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Abstract 

 

This study aimed to bring forth empirical evidence of the effect of the sustained adoption of 

sustainable agricultural practices (SAPs) on the technical and profit efficiency of farmers. Previous 

studies remain inconclusive about whether the adoption of SAPs has any bearing on the efficiency of 

maize farmers. The current study introduced the concept of sustained adoption and compared levels 

of efficiency between one-time SAP adopters and sustained adopters. Using a sample of 2 100 

households, the study employed the Cobb-Douglas stochastic frontier model to analyse both the 

technical and profit efficiency of maize farmers, and a two-stage tobit model was used to control for 

endogeneity. The study found that the one-time adoption of SAPs has no effect on the technical 

efficiency of maize farmers, whilst sustained adoption significantly improves the technical and profit 

efficiency of maize farmers. The study recommends a shift towards promoting the sustained adoption 

of SAPs for sustainable benefits for farmers. 

 

Key words: efficiency, Malawi, stochastic frontier, sustained adoption, sustainable agricultural 

practices  
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1. Introduction  

 

The Global Hunger Index (GHI) report ranks Malawi in 87th position out of 121 countries included 

in the sample for the GHI calculation in 2022 (ReliefWeb 2022). The report shows that Malawi has 

an index score of 20.7, a level that is categorised as serious. Thus, attempts to boost agricultural 

production should be viewed as the only option to get Malawi out of the hunger and poverty trap 

(Goshu et al. 2013). As agricultural production is a key contributor to economic growth, it has 

witnessed a number of developments tailored at increasing the productivity and welfare of 

smallholder farmers. One of the prominent deployments is adoption of agricultural technologies and 

practices aimed at increasing yields in a climate-friendly manner.  

 

Furthermore, the literature on climate change has shown that Sub-Saharan Africa (SSA) is one of the 

most affected regions, further establishing the need to promote the adoption of sustainable agricultural 

practices (SAPs) by smallholder farmers. For instance, the Intergovernmental Panel on Climate 

Change (IPCC) observed that temperatures increased by an average of 0.45 and 0.55 degrees between 

2000 to 2010 and 2011 to 2020 respectively (IPCC 2022). The adverse impacts of climate variability 

and climate change, coupled with rising levels of poverty, have had an adverse effect on the adaptive 

capacity of households to respond positively to food insecurity-related shocks (Ayanlade et al. 2018; 

Adaawen et al. 2019; Uwizeyimana et al. 2019). 

 

Researchers, governments and non-governmental organisations (NGOs) working with smallholder 

farmers in SSA have promoted the soil fertility management (SFM) approach for many years. The 

SFM involves combining the utilisation of mineral fertilisers, like urea or NPK, with the use of grain 

legumes, nitrogen-fixing plants, crop wastes and manure (Sauer & Tchale 2009; Krah et al. 2019). 

The World Bank (2018) defines SAPs as agricultural practices that ensure efficiency in the use of 

natural resources, whilst moderating the effects of agriculture on the environment, while at the same 

time improving the adaptive capacity of farmers to the adverse effects of climate change. These 

include conservation agriculture (CA) practices, like mulching, no tillage and intercropping or crop 

rotation; climate smart agriculture practices (CSA), like pit planting and water-harvesting 

technologies; and SFM practices, like organic manure and fertiliser tree technologies, among others. 

The adoption and upkeep of SAPs in SSA has featured highly in the development policy agenda 

(Mwalupaso et al. 2019).  

 

Research on the effect of adopting SAPs on the productivity and efficiency of smallholder agriculture 

is growing (Adimassu et al. 2017; Ekman 2021; McCarthy et al. 2021; Mujeyi & Mudhara 2021; 

Pangapanga-Phiri & Mungatana 2021). Nonetheless, the evidence remains inconclusive. 

Pangapanga-Phiri and Mungatana (2021), for instance, noted an 18% improvement in technical 

efficiency for farmers adopting organic manure; Ekman (2021) found that intercropping and organic 

manure improve productivity by 59% and 54% respectively, whilst Mujeyi and Mudhara (2021) noted 

that the adoption of mulching, organic manure, crop rotation and intercropping improved profit 

efficiency. In contrast, Adimassu et al. (2017) found that the adoption of SAPs, including stone bunds, 

significantly reduced maize yields. Furthermore, McCarthy et al. (2021) noted that minimum tillage, 

mulching and vetiver grass did not improve the productivity of Malawian smallholder farmers. Other 

scholars have also found technical and profit efficiency of smallholder farmers to be affected by 

socioeconomic factors, rather than by the adoption of SAPs (Musa et al. 2015; Mapemba et al. 2019). 
 

In the current study, we note that the adoption of SAPs is affected most by the unsustainable 

implementation of these approaches. For instance, Bell et al. (2018) point out that the benefits of 

climate resilient practices like mulching, no tillage and intercropping can only be realised from the 

consistent adoption of the technology. On the other hand, there is an emerging literature proposing 

the assessment of agricultural interventions two years after adoption in order to capture noticeable 
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effects (De Brauw et al. 2019; Vaiknoras et al. 2019; Amadu et al. 2020). Furthermore, Bell et al. 

(2018) note that farmers tend to reduce the acreage of land under the practice over time and still report 

to have adopted SAPs. To that extent, past studies that have modelled SAPs have overlooked these 

two key aspects in their focus on adoption in a one-time survey period, hence the inconclusive 

findings (Adimassu et al. 2017; Ekman 2021; McCarthy et al. 2021; Mujeyi & Mudhara 2021; 

Pangapanga-Phiri & Mungatana 2021). 

 

In the current study, we estimated the effect of sustained adoption of SAPs (mulching, organic manure 

and pit planting) on technical and profit efficiency. The three practices were considered because this 

study collected data in the climate shock-hit areas of Malawi under the Sustainable Food Systems in 

Malawi (FoodMa) programme, in which these practices are promoted. Different practices were 

initially considered in the mix, but their adoption rates were too negligible (< 1%) to be considered 

for modelling. We define sustained adoption in two ways: (1) a farmer is defined to have adopted the 

SAPs sustainably if they were practised consistently for the previous three years (Ruel et al. 2018; 

De Brauw et al. 2019; Dillon et al. 2019; Vaiknoras et al. 2019; Amadu et al. 2020); and (2) following 

Bell et al. (2018), the farmers’ acreage of land under the practice was not reduced in the three years 

of consistent adoption. This provides room to effectively assess the effect of SAPs on the efficiency 

of smallholder farms, as it avoids categorising farmers who adopted in the current survey season but 

had not in the previous few seasons, and those who practised on a smaller portion of land and left the 

other portion under conventional farming, as adopters of SAPs. Nonetheless, we note that some 

farmers also expand the amount of land under the practice, which we checked for in the data and 

noted no significant adjustments in the three years. This is basically due to the small landholding sizes 

in the country (World Bank 2020). However, even if such cases existed, such farmers would still be 

considered sustained adopters, as the initial amount of land under the practice was not traded off for 

conventional farming (Bell et al. 2018).  

 

Through testing the null hypothesis that both one-time survey season adoption and sustained adoption 

of SAPs do not improve smallholder farmers’ technical and profit efficiency, the study notes that 

there is a need for a shift towards promoting the sustained adoption of SAPs. As such, the current 

study adds to the existing literature in two ways. First, it adds to the growing and yet small literature 

on SAPs by providing a shift in policy direction not only towards how to assess the adoption of SAPs, 

but also on how to refine extension messages for sustainable benefits for smallholder farmers. Lastly, 

it provides a novel evidence base for the scalability of SAPs amidst the current debates on low levels 

of technical efficiency (or productivity) and low adoption rates of SAPs resulting from the 

inconsistent uptake of agricultural technologies. 

 

2. Methodology 
 

2.1 Theoretical framework 

 

2.1.1 The Cobb-Douglas theorem 

 

We based the theoretical underpinnings of this study on the Cobb-Douglas theorem. Tijani et al. 

(2013) note that the theorem presents an economic theoretical analysis of the price-quantity path, with 

quantity and price assumed to be linked in a causal chain, i.e. with higher prices stimulating 

production in the next year, and vice versa. Equation (1) represents the cobweb model as follows: 

 

𝑄𝑡
𝑠 = 𝑓1(𝑃𝑡−1) + 𝑒𝑡  t = 1,…, n,                     (1) 

 

where 𝑄𝑡
𝑠 is the current quantity produced, which is dependent on the past season price 

function, 𝑓1(𝑃𝑡−1), and 𝑒𝑡 is the error term. Furthermore, the theorem assumes that all smallholder 
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farmers are rational, and hence the study assumes that farmers adopting SAPs are producing 

efficiently. The study hence presents the model as stochastic, as observations are considered to be 

inefficient (Mapemba et al. 2019). 

 

𝛱𝑖 = 𝑓(𝑃𝑖𝑍𝑖𝛽𝑖)𝐸𝑖,                     (2) 

 

where 𝛱𝑖 is the normalised profit obtained from produce under SAPs; 𝑃𝑖 is the normalised price of 

inputs of production; 𝑍𝑖 represents the factors of production on the farm, i.e. fertiliser, labour and 

pesticides; 𝛽𝑖  represents a vector of parameters; and 𝐸𝑖 represents the stochastic error term split into 

v and μ: 

 

𝐸𝑖 = 𝑣𝑖 + 𝜇𝑖,                      (3) 

 

where 𝑣𝑖 is strongly presumed to be an independent and identically distributed random error term that 

follows a normal distribution, N (0, σ²). Again, 𝑢𝑖 is a one-sided error, which represents profit 

inefficiency, and also is a non-negative truncation of the half normal distribution, N(u, σ²u). 

 

2.1.2 The cost minimisation theorem 

 

Next, the study follows Debertin (2004), who presented the cost minimisation problem, which 

comprises two factors in relation to profit maximisation. Thus, farmers can either maximise profits, 

or minimise the cost of producing the profit-maximising quantity. In this scenario, farmers adopting 

SAPs can thus minimise the costs of production, subject to the constraint that revenue is a fixed 

amount. Following Varian (1984), and further assuming the presence of competitive output and input 

markets, the cost minimisation problem is presented as follows: 

 

𝑀𝑖𝑛 𝐶 = ∑ 𝜔𝑛𝑥𝑛𝑛                    (4) 

 

𝑠𝑡      𝑌𝑘
𝑖∗ = 𝐴 ∏ 𝑥𝑛𝛽𝑛𝑛 ,                  (5) 

 

where 

 

𝐴 = exp (𝛽0).                    (6) 

 

In the above, 𝐶 is the total production cost; 𝜔𝑛 is a vector of input prices; 𝑥𝑛 is a vector of inputs of 

production, such as labour, fertiliser, herbicides, pesticides and seeds; 𝛽 represents parameter 

estimates; and 𝑌𝑘
𝑖∗ is the maize output adjusted for the given input levels. 

 

Following Varian (1984), we present the dual cost function as follows: 

 

𝐶(𝑌𝑘
𝑖∗, 𝜔) = 𝐻𝑌𝑘

𝑖∗𝜇 ∏ 𝜔𝑛
𝑥𝑛

𝑛                     (7) 

 

for 

 

𝛼𝑛 = 𝜇𝛽𝑛,                      (8) 

 

𝜇 = (∑ 𝛽𝑛𝑛 )−1                     (9) 

 

and 𝐻 =
1

𝜇
(𝐴 ∏ 𝛽𝑛

𝛽𝑛
𝑛 )−𝜇.                  (10) 
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Since the farmer maximises profits by minimising costs, applying Shepard’s lemma to Equation (7), 

and further making a substitution of the price of inputs and the maize output level that has been 

adjusted for inputs, gives rise to the following demand function: 

 
𝛼𝐶𝑖

𝛼𝜔𝑛
= 𝑋𝑖

𝑒(𝜔𝑖, 𝑌𝑖
∗, 𝜃),                   (11) 

 

where 𝜃 is a vector of the parameters of the array of inputs. As such, the observed, technical and 

economically efficient input vectors of farmer i can be given 𝜔𝑖
′𝑋𝑖, 𝜔𝑖

′𝑋𝑖
𝑡 and 𝜔𝑖𝑋𝑖

𝑡  respectively. 

Hence, the technical and economic efficiency of the farmer from the cost minimisation problem can 

be presented as follows: 

 

𝑇𝐸𝑖 =
𝜔𝑖

′𝑋𝑖
𝑡

𝜔𝑖
′𝑋𝑖

, and                   (12) 

 

𝐸𝐸𝑖 =
𝜔′𝑋𝑖

𝑡

𝜔𝑖
′𝑋𝑖

,                    (13) 

 

where 𝜔′ and 𝜔𝑖
′ represent the vectors of observed and efficient input prices respectively; and 𝑋𝑖  and 

𝑋_𝑖^𝑡 represent the vectors of observed and efficient inputs respectively. The constrained problem 

represents the production technology as: 

 

 𝑦 = 𝑔(𝑥, 𝐴),                     (14) 

 

where 𝑥 represents the inputs of production, 𝐴 provides the technology used, and 𝑦 is the output. We 

further assume that the technology, 𝑔(𝑥, 𝐴), is strictly decreasing and concave in 𝑥 (Varian 1984). 

Furthermore, in the absence of technical change, 𝐴_𝑡 = 1 for t = 1, 2…., T, then 𝑔(𝑥_𝑡, 1) = 0. This 

explains the weak axiom of profit maximisation. Thus, if the farmer maximises profit given 𝜔_𝑡, then 

𝜔𝑖
′𝑋𝑖

𝑡 should be greater than or equal to the profits generated by any other set of outputs and inputs 

evaluated at 𝜔𝑡. For cost minimisation, the input 𝑋_𝑡 minimises the cost over all choices that can at 

least produce 𝑦. 

 

2.2 Analytical framework 

 

2.2.1 The stochastic production frontier model 

 

The current study notes that different studies have used the stochastic production frontier model 

(Chirwa 2007; Musa et al. 2015; Belete 2020) to measure efficiency. Methods for measuring 

efficiency can be grouped into parametric and non-parametric. Non-parametric production frontier 

measures differ from parametric frontier measures as they do not impose any functional form, and 

neither do they assume any distribution form of the disturbance term. In addition, we note that 

frontiers can be either deterministic or stochastic (Coelli et al. 1998). A deterministic frontier assumes 

that all the deviations from the frontier emanate from the inefficiency of the farm. On the other hand, 

a stochastic frontier assumes that part of the deviations emanate from a random component. Following 

Debertin (2004), the study employed a Cobb-Douglas production function and further specified a 

stochastic production frontier as follows: 

 

ln(𝑦𝑖) = 𝑓(𝑥𝑖 , 𝛽) + 𝜀𝑖,                  (15) 

 

where 𝑦𝑖 is output; 𝑥𝑖 is a vector of input i; and 𝜀𝑖 is a composite stochastic disturbance term such 

that 𝜀𝑗 = 𝑣𝑗 + 𝜇𝑗. Different assumptions govern the distribution of the errors 𝑣𝑗 and 𝜇𝑗. Thus, 𝜇𝑗 is 
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two-sided, whilst 𝑣𝑗 is a one-sided error term. The systematic component, 𝑣𝑗, is assumed to be random 

and identically and independently (independent of 𝜇𝑗) normally distributed. According to Coelli et 

al. (1998), the random systematic component explains the variations in the economic environment in 

which production operates. The inefficiency component of the frontier is provided by 𝜇𝑗. According 

to Lee and Tylor (1978), the distribution of the inefficient component of the production frontier can 

take on many forms, but it is never symmetric.  

 

Following Battese and Coelli’s (1995) parameterisation, the inefficiency in the stochastic frontier was 

estimated using maximum likelihood, as presented by the following log likelihood: 

 

ln 𝐿 =
𝑁

2
𝑙𝑛 [

𝜋

2
] −

𝑁

2
𝑙𝑛𝜎2 + ∑ 𝑙𝑛 [1 − 𝐹 [

𝜀𝑗√𝛾

𝜎√1−𝛾
]] −

1

2𝜎2
∑ 𝜀𝑗

2𝑁
𝑗−1

𝑁
𝑗−1 ,             (16) 

 

where 𝜀 is the stochastic error component produced from the maximum likelihood estimation 

procedure presented by 𝐿; 𝑁 is the total number of maize farms; 𝐹 follows a normal distribution 

function; 𝜎2=𝜎𝜇
2 + 𝜎𝑣

2; and 𝛾 = 𝜎𝜇
2/𝜎2. Furthermore, and following the earlier work of Battese and 

Coelli (1995), the current study assumes a half-normal distribution of the inefficiency component 𝜇𝑗, 

hence the mean or average technical efficiency of smallholder maize farmers practising SAPs can be 

presented as follows: 

 

𝐸[exp (−𝜇𝑗)] = 2 [exp (−
𝛾𝜎2

2
)] ⌊1 − 𝐹(𝜎√𝛾)⌋.               (17) 

 

What is crucial from the standard normal distribution of the maximum likelihood function is the 

estimation of the non-negative stochastic error term, 𝜇𝑗, which measures the technical inefficiency in 

the frontier. Following Coelli et al. (1998), the current study presents the sources of inefficiency as 

follows: 

 

𝑙𝑛 𝑦𝑖𝑗 = 𝜑 + ∑ 𝛽 ln 𝑥𝑖𝑗 + ∑ 𝜃𝑆𝐴𝑃𝑠𝑘𝑗 + ∑ 𝜔𝐴𝐸𝑖𝑗
𝑗
𝑖=1

𝑘
𝑘=1

𝑗
𝑖=1 + 𝑣𝑗 − 𝜇𝑗,            (18) 

 

for 

 

 𝜇𝑗 = 𝛿0 + ∑ 𝛿𝑗𝑧𝑗
𝑛
𝑗=1 + 𝑤𝑗,                  (19) 

 

where, for farm i adopting SAP j,  𝑦𝑖𝑗 is the total quantity or production of maize in kilograms; 𝑥𝑥𝑖𝑗 is 

a vector of inputs of production including land, labour, quantity of seed and quantity of fertiliser; 

SAPs represents dummies of organic manure, mulching and pit planting compared to the base of 

conventional farming; 𝐴𝐸 is a vector of agroecological factors including rainfall data and soil quality 

features; 𝑤𝑗 are the unobservable random covariates that are assumed to be independently distributed 

after a truncation of the normal distribution, i.e. 𝑁(0, 𝜎𝑤
2 ); and 𝜇𝑗 represents the technical inefficiency 

estimates predicted simultaneously with the sources of inefficiency.  

 

2.2.2 The stochastic profit efficiency model 

 

Following the earlier work of Coelli et al. (1998), a similar approach as that for estimating technical 

efficiency was adopted to estimate economic efficiency. The individual farm-specific profit 

efficiencies were predicted from the stochastic production frontier model, as specified by the Cobb-

Douglas model. The estimation of technical efficiency used the natural logs of quantities of inputs of 

production, whilst the economic efficiency estimation used the natural logs of the value of the inputs 
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of production. As such, the economic inefficiency of the farms was predicted through a stochastic 

frontier analysis (SFA) approach (Battese & Coelli 1995; Coelli et al. 1998). The model can be 

represented as follows: 

 

𝑙𝑛𝜋𝑖 = 𝛽0 + 𝛽1𝑙𝑛𝐿𝑎𝑏𝑐𝑜𝑠𝑡 + 𝛽2 ln 𝑆𝑒𝑒𝑑𝑐𝑜𝑠𝑡 + 𝛽3𝑙𝑛𝐹𝑒𝑟𝑡𝑐𝑜𝑠𝑡 + 𝛽4𝑙𝑛𝑃𝑒𝑠𝑡𝑐𝑜𝑠𝑡 +  (𝑣 − 𝜇),       (20) 

 

where 𝑙𝑛𝜋𝑖 is the restricted normalised profit of smallholder maize farmers (MK per ha); 𝑙𝑛𝐿𝑎𝑏𝑐𝑜𝑠𝑡 

is the costs of labour normalised by price of maize (MK per man day of labour); ln 𝑆𝑒𝑒𝑑𝑐𝑜𝑠𝑡 is the 

cost of maize seed normalised by price of maize (MK per kg of seed), 𝑙𝑛𝐹𝑒𝑟𝑡𝑐𝑜𝑠𝑡 is the cost of 

fertiliser normalised by price of maize (MK per kg of fertiliser); 𝑙𝑛𝑃𝑒𝑠𝑡𝑐𝑜𝑠𝑡 is the cost of pesticides 

normalised by price of maize (MK per litre of pesticide); 𝛽0 to β4 are parameters to be estimated; v 

is the symmetric component of the white noise that depicts factors outside the control of the farmer; 

and μ is the non-negative random variable under the control of smallholder maize farmers that depicts 

the economic inefficiencies.  

 

2.2.3 The two-stage censored tobit model 

 

The study employed a two-stage tobit model to analyse the effect of SAPs (mulching, pit planting 

and organic manure) on the efficiency of farmers. A probit model was employed in the first stage to 

estimate factors affecting the adoption of the SAPs. The predicted scores were then included in the 

tobit model to solve for endogeneity bias in assessing the influence of adopting SAPs on efficiency. 

The popular OLS used by many authors, such as Chirwa (2007) and Musa et al. (2015) in the analysis 

of determinants of inefficiency was not applicable, since the inefficiency scores ranged from 0 to 1. 

This follows a double truncation with a lower and upper limit, violating the normal distribution 

assumption of the OLS (Wooldridge 2015).  

 

The probit model can be represented as 

 

𝑃𝑖𝑗𝑡 = 𝛿0 + ∑ 𝛿𝑗𝑍𝑗 + 𝑤𝑗
𝑗
𝑗=0    for t = 1, 2, 3,              (21) 

 

where 𝑃𝑖𝑗𝑡 takes a value of one if a farmer adopts a particular SAP (i.e. mulching, organic manure or 

pit planting) for the three years, and zero otherwise. 𝛿0 is a constant term, 𝑍𝑗 is a vector of explanatory 

variables, whilst 𝛿𝑗 represents parameters to be estimated and 𝑤𝑗 is the error term. 

 

Following Tobin (1958), the inefficiency predicted from the stochastic frontiers can best be presented 

as a latent variable-specification problem: 

 

𝜇𝑗
∗ = 𝛿0 + ∑ 𝛿𝑗𝑍𝑗 +  + γj Mijt  + 𝑤𝑗,                  (22) 

 

where 𝜇𝑗
∗ is the latent variable indexing inefficiency (technical or profit) of the farm; 𝛿𝑗 is a vector of 

unknown parameters to be estimated; 𝑍𝑗 is a vector of explanatory variables (socioeconomic, 

institutional, agroecological and farm-level factors); Mijt is a vector of predicted values of mulching, 

pit planting and organic manure from Equation (21); and 𝑤𝑗 is the error term that is independent and 

normally distributed, i.e. 𝑁(0, 𝜎𝑤
2 ). 

 

The observed variables of the technical efficiencies can be represented as follows: 

𝜇𝑗 = {

1              𝑖𝑓 𝜇𝑗
∗ ≥ 1

𝜇𝑗
∗        𝑖𝑓 0 < 𝜇𝑗

∗ < 1

0             𝑖𝑓 𝜇𝑗
∗ ≤ 0

,                  (23) 
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where 𝜇𝑗 denotes the observed technical efficiency on farm j, whilst 𝜇𝑗
∗ represents a latent variable 

indexing the observed technical efficiencies on farm j. 

 

2.3 Diagnostic test 

 

In order to ascertain the relevance of using a stochastic frontier over a normal linear model, log 

likelihood tests were performed, as recommended by Kumbhakar et al. (2015). The two models differ 

because stochastic models assume that the error term is composite and comprises variance coming 

from both the inefficient component and that coming from the random component. The likelihood 

ratio compares the restricted model (see Table A2 and A3 in the Appendix) with an unrestricted 

model’s log likelihood ratios using the following formula: 

 

⋋= −2[𝐿(𝐻0) − 𝐿(𝐻1)],                  (24) 

 

where 𝐿(𝐻0) and 𝐿(𝐻1) represent the log-likelihood values computed from the restricted OLS model 

and the unrestricted stochastic frontier models respectively. The computed statistic was then 

compared to critical values, of which the results show that the stochastic frontier was justified.  

 

2.4 The data 

 

The study was conducted in 349 randomly sampled enumeration areas (EAs) in the three districts of 

Mzimba, Kasungu and Mchinji (see Table A1 in the Appendix). A total of 2 100 farming households 

were sampled systematically through proportional sampling to the size of the districts, hence using 

sampling weights. Sample weights were calculated as the inverse of sampling probabilities at each 

sampling stage. Considering that the sampling of climate variability-prone areas was done by the 

FoodMa project, the study only calculated sample weights for the remaining two sampling stages, 

viz. sampling for EAs and farming households. The probability of sampling EAs, 𝑓1𝑖, was calculated 

as below: 

 

𝑓1𝑖 =
𝑎𝑖∗ 𝑛𝑖

𝑐𝑖
,                     (25)  

 

where 𝑎_𝑖 is the number of EAs to be sampled in a district, 𝑛𝑖 is the number of households in a 

sampled EA, and i and 𝑐𝑖 are the total number of households in a district to which an EA belongs. 

The probability of sampling a farming household, 𝑓2𝑖, was calculated as indicated below:  

 

𝑓2𝑖 =
𝑏𝑖

𝑛𝑖
                    (26) 

 

The sampling weight, 𝑠𝑤𝑖, was calculated as below: 

 

𝑠𝑤𝑖 =
1

𝑓1𝑖∗ 𝑓2𝑖
,                    (27) 

 

where 𝑏𝑖 is the number of sampled households in the sampled EA, and i and 𝑛𝑖  are the total number 

of households in an EA. The inverse of the product of the two probabilities, as presented in Equation 

(27), constitutes the final sample weight attached to each sampled household. 

 

Qualitative data (focus group discussions and key informant interviews with extension workers) 

collected from the EAs were used to supplement the findings. Again, the study included three-year 

average rainfall and temperature data from CEDA (the Center for Environmental Analysis), and 
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further controlled for soil type and perception of soil quality, which were crucial determinants of 

SAPs (Bachewe et al. 2015). These elements form part of the agroecological factors. Average 

monthly rainfall and temperature data for the preceding three years covering the sampled districts and 

enumeration areas were hence requested. Following Dessy et al. (2020), the study merged farmer 

characteristics with the computed average rainfall and temperature data from CEDA using the 

collected GPS coordinates. Table 1 provides a summary of the descriptive statistics of the surveyed 

farmers. The average number of members per household was around 4.4 to 4.7 persons. Household 

heads spent about 5.7 to 7.4 effective years in school, and most of them were aged from 43 to 47 

years. The average land sizes were around 3.2 and 3.5 acres. With regard to the agroecological 

conditions, average temperature for the three years was around 21°C, whilst the three-year average 

precipitation was around 80.6 to 81.6 mm. The average maize output per hectare was 1 767 kg, whilst 

the average quantity of seed applied per hectare was 210 kg. The use of chemical fertiliser and 

pesticides amounted to 112.80 kg and 91.78 kg respectively. Labourers spent fewer than two hours 

working in their fields on average per day. 

 

Table 1: Descriptive statistics of surveyed farmers 

Variable Measurement 

One-time 

adoption 

Sustained 

adoption 

One-time 

adoption 

Sustained 

adoption 

One-time 

adoption 

Sustained 

adoption 

Organic 

manure 

n = 935 

Organic 

manure 

n = 818 

Mulching 

n = 668 

Mulching 

n = 498 

Pit planting 

n = 244 

Pit planting 

n = 154 

HH size Persons 
4.5 

(1.78) 

4.49  

(1.76) 

4.4 

(1.59) 

4.4 

(1.58) 

4.6 

(1.50) 

4.7 

(1.53) 

HH education 
Effective years 

spent in school 

7.4 

(3.4) 

7.3 

(3.5) 

6.6 

(4.1) 

6.5 

(4.05) 

5.8 

(4.1) 

5.7 

(4.2) 

HH age Years 
43.3  

(13.6) 

43.5 

(13.9) 

44.4 

(13.7) 

44.5 

(12.7) 

44.7 

(14.9) 

45.7 

(14.6) 

Land size Acre 
3.3  

(2.9) 

3.2 

(2.9) 

3.4 

(3.06) 

3.3 

(3.0) 

3.5 

(5.1) 

3.4  

(4.7) 

Tropical livestock 

units (TLU) 
Number 

0.59 

(1.35) 

0.59 

(1.4) 

0.66* 

(1.48) 

0.62 

(1.42) 

0.68* 

(1.6) 

0.63 

(1.5) 

Three-year average 

temperature  
Degrees Celsius 

21.1  

(0.96) 

21.1 

(0.96) 

20.9 

(1.04) 

21.0 

(1.03) 

20.9 

(1.1) 

21.0 

(1.1) 

Three-year average 

rainfall  
mm 

80.7 

(5.59) 

80.8 

(5.62) 

80.6 

(5.7) 

80.7 

(5.7) 

81.2 

(6.1) 

81.6 

(6.1) 

Number of children 

in HH 
Number 

0.41 

(0.58) 

0.42 

(0.58) 

0.39 

(0.57) 

0.39 

(0.57) 

0.35 

(0.54) 

0.34 

(0.54) 

Soil type (%) Sandy 11.08 11.76 14.09 13.78 21.16 18.53 

 Loam 34.09 32.57 45.84 45.67 39.15 38.79 

 Sandy loam 47.79 48.37 31.41 32.20 35.45* 38.36 

 Clay 7.03 7.30 8.66 8.36 4.23 4.31 

Perception of soil 

fertility (%) 
Poor 12.04 12.64 27.84 28.33 38.10 37.93 

 Fair 68.18 68.41 52.80 52.94 43.92 44.83 

 Good 19.79 18.95 19.35 18.73 17.99 17.24 

HH sex Male (1/0) 
0.822 

(0.39) 

0.818 

(0.39) 

0.817 

(0.39) 

0.815 

(0.38) 

0.823* 

(0.40) 

0.807 

(0.36) 

Off-farm income 

activities 
Yes (1/0) 

0.027 

(0.16) 

0.027 

(0.15) 

0.019 

(0.15) 

0.022 

(0.15) 

0.01* 

(0.06) 

0.004 

(0.08) 

Radio ownership Yes (1/0) 
0.246 

(0.42) 

0.233 

(0.43) 

0.202 

(0.39) 

0.191 

(0.42) 

0.196 

(0.40) 

0.192 

(0.42) 

Smartphone 

ownership 
Yes (1/0) 

0.034 

(0.19) 

0.037 

(0.18) 

0.023 

(0.14) 

0.020 

(0.17) 

0.005 

(0.13) 

0.016 

(0.11) 

Floods in past three 

years 
Yes (1/0) 

0.075 

(0.26) 

0.073 

(0.27) 

0.039 

(0.19) 

0.037 

(0.21) 

0.035 

(0.19) 

0.036 

(0.21) 

Dry spell in past 

three years 
Yes (1/0) 

0.722 

(0.45) 

0.713 

(0.46) 

0.845 

(0.37) 

0.841 

(0.37) 

0.808 

(0.40) 

0.795 

(0.42) 
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Variable Measurement 

One-time 

adoption 

Sustained 

adoption 

One-time 

adoption 

Sustained 

adoption 

One-time 

adoption 

Sustained 

adoption 

Organic 

manure 

n = 935 

Organic 

manure 

n = 818 

Mulching 

n = 668 

Mulching 

n = 498 

Pit planting 

n = 244 

Pit planting 

n = 154 

Savings group 

membership  
Yes (1/0) 

0.271 

(0.44) 

0.260 

(0.43) 

0.281 

(0.44) 

0.260 

(0.47) 

0.196 

(0.38) 

0.176 

(0.44) 

Farmer club 

membership 
Yes (1/0) 

0.514 

(0.50) 

0.497 

(0.50) 

0.565 

(0.50) 

0.538 

(0.48) 

0.479 

(0.50) 

0.438 

(0.50) 

Attended SAPs 

field 

demonstrations 

Yes (1/0) 
0.807 

(0.40) 

0.793 

(0.39) 

0.882 

(0.33) 

0.877 

(0.33) 

0.904 

(0.31) 

0.893 

(0.33) 

Listened to SAPs 

radio programme 
Yes (1/0) 

0.832 

(0.38) 

0.825 

(0.39) 

0.930 

(0.27) 

0.919 

(0.28) 

0.954 

(0.24) 

0.938 

(0.24) 

Received SAPs 

training 
Yes (1/0) 

0.798 

(0.41) 

0.786 

(0.40) 

0.850 

(0.36) 

0.842 

(0.38) 

0.898 

(0.32) 

0.885 

(0.34) 

Extension visit in 

last 12 months 
Yes (1/0) 

0.704 

(0.46) 

0.687 

(0.43) 

0.759 

(0.42) 

0.752 

(0.41) 

0.813 

(0.40) 

0.790 

(0.39) 

Maize Yield kg/ha 
1 949.125 

(357.79) 

1 913.892 

(344.91) 

2 349.40 

(406.2) 

2 265.29 

(390.91) 

1 845.341 

(126.64) 

1 811.215 

(126.44) 

Fertiliser  kg/ha 
115.554 

(15.08) 

116.497 

(18.64) 

135.67 

(11.63) 

134.874 

(14.05) 

118.66 

(12.74) 

117.03 

(11.54) 

Seed kg/ha 
24.73 

(5.4) 

24.83 

(5.1) 

21.98 

(4.2) 

21.90 

(4.6) 

20.58 

(4.8) 

20.54 

(4.6) 

Pesticides kg/ha 
66.11 

(16.89) 

66.11 

(15.89) 

168.5 

(17.35) 

145.5 

(16.77) 

211.2 

(14.44) 

211.2 

(14.34) 

Total labour Hours/day 
1.38 

(0.64) 

1.39 

(0.6) 

1.61 

(0.83) 

1.61 

(0.82) 

1.39 

(0.69) 

1.38 

(0.67) 

Notes: Standard deviation in parentheses; * p < 0.1 

 

3. Results and discussion 

 

3.1 Efficiency of maize farmers 

 

First, the study estimated the technical efficiency of maize farmers adopting mulching, pit planting 

and organic manure. The stochastic frontier models were estimated for both one-time survey season 

adoption and sustained adoption. The overall average technical and profit efficiency of farmers was 

66% and 55% respectively, implying that maize farmers in the study areas remain inefficient. Thus, 

farmers could reduce the inputs used proportionally by about 34% to achieve the same level of output. 

Similarly, farmers could reduce the cost of inputs by 45% to achieve the same level of profit. The 

technical efficiency of sustained organic manure adoption (69%) was significantly higher than the 

one-time adoption of organic manure (64%). The findings do not deviate much from those of other 

Malawian scholars, who also found inefficiencies in smallholder maize farms. For instance, Tchale 

(2009) found a mean technical efficiency score of 53%. Pangapanga-Phiri and Mungatana (2021) 

found a mean technical efficiency of 63%. This shows the need to improve the technical efficiency 

of smallholder maize farms. Likewise, the profit efficiency of sustained pit planting (64%) and 

sustained mulching (59%) was significantly higher than that of one-time adoption. Thus, despite the 

technical and profit efficiency scores of the smallholder farmers being expectedly lower, the 

efficiency scores for sustained adoption were on average significantly higher than those of one-time 

adoption. 
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Table 2: Summary of efficiency measures 
Efficiency 

scores 

Mulching Pit planting Organic 
Pooled 

One time Sustained One time Sustained One time Sustained 

Technical 0.65 0.67 0.66 0.67 0.64 0.69** 0.66 

Profit 0.54 0.59* 0.57 0.64** 0.54 0.56 0.55 

Notes: ** p < 0.05, * p < 0.1 

 

Furthermore, the study notes that, from the overall (pooled) Cobb-Douglas model, fertiliser, seed, 

labour and land size were significant and positive determinants of productivity. For instance, a 

percentage increase in fertiliser application increased productivity by 18.7%; a percentage increase 

in quantity of seed increased productivity by 36.8%; a percentage increase in labour days increased 

productivity by 22.1%; and a percentage increase in land size increased productivity by 48.7%. Since 

land size was the reported harvested land, farmers with larger land sizes were able to benefit from 

economies of scale. In Malawi, the productivity of smallholder maize farmers remains low compared 

to the productivity on estate farms (Anti-Corruption Bureau 2021). This is why considerable 

resources are allocated to the Affordable Inputs Programme (AIP) to improve the productivity of 

smallholder farmers. Furthermore, focus group discussions revealed that farmers were not applying 

the recommended rates of inputs due to financial constraints. This explains the inefficiency, and why 

any increase in these inputs increases the maize yield. As such, the adoption of SAPs provides farmers 

with opportunities to improve soil health and fertility amidst low input use. Nonetheless, a positive 

and significant relationship also holds for each of the SAPs being adopted. This suggest that the use 

of the required inputs should again go hand in hand with the adoption of SAPs.  

 

Table 3: Estimates of the Cobb-Douglas production function 

Yields/ha 
Mulching Pit planting Organic 

Pooled 
One time Consistent One time Consistent One time Consistent 

Lnfertiliser 
0.189*** 

(0.009) 

0.179*** 

(0.010) 

0 .189*** 

(0 .009) 

0.1786*** 

(0.010) 

0 .188*** 

(0.009) 

0.188*** 

(.009) 

0.187*** 

(0.009) 

Lnseed 
0.395*** 

(0.035) 

0.378*** 

(0.038) 

0 .395*** 

(0 .035) 

0.347** 

(0.038) 

0.395*** 

(0 .035) 

0.395*** 

(.035) 

0.368*** 

(0.037) 

Lnpesticides 
-0.042*** 

(0 .041) 

-0.041*** 

(0.045) 

-0.042*** 

(0 .041) 

-0.044*** 

(0.045) 

-0.042*** 

(0.041) 

-0.042 

(.041) 

-0.040 

(0.041) 

Lnlabour 
0.168*** 

(0.036) 

0.221*** 

(0.038) 

0.168*** 

(0.036) 

0.221*** 

(0.038) 

0.168*** 

(0.036) 

0.221*** 

(0.038) 

0.221*** 

(0.038) 

lnLand size 
0.284*** 

(0.051) 

0.349*** 

(0.151) 

0.194 

(0.152) 

0.849** 

(0.392) 

0.481** 

(0.163) 

0.346*** 

(0.142) 

0.487*** 

(0.131) 

Constant 
5.329*** 

(0 .118) 

5.962*** 

(0.252) 

5.329*** 

(0.118) 

5.962*** 

(.252) 

5.329*** 

(0.118) 

5.329** 

(0.118) 

3.500** 

(0.147) 

Usigma 
3.606*** 

(0 .919) 

-1.995*** 

(0.592) 

3.606*** 

(0.919) 

-1.995*** 

(0.592) 

3.606*** 

(0.919) 

3.606*** 

(0.919) 

3.571*** 

(0.700) 

Vsigma 
-0.834 

(0.048) 

-0.716 

(0.160 ) 

-0.834 

(0.048) 

-0.716 

(0.160) 

-.834 

(0.048) 

-0.834*** 

(0.048) 

-0.833*** 

(0.049) 

Notes: Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 

 

Furthermore, the study estimated the stochastic profit frontier function and used normalised gross 

margins as profits in the stochastic frontier model. The results are presented in Table 4. The results 

show that, contrary to the expectation, the addition costs of fertiliser and land increased the gross 

margins. On the other hand, additional labour costs reduced the farmer’s gross margins. This can be 

explained by the fact that more fertiliser and more land entail more fertility and a larger production 
area respectively, such that farmers are able to produce more output, resulting in an increased surplus 

to sell.  
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Table 4: Estimates of the stochastic frontier function 

Gross margins 
Mulching Pit planting Organic manure 

Pooled 
One time Consistent One time Consistent One time Consistent 

Lnfertiliser costs 
0.088 

(0.009) 

0.088 

(0.009) 

0.088 

(0.009) 

0.089*** 

(0.009) 

0.088 

(0.009) 

0.088 

(0.009) 

0.089*** 

(0.009) 

Lnland costs 
0.441 

(0.043) 

0.441 

(0.043) 

0.441 

(0.043) 

0.441 

(0.043) 

0.441 

(0.043) 

0.441 

(0.043) 

0.444*** 

(0.043) 

Lnlabour costs 
-0.072 

(0.041) 

-0.072 

(0.041) 

-0.072 

(0.041) 

-0.072* 

(0.041) 

-0.072 

(0.041) 

-0.072* 

(0.041) 

-0.072* 

(0.041) 

Ln pesticide costs 
0.021 

(0.038) 

0.021 

(0.038) 

0.021 

(0.038) 

0.020 

(0.038) 

0.021 

(0.038) 

0.020 

(0.038) 

0.020 

(0.038) 

Constant 
7.620 

(0.558) 

7.620 

(0.558) 

7.620 

(0.558) 

7.610 

(0.558) 

7.620 

(0.558) 

7.610 

(0.558) 

7.610 

(0.558) 

Usigma 
0.180* 

(0.098) 

0.180* 

(0.098) 

0.180* 

(0.098) 

0.180* 

(0.098) 

0.180* 

(0.098) 

0.180* 

(0.098) 

0.180* 

(0.098) 

Vsigma 
-0.164** 

(0.074) 

-0.164** 

(0.074) 

-0.164** 

(0.074) 

-0.164** 

(0.074) 

-0.164** 

(0.074) 

-0.164** 

(0.074) 

-0.164** 

(0.074) 

sigma_u 
1.094*** 

(0.054) 

1.094*** 

(0.054) 

1.094*** 

(0.054) 

1.094*** 

(0.054) 

1.094*** 

(0.054) 

1.094*** 

(0.054) 

1.094*** 

(0.054) 

sigma_v 
0.921*** 

(0.034) 

0.921*** 

(0.034) 

0.921*** 

(0.034) 

0.921*** 

(0.034) 

0.921*** 

(0.034) 

0.921*** 

(0.034) 

0.921*** 

(0.034) 

Lambda 
1.188*** 

(0.078) 

1.188*** 

(0.078) 

1.188*** 

(0.078) 

1.188*** 

(0.078) 

1.188*** 

(0.078) 

1.188*** 

(0.078) 

1.188*** 

(0.078) 

Notes: Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 

 

3.2 Determinants of technical and profit efficiency 

 

The study further sought to establish factors that determine the technical as well as profit efficiencies 

of maize farmers. The effect of one-time and sustained adoption of mulching, pit planting and organic 

manure were evaluated through the use of a two-stage tobit model. A probit model was first used to 

predict the adoption values of mulching, pit planting and organic manure. The predicted values were 

regressors in the inefficiency model, along with other covariates in the tobit model. The results are 

summarised in Table 5. For technical efficiency, the study found that the one-time adoption of any of 

the SAPs, viz. mulching, no tillage and organic manure, had no significant influence on technical 

efficiency. Thus, the findings of this study agree with the findings of Adimassu et al. (2017) and 

McCarthy et al. (2021), who found no significant effect of the conventional one-time adoption 

decisions of similar sustainable agricultural production practices. This necessitates a modelling shift 

towards the sustainability of the practices to observe significant effects. For instance, allowing for 

measurement in the sustainability of the practices, the study finds that sustained adoption of mulching, 

no tillage and organic manure significantly increase the technical efficiency of farmers, i.e. reduces 

the inefficiency of smallholder maize farmers.  

 

In terms of profit efficiency, the results show that the one-time adoption of organic manure improves 

profit efficiency, whilst the one-time adoption of the other SAPs (pit planting and mulching) had no 

effect on profit efficiency. Nonetheless, sustained adoption of organic manure and pit planting were 

found to significantly increase the profit efficiency of maize farmers. This further cements the need 

for a modelling shift in order to capture the sustainability effects of the practices. The study went 

further to also control for other covariates and noted that the age of the household head, household 

head education level, ownership of a smart phone, soil type, farmer club membership, membership 
of a savings group and average temperature were significant determinants of technical and profit 

efficiency. 
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Table 5: Determinants of technical and profit efficiency of smallholder maize farmers 

Efficiency 
Technical Profit 

One time Consistence One time Consistence 

Organic farming 
-0.003 

(0.039) 

-0.177*** 

(0.061) 

-0.767*** 

(0.294) 

-0.564** 

(0.219) 

Pit planting 
-0.052 

(0.051) 

-0.106** 

(0.053) 

-0.292 

(0.194) 

-0.329* 

0.194 

Mulching 
0.004 

(0.023) 

-0.077** 

(0.035) 

-0.092 

(0.159) 

0.018 

(0.128) 

HH size 
-0.001 

(0.005) 

0.006 

(0.005) 

-0.005 

(0.024) 

-0.020 

(0.023) 

HH sex 
-0.028 

(0.036) 

-0.019 

(0.036) 

-0.005 

(0.137) 

-0.010 

(0.137) 

HH age 
-0.011*** 

(0.003) 

-0.010*** 

(0.003) 

0.004 

(0.012) 

0.005 

(0.012) 

Age2 
0.0001** 

(0.000) 

0.000*** 

(0.000) 

0.000 

(0.000) 

0.000 

(0.000) 

HH education 
-0.006** 

(0.003) 

0.000 

(0.003) 

0.023* 

(0.014) 

0.017 

(0.012) 

Radio 
-0.003 

(0.021) 

0.005 

(0.021) 

-.0230 

0.082 

-0.074 

(0.078) 

Smart phone 
0.0389 

(0.047) 

0.050*** 

(0.046) 

-0.325* 

(0.189) 

-0.246 

(0.186) 

Loam 
0.003 

(0.035) 

0.025 

(0.035) 

0.358* 

(0.141) 

0.289** 

(0.136) 

Sandy loam 
-0.058* 

(0.030) 

-0.026 

(0.029) 

0.402*** 

(0.124) 

0.356*** 

0.112 

Clay 
-0.062* 

(0.037) 

0.017 

(0.044) 

0.255 

(0.166) 

0.235 

0.164 

Floods 
0.061* 

(0.035) 

0.044 

0.035 

0.358** 

0.145 

0.329 

(0.145)** 

Dry 
0.032 

(0.023) 

0.051 

0.024 

0.029 

(0.107) 

-0.069 

(0.089) 

Farmer club membership 
0.044 

(0.024) 

0.078*** 

(0.028) 

0.209* 

0.108 

0.173 

(0.106) 

SAPs radio programme 
-0.041 

(0.029) 

0.002 

(0.030) 

0.113 

0.135 

0.070 

(0.113) 

SAPs field demonstrations 
-0.007 

(.023) 

0.049 

(0.029) 

1.009 

0.428 

-0.098 

0.108 

Extension visit 
.005 

(.027) 

0.011 

(0.026) 

-0.002 

(0.102) 

0.031 

(0.010) 

Land size in hectare 
-.0009 

(.0303) 

0.016 

(0.031) 

0.019 

(0.114) 

0.014 

(0.113) 

Three-year average temperature 
0.048*** 

(0.009) 

0.041*** 

(0.010) 

0.140*** 

0.044 

0.181*** 

0.036 

Three-year average rainfall 
.001 

(.001) 

0.000 

0.001 

-0.004 

0.006 

-0.001 

(0.006) 

Savings group 
-0.058* 

(0.031) 

0.124* 

(0.065) 

0.509* 

(0.279) 

0.370 

(0.235) 

Constant 
-0.396* 

(0.235) 

-0.827*** 

(0.273) 

-4.13*** 

(0.917) 

-4.595*** 

1.025 

Notes: Standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01 

 

4. Conclusions and recommendations 

 

The main focus of the current study was the evaluation of the effects of adoption of SAPs on the 

technical and profit efficiency of maize farmers. The technical and profit efficiencies were evaluated 

using stochastic frontier models of the Cobb-Douglas form. The study used a two-stage censored tobit 
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model to analyse the determinants of technical and profit efficiencies. The first stage involved the 

prediction of SAPs adoption values through a probit model in an effort to eliminate possible 

endogeneity. The predicted values of mulching, pit planting and organic manure adoption were then 

used as explanatory variables, together with other covariates in a tobit model. Building on past 

research, which presents inconclusive findings on the matter, the study brought in a new concept of 

sustained adoption and compared the effects with the conventional modelling of the one-time 

adoption of agricultural technologies in a season. To that effect, the current study examined the null 

hypothesis, which states that neither the initial adoption of SAPs during a survey season, nor ongoing 

SAPs adoption, will increase the technical and profit efficiency of smallholder farmers. The current 

study contributes to the growing but still sparse body of knowledge on SAPs by offering a policy 

direction change toward not only how to assess SAP adoption, but also toward improving extension 

messages for long-term benefits to smallholder farmers. In the light of recent discussions about low 

levels of technical efficiency (or productivity) and poor adoption rates of SAPs as a result of the 

uneven uptake of agricultural technologies, the study offers a fresh evidence base for the scalability 

of SAPs and SAPs adoption messages. The study found that the sustained adoption of mulching, pit 

planting and organic manure positively influences farmers’ technical efficiency, and there is no effect 

of one-time adoption on technical efficiency. Likewise, profit efficiency was positively influenced by 

the sustained adoption of mulching and pit planting. However, the one-time adoption of mulching 

also influenced profit efficiency. The study concludes that a change needs to be made in order to 

encourage the long-term adoption of SAPs. The study therefore recommends a shift in modelling to 

a focus on the sustained adoption of these practices for improvements in productivity and profits. 

This should involve refining the extension messages to focus on sustainability and to inform farmers 

that the effects of adopting SAPs improve with time.  
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Appendix 
 

Table A1: Sample sizes proportional to size of districts 

District 
Number of 

EAs 

Number of 

households 

(rural) 

Average 

number of 

HHs/EA 

Sampled 

EAs (pps) 

SAP project 

areas 

SAP non-

project HHs 

Final 

sample 

Mzimba 865 188 802 131 144 432 432 864 

Kasungu 799 166 032 208 133 399 399 798 

Mchinji 438 130 437 298 73 219 219 438 

Total 2 102 485 271 637 349 1 050 1 050 2 100 

Note: pps = proportional probability sampling  

 

Table A2: Restricted OLS profit efficiency model 
Gross margins Pooled 

Lnfertiliser costs 
0.084*** 

(0.011) 

Lnland costs 
0.463*** 

(0.055) 

Lnlabour costs 
-0.060* 

(0.048) 

Ln pesticides costs 
0.051 

(0.047) 

Constant 
6.189 

(0.688) 

Deviance 3 471.38 

Pearson 3 471.38 

AIC 3.664 

BIC -77.11 

Log likelihood -2797 

Notes: Standard errors in parentheses; AIC = Akaike information criterion; BIC = Bayesian information criterion; * p < 

0.10, ** p < 0.05, *** p < 0.01 

 

Table A3: Restricted OLS technical efficiency model 
Gross margins Pooled 

Lnfertiliser quantity 
0.144 

(0.011) 

Inseed quantity 
-0.375 

(0.029) 

Ln pest  
-0.000 

(0.03) 

Lnlabour  
0.318 

(0.04) 

Lnlandsize  
1.215 

(0.131) 

Constant 
6.250 

(0.092) 

Deviance 1 814.24 

Pearson 1 814.24 

AIC 2.697 

BIC -14 204.21 

Log likelihood -2 826 

Notes: Standard errors in parentheses; AIC = Akaike information criterion; BIC = Bayesian information criterion; * p < 

0.10, ** p < 0.05, *** p < 0.01 

 


