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Heterogeneity in the effect of GHG mitigation strategies on Irish dairy farms 

Abstract 

The agricultural sector is increasingly under pressure to participate in the greenhouse gas (GHG) 

emission reduction effort. At the farm level, significant improvements can be achieved through the 

adoption of new technologies. This study explores the heterogeneity in the effect of GHG mitigation 

strategies across the distribution of GHG emissions on Irish dairy farms. The econometric analysis is 

performed on an unbalanced panel dataset by using fixed effects (FE) unconditional quantile 

regression models. The preliminary results reveal that GHG mitigation strategies have a differential 

effect across the distribution of GHG emissions, with two main implications. First, the findings suggest 

that relying on estimations of a technology’s effect at the mean can be somewhat misleading as this 

does not reflect the effect of heterogeneity. Second, the study shows that the effect of GHG mitigation 

strategies is larger for high emitting farms than for low emitting farms.  

Keywords: Heterogeneity; technology effect; GHG mitigation; unconditional quantile regressions; 

Irish dairy farms. 

1 Introduction 

Over the last couple of decades, global awareness of environmental issues associated with greenhouse 

gas (GHG) emissions and notably their contribution to climate change has grown. The 2015 Paris 

Agreement marked a significant milestone in terms of international cooperation as 192 parties 

(including 191 countries and the European Union (EU)) committed to limit global warming to 2 degrees 

Celsius (or even 1.5 if possible) relative to pre-industrial levels (UNFCCC, n.d.). This international 

agreement generated the necessary political will to incorporate to a greater extent GHG reduction 

targets into country-specific policy agendas. In 2021, the Energy & Climate Intelligence Unit counted 

that 139 countries have either pledged for or are currently discussing mid-century carbon neutrality 

(Energy & Climate Intelligence Unit, 2023). Within this context, food production contributes to 

approximately a third of global GHG emissions and is thus expected to participate in the GHG 

reduction effort (Clark et al., 2020; Xu et al., 2021). This is challenging as the world population and 

hence global food demand continues to grow (Godfray et al., 2010; United Nations, 2017). Moreover, 

increased wealth in developing countries is anticipated to cause a larger shift towards animal-based 

diets (Godfray et al., 2010). Currently, it is estimated that animal-based foods are responsible for 

about 57% of food-related GHG emissions, which is twice as much as plant-based products (Xu et al., 

2021). Hence, the need to reduce GHG emissions from livestock production is becoming increasingly 

urgent (Lynch et al., 2021).  
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Incentives to prevent or at least restrain the global increase in the consumption of animal-based 

products can be implemented as a means to stabilise GHG emissions associated with livestock 

production (Lynch et al., 2021). Nevertheless, technological mitigation strategies are also required to 

further contribute to the achievement of GHG reduction targets. Given the 30-year timeframe under 

which carbon neutrality has been aimed for, it is unlikely that ground-breaking innovations will provide 

sufficiently large improvements in GHG emissions (Cassman and Grassini, 2020). It is thus important 

to continue working on the adoption of readily available technologies, which have potential for GHG 

mitigation and are not yet optimally used. Technology adoption has long been a popular topic of 

interest to researchers and policy makers because of its role in agricultural productivity growth and 

farming incomes (Feder et al., 1985; Foster and Rosenzweig, 2010; Macours, 2019). A common finding 

in the literature is that at the farm level, producers can be slow to adopt technologies, even those with 

proven economic benefits and public support (Pannell and Claassen, 2020; Takahashi et al., 2020; 

Weersink and Fulton, 2020). Technology diffusion generally follows an S-shaped curve, whereby 

farmers do not adopt all at once, notably due to differences in individual and farm characteristics, as 

well as heterogeneity in technology returns (Rogers, 1995). When promoting the uptake of 

environmentally sound technologies, the adoption challenge can be even stronger, as farmers are 

more likely to be sensitive to economic, productive, or lifestyle arguments rather than wider, 

environmental claims (Pannell et al., 2006; Vanclay, 2004).  

Despite the wide body of literature on technology adoption, public policies still build on the 

assumption that the adoption process will be relatively quick and promoted technologies will provide 

the expected returns at the farm level. However, delays in achieving desired policy outcomes can be 

caused by slow adoption rates and underperforming technologies. These issues can be particularly 

concerning in the instance that farmers for which promoted technologies would have the highest 

return are the slowest to adopt. Hence, it is important to better understand how the effect of 

promoted technologies can vary across farms. To date, very few studies have investigated the 

heterogeneity in technology returns (Foster and Rosenzweig, 2010; Weersink and Fulton, 2020). This 

article fills this gap in the literature and specifically explores the heterogeneity in the effect of GHG 

mitigation strategies on specialised dairy farms in Ireland.  

The need to reduce GHG emissions is particularly salient for Ireland’s livestock-based agricultural 

sector. The Irish government has recently committed to achieving a 51% decrease in GHG emissions 

by 2030 and carbon neutrality by 2050 (Government of Ireland, 2021). To reach these targets, five-

year carbon budgets were introduced for the agricultural sector (Government of Ireland, 2022). These 

are likely to limit future growth in the Irish dairy sector, which has been rapidly expanding and 
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intensifying for the last decade (Balaine et al., 2022b). Encouraged by national agri-food strategies, 

Irish milk production increased by 67.5% in 2020 relative to the 2007-2009 average (Central Statistics 

Office, 2020). Dairy growth was largely driven by higher cow numbers and enhanced reliance on inputs 

(Dillon et al., 2022). Such structural changes made it difficult to concurrently reduce agricultural GHG 

emissions during that time period (Balaine et al., 2022b). In fact, the Irish Environmental Protection 

Agency (EPA) estimates that agricultural GHG emissions increased by 9.6% (Environmental Protection 

Agency, 2022). Overall, Ireland did not achieve the 2020 targets of a 20% decrease in GHG emissions 

from non-Emission Trading Scheme (ETS) sectors1 relative to 2005 levels (Environmental Protection 

Agency, 2021). These targets were set out in 2009 as part of the EU effort sharing decision (European 

Commission, n.d.). Failure to achieve them will have financial implications for the Irish government.  

The achievement of future GHG reduction targets in the Irish agricultural sector heavily relies on 

farmers’ adoption of GHG mitigation strategies, especially if animal numbers remain unchanged. In 

December 2020, the Department of Agriculture, Food and the Marine (DAFM) published the ‘Ag 

Climatise’ roadmap towards climate neutrality, which details actions to be implemented by sub-sector 

(Department of Agriculture Food and the Marine, 2020). These are mainly based on previous research 

that has identified GHG mitigation strategies using the Teagasc2 Marginal Abatement Cost Curves 

(MACCs) (Department of Agriculture Food and the Marine, 2020; Lanigan et al., 2018). Among 

proposed changes, there exist some low-hanging fruit; that is, scope for incremental improvements in 

four ‘win-win’ areas of farm management that would be cost saving for farmers while providing wider 

GHG benefits. For the predominant grass-based milk production systems, these are input utilisation, 

breeding for better production efficiency, feeding system, and animal health (Department of 

Agriculture Food and the Marine, 2020). Hence, such aspects of farm management are focused upon 

in Irish agricultural extension (Department of Agriculture Food and the Marine, 2020; Teagasc, 2016, 

2015).  

In this study, we specifically examine whether changes in farm management practices have a 

heterogeneous effect across Irish dairy farms and, more precisely, across the distribution of their 

agricultural GHG emissions.  To do so, we focus on GHG mitigation strategies in the areas of input 

utilisation, breeding, feeding, and animal health (Department of Agriculture Food and the Marine, 

2020; Lanigan et al., 2018). GHG emissions are estimated at the farm level using a cradle-to-farm gate 

life cycle assessment (LCA) method developed by O’Brien et al. (2014, 2010). We report emissions by 

unit of output (i.e., kilogram (kg) of Fat-Protein-Corrected-Milk (FPCM)) as an indicator of milk GHG 

                                                           
1 Non ETS-sectors include agriculture, transport, residential, commercial, waste, and non-energy intensive 
industries.  
2 Teagasc is the Irish Agriculture and Food Development Authority.  
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efficiency, and by hectare (ha) as a measure of milk GHG pressure (Balaine et al., 2022b; Buckley and 

Donnellan, 2022). Using 2013-2019 panel data from the Teagasc National Farm Survey (NFS), we 

estimate two-way fixed effects (FE) unconditional quantile regression models at the 25th, 50th, and 75th 

percentiles (Borgen, 2016; Firpo et al., 2009). In this way, we assess differences in the effect of GHG 

mitigation strategies across low, middle, and high emitting farms, respectively. We then compare 

estimation results with findings from two-way FE ordinary least squares (OLS) regression models 

(estimated at the mean).  

The remainder of the article is structured as follows. In the second section, we describe econometric 

models used in this study. In the third section, we present the data and descriptive statistics. In the 

fourth section, we detail results, followed by a discussion and conclusions in the fifth section. 

2 Econometric models: Unconditional quantile regression models 

We are interested in analysing the heterogeneous effects of GHG mitigation strategies across the 

distribution of GHG emissions. To do so, we use unconditional quantile regression models developed 

by Firpo et al. (2009) and implemented with a FE setting in the Stata software by Borgen (2016). Unlike 

conditional quantile regression models, these unconditional models have the advantage of allowing 

for the estimation of the effect of mitigation strategies on the th percentiles of the unconditional 

distribution of GHG outcomes. In other words, percentiles are defined pre regression and thus not 

determined by the values taken by control variables in the model (Asfaw et al., 2020). As a 

consequence, with unconditional regression models, changes in control variables do not alter the 

interpretation of the effects of GHG mitigation strategies. As previously mentioned, we also estimate 

a two-way OLS regression model for comparison purposes (Allison, 2009). 

The FE OLS model is as follows: 

𝐺𝐻𝐺𝑖𝑡 = 𝛽0 + 𝛽1𝑀𝑖𝑡 + 𝛽2𝑋𝑖𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡                                                                                                           [1] 

where 𝑖 indexes farms and 𝑡 indexes time. 𝛽0 is the constant term. 𝛽1 is the effect of GHG mitigation 

strategies, 𝑀. 𝛽2 is the effect of other control variables, 𝑋. 𝛼𝑖 are the farm fixed effects. 𝜀𝑖𝑡 is the error 

term.  

As for the unconditional quantile regression models, the estimation is a two-step process (Borgen, 

2016). First, we obtain the recentered influence function (RIF) (Firpo et al., 2009). Second, we replace 

the outcome variable in equation [1] with this RIF. Specifically, the RIF is defined as follows: 

𝑅𝐼𝐹(𝐺𝐻𝐺; 𝑞𝜏, 𝐹𝐺𝐻𝐺) = 𝑞𝜏 +
𝜏−1{𝐺𝐻𝐺≤𝑞𝜏}

𝑓𝐺𝐻𝐺(𝑞𝜏)
                                                                                                         [2] 
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where 𝑞𝜏 is the value of the outcome variable, 𝐺𝐻𝐺, at the percentile 𝜏. 𝐹𝐺𝐻𝐺 is the cumulative 

distribution function of 𝐺𝐻𝐺. 𝑓𝐺𝐻𝐺(𝑞𝜏) is the density of 𝐺𝐻𝐺 at 𝑞𝜏. The indicator function, 1{𝐺𝐻𝐺 ≤

𝑞𝜏}, identifies whether or not the value of the outcome variable is below 𝑞𝜏. The models are estimated 

at the 25th, 50th, and 75th percentiles. 

Finally, in all models, we cluster standard errors at the farm level. 

3 Data and descriptive statistics 

The data used in this study is collected through the Teagasc NFS, which is carried out on a yearly basis 

as part of the EU Farm Accountancy Data Network (FADN). The data is gathered on a representative 

sample of about 900 Irish farms by a team of professional data recorders. Sampled farms are classified 

into six farming systems according to their main source of gross output: dairy, cattle rearing, cattle 

other, sheep, arable, and mixed livestock. In this analysis, we focus solely on specialised dairy farms 

over the 2013-2019 time period. Our sample constitutes an unbalanced panel dataset, and contains a 

total of 1,905 observations accounting for 340 specialised dairy farms. Farms remain on average 5.6 

years in the panel.  

The key variables of interest include GHG emissions (as dependent variables) and a set of GHG 

mitigation strategies promoted through Irish extension (as independent variables) (Department of 

Agriculture Food and the Marine, 2020; Teagasc, 2016, 2015). Other farm and farmer characteristics 

are also accounted for in the analysis. All variables are defined in Table 1, where their sample averages 

are also reported. Additional summary statistics at the 25th, 50th, and 75th percentiles of the GHG 

emission distributions are presented in the Appendix in Table A.1 for GHG emission efficiency and 

Table A.2 for GHG emission pressure. 
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Table 1: Variable definition and summary statistics, 2013-2019 pooled sample (n = 1,905) 

Variable name Definition Unit 
Mean (standard 

deviation) 

GHG emission variables 

GHG efficiency GHG emissions emitted per unit of output 
g of CO2e / 
kg of FPCM 

1126.86 
(217.37) 

GHG pressure GHG emissions emitted per hectare 
kg of CO2e / 
ha 

12112.41 
(4222.36) 

GHG mitigation variables 

N surplus Nitrogen surplus per hectare kg / ha 
177.04 
(70.23) 

NUE Nitrogen use efficiency  % 
22.64 
(6.70) 

Milk yield FPCM produced per dairy cow 
kg of FPCM / 
cow 

5275.09 
(1048.92) 

Homegrown 
grass 

Share of homegrown grass (including grazed 
grass and grass silage) in the diet of dairy 
cows 

% 
76.97 

(11.32) 

Grazing season Length of the grazing season days 
238.88 
(27.95) 

BTSCC Bulk tank somatic cell count 
‘000 cells / 
ml 

182.14 
(77.77) 

Other farm and farmer characteristics 

Herd size Average size of the dairy herd cows 
83.20 

(47.46) 

Stocking rate Dairy stocking rate cows / ha 
2.06 

(0.51) 

Specialisation 
Degree of specialisation in dairy production 
(ratio of dairy cows to total livestock units) 

% 
64.57 

(12.31) 

Discussion 
group 

Length of participation in a farmers’ 
discussion group 

years 
5.48 

(7.53) 

Age Age of the main farm holder years 
55.42 

(10.57) 

Gross margin Gross margin per hectare € / ha 
2395.32 
(971.63) 
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As previously mentioned, GHG emissions associated with dairy production are estimated based a 

cradle-to-farm gate LCA method developed by O’Brien et al. (2014, 2010). This LCA approach is 

internationally standardised (International Organization of Standardization, 2006a, 2006b), and 

follows specific guidelines for dairy production (British Standards Institute, 2011; Carbon Trust, 2010; 

International Dairy Federation, 2015). More specifically, the model was developed according to the 

publicly available specification 2050:2011 from the British Standards Institute (2011) and validated by 

the Carbon Trust, an accredited third party (O’Brien et al., 2014). On- and off-farm emissions are 

estimated using emission factors either based on the Intergovernmental Panel on Climate Change 

guidelines or coming from other sources in the literature (Dong et al., 2006; Duffy et al., 2019; O’Brien 

et al., 2014). They are then converted to kg of carbon dioxide equivalent (CO2e) using the 100-year 

global warming potential (Forster et al., 2007). GHG emissions are used as dependent variables in two 

different ways (Balaine et al., 2022b; Buckley and Donnellan, 2022). On the one hand, in order to 

represent environmental efficiency, emissions are reported per unit of output as kg of FPCM3. On the 

other hand, in order to represent environmental pressure, emissions are reported on a per-hectare 

basis.  

The effect of improving the four ‘win-win’ areas of farm management described in the DAFM ‘Ag 

Climatise’ report (i.e., input utilisation, breeding for better production efficiency, feeding system, and 

animal health) is tested through different GHG mitigation strategies (Department of Agriculture Food 

and the Marine, 2020). These are presented by area of farm management in Table 2, as well as their 

expected effect on GHG efficiency and pressure. First, because improving input utilisation can be 

achieved by reducing input application and enhancing response, this aspect is represented by nitrogen 

surplus and use efficiency in this analysis (Buckley et al., 2016, 2015). Nitrogen surplus gives an 

estimation of nitrogen management and pressure within the farm gate. It is calculated following an 

input-output accounting method, by subtracting all farm nitrogen outputs (e.g., nitrogen contents in 

milk and livestock sold off farm) from nitrogen inputs (e.g., nitrogen contents in concentrate feed and 

fertilisers). The measure is reported on a per-hectare basis to account for farm size. Nitrogen use 

efficiency (NUE) is calculated as the ratio of nitrogen outputs to nitrogen inputs, and is reported as a 

percentage. It represents how efficient the conversion of inputs into outputs is at the farm level.  

  

                                                           
3 According to the International Dairy Federation (2015), milk must be converted into FPCM to compare farms 
with different dairy cow breeds and diet composition. The formula to calculate FPCM is as follows: 
𝐹𝑃𝐶𝑀 = 𝑀𝑖𝑙𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 ∗ (0.1226 ∗ 𝐹𝑎𝑡% + 0.0776 ∗ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛% + 0.2534) 
where both 𝐹𝑃𝐶𝑀 and 𝑀𝑖𝑙𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 are measured in kg per year.  
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Table 2: GHG mitigation strategies under study 

‘Win-win’ areas of farm 
management 

GHG mitigation strategies  

Expected effect on GHG 
emissions 

GHG 
efficiency 

GHG 
pressure 

Input utilisation 
Reduce nitrogen surplus + - 

Improve NUE + - 

Breeding for production 
efficiency 

Increase milk yield + - 

Feeding system 

Increase the share of homegrown 
grass in cow diet 

+ - 

Lengthen the grazing season + - 

Animal health Decrease BTSCC + - 

Second, since dairy cows are selected to improve genetic merit and ultimately increase production 

efficiency, this area of farm management is represented by FPCM produced per dairy cow.  

Third, due to the temperate climate and grass-based nature of Irish milk production, the feeding 

system mainly relies on the growth and intake of grazed grass and grass silage (Hanrahan et al., 2017; 

O’Brien et al., 2018). Thus, two indicators of grassland management are used in this study: the share 

of homegrown grass in cow diet and the length of grazing season (Läpple et al., 2012; O’Brien et al., 

2018). Homegrown grass is estimated through a back calculation based on cow energy demand 

requirements (O’Brien et al., 2018). More precisely, kg of dry matter fed from grazed grass are 

calculated as total energy demand minus energy supply coming from other sources of feed than grass 

(mainly homegrown and brought-in forage and concentrate feeds). Energy demand includes energy 

used for maintenance and activity, milk production, pregnancy, and body weight change and growth. 

The share of homegrown grass in cow diet is then deduced by dividing the sum of dry matter fed from 

grazed grass and grass silage by total kg of dry matter fed. As for the length of grazing season, it is 

directly recorded in the Teagasc NFS as the number of days that dairy cows spend at grass (Läpple et 

al., 2012). When cows spend only the day at pasture and come indoors at night, this counts only for 

half a day of grazing in the variable. 

Fourth, improvements in herd health status are measured in terms of bulk tank somatic cell count 

(BTSCC), which is an indicator of milk bacterial contamination and risk of mastitis incidence (Dillon et 
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al., 2018; Geary et al., 2012). A threshold of 200,000 cells per ml is generally accepted as an indicator 

of mastitis occurrence (International Dairy Federation, 1997). 

Other farm characteristics that are accounted for in this study include herd size, stocking rate, and the 

degree of specialisation in dairy production (as measured by the ratio of dairy cows to total livestock 

units). Moreover, we control for farmer age and participation in extension, represented by years of 

participation in a farmer discussion group. In Ireland, farmer discussion groups are a predominant 

means of transferring knowledge to the farming community (Balaine et al., 2023, 2022a). About 50% 

of Irish dairy farmers participate in this form of extension services.  

4 Results  

In a first step, we examine the heterogeneity in the effect of GHG mitigation strategies through FE 

unconditional quantile regressions (Borgen, 2016; Firpo et al., 2009), and compare our findings with 

results of FE OLS regressions (i.e., estimations at the mean) (Allison, 2009). Quantile regressions are 

estimated at the 25th, 50th, and 75th percentiles of the GHG emission distributions. Table 3 reports the 

estimation results for the GHG efficiency outcome, while Table 4 summarises the findings for GHG 

pressure. Due to space constraints, we only focus on the effect of GHG mitigation strategies in results 

interpretation.  

Overall, the findings reveal that reductions in N surplus and improvements in the length of grazing 

seasons are effective GHG mitigation strategies both in terms of GHG efficiency and pressure. 

Inversely, despite showing some GHG efficiency benefits, increases in NUE and milk yield would be 

detrimental for GHG pressure. As for homegrown grass, it does not have a significant effect in any of 

the regressions, thereby showing no GHG benefits. Finally, reducing BTSCC does not constitute a 

suitable mitigation strategy, as the variable has either no significant effect or an unexpected negative 

association with GHG pressure at the 25th percentile.   

When delving deeper into the estimation results for the GHG mitigation variables, both tables show 

that estimations at the mean give an incomplete picture, as effects vary across the distribution of GHG 

efficiency and pressure. More precisely, Table 3 reveals that while the effect of grazing season on GHG 

emitted per FPCM is always negative, its magnitude linearly increases from -1.04 at the 25th percentile, 

to -1.47 at the median, to -1.79 at the 75th percentile. Hence, the decrease in GHG emitted per FPCM 

associated with an additional day spent at grass is larger for low GHG efficiencies than it is for high 

GHG efficiencies.  
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Table 3: Results of linear models exploring the relationship between GHG efficiency and 

independent variables  

Variables 

FE OLS regression  FE unconditional quantile regressions 

Average GHG 
efficiency  

(Mean) 
 

High GHG 
efficiency 

(p25) 

Medium GHG 
efficiency 
(Median) 

Low GHG 
efficiency 

(p75) 

N surplus 
0.21 

(0.13) 
 

0.60*** 
(0.20) 

0.60*** 
(0.19) 

-0.031 
(0.26) 

NUE 
-7.60*** 

(1.42) 
 

-5.23*** 
(1.80) 

-3.36* 
(1.75) 

-8.44*** 
(2.61) 

Milk yield 
-0.066*** 
(0.0090) 

 
-0.043*** 

(0.011) 
-0.042*** 

(0.012) 
-0.056*** 

(0.019) 

Homegrown 
grass 

-0.49 
(0.53) 

 
0.47 

(0.76) 
-0.10 
(0.70) 

-0.77 
(1.06) 

Grazing season 
-1.20*** 

(0.19) 
 

-1.04*** 
(0.32) 

-1.47*** 
(0.33) 

-1.79*** 
(0.38) 

BTSCC 
0.057 

(0.086) 
 

-0.10 
(0.085) 

0.12 
(0.11) 

0.069 
(0.15) 

Herd size 
-1.31*** 

(0.35) 
 

-1.03** 
(0.45) 

-1.66*** 
(0.45) 

-2.02*** 
(0.66) 

Stocking rate 
16.70 

(13.52) 
 

25.53 
(21.02) 

18.06 
(19.25) 

21.58 
(28.64) 

Specialisation 
-5.06*** 

(0.97) 
 

-3.82*** 
(1.17) 

-4.96*** 
(1.28) 

-5.50*** 
(1.91) 

Discussion 
group 

-0.90 
(1.26) 

 
0.30 

(2.01) 
-1.71 
(1.92) 

-4.26 
(2.78) 

Age 
1.11* 
(0.57) 

 
0.34 

(0.99) 
-0.27 
(0.90) 

0.36 
(1.47) 

F statistic 28.49***  10.69*** 15.77*** 8.60*** 

R2  0.78  0.54 0.59 0.58 

Adjusted R2 0.72  0.43 0.50 0.49 

Within R2 0.23  0.085 0.091 0.078 
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Note: n = 1,905. ***, **, and * significant at the 1, 5, and 10% levels. Coefficients and clustered 

standard errors in parentheses. Individual and time FE controlled for, and standard errors clustered at 

the farm level.  

Additionally, we find that the effect of NUE is constantly negative across the distribution of GHG 

efficiency in Table 3. However, the magnitude is heterogeneous across the distribution and at the 

smallest at the median. NUE has the largest effect for low GHG efficiencies, i.e., at the 75th percentile. 

More specifically, while an increase of 1 % point in NUE is associated with a GHG decrease of 5.23 g of 

CO2e per kg of FPCM at the 25th percentile, it is associated with a GHG reduction of 8.44 g of CO2e per 

kg of FPCM at the 75th percentile.  

In Table 3, milk yield also has a negative effect on GHG emitted per kg of FPCM across the distribution 

of GHG efficiency. The magnitude of its effect varies and is at the smallest at the median. The 

estimation results show that an increase of 1kg of FPCM per cow is associated with a GHG decrease 

of 0.043 g of CO2e per kg of FPCM at the 25th percentile, but it is associated with a GHG reduction of 

0.056 g of CO2e per kg of FPCM at the 75th percentile.  

Interestingly, while we find that N surplus does not seem to influence GHG efficiency when estimated 

at the mean, the findings of the quantile regressions reveal a significant effect at the 25th and 50th 

percentiles. More precisely, for medium to high GHG efficiencies, an increase of 1 kg of N surplus per 

ha is associated with a GHG increase of 0.60 g of CO2e per kg of FPCM. This effect is not significant at 

the 75th percentile, even though farmers with low GHG efficiencies are the ones with the highest N 

surplus on average (see Table A.1) and would thus be expected to have more scope for improvement 

in that aspect. 

Finally, Table 3 shows that homegrown grass and BTSCC do not have a significant effect on GHG 

efficiency in any of the regression models.  
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Table 4: Results of linear models exploring the relationship between GHG pressure and independent 

variables  

Variables 

FE OLS regression  FE unconditional quantile regressions 

Average GHG 
pressure  
(Mean) 

 
Low GHG 
pressure 

(p25) 

Medium GHG 
pressure 
(Median) 

High GHG 
pressure 

(p75) 

N surplus 
18.20*** 

(2.47) 
 

7.88** 
(3.21) 

17.49*** 
(3.53) 

28.21*** 
(5.59) 

NUE 
50.39** 
(20.38) 

 
-28.31 
(31.83) 

68.85** 
(28.05) 

110.30*** 
(37.65) 

Milk yield 
1.39*** 
(0.11) 

 
0.98*** 
(0.23) 

1.43*** 
(0.24) 

1.73*** 
(0.31) 

Homegrown 
grass 

-6.04 
(8.10) 

 
-9.23 

(12.57) 
-4.23 

(12.69) 
-25.12 
(18.24) 

Grazing season 
-13.41*** 

(2.49) 
 

-8.09* 
(4.23) 

-19.24*** 
(5.58) 

-15.78*** 
(5.94) 

BTSCC 
-0.57 
(0.85) 

 
-3.39* 
(1.92) 

0.13 
(1.85) 

2.76 
(2.30) 

Herd size 
-4.07 
(8.13) 

 
1.34 

(6.43) 
-1.02 
(8.69) 

-8.87 
(13.10) 

Stocking rate 
2999.09*** 

(312.94) 
 

1813.76*** 
(366.34) 

2737.27*** 
(475.36) 

3069.94*** 
(549.97) 

Specialisation 
-92.22*** 

(14.11) 
 

-78.03*** 
(25.37) 

-95.79*** 
(21.21) 

-124.23*** 
(21.39) 

Discussion 
group 

-15.70 
(19.36) 

 
-19.44 
(32.00) 

15.77 
(36.64) 

-24.16 
(51.49) 

Age 
6.99 

(7.62) 
 

-12.13 
(13.71) 

-6.48 
(15.80) 

-16.87 
(26.98) 

F statistic 72.63***  7.42*** 13.89*** 15.17*** 

R2  0.90  0.70 0.71 0.68 

Adjusted R2 0.88  0.63 0.64 0.60 

Within R2 0.46  0.087 0.15 0.16 
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Note: n = 1,905. ***, **, and * significant at the 1, 5, and 10% levels. Coefficients and clustered 

standard errors in parentheses. Individual and time FE controlled for, and standard errors clustered at 

the farm level.  

As previously mentioned, only reductions in N surplus and improvements in the length of grazing 

seasons prove to be effective mitigation strategies to decrease GHG emissions on a per-hectare basis, 

as well as per kg of FPCM. More specifically, Table 4 shows that N surplus has a positive effect on GHG 

pressure across the distribution. The magnitude of this effect increases linearly from low to high GHG 

pressures. At the 25th percentile (i.e., for low GHG pressures), an increase of 1 kg of N surplus per ha 

is associated with an increase of 7.88 kg of CO2e per ha. At the 75th percentile (i.e., for high GHG 

pressures), this effect is much larger as it is associated with an increase of 28.21 kg of N surplus per 

ha. On average, farmers with high GHG pressures have higher N surpluses than farmers with low GHG 

pressures (see Table A.2; 234.0 versus 115.8 kg of N surplus per ha). Thus, not only would reductions 

in N surplus in that farmer group be associated with greater GHG mitigation, these farmers are also 

expected to have more scope for improvement.  

As for grazing season, the results in Table 4 show that it has a negative effect on GHG emitted per ha. 

The magnitude of this effect varies across the distribution. The effect is the largest at the median and 

the lowest at the 25th percentile. The findings reveal that an additional day of grazing is associated 

with a GHG mitigation of 8.09 kg of CO2e per ha for low GHG pressures (i.e., 25th percentile) and of 

15.78 kg of CO2e per ha for high GHG pressures (i.e., 75th percentile).  

While enhancements in milk yield and NUE are associated with a GHG reduction per kg of FPCM, these 

two strategies would deliver the opposite effect on absolute GHG emissions. In fact, Table 4 reveals 

that milk yield has a positive effect on GHG emitted per ha. The magnitude of this effect increases 

linearly when moving for low to high GHG pressures. At the 25th percentile (i.e., for low GHG 

pressures), an increase of 1 kg of FPCM per cow is associated with a GHG increase of 0.98 kg of CO2e 

per ha. At the 75th percentile (i.e., for high GHG pressures), it is associated with a GHG increase of 1.73 

kg of CO2e per ha.  

Moreover, the findings in Table 4 show that while NUE has a significant effect when estimated at the 

mean in the FE OLS regression, this does not hold across the whole distribution. More specifically, the 

effect is not significant at the 25th percentile, i.e., for low GHG pressures. We find that at the median, 

an increase of 1% point in NUE is associated with an increase of 68.85 of CO2e per ha. At the 75th 

percentile (for high GHG pressures), it is associated with an increase of 110.30 kg of CO2e per ha.  
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5 Discussion and conclusions  

The preliminary results of this analysis reveal that GHG mitigation strategies have a differential effect 

across the distribution of GHG emissions, with two main implications. First, the findings suggest that 

relying on estimations of a technology’s effect at the mean can be somewhat misleading as this does 

not reflect the effect of heterogeneity. Second, the study shows that the effect of GHG mitigation 

strategies is generally larger for high emitting farms than for low emitting farms. While these results 

are not surprising, they suggest that because more mitigation can be achieved on high emitting farms, 

extension efforts could be directed predominantly towards this farm profile. Thus, the next steps of 

this research are to identify to a greater which characteristics are associated with different farm 

profiles to help extension efforts.   
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Appendix 

Table A.1: Summary statistics by GHG efficiency profile, 2013-2019 pooled sample (n = 1,905) 

Variables 
< p25 
High 

(n = 473) 

[p25; p50[ 
Medium to high 

(n = 477) 

[p50; p75[ 
Medium to low 

(n = 476) 

>= p75 
Low  

(n = 479) 

N surplus 
169.90 
(67.11) 

187.87 
(73.77) 

178.03 
(74.05) 

172.34 
(64.33) 

NUE 
25.51 
(6.63) 

22.99 
(6.15) 

22.41 
(6.71) 

19.68 
(6.00) 

Milk yield 
5691.84 
(962.26) 

5563.58 
(940.40) 

5202.17 
(1012.68) 

4648.73 
(956.62) 

Homegrown grass 
78.08 

(11.29) 
78.48 

(10.44) 
76.95 

(11.11) 
74.41 

(11.95) 

Grazing season 
248.53 
(25.14) 

242.09 
(26.33) 

235.03 
(27.99) 

229.96 
(28.67) 

BTSCC 
177.05 
(73.94) 

168.43 
(68.67) 

182.71 
(77.81) 

200.26 
(85.24) 

Herd size 
89.07 

(53.50) 
86.75 

(44.73) 
82.05 

(46.80) 
75.03 

(43.15) 

Stocking rate 
2.04 

(0.52) 
2.09 

(0.49) 
2.07 

(0.51) 
2.04 

(0.51) 

Specialisation 
73.19 
(9.68) 

67.92 
(9.92) 

62.86 
(10.53) 

54.43 
(10.58) 

Discussion group 
6.00 

(7.41) 
6.42 

(8.20) 
5.69 

(7.80) 
3.81 

(6.34) 

Age 
54.57 

(10.47) 
54.61 

(11.19) 
55.66 

(10.75) 
56.82 
(9.70) 

Gross margin 
2654.66 

(1085.04) 
2565.81 
(907.09) 

2345.69 
(896.71) 

2018.76 
(859.88) 

GHG pressure 
10539.62 
(3771.85) 

12103.97 
(3919.35) 

12485.82 
(4301.37) 

13302.82 
(4390.57) 

Note: means and standard deviations in parentheses. 
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Table A.2: Summary statistics by GHG pressure profile, 2013-2019 pooled sample (n = 1,905) 

Variables 
< p25 
Low 

(n = 473) 

[p25; p50[ 
Medium to low 

(n = 477) 

[p50; p75[ 
Medium to high 

(n = 476) 

>= p75 
High  

(n = 479) 

N surplus 
115.81 
(45.94) 

166.51 
(51.90) 

191.14 
(53.25) 

234.00 
(69.21) 

NUE 
23.90 
(8.58) 

22.38 
(6.19) 

22.15 
(5.71) 

22.13 
(5.81) 

Milk yield 
4603.95 
(967.48) 

5130.65 
(829.26) 

5456.90 
(931.43) 

5900.98 
(1009.62) 

Homegrown grass 
80.14 
(9.50) 

79.13 
(9.66) 

77.68 
(10.49) 

70.99 
(12.95) 

Grazing season 
235.41 
(28.85) 

240.89 
(27.34) 

239.46 
(26.44) 

239.72 
(28.89) 

BTSCC 
206.63 
(92.19) 

176.66 
(71.82) 

173.85 
(69.41) 

171.66 
(70.52) 

Herd size 
57.31 

(33.84) 
77.84 

(39.66) 
88.61 

(44.59) 
108.74 
(54.07) 

Stocking rate 
1.58 

(0.37) 
1.97 

(0.34) 
2.17 

(0.33) 
2.51 

(0.46) 

Specialisation 
67.25 

(14.13) 
66.36 

(11.43) 
63.50 

(11.83) 
61.20 

(10.70) 

Discussion group 
2.75 

(5.20) 
4.96 

(6.95) 
6.42 

(8.01) 
7.75 

(8.58) 

Age 
56.35 
(9.31) 

55.66 
(10.35) 

54.83 
(11.39) 

54.84 
(11.07) 

Gross margin 
1501.84 
(612.91) 

2186.79 
(643.18) 

2643.99 
(689.35) 

3238.15 
(947.93) 

GHG efficiency 
1079.04 
(244.31) 

1104.66 
(200.16) 

1138.68 
(201.75) 

1184.45 
(206.65) 

Note: means and standard deviations in parentheses. 

 


