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Building on a large literature on the weather-agriculture nexus which focuses pri-

marily on the impacts of weather shocks on agricultural yield and productivity, we

examine the contemporaneous impact of extreme temperature on farm income. We use

a detailed farm-level panel dataset from the Kansas Farm Management Association,

containing 6958 farms spanning 1981-2020. We find that extreme temperature re-

duces net income by 60% more than gross income, which shows that extreme temper-

ature not only reduces farm output but also increases farm expenses. The estimated

effects are substantial, with a 1◦C warming associated with a 66% reduction of net

farm income. The impact would have been even greater if farmers were not relying

on crop insurance payments and inventory adjustment, both of which are found to

reduce the temperature-induced income loss by approximately 51% and 16%, respec-

tively. We also found that highly irrigated farms experience 37% less net-income loss

due to extreme temperature. Furthermore, we quantify the impact of extreme temper-

ature on farm wealth in the long run — over the past 30 years, rising temperatures

have caused a decline in the growth of farmland value and farm equity. (JEL Q54,

Q14)
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2Department of Agricultural Economics, Kansas State University
*These authors contributed equally to this work
+Corresponding author: os223@cornell.edu

1



1 Introduction

A major part of the existing research on US climate-agriculture nexus examines the im-

pact of weather shocks on crop yields or agricultural productivity (Schlenker and Roberts,

2009; Ortiz-Bobea et al., 2018, 2021; Miller et al., 2021). However, these output based mea-

sures fail to truly capture farmers’ welfare. Climate shocks affect multiple other determi-

nants of farmers’ welfare such as disaster payments (Diffenbaugh et al., 2021), farm input

choice (Aragón et al., 2021), and income from inventory adjustment, none of which are

reflected in farm output. For instance, high temperatures might lead farmers to adjust

their inputs by using more irrigation in order to protect farm output. This adjustment,

however, will also increase farm expenses due to costs associated with irrigation. Output

based measures will reflect the positive role of irrigation in protecting output but will ig-

nore the increased costs borne by the farmers, thus underestimating the effects of extreme

weather. Financial measures such as net farm income do a much better job of represent-

ing the holistic impact of climate change on farmers’ wellbeing because it includes input

and output costs and quantities, disaster payments, as well as inventory adjustments.

The impact of weather shocks on farm income can be buffered through a number of

government policies and adaptation practices. Crop insurance and payments through

government programs are well-known policy tools protecting farmers against climate

risk (Diffenbaugh et al., 2021). Adaptation measures on the part of farmers such as storing

excess harvest in years of bumper crop for later use can also help mitigate losses induced

by extreme weather - grain storage capacity on US farms has expanded substantially over

the past 20 years (Janzen and Swearingen, 2020). Similarly, farm location characteristics

such as proximity to aquifer can allow better access to water for irrigation, offering timely

protection from high temperatures (Tack et al., 2017; Troy et al., 2015).

Although we find evidence in support of the use of such risk management tools, we

do not know the extent to which they mitigate the financial impact of extreme weather.

It is important to quantify that because the availability, cost, and reliability of such tools

might drastically change in future given the increased risk of higher temperatures (Crane-
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Droesch et al., 2019; Wu et al., 2020), in which case the current estimates of the climate

damages (which account for present-day adaptation practices) would become less trust-

worthy. Additionally, by examining the buffering role of these tools on net income, rather

than on output based measures, we are able to capture the benefit of these tools net of

the costs associated with their adoption. Previous related work, relying on county-level

(Deschênes and Greenstone, 2007) as well as farm-level (Lambert, 2014) data examines

the impact of weather on net income without being able to separate its impact on risk

management tools such as crop insurance payments and inventory adjustments (Fisher

et al., 2012), as all these are part of the income measure.

This study explores the effect of weather fluctuation on farms’ gross and net income.

More importantly, it examines the role of various income smoothing and risk manage-

ment mechanisms such as crop insurance payments, crop inventories, government pay-

ments, and irrigation in modulating the impact of exposure to high temperature on farm

income. While a lot of the emphasis in the literature has been on contemporaneous effects

of weather shocks, it is unclear how these translate to long term impacts. To explore this,

we also analyze the long-term impact of recent climate trends on trends in farm wealth.

Answering these questions requires detailed annual financial information, which we

obtain through a unique farm-level panel dataset from the Kansas Farm Management As-

sociation (KFMA) spanning four decades from 1981 to 2020. This paper is one of the very

few studies which has used farm-level data to estimate the financial impacts of tempera-

ture on the agricultural sector. Using the more commonly available county-level census

data would have concealed variation in farm income and adaptation measures within

each county. Furthermore, the annual observations of KFMA data allow capturing the

impact of weather outside the select census years.

Our empirical strategy exploits spatial and temporal variation in weather, conditioned

on farm and year fixed effects, to uncover contemporaneous impacts on income as well as

on disaster payments and inventory changes. This panel estimation, thus, relies on com-

paring, within a given year, farm specific deviations of weather from the sample mean
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of weather for each farm. Because farmers cannot anticipate weather several months in

advance and many of their decisions are made early in the season (e.g., crop acreage), we

consider these weather shocks exogenous, in line with the literature (Dell et al., 2014).

While occasional weather shocks affect contemporaneous farm finances, it is unclear

whether climatic trends over several decades are leading to long-term impacts on mea-

sures of farm wealth such as farmland values. Rising temperatures can lower farmland

values by negatively affecting crop yields as well as by limiting the local financing avail-

able to support land prices (Bergman et al., 2020). To identify these long-term effects,

we use cross-county spatial variation in the growth rate of extreme temperature over 30

years to estimate its impact on the growth rate of farmland values and farm equity over

the same time period. There is potential unobserved heterogeneity across farms that our

approach is not able to control for, so this approach has some threats to validity. However,

it allows us to uncover effects of a changing climate (temperature changes over multiple

decades), rather than weather (year-to-year changes in temperature). Our approach is

similar to the long-difference approach of Burke and Emerick (2016), with the key dif-

ference being that we use the average growth rate of weather, relying on all data points

over a long time period while Burke and Emerick (2016) uses the difference in weather

between the two points in time — the beginning and end years of a long time period.

While we find that extreme temperature causes a contemporaneous decline in gross

income, we find even greater effects on net income. A 1◦C uniform warming would de-

crease gross income and net income by approximately 7% and 66%, respectively. Con-

verting these percentages to dollar values show that for an average farm, the decline in

net income is almost 1.6 times larger than the decline in gross income. Our back-of-the-

envelope calculation indicates that temperature rise equivalent to that of the well-known

2012 Midwestern drought would wipe out the yearly net farm income. While the income

impacts are large, they would have been even greater if farmers were not relying on risk

management tools. We find that crop insurance payments and crop inventory sales help

recover almost 51% and 16% of the net income loss observed before accounting for these
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income buffers, respectively. Furthermore, access to irrigation acts as a buffer against

extreme temperature — using two alternative irrigation measures, we found that farms

with above-average access to irrigation feature 37% (using KFMA data) and 55% (using

High Plains Aquifer data) less net-income loss.

Last, we find that temperature changes over the recent decades have slowed down the

growth in farm wealth. Over the 30 years period, farmland values and farm equity grew

by 53% and 107%, respectively. We find that they would have grown by an additional 2.5

to 5.5 percentage points (depending on model specification) had there been no long-run

increase in temperature over 30 years. This translates to almost 9% and 5% reduction

in the growth rate of farmland value and farm equity, respectively. This highlights the

long-run impact of a changing climate on the US agricultural sector.

This paper makes key contributions to the literature. To our knowledge, we provide

the first comprehensive examination of the income smoothing role of multiple risk man-

agement and adaptation measures adopted by farmers in the face of climate change. Our

analysis of the mediating role of insurance and irrigation on the weather-income relation-

ship extends previous work examining the role of these instruments on the weather-yield

relationship (Annan and Schlenker, 2015; Wang et al., 2021; Regmi et al., 2022; Tack et al.,

2017; Zaveri and B Lobell, 2019). In this way, this study makes an important contribu-

tion by examining climate adaptation in agriculture from a financial lens. Furthermore,

by comparing gross and net income effects, we are able to present evidence regarding

the impact of extreme temperature on farm expenses, and thus indirectly on the cost of

adaptation to climate change (Sulser et al., 2021; McCarl, 2007; Parry, 2009).

This paper is structured as follows. We describe the data sources and the construction

of key variables in the next section. Section 3 explains the empirical methodology and

section 4 reports the results and placebo checks. Section 5, the last section, concludes the

paper.
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2 Data description

2.1 Farm Data

Analyzing the impact of weather on farm financial performance and adaptation responses

requires detailed farm-level data, which are often confidential and thus difficult to obtain.

Furthermore, long-term farm-level data such as the US Census of Agriculture do not pro-

vide annual observations which are necessary to understand the dynamic adjustments of

inventory. In this study, we rely on a unique dataset from the KFMA which helps farmers

fill out their taxes and in exchange, they provide detailed data on farm production and

finances that may be used for research purposes. The dataset provides a unique view of

crop yields and farm finances from 1981 to 2020 across 6958 unique farms in a state with

very contrasting agricultural systems, including irrigated and dryland agriculture with

dwindling groundwater resources. Figure A1 in the appendix shows the distribution of

the KFMA sample across counties in Kansas.

Participation in the KFMA is voluntary which means some farms can drop out over

time, making the panel dataset unbalanced. There is a large variation in the number of

years each farm occurs in the dataset, with some farms surveyed for just 1 year while

others being surveyed for all 39 years. On average, we observe farms for 10.4 years.

The dataset has 72,323 distinct farm-year observations. As a robustness check, we also

provide our main results using the balanced subset of the panel.

We measure farm financial well-being through gross and net income. Table 1 shows

the summary statistics of all the KFMA variables used in our analysis. Net income ranges

from a minimum of $-2,188,300 to a maximum of $3,995,200, with the mean value being

$65,600. Gross income ranges from a minimum of $-133,600 to a maximum of $17,595,400,

with the mean value being $396,100.1 For each farm-year observation, we also compute

yields of three major crops (corn, soybeans, and sorghum) by dividing the amount of

crop produced by the acreage. Their sample average are 111, 32, and 68 bushels/acre,

1We convert all financial metrics in real terms (2015 USD).
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respectively.

Our analysis seeks to understand how alternative sources of income can compensate

contemporaneous financial losses stemming from extreme weather. We focus on 3 sources

of additional income: government payments, crop insurance indemnities, and income

received by selling crop inventory stock. Although data on government payments are

available throughout the sample period, data on crop insurance are only available from

1993 onward. This is presumably due to large increase in uptake of crop insurance in US

since 1990s due to the Crop Insurance Reform Act of 1994 (Glauber, 2013). We also limit

the time period of analysis of crop inventory to 1993 and beyond because this variable

measured different outcomes in the pre-1993 and post-1993 period in the KFMA data.

Farms in our sample receive approximately $32,500 and $20,200 on average through

government payments and crop insurance payments, each year. We construct the variable

of crop insurance payments only for farms which have purchased an insurance policy,

which we indirectly measure by checking if a farm has made any crop insurance related

expense in that year.2 Approximately 78% of the farm-year observations falls within this

category. Such farms have higher total income, are larger (in terms of acres operated), and

generate a larger portion of their total farm income from crops as compared to livestock.3

Crop inventory stock is the sum of inventories of cash crops, grains, and hay and forage.

A typical farm in our sample holds $159,500 of crop inventory which is more than twice

the yearly net income.

To understand the role of irrigation in mediating the financial impacts of extreme

weather, we use the KFMA data to compute the share of irrigated cropland for each

farm-year observation. Figure 1 shows a county level plot of this measure. While there

is considerable irrigation in Western Kansas, most of the cropland in the state is actually

not irrigated. In fact, our sample shows that on average, only 9% of cropland is irrigated.

Using this information, we classify farms as ’highly irrigated’ if the irrigated area of their

2We follow the approach of Regmi et al. (2022) as the KFMA data does not directly report information
on enrollment in any crop insurance program.

3For farms which made an insurance related expense, the mean value of gross farm income, acres oper-
ated, and crop income to total income ratio are $475,957, 2040, and 0.82, respectively. For the other farms,
these numbers are $335,530, 1619, and 0.48, respectively.
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cropland is at least 9% in that year. We use this binary measure as the key indicator of

irrigation use in our analysis.

As irrigation use is a key part of our analysis, we consider an alternative measure of

irrigation which acts as a robustness check for our main measure. This second measure re-

lies on the fact that a significant portion of the state overlaps with the High Plains Aquifer,

a primary source of irrigation water in Kansas. Using map from the U.S. Geological Sur-

vey, we compute the proportion of each county’s area overlapping with the Aquifer. We

use a binary measure of irrigation access, indicating if the share of county-area’s overlap

is above the sample average.4

Table 1: Summary Statistics of Variables at the Farm-Year Level

N Min Max Mean SD

Weather
EDD 72,323 2 219 49 28
GDD 72,323 1,214 2,134 1,732 152
Precipitation (mm) 72,323 125 1,371 574 186

Farm Finances ($2015)
Net Farm Income 72,322 -2,188,260 3,995,200 65,627 142,952
Gross Farm Income 72,322 -133,618 17,595,446 396,134 510,037
Government Payments 72,322 -3,294 2,503,424 32,540 44,187
Crop Insurance 36,230 -54,743 2,603,398 20,246 61,323
Total crop inventory 46,535 -9,634 7,898,887 159,532 274,199

Crop yield (bushels/acre)
Corn 35,467 0.00 2,500.00 110.66 49.18
Soybeans 43,150 0.00 2,392.93 31.54 19.92
Sorghum 44,749 0.00 1,552.00 67.69 29.60

Irrigation
High irrigated crop share (binary) 70,628 0 1 0.21 0.41
High aquifer access (binary) 72,323 0 1 0.33 0.47
Share of farm’s crops that are irrigated 70,628 0.00 1.00 0.09 0.21
Share of county area on aquifer 72,323 0.00 1.00 0.27 0.39

Year 72,323 1981 2020 1998 10.83
EDD = Extreme Degree-Days, GDD = Growing Degree-Days

The last part of the analysis explores how long-term trends of climatic variables may

have an impact on measures of farm wealth. To conduct our long-term analysis we fo-

4Figure A2 shows the Aquifer boundary and the share of county area overlapping with the Aquifer.
Both our irrigation measures shows that the Western side of Kansas is most irrigated.
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Figure 1: Irrigated Cropland

cus on the time frame of at least 30 years. We start by creating a sub-sample of KFMA

farms which have panel length of at least 30 years. For each farm in this sub-sample,

we compute the average annual growth rate of land values and average annual growth

rate of farm equity over the whole time period during which the farm is surveyed. Land

value (price per acre) is calculated by dividing the monetary value of owned land by the

acreage of owned land. Farm equity is computed by subtracting total debt (sum of cur-

rent loans, intermediate loans, long-term loans, and accounts payable) from total capital

managed (total farm assets plus value of rented land). Table 2 shows summary statistics

of all long-run variables. Land values grew by 1.8% per annum while farm equity grew

by 3.6% per annum, respectively.

Due to confidentially concerns, the KFMA does not provide the exact address of each

farm. However, we do obtain the county in which the farm is located, which we rely on

to merge all KFMA observations to county-level weather data.

Table 2: Summary Statistics of Long-run Variables at the Farm Level

Long-run yearly average growth (%) N Mean SD

Climate
EDD 529 0.33 0.59
GDD 529 0.17 0.05
Precipitation (mm) 529 0.43 0.26

Farm Finances ($2015)
Land Value 516 1.75 4.99
Farm Equity 529 3.56 2.94
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2.2 Weather Data

We construct county-level weather variables from the PRISM data, which provides daily

maximum and minimum temperature since 1981 at a 4-km resolution across the lower

48 states (Daly et al., 1997). Previous work has shown that the effects of temperature are

nonlinear even within the day (Schlenker and Roberts, 2009). We construct measures of

exposure to various temperature bins by fitting a sine curve on the daily temperature

extremes in order to retrieve the length of exposure to different temperature intervals

between the two extremes (Ortiz-Bobea, 2021). We then compute the average level of

exposure for all temperature bins (from -10◦C to +50◦C in 1◦C increments) for all the

Kansas counties, weighted by the cropland pixels in each county.5 This gives us the crop-

weighted exposure (in hours) in each of the 61 bins for each month in years 1981-2020 for

all 105 Kansas counties.

Having too little exposure to extreme bins can lead to noisy estimates, so we aggregate

extreme bins to obtain enough exposure at the tails for proper estimation of temperature

effects. Specifically, we top and bottom code the 61 bins, reducing them to 39 bins from

0◦C to 38◦C. For ease of understanding, we also convert the binned exposure from hours

to days by dividing all binned exposures by 24. We then use binned exposures from the

crop growing season (months of April to September) to compute a yearly measure of ex-

treme degree-days (defined as degree-days above 32◦C and henceforth referred as EDD)

- our main measure of exposure to extreme temperature. EDD is a two-dimensional mea-

sure of thermal time, computed as the product of temperature (in 1◦C increments) above

32◦C and the exposure (in days) at each of those temperature points. It is considered

a more appropriate measure than just the number of days above 32◦C because it gives

more weight to higher temperatures — farther a temperature point is from 32◦C, more

detrimental is its effect. The threshold of approximately 32◦C is well established in the

literature as crop yields start declining once temperature crosses this limit.6

5We use National Land Cover Database (NLCD)’s 2016 gridded data to extract cropland pixels. We
define cropland as any pixel identified as grassland, pasture, or cultivated crops.

6In Figure A3, we confirm this threshold by fitting a cubic spline of exposure to all temperature bins on
crop yields following Ortiz-Bobea (2021). Results show that exposure to temperature above 32◦C leads to a

9



In a manner similar to EDD, we use monthly exposure bins from the crop growing

season to compute a yearly measure of growing degree-days (GDD), defined as degree-

days between 10◦C and 30◦C. An average farm in our sample experiences 50 EDD and

1730 GDD in the crop growing season of each year (Table 1). Figures 2a-2b shows EDD

and GDD for Kansas counties, separately for 4 decades between 1981 to 2020 (time period

of our analysis). Finally, we use yearly EDD and GDD data to construct their average

annual growth rate over long run (30 years or more) for use in the long-run model. The

growth rates of EDD and GDD are 0.3% and 0.2% per annum, respectively (Table 2).

Unsurprisingly, it should be noted that EDD grew by almost double the rate of GDD over

the past several decades.

To control for precipitation which might correlate with the temperature and the out-

come variables, we construct a measure of cumulative yearly precipitation (in mm) in the

crop growing season by summing monthly PRISM precipitation data. A typical farm in

our sample experiences 570 mm of precipitation each year in the growing season (Table

1). Figure 2c shows the spatial distribution of precipitation over the time period of our

analysis. We also construct annual average growth rate of precipitation to use as a control

variable in our long-run model. Precipitation grew by 0.4% each year (Table 2).

sharp decline in crop yields.
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(a) Extreme Degree-Days

(b) Growing Degree-Days

(c) Precipitation

Figure 2: Growing Season Weather Data by Decade
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3 Empirical Strategy

3.1 Main model

We begin by estimating the short-run causal impact of EDD on multiple farm outcomes

using Equation 1.

Y f ct = βo + β1EDDct + β2GDDct + β3Preipct + β4Precip2
ct + µ f + λt + ε f ct (1)

where Y f ct is the farm-level outcome variable of interest for farm f in county c in year t.

EDDct and GDDct are extreme degree-days and growing degree-days, respectively, in the

growing season of year t in county c. Preipct and Preip2
ct are cumulative precipitation and

its squared term. µ f are farm fixed effects - they control for all time-invariant farm level

characteristics such as farm size, location, and owner characteristics. λt are year fixed

effects - they control for shocks common to all farms in a given year. We are using year

fixed effects instead of time trend which is common with the crop yield models because

yields have a clear upward trend overtime, while financial variables fluctuate with other

indicators in the economy such as crop prices which do not follow a linear upward trend.

We do, however, recognize that using year fixed effects in a state-level study would purge

considerable variation in the weather variables, which could render our estimates less

precise under certain forms of measurement error (Fisher et al., 2012). We employ spatial

heteroskedasticity and autocorrelation consistent (HAC) standard errors (Conley, 1999)

in all our estimates, using Bartlett Kernel with a distance cutoff of 200 miles.7

The first set of farm outcome variables, Y f ct, is (log) crop yield of three major crops -

corn, soybeans, and sorghum. We estimate this relationship to confirm the validity of our

EDD measure. The second group of outcome variables represented by Y f ct is farm income.

It includes two key variables - (Inverse hyperbolic sine) gross farm income and net farm

income. We use these two income measures because the first one just represents the value

of farm output while the second also takes into account the value of farm inputs, and

7We also tried using a cutoff of 500 miles and the results were unchanged.
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it’s important to see how the impact of extreme temperature differs across both. We use

inverse hyperbolic sine instead of log for income and all other financial measures because

of zero and negative values in the financial data.8 The interpretation of coefficients would

be similar to the case if we were to use log of the dependent variables (Bellemare and

Wichman, 2020).

The third set of variables included in Y f ct include inverse hyperbolic sine of govern-

ment payments, crop insurance payments, and year-end crop inventory stock. These rep-

resent three sources of complementary income made available to farms during years of

extreme temperature. We estimate this model to gauge the capacity of these three sources

in minimizing total income loss and thus their potential as an adaptation mechanism in

face of heat shocks. Our hypothesis is that farms will receive payments from government

and insurance contracts and will sell their inventory stock in order to recover (at least

some part of) lost income. We also examine lagged impact (up to 2 years) of EDD to ver-

ify whether there is any delay in the receipt of government payments and crop insurance

payments.

The final empirical model of the short-run analysis tests the role of irrigation in buffer-

ing any negative impact of extreme temperature on farm income. We model this hetero-

geneous impact of access to irrigation on EDD-income relationship using Equation 2.

Y f ct =βo + β1EDDct + β2Irrigation f ct + β3EDDct × Irrigation f ct

+ β3GDDct + β4Preipct + β5Precip2
ct + µ f + λt + ε f ct (2)

where Y f ct is gross and net farm income and Irrigation f ct represents our irrigation measure

- a dummy variable indicating whether farm f ’s share of irrigated land is greater than the

sample average. As mentioned earlier, we also rely on a second measure of irrigation

as a robustness check for our first measure. This second measure is a dummy variable

indicating whether county c’s share of area overlapping with the High Plains Aquifer is

8The share of zero and negative values for the financial variables is as follows: 1) Net Farm Income: 0.24,
2) Gross Farm Income: 0.0007, 3) Government payments: 0.06, 4) Crop Insurance: 0.37, 5) Crop Inventory:
0.05
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greater than the sample average. β3 is our main coefficient of interest which represents

the difference in the impact of EDD on the outcome variable in highly irrigated farms

as compared to less irrigated farms. As an additional robustness check, we also present

results using continuous measures (instead of the binary measures) of the same irriga-

tion variables mentioned above. In particular, we use the share of irrigated land at the

farm level and the share of county-area overlapping with the Aquifer, where both these

measures are measured on a continuous scale of 0 to 1.

3.2 Long-run model

To examine if any of the short-run impacts of extreme temperature builds up to make

long-run changes in farm wealth, we estimate a ”long trends” model using Equation 3. In

this model, we harness the spatial variation in growth rate of extreme temperature over

long run across farms in different counties.

∆Y f c = βo + β1∆EDDc + β2∆GDDc + β3∆Precipc + ε f c (3)

where ∆ Y f c is the average yearly growth rate of real land price and farm equity for farm

f in county c over at least 30 years. ∆ EDDc is the average yearly growth rate of EDD for

county c over the same time period. The model also includes the average yearly growth

rate of GDD and precipitation for county c. In a manner similar to the panel model, we

employ spatial standard errors in this analysis, again using a cutoff of 200 miles.

As our variable of interest, EDDc, is defined at the county level, we cannot control

for county fixed effects in our analysis. However, we can include a dummy for a geo-

graphical unit larger than the county but smaller than the whole state. The KFMA data

provides one such variable as the KFMA divides the state of Kansas into 6 associations

for administrative purposes. Each association is a group of 16 neighboring counties, on

average. We thus also estimate Equation 3 after controlling for association fixed effects,

where the estimation relies on comparing trends within each association. This is done
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to purge any confounding due to unobserved factors, such as regional real estate trends,

that are common to counties within each association and have correlation with long-run

weather trends.

4 Results

4.1 Main Results

Our first set of results replicate well-known findings that extreme temperatures are detri-

mental to crop yields — Table A1 shows that an increase in EDD causes a decline in yields.

Our key coefficient measures the impact of 1 additional EDD, which is difficult to inter-

pret because of the nature of the variable. For ease of interpretation, we also report the

impact associated with a 1◦C uniform warming in all the regression tables.9 A uniform

warming of 1◦C causes 18%, 16%, and 20% decline in the yield of corn, soybeans, and

sorghum, respectively.

Table 3 reports the impact of extreme temperature on gross and net farm income.

The coefficients of EDD and the effect size associated with 1◦C warming should not be

compared across columns because they are interpreted as percentage changes, and not

changes in dollar values. Gross income and net income decreases by 7% and 66%, respec-

tively with a 1◦C warming.10 To better understand that, we can place these numbers in

reference to the 2012 drought which caused approximately a 1.6◦C warming in the grow-

ing season in Kansas compared to the long-run average. It was the largest drought in

recent US history, caused by an extreme heat wave. A temperature increase similar to

that experienced in the 2012 drought would reduce gross and net farm income by 11%

and 105%, respectively. As gross and net income include all sources of income such as

9The impact of uniform warming is calculated as follows: We reconstruct our data of exposure to tem-
perature bins by assuming that temperature has increased by 1◦C at all times. We use this data to recompute
the two temperature measures (EDD1◦C and GDD1◦C). The impact (in percentage) of 1◦C uniform warm-
ing is: (eβEDD(EDD−EDD1◦C )+βGDD(GDD−GDD1◦C ) − 1) × 100 where βEDD and βGDD are coefficients of EDD and GDD
respectively.

10Results using the balanced panel of our dataset are presented in Table A2 and are found to be similar
to those obtained using the full sample.
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crop insurance payments and income support from government, these effects show that

high temperatures have extremely damaging contemporaneous impacts on farm income,

even after accounting for additional income made available to farms during years of ex-

treme temperature.

Comparing the monetary value of temperature driven losses of the two income mea-

sures reveal that for an average farm, net income loss is roughly 1.6 times the size of gross

income loss — a 1◦C warming leads to $27,729 and $43,313 decline in gross income and

net income, respectively.11 This means that extreme temperature not only negatively im-

pacts the value of farm output, but also increase farm expenses. These increased costs

could have resulted from temperature induced adjustments made by farms such as in-

creased use of certain inputs (e.g., irrigation) or paying more for insurance premium, for

instance.

Table 3: Impact of Extreme Degree-Days on Farm Income

(1)
Gross Farm

Income

(2)
Net Farm
Income

EDD -0.003*** -0.050***
(0.001) (0.012)

Num.Obs. 72,322 72,322
Impact of 1◦C warming (%) -6.9 -66.1
R2 Adj. 0.69 0.274
Dependent variables are inverse hyperbolic sine transformed.
All columns control for growing degree-days, second order
polynomial of precipitation, and farm and year fixed effects.
Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

Although we find large negative impacts of extreme temperature on farm income even

after accounting for compensatory payments made available to farms, it is important to

examine the role of such payments in buffering the overall income decline. Table 4 re-

ports the impact of extreme temperature on such additional sources of income. We do not
11For an average farm in our sample, 1◦C warming leads to $27,729 decline in GFI (7% (effect size asso-

ciated with 1◦C warming) of $3,96,134 (sample average of GFI) = $27,729), and $43,313 decline in NFI (66%
(effect size associated with 1◦C warming) of $65,627 (sample average of NFI) = $43,313). NFI loss / GFI loss
= 43,313 / 27,729 = 1.6
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find a link between extreme temperature and government payments in a particular year.

However, we do notice a jump in the receipt of government payments two years after an

episode of extreme temperature (columns 1 and 2). Crop insurance payments increase

contemporaneously as well as with a lag of 1 year (columns 3 and 4). Furthermore, the

value of crop inventory stocks decline after an increase in extreme temperature (columns

5 and 6) which indicates that farmers sell their inventory to recoup the lost income.12

A 1◦C warming increases crop insurance payments by 324% and decreases the value of

year-end crop inventory stocks by 15%. Of the net income loss experienced without ac-

counting for these additional payments, 51% is shielded by crop insurance payments and

16% by the sale of crop inventory.13 Overall, these findings point to the significant role of

risk management strategies, especially that of crop insurance in buffering the contempo-

raneous income loss caused by extreme heat.

12Theoretically, a decline in the value of inventory does not necessarily represent a fall in quantity as
the total value not only depends on the quantity but also on unit price. However, it is very unlikely that
crop prices fall during a drought year. In fact, prices rise during periods of extreme temperature because of
negative shock to crop supply. This makes us quite confident that our results indeed represent a fall in the
quantity of inventory holdings and not a fall in its unit price.

131◦C warming leads to an increase in crop insurance payments by $65,593 (324% (effect size associated
with 1◦C warming) of $20,245 (sample average of CI) = $65,593). 1◦C warming leads to $20,008 decline
in total crops inventory (15% (effect size associated with 1◦C warming) of $1,33,387 (sample average of
inventory) = $20,008).
NFI loss as a result of 1◦C warming = $43,313. NFI loss as a result of 1◦C warming in the absence of crop
insurance payments and in the absence of sale of crop inventories = $43,313 + $65,593 + $20,008 = $1,28,914.
Crop insurance payments as a percentage of total NFI loss = ($65,593 / $1,28,914) × 100 = 51%. Income from
inventory sale as a percentage of total NFI loss = ($20,008 / $1,28,914) × 100 = 16%.
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Table 4: Impact of Extreme Degree-Days on Disaster Payments and Inventory

(1) (2) (3) (4) (5) (6)

Government
Payments

Government
Payments

Crop
Insurance
Payments

Crop
Insurance
Payments

Crop
Inventory

Stock

Crop
Inventory

Stock

EDD 0.001 0.001 0.065*** 0.059*** -0.008*** -0.007***
(0.002) (0.002) (0.009) (0.009) (0.002) (0.002)

EDD L1 0.003 0.025** -0.007***
(0.003) (0.011) (0.002)

EDD L2 0.009*** 0.004 0.001
(0.003) (0.010) (0.002)

Num.Obs. 72,322 53,102 36,230 29,669 46,535 37,627
Impact of 1◦C
warming (%)

3.7 324.3 -15.3

Time period 1981-
2020

1981-
2020

1993-
2020

1993-
2020

1993-
2020

1993-
2020

R2 Adj. 0.558 0.569 0.311 0.315 0.577 0.581
Dependent variables are inverse hyperbolic sine transformed. All columns control for growing degree-days,
second order polynomial of precipitation, and farm and year fixed effects. Columns with lagged EDD also
control for lagged GDD and lagged precipitation. Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

We find evidence that access to irrigation limits some of the temperature driven in-

come loss. Table 5 shows that farms having a high share of irrigated crops experience

approximately 37% less net income loss as compared to the rest of the farms.14 We carry

out a number of robustness checks to confirm this protective role of irrigation. First, we

use county-level Aquifer overlap as an alternative measure of irrigation. The results us-

ing that measure (presented in Table A3) shows that farms in counties with larger than

average overlap with the Aquifer experience approximately 55% less net income loss.15

Second, we present results with continuous irrigation measures (instead of binary mea-

sures) in Table A4 and Table A5. As interaction terms involving continuous measures

are better interpreted through marginal effects, we present the marginal effect of EDD on

income, for varying levels of both our continuous irrigation measures in Fig. A5 and Fig.

14Net income loss avoided due to large irrigated cropland = 0.020/0.054 = 37%. Gross income loss
avoided due to large irrigated cropland = 0.002/0.003 = 67%.

15Net income loss avoided due to HPA = 0.035/0.064 = 54.7%. Gross income loss avoided due to HPA =
0.002/0.004 = 50%.
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A4. The marginal effect appears less negative as access to irrigation increases.

Table 5: Role of Irrigation in Protecting Farm Income

(1)
Gross Farm

Income

(2)
Net Farm
Income

EDD -0.003*** -0.054***
(0.001) (0.012)

High share of irrigated crops 0.147*** -0.767**
(0.020) (0.348)

EDD × High share of irrigated crops 0.002*** 0.020***
(0.000) (0.006)

Num.Obs. 70,628 70,628
R2 Adj. 0.703 0.274
Dependent variables are inverse hyperbolic sine transformed.
All columns control for growing degree-days, second order
polynomial of precipitation, and farm and year fixed effects.
Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

4.2 Placebo checks

To confirm that our estimates are not found by chance, we carry out a battery of placebo

checks on four key outcome variables discussed earlier - gross farm income, net farm

income, crop insurance payments, and crop inventory stock. In three separate sets of

placebo checks, we create 10,000 reshuffled datasets where we mismatch 1) counties, 2)

years, and 3) counties and years for all observations in our data, and then re-estimate

our regression model using each of these datasets. To put in differently, a farm located in

county c and observed in year t is assigned the weather variable of any county other than

county c, of any year other than year t, or both at the same time. We should, on average,

obtain no effect by mismatching the weather data with the outcome data. By redoing this

multiple times we can recover the distribution of ”spurious” effects.16 Figure 3 shows

the distribution of EDD coefficients derived from using the 10,000 reshuffled datasets in

each category. As expected, we find that these estimates are centered around 0, and they

16In other words, this is the distribution of the ”no effect” null hypothesis.
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have minimum variance when we mismatch both counties and years. We also mark the

sample estimate derived originally without any reshuffling, and it can be seen that it does

not overlap with the distribution of spurious estimates.

This figure shows the distribution of EDD coefficient associated with four key outcome variables. These
coefficients are derived from 10,000 reshuffled datasets in each reshuffling category. Vertical blue line shows
the coefficient obtained from data without any reshuffling.

Figure 3: Placebo Checks with Mismatched Weather Variables

4.3 Long-run results

Finally, we report the results of the long-trends model (Equation 3) in Table 6. Columns

1 and 3 show estimates without controlling for association fixed effects, while columns 2
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and 4 show estimates after controlling for association fixed effects. EDD coefficients are

negative and statistically significant at conventional levels in all specifications, implying

that long-run growth rates in weather negatively affect the growth rates of farmland value

and farm equity. Over the 30-year period, land value and farm equity grew by 53% and

107%, respectively. Our estimates suggest that in the absence of EDD growth, land value

would have grown by an additional 5 percentage points, and farm equity would have

grown by an additional 5.6 percentage points. Thus, over a 30-year period, changing

weather has led to approximately a 9% and 5% decline in the growth rate of land values

and farm equity, respectively.17 Association fixed effects reduces the absolute magnitude

of the EDD coefficients by almost 50%.

Table 6: Impact of EDD growth on Farmland Value growth
and Farm Equity growth

(1)
∆ Land Value

(2)
∆ Land Value

(3)
∆ Equity

(4)
∆ Equity

∆ EDD (%) -0.523*** -0.225*** -0.585*** -0.281*
(0.127) (0.067) (0.152) (0.152)

Num.Obs. 516 516 529 529
Association FE No Yes No Yes
R2 Adj. 0.007 0.044 0.017 0.124
Dependent variables: Long-run growth rate of real land values and farm equity.
Independent variable: Long-run growth rate of extreme degree-days. All columns
control for long-run growth rate of growing degree-days and precipitation.
Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

17∆ EDD over 30 years = 0.33% × 30 = 9.6%. ∆ Land Value over 30 years = 1.75% × 30 = 52.5%. ∆ Farm
Equity over 30 years = 3.56% × 30 = 107%.
Change in ∆ Land Value over 30 years due to EDD = 9.6 × -0.523= -5.02 percentage points. ∆ Land Value
over 30 years (had there been no EDD growth) = 52.5 (growth rate over 30 years shown by data) - (- 5.02) =
57.52%. Percentage decline in ∆ Land Value due to EDD = (5.02/57.52) × 100 = 8.7% .
Change in ∆ Farm Equity over 30 years due to EDD = 9.6 × -0.585= -5.62 percentage points. ∆ Farm Equity
over 30 years (had there been no EDD growth) = 107 (growth rate over 30 years shown by data) - (- 5.62) =
112.62%. Percentage decline in ∆ Farm Equity due to EDD = (5.62/112.62) × 100 = 5%.
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5 Conclusion

Our study sheds light on the impacts of extreme weather and changing climatic con-

ditions on farm financial performance. We are able to conduct this work by accessing a

detailed panel dataset spanning decades of farm finances in the state of Kansas. We exam-

ine the impact of extreme temperature on farm income in the short-run, and on farmland

value and farm wealth in the long-run. Furthermore, we also shed light on the role of

financial and non-financial instruments in reducing the heat-driven negative impact on

income.

We find four key results. First, exposure to extreme temperature leads to a decline in

both gross and net farm income, with the impact on net income almost 1.6 times the im-

pact on gross income. The magnitude of income loss is large as 1◦C warming is estimated

to cause 66% decline in net income. Second, crop insurance payments and the selling of

crop inventory stocks helps recover 51% and 16% of the income loss, respectively. Third,

using two alternative measures of irrigation, we find that farms with above-average ir-

rigation access experience at least 37% less net income loss. Last, we find evidence that

the growth rates of farmland values and farm equity have slowed down by 9% and 5%,

respectively, over a 30 year period due to rise in extreme temperatures.

The results of this study are important for farmers, agriculture policy makers, insur-

ance firms, and farm lenders. The new insight from our paper can improve the func-

tioning of farm credit markets; lenders should now be better able to assess changing

weather-related risks arising from climate change and their role in supporting the transi-

tion to more resilient farming systems. Furthermore, our key finding of large reliance on

crop insurance in buffering harmful effects of temperature raises questions on its future

as a risk management tool in a world with increasing temperatures, providing food for

thought for stakeholders in crop insurance industry.
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Appendix

Figure A1: Spatial distribution of the KFMA dataset observations

High Plains Aquifer’s boundary shown in red.

Figure A2: Map indicating the spatial extent of the High Plains Aquifer in Kansas
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Note: The data covers farm-level crop yields from 1981 to 2020. We control for second order polynomial
of precipitation, and farm and year fixed effects. Bands show 95% and 99% confidence intervals, derived
from spatial HAC standard errors. The growing season goes from Apr. to Sept. The sample size is 35,204,
42,852, and 44,376 farm-year observations for corn, soybeans, and sorghum, respectively.

Figure A3: Impact of Exposure to Varying Temperature Bins on Crop Yields

Table A1: Impact of Extreme Degree-Days on Crop Yields

(1)
Corn
Yield

(2)
Soybeans

Yield

(3)
Sorghum

Yield

EDD -0.011*** -0.008*** -0.010***
(0.001) (0.001) (0.001)

Num.Obs. 35,204 42,852 44,376
Impact of 1◦C warming (%) -18.4 -15.8 -20.1
R2 Adj. 0.545 0.572 0.465
Dependent variables are logged. All columns control for growing degree-days,
second order polynomial of precipitation, and farm and year fixed effects.
Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A2: Impact of Extreme Degree-Days on Income -
Balanced Panel

(1)
Gross Farm

Income

(2)
Net Farm
Income

EDD -0.003** -0.062*
(0.001) (0.032)

Num.Obs. 1,920 1,920
Impact of 1◦C warming (%) -4.8 -72.4
R2 Adj. 0.835 0.209
Dependent variables are inverse hyperbolic sine transformed.
All columns control for growing degree-days, second order
polynomial of precipitation, and farm and year fixed effects.
Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table A3: Role of Irrigation in Protecting Farm Income -
High Plains Aquifer (binary measure)

(1)
Gross Farm

Income

(2)
Net Farm
Income

EDD -0.004*** -0.064***
( 0.001) ( 0.012)

EDD × Large overlap of aquifer 0.002*** 0.035***
( 0.000) ( 0.006)

Num.Obs. 72,322 72,322
R2 Adj. 0.691 0.276
Dependent variables are inverse hyperbolic sine transformed.
All columns control for growing degree-days, second order
polynomial of precipitation, and farm and year fixed effects.
Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A4: Role of Irrigation in Protecting Farm Income -
Irrigated crop share (continuous measure)

(1)
Gross Farm

Income

(2)
Net Farm
Income

EDD -0.003*** -0.053***
(0.001) (0.012)

Irrigated crops (share) 0.155*** -2.625***
(0.054) (0.887)

EDD × Irrigated crops (share) 0.004*** 0.041***
(0.001) (0.012)

Num.Obs. 70,628 70,628
R2 Adj. 0.702 0.274
Dependent variables are inverse hyperbolic sine transformed.
All columns control for growing degree-days, second order
polynomial of precipitation, and farm and year fixed effects.
Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table A5: Role of Irrigation in Protecting Farm Income -
High Plains Aquifer (continuous measure)

(1)
Gross Farm

Income

(2)
Net Farm
Income

EDD -0.004*** -0.065***
(0.001) (0.012)

EDD × Aquifer overlap (share) 0.002*** 0.047***
(0.000) (0.008)

Num.Obs. 72,322 72,322
R2 Adj. 0.691 0.276
Dependent variables are inverse hyperbolic sine transformed.
All columns control for growing degree-days, second order
polynomial of precipitation, and farm and year fixed effects.
Spatial HAC standard errors are reported in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure A4: Heterogeneous Impact of EDD on Income by Share of Irrigated Crops

Figure A5: Heterogeneous Impact of EDD on Income by Aquifer Overlap
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