

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Southern Agricultural Economics Association

 https://www.saea.org/This poster was presented at the

Southern Agricultural Economics Association
 Annual Meeting, February 4-8, 2023,
 Oklahoma City, Oklahoma

Copyright 2023 by the author(s). A/I rights reserved.

Agricultural Reclaimed Water in Florida

Wen Liu*, Gulcan Onel, Pilar Useche
Department of Food and Resource Economics, University of Florida, Gainesville, FL

1. Introduction

- Freshwater demand has been increasing globally.
- Reclaimed water, i.e., reuse water could save water.

■ Agricultural water accounts the most (40%) of water withdraw in Florida, where citrus is a dominant crop.

- Improving reclaimed water use for agricultural is important for water saving.

2. Motivation

- Florida is the largest user and producer of reclaimed water in the United Sates.
- Total use of reclaimed water in all areas of life in Florida has been increasing, expect for agricultural irrigation.
- Little is known about what drives this decline

2. Objective

- Evaluate the reclaimed water use for agricultural in Florida.
- Estimate factor effect on reclaimed agricultural water use.

3. Methods and Data

- Data

25 -year of annual reuse water inventory reports (FEDP,1996-2020), including reuse water flow for different type (agricultural use, public access, etc,) at county level.

25 -year of annual citrus statistic reports(NASS-USDA).
Dataset of water use data for Florida since 1985 (USGS).

- Methods

Spatial analyze of neighboring counties with high and low usage of fresh water, reclaimed water in agriculture and other areas.

Linear regression and time series models to identify major drivers of reclaimed water use in Florida agriculture.

Flow $_{t}=$ citrus prod $_{t}+$ land $_{t}+$ income $_{t}+$ irri_cost $_{t}$
$T=1996,1997, \ldots, 2020$
Citrus prod=citrus production per acre
Flow wereclaimed water use for agriculture
Income $=$ Netf farm Income per acre
Irri-cost-irrigation cost, use energy cost of i irigation as proxy

5. Conclusion

- Reclaimed water use accounts only less than 5% of Florida's agricultural irrigation withdrawing from freshwater. There is a massive potential for reclaimed water use for agricultural irrigation to improve in Florida.

■ Urban pressure and reduction of citrus production due to citrus greening were significantly decrease the demand of agricultural irrigation, including the demand of reuse water in agricultural irrigation.

