaptation, particularly in row and field crop production (An-
nan and Schlenker, |2015). These issues are also relevant to adaptation in the livestock
sector. Additional research is needed to understand how programs like the LFP, designed

to mitigate climate risk among producers, affects adaptation within the sector.
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Figure 1: Drought Conditions and Changes in the U.S. Beef Cattle Herd Size, 2000-2022
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Figure 2: Aggregate Annual LFP Payments, 2008-2022
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Figure 5: Estimated average treatment effects varying covariates used to refine matched
sets

Notes: 95% confidence intervals are plotted for each point estimate.

Covariates used for refinement in differing specifications:

1) Weeks of D2 drought

2) Weeks of D2 drought and county average temperature/precipitation

3) Weeks of D2 drought, county average temperature/precipitation, and county soil characteristics

4) Weeks of D2 drought, county average temperature/precipitation, county soil characteristics, percent of hay irrigated, percent of ag
land in pasture, and average pasture rental rate
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Tables

Table 1: Summary Statistics for Outcome Variable and Matching Covariates

Statistic N Mean St. Dev. Min Max
Log(Beef Cattle Herd Size) 7,990 9.2 1.0 4.6 11.9
Annual LFP Payments (dollars) 7,990 280,994.9 765,539.0 0 9,643,608
Percent of Hay Irrigated 7,990 19.4 30.3 0.0 100.0
Percent of Ag Land in Pasture 7,990 52.7 26.8 1.2 99.8
Average Pasture Rental Rate (dollars/acre) 7,990 18.8 13.5 0.8 89.8
Average Growing Season Precipitation (mm) 7,990 436.2 188.9 11.3 1,063.2
Average Growing Season Max Temperature (C) 7,990 26.3 3.8 17.1 35.7
Percent Clay Soil 7,990 28.1 9.2 3.9 64.2
Percent Sand Soil 7,990 35.9 18.2 5.5 93.8
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A Robustness Checks of Modeling Assumptions
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Figure A.1: Estimated average treatment effects varying number of periods of past treat-

ment status used to create matched sets
Note: 95% confidence intervals are plotted for each point estimate.
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Figure A.2: Estimated average treatment effects varying maximum number of control

counties allowed in each matched set
Note: 95% confidence intervals are plotted for each point estimate.
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