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Abstract 

 

Variability in climate and debility in soil fertility affect agrarian production, especially in sub-

Saharan Africa, and thus threaten food security. This has prompted the seed sector to introduce 

various varieties of climate-smart maize in Kenya and release them in the market. In contrast, there 

is little experiential insight into how the adoption of these varieties by small-scale farmers affects 

their household income. This paper used cross-sectional data to evaluate the implications of climate-

smart maize varieties on small-scale farmers’ household income in Embu County in Kenya. The 

endogenous switching regression model was used to estimate the influence of climate-smart maize 

adoption on household income. Based on survey data obtained from 550 maize farmers in Embu 

County, the results show that age, education, land under climate-smart maize varieties, and distance 

to the market positively influenced the income level of the adopters. The findings further reveal that 

the decision to adopt the climate-smart maize varieties had a significant positive effect of about 60% 

on farmers’ household income. It therefore can be concluded from the results that the adopters would 

gain more from technology adoption. These results recommend policies that stimulate the adoption 
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of current climate-smart varieties, with an emphasis on adoption by youths, to create more jobs and 

increase household income to reduce poverty among smallholder farmers in Kenya. 

 

Key words: climate-smart maize varieties, adoption, endogenous switching regression, impact, 

Kenya 

 

1. Introduction 

 

Agricultural productivity is affected by climate variability and deterioration in soil fertility, which 

have threatened global food security over the years (Wheeler & Von Braun 2013). Due to climatic 

change, drought has become more severe and prolonged (Hyman et al. 2008). Smallholder farmers 

face severe food crises and sustained long-term poverty traps as drought increases due to their limited 

adaptive capacity (Bryan et al. 2013). In sub-Saharan Africa (SSA), one of the most prominent food 

crops is maize, which is adversely affected by drought. According to Fisher et al. (2015), around 40% 

of maize-growing areas in Africa face intermittent drought stress, resulting in a loss in yield of about 

10% to 25%. Changes in climate lead to increased drought time, which gives rise to a drop in maize 

production by 22% in SSA (Schlenker & Lobell 2010). Daryanto et al. (2016) suggest that the 

manifestation of drought decreases maize yield by 39.2%, especially at the vegetative and productive 

stage, and this decreases farmers’ income over time. 

 

Policymakers, researchers and farming communities face challenges related to agriculture and 

climate, such as the mitigation of greenhouse gas emissions, flexibility to changes in the environment, 

and ensuring food security. To meet growing food demands and improving the livelihoods of poor 

smallholder producers, mitigation of and adaption to climate change and changes in the agriculture 

sector are of primary importance (AGRA 2014). Climate-smart agriculture (CSA) is one of the 

promising ways that have been identified to address the effects and causes of climate change. The 

development of climate-smart crop varieties, especially stress-tolerant maize varieties, has been 

achieved as an adaptive strategy to this situation. This has led to the introduction of drought-tolerant 

maize varieties for SSA, and the aim is to develop and deploy these varieties in zones where there are 

variations in rainfall patterns and climatic conditions (Wossen et al. 2017). Drought-tolerant maize 

varieties exhibit the ability to withstand drought and to produce higher yields compared to other 

commercial hybrids (Simtowe et al. 2019). According to Setimela et al. (2014), drought-tolerant 

maize germplasm produces about 40% more output under drought conditions than other commercial 

varieties. 

 

In addition, ex ante economic analyses suggest that, if small-scale farmers would adopt drought-

tolerant maize extensively, this would provide a change in welfare through improved production and 

reduced risk. It is estimated that the uptake of climate-smart maize varieties in SSA can produce a 

cumulative benefit of 362 to 590 million US dollars (USD) to both producers and consumers 

(Kostandini et al. 2009). Furthermore, according to Lunduka et al. (2017), a family cultivating stress-

tolerant maize varieties can produce 247 kg per acre more than their counterparts who did not 

cultivate stress-tolerant varieties, generating an additional USD 240 per ha for the adopter families. 

Although ex ante analyses (such as those by Kostandini et al. 2009; La Rovere et al. 2014; Fisher et 

al. 2015; Holden & Fisher, 2015, Kassie et al. 2013) of the adoption of climate-smart varieties such 

as drought-tolerant maize varieties in SSA predicted a positive impact on both the yield potential and 

the returns to the household, ex post analyses require more work. Therefore, this study intends to fill 

this paucity in the literature on the effect of adopting these new, improved climate-smart maize 

varieties on smallholder farmers’ income in Kenya by evaluating the impact of adopting climate-

smart maize varieties on these households’ income. The results from this study will play a key role 

in achieving the sustainable development goals relating to zero hunger, poverty reduction and climate 

change. Moreover, the adoption of climate-smart maize varieties will directly improve agricultural 
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productivity and indirectly increase household income, which is in line with government programmes 

of attaining vision 2030. The rest of the paper is presented as follows: Section 2 discusses the 

methodology, while Section 3 presents the results and discussion. Finally, Section 4 presents the 

conclusion and policy recommendations. 

 

2. Methodology  

 

2.1 Theoretical framework  

 

Smallholder farmers act as rational economic agents who aim to maximise their welfare, given a set 

of constrictions determined by market conditions, institutions, the biophysical environment, and the 

availability of information (De Janvry et al. 1991). The farmers are assumed to weigh the expected 

benefits and costs of the adoption of climate-smart maize varieties against the benefits and costs of 

not adopting. Therefore, following the expected utility theory (Mercer 2004), farmers decide whether 

or not to adopt technology, such as a climate-smart maize variety, given that the risk and uncertainty 

scenarios are assumed to be based on the assessment of expected utility (Schoemaker 1982). The 

farmer adopts a technology if the expected utility from the adoption decision (Uά) is higher than that 

derived when one does not adopt (Uη) (Kassie et al. 2015). In this study, the expected utility of the 

present value of agricultural returns and conditions of the adoption of yield-enhancing inputs such as 

climate-smart seed represent the farmer’s preference. 

 

Following Greene (2003), the expected utility for the household can be specified as a function of 

climate-smart seed (Zik), other technical factors and the socio-economic characteristics of the 

household (τi) (Equation (1)):  

 

𝜋𝑖𝑘 = 𝜋̄(𝑧𝑖𝑘, 𝜏𝑖) + 𝜀(𝑧𝑖𝑘, 𝜏𝑖) = 𝑥𝑖𝑘𝜃 + 𝜀𝑖𝑘 , 𝑘 = 1,2; 𝑖 = 1, . . . , 𝑛,               (1) 

 

where the deterministic factor of the utility function is 𝜋̄(𝑧𝑖𝑘, 𝜏𝑖), 𝜀(𝑧𝑖𝑘, 𝜏𝑖), also referred to as the 

stochastic element of the utility function. It represents the unobserved attributes affecting technology 

choice, heterogeneity in tastes and measurement errors:  

 

𝑥𝑖𝑘is a matrix of covariates, 𝑧𝑖𝑘, and 𝜏𝑖; and 𝜃 is the vector of parameters.  

 

Therefore a farmer plants the climate-smart maize seed if the expected returns from using it are higher 

than those generated by traditional seed varieties. The binary choice model of adoption of improved 

seed is thus specified in Equation (2):  

 

𝑦𝑖 = 𝐼{𝜋𝑖1 − 𝜋𝑖0 > 0} = 𝐼{𝑥𝑖1𝜃 + 𝜀𝑖1 − 𝑥𝑖0𝜃 + 𝜀𝑖0 > 0} = 𝐼{𝑥𝑖𝜃 + 𝑢𝑖},              (2) 

 

where 𝑢𝑖 = 𝜀𝑖1 − 𝜀𝑖0 is a random error term with zero mean, and 𝜃 is defined up to some scalar 

normalisation. 

 

2.2 Study area  

 

The study was carried out in Embu County, which is located in the eastern part of Kenya. Due to its 

proximity to Mt Kenya, the county’s temperatures are likely to be an average of between 9°C and 

28°C. The county receives considerable rainfall, with an average annual rainfall of 1 206 mm. The 

months from March to July are the wettest season, whereas the hottest season is experienced between 

January and mid-March. The main driver of the county’s economy is agriculture, with more than 70% 

of the population working as smallholder farmers. Prominent cultivated food crops in the county are 
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maize, beans, pigeon peas, with maize and beans grown as either intercrops or monocrops (Country 

Government of Embu 2013). The average farm size ranged between 2 ha and 2.8 ha per household in 

2002 (Ouma et al. 2002). 

 

2.3 Survey design and data collection  

 

The study adopted a survey design in a natural research setting (Bartlett et al. 2001). Multi-stage 

sampling was used. In the first stage, Embu County was purposively selected due to the increased 

effect of climatic change in the area, changing patterns of agricultural production, and different 

agroecological zones, which give room for growing different varieties of maize. The second stage 

was a stratified sampling of adopters and non-adopters at sub-locations of Kyeni South Ward, because 

of the heterogeneity in its demographic distribution, which formed three agroecological zones. These 

agroecological zones created three strata, which were based on the topographical and ecological 

demarcation of the three zones. The sample size was determined using Krejcie and Morgan’s (1970) 

formula of the finite population, which is written as:  

 

𝑠 = (𝑥2𝑁𝑝(1 − 𝑝))/𝑑2 (𝑁 − 1)  + 𝑥2 𝑝(1 − 𝑝),                 (3) 

 

where S = size of the sample, X = standard variation at a given level of confidence, p = sample 

proportion (assumed to be 0.5, since this would provide the maximum sample size), N = the size of 

the population, and d = acceptable error (the precision). Using Equation (3), with N = 27 438, d = 4%, 

X = 1.96 (as per the table of the area under the standard curve for the given confidence level of 95%), 

the preferred sample size was 587 farmers. This number was obtained as follows:  

 
1.962 ×27438×0.5(1−0.5)

0.042×(27438−1)+[1.962×0.5(1−0.5)]
= 587.42 (which can be rounded off to be 587 farmers)            (4) 

 

This gave a sample size of 587. However, due to resource constraints concerning meeting all the 

respondents, only a total of 561 respondents were interviewed. After data collection, 11 

questionnaires were discarded due to incomplete and poor responses. Therefore, the analysis was 

done for 550 respondents. The questionnaire was developed and the enumerators were trained to 

know the content of the questionnaire and the intent of the research. Pre-testing was done in Manyatta 

constituency with farmers who had similar characteristic as the targeted respondents. This was to 

ensure the clarity of the questionnaire. Data collection was done in 2019 using a semi-structured 

questionnaire administered face to face with the maize farmers in Embu County in Kenya. 

 

2.4 Empirical framework  

 

To understand the causal impact of the climate-smart maize variety on farmers’ household income, 

information was needed on how much the adopters would have earned had they not decided to plant 

new varieties, and how much non-adopters would have earned had they decided to adopt (Ngoma 

2018). Lack of information on the abovementioned gap brings about the problem of selection bias. 

According to Amare et al. (2012), it is not possible to estimate the impact of adopting technology 

based on non-experimental observations, since it is not possible to observe the outcome of adopters 

in the case they did not adopt. This bias is also a problem of missing data, since we cannot observe 

the same farmers if they had adopted and not adopted at the same time (Ngoma 2018). To address the 

issue of bias selection in a non-experimental scenario, different econometric approaches are used, 

such as instrumental variables regression and Heckman models (Ogundari & Bolarinwa 2018).  

 

Heckman models include propensity score matching (henceforth PSM) and endogenous switching 

regression model (ESR). The PSM expects that outcome coefficient to be the same for the non-
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adopters and adopters, but recent empirical studies have proven this is not the case (Di Falco et al. 

2011; Asfaw et al. 2012; Teklewold et al. 2013; Shiferaw et al. 2014). Further, PSM may cause biased 

estimations, which may lead to inconsistency and biased estimates, which may give misleading policy 

recommendations. Thus, the PSM method is less reliable due to unobservable characteristics of the 

farmers influencing self-selection into treatment. The current study therefore employed the ESR 

model, with the average treatment effect on the treated (ATT) being used to measure this impact. The 

ATT calculates the average variance in upshots of adopters when they have adopted the technology 

and when they have not (Khonje et al. 2015). The PSM is the most commonly used method to 

calculate ATT, but it ignores unobserved factors that influence the process of adoption. The ESR 

model has its own limitations, since it assumes that the adoption equation and the outcome equation 

error terms have a tri-variate standard distribution with a covariance matrix and a mean vector zero. 

Even though ESR has this shortcoming, it is the appropriate model to apply in the current study to 

make it possible to avoid selection bias and unobserved heterogeneity of the adopters and non-

adopters (Wossen et al. 2017). 

 

The study took two stage-treatment frameworks to model the impact of adopting a climate-smart 

maize variety on household income using the ESR approach. The first stage of the adoption decision 

on the climate-smart maize variety was modelled as a binary function using the probit model. The 

latent variable of a given household decision to use climate-smart maize varieties, CSAi*, is specified 

as:  

 

CSAi* = β Xi + µi                     (5) 

 

The Probit model was estimated on the observed outcome as follows: 

 

CSAi = 1 if CSAi* > 0 and  

CSAi = 0 if CSAi* ≤ 0                     (6) 

 

The ordinary least squares (OLS) regression model with selectivity correlation was applied in stage 

two to analyse the correlation between the outcome variable with established dependent variables 

subject to the adoption decision. The outcome regression equation function dependent on adoption 

was specified as an endogenous switching regime model, in the following manner: 

 

Regime 1: (adopters): Y1i = β1X1i + Ɛ1i  if CSA = 1               (7a) 

 

Regime 2: (non-adopters): Y2i = β2 X2i + Ɛ2i if CSA = 0              (7b) 

 

In this study, the outcome variables (household income) were Y1 for those who adopted and Y2 for 

the non-adopters, where X1i and X2i were exogenous covariate vectors, β1 and β2 were parameter 

vectors, and Ɛ1i and Ɛ2i were the error terms of the outcome variable. According to Shiferaw et al. 

(2014), for the ESR to be identified in the adoption model, it is essential that the explanatory variables 

include a selection instrument to add on those instinctively produced by the non-linearity of the 

adoption selection model. These are the variables that affect the decision to adopt climate-smart maize 

varieties, but that do not directly affect the outcome indicators (Wossen et al. 2017). The selection 

instruments were chosen carefully by executing a simple falsification test, which was used to validate 

the instruments selected (Di Falco et al. 2011). The variable was a valid choice instrument, since it 

affected the climate-smart maize adoption decision, but did not affect the household income from the 

output variable directly. The error terms selected in Equation (5) and the outcomes of Equation (7) 

were presumed to have a tri-variate standard distribution, with a covariance matrix and mean vector 

zero written as: 
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𝑐𝑜𝑣(𝜇, 𝜀1, 𝜀2) = (

𝜎𝜇
2 𝜎𝜇1 𝜎𝜇2

𝜎2𝜇 𝜎1
2 .

𝜎2𝜇 . 𝜎2
2

),                   (8) 

 

where 𝜎𝜇
2 = var(µ), 𝜎1

2 = var(Ɛ1), 𝜎2
2 = var(Ɛ2), 𝜎𝜇1 = cov(µ, Ɛ1) and 𝜎𝜇2 = cov(µ,Ɛ2). 𝜎𝜇

2 is valued up 

to a scale factor and is assumed to be equal to 1, and 𝑐𝑜𝑣(𝜀1, 𝜀2) is not defined, as y1 and y2 are not 

observed simultaneously (Maddalla 1983). 

 

Depending on the selection condition, the values estimated for the error terms, Ɛ1 and Ɛ2, are non-

zero; hence the prediction of β1 and β2 with OLS will give a biased estimate (Shiferaw et al. 2014). 

This means that the error term in selection Equation (5) is correlated with the error term in outcome 

Equation (7) (income function). Thus, subject to the sample selection, the predicted values of the 

error terms, Ɛ1 and Ɛ2, are not zero, which creates selection bias (Asfaw et al. 2012). The selectivity 

bias created was addressed through the use of ESR by predicting the inverse Mills ratios (λ1i and λ2i) 

and covariance terms (𝜎𝜇1 and 𝜎𝜇2), and then including them as auxiliary regression in Equations (7a) 

and (7b). The bias is corrected as:  

 

𝐸{𝜀𝑖1|𝐶𝑆𝐴𝑖 = 1} = 𝜎1𝑖
∅(𝛽𝑥𝑖)

𝜃[𝛽𝑥𝑖]
= 𝜎1𝑢λ 1𝑖 and 𝐸{𝜀𝑖1|𝐶𝑆𝐴𝑖 = 0} = −𝜎2𝑖

∅(𝛽𝑥𝑖)

1−𝜃(𝛽𝑥𝑖)
= 𝜎2𝑢λ 2𝑖            (9)  

 

The absence of selection bias is rejected if σμ1 and σμ2 are significant. After obtaining the inverse 

Mills ratios, the ESR framework was applied to determine the average treatment effect of the 

untreated (ATU) and the treated (ATT) by matching the estimated values of the outcomes for the non-

adopters and for those who adopted in the actual and counterfactual scenarios. In terms of Shiferaw 

et al. (2014) and Khoja et al. (2015), the study computed the ATT and ATU as follows: 

 

Those who adopted CSMVs (observation of the sample): 

  

𝐸{𝑦𝑖1|𝐶𝑆𝐴𝑖 = 1; 𝑥} = 𝛽1𝑥1𝑖 + 𝜎1𝑢λ 1𝑖               (10a) 

 

Those who did not adopt CSMVs (observation of the sample): 

 

𝐸{𝑦𝑖2|𝐶𝑆𝐴𝑖 = 0; 𝑥} = 𝛽2𝑥2𝑖 + 𝜎2𝑢λ 2𝑖              (10b) 

 

Those who adopted had they decided not to adopt (counterfactual): 

 

𝐸{𝑦𝑖2|𝐶𝑆𝐴𝑖 = 1; 𝑥} = 𝛽2𝑥1𝑖 + 𝜎2𝑢λ 1𝑖                (10c)  

 

Those who did not adopt had they decided to adopt (counterfactual): 

 

𝐸{𝑦𝑖1|𝐶𝑆𝐴𝑖 = 0; 𝑥} = 𝛽1𝑥2𝑖 + 𝜎1𝑢λ 2𝑖              (10d) 

 

Therefore, ATT is defined as the expected change in an adopter’s household income as the difference 

between Equation (10a) and (10c). The ATU, which is the expected change in the non-adopter’s 

household income is the difference between Equation (10d) and (10b), as follows: 

 

ATT = 𝐸{𝑦𝑖1|𝐶𝑆𝐴𝑖 = 1; 𝑥} - 𝐸{𝑦𝑖2|𝐶𝑆𝐴𝑖 = 1; 𝑥}               (11)  

 

ATU = 𝐸{𝑦𝑖1|𝐶𝑆𝐴𝑖 = 0; 𝑥} - 𝐸{𝑦𝑖2|𝐶𝑆𝐴𝑖 = 0; 𝑥}               (12)  
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The error term was presumed to be normally dispersed in the context of ESR, while λ was the 

selection term that captured all probable effects of the dissimilarity in the unobserved variables.  

 

Table 1 shows the exogenous covariates used in the model and their hypothesised signs. 

 

Table 1: Description of expected sign of the explanatory variables 
Variable name  Variable description  Unit of measurement  Sign 

Dependent variables 

Household income  Annual total income  Continuous (Ksh*)  + 

Independent variables 

Age Age of household head in years  Years  +/- 

Gender  Gender of the household head  1 = male, 0 = female  +/- 

Education level Number of years spent in school  Years  + 

Farm experience  Number of years farmer farmed maize Years  + 

Household size  Number of persons in the household  Continuous  + 

Off-farm income  Annual income outside the farm Continuous  + 

Extension service  Farmer contact with extension officer in the past year  (1 = yes; 0 = otherwise) + 

Group membership Membership of a farmers group  (1 = yes; 0 = otherwise)  + 

Credit access  Farmer’s access to any form of credit  (1 = yes ; 0 = otherwise)  + 

High yielding  Variety is perceived to be high yielding (1 = yes ; 0 = otherwise) + 

Early maturity  The variety is perceived to mature early (1 = yes; 0 = otherwise) + 

* Ksh = Kenyan shilling 

 

The dependent variable of the endogenous switching regression model used in the study was the effect 

of adoption of CSMVs on household income among smallholder maize farmers in Embu County, 

Kenya. It is laborious and complex to measure income directly. In this study, the measurement of 

household income comprised the total annual income from both farm and off-farm sources. The 

exogenous variables used in the model were informed by determinants of the expected utility theory 

and previous studies. These variables included the perceived benefit traits of adoption of the new 

technology, such as high yielding, early maturity and resistance to disease. Farmers’ perceptions of 

these traits in relation to increasing productivity increased their likelihood of adopting the maize 

variety. Idrisa et al. (2012) found out that the trait of high yield in soya bean influenced farmers’ 

decisions to adopt.  

 

Farmers join groups to access advisory services and provide them with an unconventional learning 

ground (Rowley & Cooke 2014). In Rwanda, it was found that if farmers were members of a group, 

it increased their probability of adopting improved bean varieties (Larochelle et al. 2016). Contact 

with extension agents acts as a proxy for information delivery about new technology, hence farmers 

who had contact with an extension officer were expected to know more about the climate-smart maize 

varieties. Yirga et al. (2015) found in Ethiopia that access to extension services had a positive 

relationship with adoption behaviours. Age, education, household size and access to credit were used 

as control variables following previous studies (such as those of Teklewold et al. 2013; Timu et al. 

2014; Yirga et al., 2015). 

 

3. Results and discussion  

  

3.1 Demographic and socio-economic characteristics 

 

Understanding the farmers’ social, economic and institutional attributes is useful for understanding 

smallholder farmers’ decision-making processes. The results in Table 2 show that the average age of 

the maize producers in our study area was 58 years, with eight years of formal schooling. The maize 

producers have 26 years’ experience in maize production, and an average of four household members. 

Most of the households (72%) were male-headed, with 62% of them being adopters. Among the 
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interviewed farmers, 92.2% were older than 35 years, which is the age of a person considered to be a 

youth, showing the limited involvement of youth in agriculture. In terms of institutional factors, 77% 

of the farmers who adopted climate-smart maize varieties received extension services. However, the 

provision of extension services to farmers was still low, at 38%, implying that more extension services 

are required to enhance the greater adoption of new technologies. Similarly, only 26% of the farmers 

received credit, whereas 83% of the adopters sourced credit facilities. This percentage implies that 

farmers have low access to means of improving their financial capacity, hence they become 

constrained in terms of the extent and timely purchase of the required input to carry out maize 

production. 

 

Table 2: Socio-economic characteristics of respondents by level of adoption 
Continuous variables  Pooled mean 

(std dev.) 

Adopters’ 

mean 

(n = 346) 

Non-adopters’ 

mean (n = 204) 

t-test value  

Age of household head (years)  58.4 (14.19) 57.3 (14.52) 60.36 (16.10) 2.3825 ** 

Years of schooling  8.0 (3.69) 8.2 (3.53) 7.6 (3.92) -0.9907 

Number of years farmer farmed maize  26.9 (16.00) 25.9 (15.43) 28.43 (16.85) 1.7707 * 

Household size  4.1 (1.82) 4.3 (1.80) 4.0 (1.80) -1.5115 

Distance to nearest input market in km 3.8 (0.30) 3.8 (0.44)  3.66 (0.30) -0.2494 

Log of off-farm income  7.2 (0.23) 7.6 (0.28) 6.6 (0.38) -2.0800 ** 

Dummy variables            Percentage of farmers  2א value 

Gender of household head: Male 

    Female 

72 62.9 37.1 -3.1205*** 

28 63 37 -4.9701 *** 

Access to extension services (% yes) 37.5 76.7 23.3 -6.0273*** 

Farmers belonging to a group (% yes) 59.3 65 35 -5.1977*** 

Access to any form of credit (% yes) 25.8 83.1           16.9 -6.5780*** 

Note: ***, ** and * indicate statistical significance at the 1%, 5% and 10% level respectively 

Source: Survey data (2019) 

 

3.2  Results of endogenous switching regression model on the adoption impact of climate-smart 

maize varieties on household income 

 

The determinants of adopting the climate-smart maize varieties were analysed first, after which the 

adoption effect of the climate-smart maize varieties on the household income of small-scale farmers 

was measured to understand the effect of the adoption on household income. The endogenous 

switching regression model was employed by using the full information maximum likelihood (FIML) 

method in estimating the selection equation (adoption) and the outcome equation (effect on household 

income of both adopters and non-adopters) jointly (Lokshin & Sajaia 2004). 

 

The results in Table 3 present the endogenous switching regression (henceforth ESR) model. 

Columns 2 and 3 represent the results for the decision to adopt climate-smart maize varieties from 

the selection equation of the household income model, while columns 4, 5, 6 and 7 represent the 

outcome equations. Columns 4 and 5 represent the outcome equation for adopters, while columns 6 

and 7 represent the outcome equation for the non-adopters. The study included a set of explanatory 

variables, such as the household characteristics and institutional factors, to analyse the correlation 

between the adoption decision and household income. 

 

The results of the ESR model estimated using the FIML show that the estimated coefficient of 

correlation between the error terms of adoption of climate-smart maize varieties and the household 

income function, given by ⍴1, ⍴0, is significantly different from zero and negative. The results suggest 

that the decision to adopt and the effect of the adoption of climate-smart maize varieties are both 

influenced by observed and unobserved factors. The significance of ⍴1, ⍴0 indicates a self-selection 

bias in the decision to adopt the climate-smart maize varieties, hence the use of the ESR model for 
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the correction of selectivity bias. The relationship between adoption and household income in the 

outcome equation implies that adopters’ household income is relatively higher than that of non-

adopters. Furthermore, the transformed correlation (r1 and r2) in the systems equations is negative and 

significant. The negative correlation implies that adopters are better off when they adopt climate-

smart maize varieties in terms of household income than when they did not adopt. Moreover, non-

adopters would have been better off if they had adopted climate-smart maize varieties compared to 

when they did not adopt.  

 

Table 3: ESR results for adoption and the impact of adoption of climate-smart maize varieties 

on household income 
Model specification FIML endogenous switching regression 

 Selection equation Outcome equation 

 Adoption (1/0) Adopters = 1 Non-adopters = 0 

Variables  Coefficient Robust std error Coefficient Robust std error Coefficient Robust std error 

Socio-economic factors  

Gender  0.388  0.196 0.278 * 0.163 0.197  0.334 

Age  -0.024 *** 0.006 0.013 ** 0.006 0.026 ** 0.015 

Education level  -0.037 0.023 0.063 *** 0.020 0.112 * 0.063 

Household size  -0.006  0.041 -0.035 0.035 -0.002  0.082 

Land size  0.010 0.033 - - - - 

Land ownership 0.250 *** 0.068 - - - - 

Land under maize  -0.086  0.089 0.337 *** 0.061 0.399 *** 0.137 

Distance to market  0.007 0.006 0.022 *** 0.003 0.045 ** 0.019 

Seed source  1.581 *** 0.187 - - - - 

Agronomic factors  

Fertiliser application  1.164 *** 0.173 -0.255 0.178 -0.769 ** 0.338 

Mode of tillage 0.304 ** 0.178 0.418 *** 0.129 0.070 0.326 

Mode of weeding  0.669 *** 0.261 -0.227 0.226 -0.766 ** 0.319 

Crop protection  1.842 *** 0.225 -0.261 0.269 -0.537  0.356 

Institutional factors  

Credit access 0.727 *** 0.184 -0.269 ** 0.139 0.361 0.293 

Extension service 0.369 *** 0.182     

Group membership  0.206 0.158     

Perceived attributes  

High yielding  0.467 *** 0.174     

Early maturity  0.572 *** 0.170     

Pest and disease 

resistance 

0.399 ** 0.200     

Drought tolerance 0.464 ***  0.160     

Constant  -4.773 *** 0.734     

Model summary  

Number of observation  

Wald chi2 (12)  

Prob > chi2  

Log pseudo likelihood  

r1 

r2 

Rho_1 

Rho_2  

550 346 204 

131.69     

0000     

-1 123.05     

 -0.474 *** 0.240   

   -0.495 *** 0.168 

 -0.442 ** 0.194   

   -0.458 *** 0.133 

Wald test of independent equations:          chi2(1) = 12.91             prob > chi2 = 0.0003  

Note: * , ** and *** represent the significance at the 10%, 5% and 1% level respectively; r1r2: transformation of the 

correlation of the error terms in the adoption equation and outcome equation; ρ1ρ0: correlation coefficient between error 

terms of the system equation 
Source: Survey data (2019) 

 

Nevertheless, the results indicate the existence of heterogeneity in the sample of households because 

of the differences in the household income equation’s coefficients between the adopted and non-
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adopted farming households. In addition, the likelihood ratio test for independence between the 

selection equation and the outcome equations was significant at 1%, indicating dependence between 

the two systems of equations. 

 

The estimates in the selection equation in Table 2 suggest that the main drivers of farm households’ 

adoption of climate-smart maize varieties (henceforth CSMV) ranged from socio-economic 

characteristics to varietal attributes. The respondent’s age is significant at 1%, but negatively 

influenced farmers’ decisions to adopt climate-smart maize varieties. Therefore, as the respondents’ 

age increased, it reduced their likelihood of adopting CSMV. These results corroborate the findings 

of Kuntashula et al. (2014) and Ngoma et al. (2018), who observed a negative association between 

age and adoption of agricultural technologies.  

 

Land ownership was statistically significant at 1% and positively influenced the adoption decision. 

This shows that, if a farming household owns land, it increases the household’s likelihood of adopting 

CSMV. This result was consistent with that of Abdulai et al. (2011), who observed a positive 

relationship between land and the adoption of agricultural technologies. Source of seed positively and 

significantly influenced the decision to adopt, suggesting that those farmers who sourced their seeds 

from the agrovet were more likely to adopt climate-smart maize varieties. This would have been 

brought about by the fact that, when the farmer sources seeds from a certified agrovet, they are 

perceived to be original and not counterfeit, which in turns increases production and hence increases 

household income. The findings are consistent with those of Ghimire et al. (2015) in Nepal, who 

reported a positive relationship between availability of seeds and adoption of improved maize 

technologies.  

 

The perception of agronomic factors such as fertiliser application, mode of tillage, crop protection 

and weeding were found to positively and significantly influence the likelihood of adoption of 

climate-smart maize varieties. This implies that, if a farmer managed the application of fertiliser and 

undertook other crop protection practices, such as pesticide application, it would increase the 

probability of adopting CSMV. In terms of mode of weeding and tillage, farming household that 

ploughed their land and did hand weeding were more likely to adopt climate-smart maize varieties. 

Access to extension services was positively and significantly related to the adoption of climate-smart 

varieties. This means that farmers who had contact with extension officers had a greater likelihood 

of adopting these maize varieties. This result is consistent with those of Di Falco and Veronesi (2011) 

and Maina et al. (2019), who found that access to extension officers increased the probability of a 

farmer adopting new agricultural technologies. 

 

Credit access had a positive and significant effect on the adoption decision at the 1% level of 

significance, implying that farm households that had access to credit services were more likely to 

adopt climate-smart maize varieties. This result implies that it is essential for a farmer to access formal 

credit, since it acts as a source of financing the production of adopted maize varieties. These results 

are consistent with the findings of Abdulai and Huffman (2014) and Khanal et al. (2018), who noted 

an increase in the probability of adopting new agricultural technologies with the accessibility of 

credit. In terms of varietal attributes, namely high yielding, early maturity, drought resistance and 

resistance to pests and diseases, these were all positive and significant, implying that if a farmer 

perceived these varieties to have these traits, it would increase the likelihood of the farmer adopting 

them. 

 

The results on the affect of adoption on household income are presented in columns 4, 5, 6 and 7 of 

Table 3 for the farmers who adopted and those who did not adopt. The ESR estimations of household 

income determinants of the farmers who adopted and those who did not adopt are presented in Table 

3. At the same time, the prediction of the heterogeneity effects and treatment effects are shown in 
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Table 4. The findings (Table 3) indicate that the age of the respondents, their education level, land 

under climate-smart maize production and distance to the market had a positive and significant 

influence on increased household income for adopter and non-adopter farm households. Moreover, 

the gender of the household head, fertiliser application, mode of tillage, mode of weeding and access 

to credit appeared to have a differentiated impact on the household income of adopters and non-

adopters. The gender of the respondent and mode of tillage in the outcome equation (column 4 of 

Table 3) had a positive and significant effect on household income in the adopters category. At the 

same time, there was a negative and significant effect of adopters’ household income on the 

accessibility of credit. On the other hand, fertiliser application and mode of weeding in column 6 of 

Table 3 had a negative and significant impact on the household income of non-adopters.  

 

The results in Table 4 present the main impact assessment and show the expected household income 

under the two conditions, namely actual and counterfactual. The predicted household income from 

the endogenous switching regression model was used to estimate the mean household income gap 

between the adopters when they adopted and had they not adopted, and the non-adopters and if they 

had adopted. Cells (a) and (b) represent the expected household income observed from the sample of 

adopters and non-adopters respectively. Cell (c) represents the expected household income of 

adopters if they did not adopt, while cell (d) represents the predicted household income of the non-

adopters if they adopted.  

 

Table 4: Impact of climate-smart maize adoption on household income in Embu County, Kenya 
Sub-samples  Decision stages Treatment effect  

 To adopt  Not to adopt   

Log household income  

Farm households that adopted  (a) 10.861 (c) 9.138 (ATT) 1.7221(0.029)*** 

Farm households that did not adopt  (d) 11.439 (b) 10.319 (ATU) 1.1199(0.036)*** 

Heterogeneity effects (TH)  BH1 = -0.578 BH2 = -1.181 TH = 0.6022(0.046) *** 

Note: *** represents significance at the 1% level  

Source: Survey data (2019)  

 

The expected log household income of the farming households that adopted was about 10.861, while 

it was about 10.319 for the farming household that did not adopt. The log difference in income 

indicated that the households that adopted the climate-smart maize varieties increased their household 

income by 0.54, which is approximated 54% more than that of the farming households that did not 

adopt. According to Di Falco et al. (2011), this is a simple comparison that may be inadequate for the 

researcher to conclude that, on average, the adopters of climate-smart maize varieties earned more 

than the farm households that did not adopt. Due to this inadequacy, the study used the heterogeneity 

effects to account for counterfactuals ((c) and (d)). 

 

The last column of Table 4 shows the average treatment effects, which indicate the effect of the 

adoption on household income. The average treatment effect of the treated (ATT) is the difference 

between what adopters earned (a) and what adopters would have earned had they decided not to adopt 

(c). At the same time, the average treatment effect of the untreated (ATU) is the difference between 

what non-adopters would have made had they adopted (d), and what non-adopters earned without 

adoption (b). 

 

The results in the last column of Table 4 show that ATT was positive and statistically significant, 

implying that the adoption of climate-smart maize varieties increased household income by 172%. 

The result suggests that adopters would lose an average log of 1.72 of the total household income if 

they had not adopted. On the other hand, the results from the ESR of the average treatment effect on 

the non-treated (ATU), which is positive and statistically significant, indicate that farmers who did 

not adopt would have increased their household income by 112% if they had decided to adopt climate-
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smart maize varieties. Therefore, the difference between the ATT and ATU gives us the heterogeneity 

effect (TH), which was 60.2%. These results imply that utilising climate-smart maize varieties 

increases the household income of adopters by 60%. These findings are consistent with those of 

Khonje et al. (2015), who concluded that the decision to adopt improved maize varieties increased 

adopters’ crop income in Zambia. In their study in Zambia, Smale and Mason (2014) established that 

the decision to adopt hybrid maize varieties increased household income. 

 

The last row of Table 4 shows a highly significant and positive transitional heterogeneity (TH) for 

the outcome variable, which suggests that the farmers who adopted and those who did not adopt were 

systematically different. Transitional heterogeneity measures whether the effect of using CSMVs is 

larger or smaller for farmers who adopted CSMVs had they not adopted, or for farmers who did not 

adopt CSMVs had they adopted (Ngoma 2018). The positive TH in this study implies that adopting 

CSMVs was more significant and beneficial for the farming household that had adopted compared to 

the non-adopters. These results agree with those of Asfaw and Shiferaw (2010). The significance of 

TH in the study implies that farmers who adopted would earn significantly more income than those 

who did not adopt in the counterfactual case (c). This significance of TH shows that there are some 

relevant sources of heterogeneity that make adopters better off and earn more than non-adopters, 

regardless of them adopting or not adopting climate-smart maize varieties. This finding corroborates 

the findings of studies by Di Falco et al. (2011), Khanal et al. (2018) and Quan et al. (2019), who 

observed a positive effect between agricultural technologies and household income.  

 

4. Conclusion and policy recommendations 

 

The adoption of climate-smart maize varieties offers farmers a higher output from maize production 

and an opportunity to increase returns and generate income, hence reducing the poverty level among 

smallholder farmers. The current study evaluated the effect of adopting climate-smart maize varieties 

on smallholder farmers’ household income using an endogenous switching regression approach. The 

results show that there is great potential for increasing household income through the adoption of 

these varieties. The causal impact estimation from the switching regression suggests that the adopters 

have significantly higher household income than those who did not adopt, even after controlling for 

all confounding factors. In addition, the results show that those farmers who did not adopt would have 

gained from adopting climate-smart maize varieties if they had adopted. Therefore, stimulating 

agricultural growth, reducing poverty levels and improving food security depends largely on the 

decision to adopt climate-smart agricultural technologies such as climate-smart maize varieties. There 

thus is a need for greater adoption to enable more people to benefit from climate-smart maize 

varieties. 

 

The finding of this study suggest that more efforts and resources need to be directed to agriculture to 

promote the adoption of climate-smart technologies. The agriculture sector has not been receiving a 

sufficient allocation of resources from the county government, making extension services almost non-

existent. Therefore, there is a need to reinforce the extension services already in place to enhance 

access to information, which in turns will increase the adoption of climate-smart agricultural 

technologies.  

 

Furthermore, the age of the maize farmer contributed to the adoption decision. Younger farmers are 

more likely to adopt new technologies compared to older farmers. Consequently, to increase income 

and reduce the unemployment rate among the youth, strategies that will make agribusiness more 

attractive to the youth are recommended. This can be done by formulating policies that favour youth 

and that are geared towards easier access to the production factors, such as land, which is mostly held 

by older farmers.  
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The positive influence of access to credit on adoption in the endogenous switching model and the 

negative impact on adopters’ household income suggests that policies that enhance access to 

affordable credit could facilitate the adoption of new climate-smart agricultural technologies. This 

can be done by designing public policies that link with financial institutions and farmers’ needs. 

Lending institutions such as commercial banks and micro-finance should work out policies that will 

make affordable credit available to farmers by lowering interest rates and simplifying the application 

process.  
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