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Knowledge productivity and the returns to
agricultural research: a review

Matthew A. Andersen†

This paper describes the identification, specification, estimation, and evaluation of
econometric models of knowledge productivity and the returns-to-research. General
issues related to these models are discussed and placed in context of the literature. The
path from R&D investment to economic benefit is complex, convoluted, generally
unknown and possibly misrepresented. The complexity arises from the intricate spatial
spillover relationships and the very long time periods involved, which complicate any
econometric analysis. The relevant R&D investment data are typically unavailable,
incomplete and poorly measured (or approximated). The appropriate calculation of
the financial benefit is not entirely clear. Some parsimonious suggestions for future
research are presented.
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1. Introduction

In economic models of knowledge productivity and the return to research,
technological know-how is approximated by aggregating monetary invest-
ments in R&D over space and time to create knowledge stock variables.
These knowledge stocks are subsequently treated as intellectual capital in the
knowledge production function. The R&D investments result in new
technology adopted by producers generating productivity gains and eco-
nomic benefits; however, the path from investment to economic benefit is
complex, convoluted, generally unknown and possibly misrepresented
(Griliches 1979, 1987). The complexity arises from the intricate spatial
spillover relationships and the very long time frames involved, which
complicate any econometric analysis. The relevant R&D investment data
are typically unavailable, incomplete and poorly measured (or approxi-
mated). The appropriate calculation of the economic benefit is not entirely
clear and recently disputed in the literature (Alston et al. 2011; Hurley et al.
2017; Oehmke 2017).
This paper is not a survey of the economic literature focused on estimating

the returns-to-research in agriculture, which can be found in Alston et al.
(2000) and Hurley et al. (2014). This paper describes the identification,
specification, estimation, and evaluation of parametric models of knowledge
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productivity and the returns-to-research. General issues related to these
models are discussed, placed in context of the literature, and some
parsimonious suggestions for future research are presented.

2. Endogenous growth theory

In models of endogenous economic growth (or New Growth Theory),
technological knowledge is intellectual capital, which is treated similar to
physical capital or other traditional inputs in the production process. The
theory has deep roots in economics that can be traced through a vast body
of literature dating back a century or more; however, a series of papers
were published in the 1990s that helped to formalise the important
implications of endogenous growth theory (Adams 1990; Romer 1990;
Aghion and Howitt 1992; and Jones 1995). See also the ‘Symposia on New
Growth Theory’ in the Journal of Economic Perspectives (1994). Microe-
conometric studies of the returns to research represent an application of
endogenous growth theory, and the prototype study of the returns-to-
research in agriculture is Griliches’ (1957) study of hybrid corn in the
United States. This and later papers by Griliches (1986, 1987) were
seminal studies on the topic of endogenous economic growth in agriculture
and fundamental in the subsequent development of endogenous growth
theory. Agricultural economists conducted some of the first empirical
studies of the returns-to-research, which are summarised by Norton and
Davis (1981) and Davis (1980).
Econometric studies of knowledge productivity require two basic ingredi-

ents, a dependent variable that is a measure of productivity and an
independent variable(s) representing the knowledge stock.1 These variables
allow for the econometric estimation of a knowledge production (or
productivity) function. Let Y = F(X, K) be a production function relating
aggregate output Y to aggregate input X and the knowledge stock K,
assuming separability of X and K. The knowledge stock is a function of
investments in research R, with K = Γ(B)R, where Γ(B) is a backshift operator
that is a lag polynomial.2 Assuming Cobb–Douglas production technology,
we can write F as:

Y ¼ CXaKbestþu ð1Þ

where C is a constant term, t is a time trend, u is a random error term, e is the
base of the natural logarithms, and a,b and s are parameters of interest.
Assuming constant returns-to-scale in traditional inputs (a = 1), let A = Y/X
be a measure of multifactor productivity,

1 Technical aspects of constructing measures of agricultural productivity are not reviewed in
this paper. The construction of knowledge stock variables is considered in the next section.

2 The knowledge stock variable is K ¼ CðBÞR ¼ c0Rt þ c1Rt�1 þ c2Rt�2 þ . . ..
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A ¼ Y=X ¼ CKbestþu ð2Þ

which is a function of the knowledge stock, other factors affecting
productivity that are embodied in the time trend, and random factors. We
can model the relationship between productivity and investments in R&D
provided we have accurate data for Y, X and R, specify the correct
functional form for the production technology F, and the lag polynomial
Γ(B) and obtain a consistent estimate of the parameter b. Any measurement
errors related to the calculation of the knowledge stock K will bias the
estimated research elasticity, b. Also, the construction of an accurate index
of agricultural productivity poses many challenges related to data avail-
ability and economic data construction methods. For example, the existence
of market power by producers, or quality changes to input measures over
time, has important implications for the proper construction of indexes of
productivity. Diewert (1978), and Caves et al. (1982a,b), discusses the
general theoretical properties of index numbers and the construction of
indexes of productivity.
It should be noted that the focus of this study is on the econometric

estimation of knowledge productivity functions and the financial return to
agricultural R&D; however, a dual economic approach and the estimation of
cost functions can also be used to calculate the rate of return to investments
in R&D. See Plastina and Fulginiti (2012) and Esposti and Pierani (2003) for
examples of the estimation of the rate of return to public investments in
agricultural R&D using a cost function approach.

3. Knowledge stock variables

The calculation of knowledge stocks begins with data on investments in R&D
over time and among different research institutions. It should be noted that
these data are often difficult to obtain, especially private agricultural R&D
funding which is usually proprietary. Data on public investment in
agricultural R&D are more readily available, but given the very long time
frames involved, data collection methods and data classifications typically
evolve, making the construction of a consistent long-run series problematic.
Furthermore, identification of the relevant set of R&D expenditures to
include in the analysis is not clear. This is known as the ‘attribution problem’
in these models, where we have difficulty attributing productivity gains to
specific effects or specific classifications of investments because we either fail
to realise they are important to the model or we simply do not have access to
all of the relevant investment data.
Institution-specific knowledge stocks can be constructed using current and

lagged investments within each institution, as well as investments that
spillover from other institutions (spatial spillovers). Let i, j = 1, 2, . . ., N
denote the research institutions, t = 1, 2, . . ., T denote the number of periods
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with investment data, s = 1, 2, . . ., S denote the number of periods to
calculate knowledge stocks, and t = 1, 2, . . .,M denote the number of periods
in the research lag distribution with T = M + S + 1. The institution-specific
knowledge stocks, Ki,s, are functions of: (i) investments in research by
institution j = 1, 2, . . ., N in period t, Rj,t; (ii) parameters that define the shape
of the research lag distribution, ct,s; and (iii) parameters that define the
spillover relationships among the institutions, xi,j. One approach is to
aggregate all of the relevant research expenditures into a single knowledge
stock variable per institution that includes spillovers. The knowledge stock at
institution i and period s is defined as:

Ki;s ¼
XN

j¼1

XT

t¼1
xi;jRj;tct;s ð3Þ

The omegas, xi,j, are weights that indicate the contribution of a unit of the
stock of knowledge created at institution j to the stock of knowledge at
institution i, with 0 ≤ xi,j ≤ 1∀i 6¼ j and xi,j = 1∀i = j. Jaffe (1986) proposed
basing the strength of the spillover relationship between institutions i and j
using the angular separationbetween vectors vi and vj, representing the shares of
the total research budgets for each institution devoted to each research activity:

xi;j ¼
viv

0
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

viv
0
ið Þ vjv

0
j

� �r 0�xi;j� 1 ð4Þ

The gammas ct,s in Equation (3) are weights that indicate the contribution
of current and lagged investments to the current knowledge stock, withPM

t¼1 ct;s ¼ 1 and ct,s = 0∀T > M. The research lag weights, ct,s, follow an
assumed distribution and lag length that will depend on the application. The
research lag distribution represents knowledge accumulation and deprecia-
tion and is unknown to the researcher. Very little empirical evidence exists
regarding a particular shape for an agricultural research lag distribution. This
is because agricultural R&D takes a long time to affect productivity and then
affects productivity for a long time. This implies that the research lag
distribution should include an appropriate gestation period (either implicit or
direct), as well as a sufficient lag length, probably in the 35-year to 50-year
range. A gamma distribution can take many different forms depending on the
choice of shape d and scale k parameters:

ct;s ¼
ðtþ 1Þ d=1�dð ÞktPM
h¼0 hþ 1ð Þ d=1�dð Þkh

0� t�M ð5Þ

with 0 ≤ d < 1 and 0 ≤ k < 1. Given its flexibility, relative simplicity and
intuitive shape, the gamma distribution is a good choice for representing the
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research lag distribution. The correct lag length M for the research lag
distribution is also an important consideration, and the tendency in the
agricultural economics literature over the last few decades has been to include
longer lags. Figure 1 shows a gamma distribution with a 50-year lag when the
shape parameter d is set to 0.9, and the scale parameter k is varied from 0.5 to
0.8.
A priori we might expect that the research lag distribution approximates a

bell shape as in Figure 1, but could be skewed or have a large tail in one
direction or the other. The gamma distribution also encapsulates an implicit
gestation period given that the early lags have minimal weight in the
distribution.
An alternative approach to the calculation of knowledge stocks is to create

a separate variable for R&D conducted within each institution, as well as
R&D that spills-in from other institutions. A within-institution knowledge
stock is defined as Ki;s ¼

PT
t¼1 ct;sRi;t, and a spill-in stock for each institution

is defined as Si;s ¼
Pn

j 6¼ixi;jKj;s. The main difficulty with separating the
expenditures into different knowledge stock variables is that the resulting
measures are typically smooth trending and highly collinear, which creates
problems in econometric estimation.

4. Model specification

The successful identification of the production technology, the research lag
distribution and the matrix of spillover relationships among institutions is
critical to any study of the returns-to-research; however, the functional forms
of the production technology and the knowledge productivity function are
unknown. Furthermore, the data used in the analysis are difficult to
construct, prone to errors and typically have omitted effects because of a
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Figure 1 Gamma distribution with a 50-year lag, d = 0.9 and k = 0.5, 0.6, 0.7 and 0.8.
Note: Developed by author using Equation (5) from the text.

© 2019 Australasian Agricultural and Resource Economics Society Inc.

Knowledge productivity and the returns to research 209



lack of availability of investment data. Perhaps the only commonly
encountered form of specification error these models usually avoid is a
simultaneity problem. This is because the knowledge stock variables are
moving averages of lagged expenditures that usually include a gestation
period and are therefore predetermined variables; however, as mentioned,
models of knowledge productivity suffer from a persistent endogeneity
problem in the form of omitted variables bias.
Research spillovers occur on different levels, including the effects from one

location to another, from one branch of science to another (e.g. from basic to
applied research), from one field of science to another (e.g. from genetics to
plant science) and from private institutions to public ones, to name a few
potential spillover relationships.3 A matrix of spillover relationships repre-
senting closeness or similarity between institutions can be defined based on:
(i) geographic proximity; (ii) cost shares of R&D activities; (iii) environmental
or agro-ecological factors; (iv) value shares of outputs produced; and (v)
scientific collaboration (citation networks for patents and/or research
papers). Jaffe et al. (1993) examined the geographic location of patent
spillovers. Katz (1994) found that citations to patents decline geometrically
based on geographic proximity. The primary finding in the economics
literature is that R&D spillovers are substantial but difficult to measure
(Griliches 1992). The spillover effects of agricultural R&D are well-
documented (Evenson 1989; Maredia et al. 1996; Gopinath and Roe 2000;
Johnson and Evenson 2000; Maredia and Byerlee 2000; McCunn and
Huffman 2000; Alston 2002; Alston et al. 2010).
The econometric evidence on research lag distributions is especially weak,

and direct estimation is nonexistent. Many studies have utilised distributed
lag and autoregressive distributed lag models, but these models still require
critical assumptions regarding the shape and length of the research lag
distribution, which ends up imposing a lot of structure on the estimation
equation. The alternative approach is to assume some research lag distribu-
tion when constructing the knowledge stock variables or test different
specifications using model selection criteria. Evenson (1967) used an inverted
V-shape to represent the research lag distribution. Some additional lag
structures found in the literature include a polynomial (Thirtle and Bottomley
1989), a trapezoid (Huffman and Evenson 1992, 2006) and a gamma
distribution (Alston et al. 2010, 2011; Andersen and Song 2013). The gamma
distribution can take many different forms depending on the choice of the
shape and scale parameters that define the distribution. Alston et al. (2010)
conducted a grid search of 64 different gamma distributions to represent the
research lag distribution for U.S. agriculture, assuming a 50-year lag and

3 Historically, there have been substantial international spillovers from agricultural
technologies as documented in Fowler et al. (2000), Evenson et al. (1985), and Anderson
et al. (1985). A study by Hall and Scobie (2006) examined the impact of international R&D
spillovers on agricultural productivity in New Zealand, and a study by Pardey et al. (2006)
examined international R&D spillovers to agriculture in Brazil.
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covering a wide range of potential forms. They found an almost bell-shaped
distribution that peaked in lag-year 24 provided the best fit to the data,
meaning it takes nearly a quarter century for a given R&D expenditure to
achieve its peak productivity-enhancing impact.
The econometric analysis should also include any relevant independent

variables that are affecting productivity in a systematic way. These variables
can range greatly depending on the application and the methods used to
construct the data in the analysis. In some studies, quality-adjusted indexes of
inputs are used in the construction of indexes of productivity, controlling for
the influences of such factors as age and education on labour within the
indexing procedure (Alston et al. 2011; Andersen and Song 2013). Other
studies use unadjusted measures and include control variables directly in the
estimation equation.
In the case of agriculture, weather has a significant effect on production

and productivity from year to year, and any analysis should control for this.
A reduced form of the knowledge productivity function could take the
following linear specification:

Ai;t ¼ ai þ bkKi;t þ bsSi;t þ bzZi;t þ ei;t ð6Þ

where Ai,t is an index of multifactor productivity at institution i in period t,
Ki,t is the within-institution knowledge stock, Si,t is the spill-in knowledge
stock, Zi,t is a weather index, the a0s and b0s are parameters to estimate, and ei,
t is a random error term.4 Another common specification is a double-log
model, with all variables expressed in natural logarithms. Recall that we have
implicitly assumed constant returns-to-scale in this model because we have
not included an index of aggregate input as an explanatory variable as in
Equation (2). If either diminishing or increasing returns-to-scale are present,
the effect will be transmitted to the estimated research elasticity.5 The
knowledge productivity function could also be a second-order Taylor series
expansion in natural logarithms representing a trans-log specification and
including second-order effects in the analysis.

5. Econometric estimation

The previously described specification errors that are present in studies of
knowledge productivity and the returns to research raise concerns about the
consistency of any estimated parameters from a standard econometric

4 The knowledge productivity function represented by Equation (6) does not include a time
trend. This is because the inclusion of a time trend will typically result in a multicollinearity
problem with the smooth trending knowledge stock variable(s), causing a statistically
insignificant estimate of the research elasticity.

5 Note that there are methods in the literature to decompose a measure of productivity into
technical change, scale effects and efficiency effects using directional distance functions
constructed via data envelopment analysis (DEA) methods. Applications to agriculture can be
found in O’Donnell (2010, 2012, 2014), and Fulginiti (2010).
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analysis. Given the fact that the knowledge stocks are predetermined, the
current period error terms in Equation (6) are uncorrelated with the current
and previous knowledge stocks; however, the knowledge stocks might be
correlated with future shocks and this is a violation of strict exogeneity, which
requires that the predetermined knowledge stocks be uncorrelated with
current, past, and future shocks. The biggest issue for identification and
estimation is an omitted variables problem, where the omitted effects include
R&D investments by other institutions that are usually positively correlated
with the included knowledge stock variables as well as agricultural produc-
tivity, implying that the estimated research elasticity would be biased upward.
Some studies have attempted to use instrumental variables to proxy these
omitted effects, such as the use of patent counts from private institutions as
an instrument for the unobservable private R&D investments (Huffman and
Evenson 2006).
Studies of knowledge productivity also typically involve long time frames,

which can introduce time-series estimation issues related to nonstationary
variables, autocorrelated error terms and cointegration of variables. Mea-
sures of agricultural productivity commonly have a strong time trend, either
deterministic or stochastic. Most often they are nonstationary variables that
become stationary after first-differencing, so they are integrated of order one,
I(1). The knowledge stock variables are also typically upward trending,
although with much less volatility and certainty about the existence of a unit
root compared to the productivity measures.
After collecting and constructing the relevant economic data, the next step

should be to establish the time-series properties of the variables in
the analysis. Some commonly used statistical tests of a unit root include
the original Dickey and Fuller (1979) test based on linear regression, the
Augmented Dickey and Fuller (1979) test if serial correlation is an issue,
the Phillips and Perron (1988) test if autocorrelation and heteroscedasticity
are an issue, the Zivot and Andrews (1992) test if a structural break is present,
and the Elliott et al. (1996) test if a time trend is present. The last test listed is
a modified version of the Augmented Dickey–Fuller (ADF) test for a unit
root in which the series is first transformed by a generalised least squares
(GLS) regression. The GLS test is superior to the standard ADF test when a
linear time trend is present in the data.
If the findings indicate the productivity index and the measure(s) of

knowledge stock have a unit root, then Johansen (1995) and Phillips and
Perron (1988) tests for cointegration can be used to establish if a linear
combination of the variables forms a stationary time series. In this case, the
common specification of a knowledge productivity function estimated using
standard econometric procedures such as ordinary least squares (OLS) will
produce ‘super-consistent’ parameter estimates. Stock (1987) showed that
these estimates converge to their probability limits faster than OLS estimates
in stationary time-series models. Studies of the time-series properties of
measures of productivity and research expenditures in agriculture include
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Pardey and Craig (1989), Schimmelpfennig and Thirtle (1994), Makki et al.
(1999b), Oehmke and Schimmelpfennig (2004), Thirtle et al. (2008), Bal-
combe et al. (2005), and Andersen and Song (2013).
Given certain time-series properties of the variables, we can obtain

consistent parameter estimates for the knowledge productivity function
using an OLS estimation procedure or some common variant. Another
primary consideration for the analysis is a multicollinearity problem
between knowledge stock variables. Because of the fact that the knowledge
stocks represent the spatial and temporal aggregation of investment data,
they tend to be smooth trending variables; therefore, including multiple
knowledge stocks in a standard econometric analysis almost always results
in a multicollinearity problem. This puts the researcher in a difficult
position in determining the level of aggregation to use in constructing the
knowledge stock variables. For example, we can choose to aggregate all
investment data into a single knowledge stock for each institution under
an assumed research lag distribution and spillover matrix. Alternatively,
we can create individual knowledge stock variables for ‘within’ institution
and ‘spillover’ R&D. The advantage of the latter is to be able to estimate
the differential effects of within-institution and spillover R&D directly
from the estimation equation. The disadvantage is a likely multicollinearity
problem between the within-institution and spillover knowledge stock
variables.
In a panel data setting, we have additional assumptions concerning the

error terms, ei,t. If the error terms are independent and homoscedastic among
panels (institutions), then a fixed-effects (FE) or a random-effects (RE)
estimator will be consistent, and Hausman’s (1978) specification test can be
used to establish the appropriate panel estimator. The error terms could be
heteroscedastic but uncorrelated across panels, they could be heteroscedastic
and correlated across panels, and they could also be autocorrelated (either
with a common autocorrelation coefficient or a panel-specific one). These
alternative assumptions can be handled using either a panel corrected
standard error estimator or a feasible generalised least squares estimator as
described in Beck and Katz (1995). Some panel data diagnostic tests include a
modified Wald statistic for panel-level heteroscedasticity in the residuals of a
FE model as described in Greene (2000), a Breusch and Pagan (1980) test for
cross-sectional independence of the residuals in a FE or GLS panel data
model, and a Wooldridge (2002) test for first-order serial correlation in the
residuals of a linear panel data model.
Finally, published estimates of a research elasticity for public agricultural

R&D are in the range of 0.2–0.5, according to studies by Makki et al. (1999a,
b), Esposti and Pierani (2003), Alston et al. (2010), Andersen and Song
(2013), Andersen (2015), and Jin and Huffman (2016). Differences in the
estimated elasticities are the result of many factors, but the common finding
of these studies is for a statistically significant research elasticity with a
substantial magnitude, linking public investment in agricultural R&D to a
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productivity-enhancing benefit. The estimated research elasticities can be
used in the financial calculations described in the next section.

6. Evaluating the financial return

Various metrics of financial return have been advocated in the literature on
the returns-to-research, but no measure has been reported as extensively as
the internal rate of return (IRR). Benefit cost (BC) ratios are also commonly
reported. Alston et al. (2011) recently criticised the use of an IRR to evaluate
the economic return to public investments in agricultural R&D and
advocated instead for the use of a modified internal rate of return (MIRR).
Subsequent research by Hurley et al. (2014) converted published estimates of
the IRR to agricultural research to a MIRR and found very large differences
in the resulting estimated return. We can easily convert a MIRR to a BC ratio
given an assumed interest rate and length of a research lag distribution.
Oehmke (2017) and Hurley et al. (2017) recently debated the appropriate
measure of economic return to use in the case of public agricultural R&D.
Let t = 0, 1, . . ., M denote the number of years in the research lag

distribution. Let Kt be the simulated knowledge stock that includes a $1,000
increase in investment at t = 0. The annual percentage increase in the
knowledge stock from the $1,000 investment is kt ¼ lnðKt=KtÞ. Let Vt denote
the real value of output in period t. Given a discrete annual real discount rate r
and an estimate of the research elasticity b̂, the future value of benefits (FVB) is:

FVB ¼ b̂
XM

t¼0
ktVt 1þ rð ÞM�t ð7Þ

The present value of cost (PVC) is the $1,000 simulated investment at t = 0.
The MIRR is then defined as:

MIRR ¼ FVB

PVC

� � 1
M

� 1 ð8Þ

A BC ratio can be calculated as:

BC ¼ PVB

PVC

� �
¼ MIRR+1

1þ r

� �M

ð9Þ

The net present value (NPV) of the $1,000 investment is

NPV ¼ PVB� PVCð Þ ¼ b̂
XM

t¼0
ktVtð1þ rÞ�t � 1; 000 ð10Þ

The IRR is the rate of return that equates the PVB to the PVC, has no
analytical solution except for simple cases and therefore typically requires
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numerical methods to solve for the discount rate. If the investment
opportunity includes a single upfront cost at t = 0, and a single lump sum
benefit at t = M, then the MIRR = IRR, and the discount rate can be
calculated from Equation (8). The discrete annual discount rate can be
converted to a continuous discount rate rc using the formula, rc = ln(1 + r).
The basic ingredients for the financial calculations are the research

elasticity, the simulated growth in the knowledge stock, the real value of
agricultural output and the discount rate, r. The first two ingredients are very
difficult to obtain. The value data are generally easier to obtain although
subject to additional data construction issues, such as an appropriate price
deflator to use when calculating the real value of output. The choice of
discount rate is also not entirely clear and should vary depending on the
application. When evaluating the return to public spending on agricultural
R&D, recent studies by Alston et al. (2010, 2011) used a real discount rate
equal to 3 per cent per annum. Andersen and Song (2013) examined the
sensitivity of the estimated return-to-research to the choice of discount rate
(varied from 0 to 4 per cent per annum). They found that the estimated
MIRR was 8.19 per cent assuming a zero discount rate and 10.41 per cent
assuming a 4 per cent discount rate.6 One simplifying suggestion for models
of the returns-to-research is to utilise estimates of the research elasticity based
on annual averages, rather than the marginal estimates obtained from
econometric estimation of knowledge productivity functions. Andersen
(2015) describes the calculation of research elasticities based on annual
averages of the data, and some potential advantages of this approach over
econometrically estimated elasticities.
The IRR is applicable in the context of evaluating private research

investments, where the investor retains all of the benefits generated over time.
In the case of public investment, the benefits are distributed to producers and
consumers over time in the form of price and quantity changes that generate
economic surplus. The MIRR requires the assumption of a reinvestment rate
for the stream of benefits generated from a simulated $1,000 investment. The
uncertainty about the reinvestment rate comes from issues related to who
receives the benefits from agricultural R&D and how those benefits are either
consumed or reinvested over time. The benefits that accrue from agricultural
R&D take the form of changes in the prices and quantities of agricultural
products and their inputs, and therefore the benefits go to producers and
consumers of agricultural products, and are not reinvested in agricultural
R&D. This provides justification for using an exogenous reinvestment rate
tied to the general economy such as the real return on bonds. One possible
measure of an exogenous market interest rate is the annual yield on Moody’s
BAA corporate bonds, minus the rate of inflation as measured by the rate of
growth of the implicit price deflator for gross domestic product – the GDP

6 Note that the discount rate is used to calculate the future value of the stream of benefits,
and therefore, the MIRR increases with an increase in the assumed discount rate.
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deflator. The real discount rate (reinvestment rate) in the MIRR calculation
would be the annual average of this measure. It should be noted that the
reinvestment rate could also be assumed to be zero, or the MIRR can be
calculated under a range of assumed reinvestment rates.

7. Recent developments and future research

Maybe the biggest recent development in the estimation of knowledge
productivity functions is the use of Bayesian models to attempt to address
uncertainties related to the knowledge formation process and the sources
driving agricultural productivity. Two recent studies using this methodology
are Qin and Buccola (2017) and Baldos et al. (2018). The latter of these
studies investigates the robustness of various assumptions that have been
made about the knowledge formation process including the shape and the
length of the research lag distribution. Bayesian models are not without
controversy however, and their application to studies of the returns to
agricultural research has yet to withstand the acid test of time and widespread
acceptance among practitioners.
Future studies of the relationship between R&D spending and agricultural

productivity will need to address some current trends in agriculture, such as
the recent number of mergers and acquisitions in many agricultural input
industries such as seed producers and agrichemical companies. This consol-
idation is changing the structure of the markets in which they operate, as well
as the agricultural R&D that they conduct. This could have substantial effects
on the private funding of agricultural R&D, the types of research projects
selected and the distribution of benefits over time. Some additional relevant
topics for investigation include the factors driving technology adoption and
diffusion, intellectual property rights issues and the increasing need for
maintenance research to keep agricultural productivity from faltering. In the
United States, another recent trend worth noting is the reduction in public
spending on agricultural R&D in general, and a shifting of the focus of
research spending from farm productivity enhancing to other growing areas
of research such as environmental degradation or nutrition. Given the very
long time frames involved, the effects of these changes on agricultural
productivity and the return-to-research have yet to be fully realised and
should remain a focus of future studies. The literature has provided ample
evidence that the economic return to public investments in agricultural R&D
is large, but it remains to be determined how these benefits are distributed
among producers and consumers, or among highly developed counties and
less developed countries.7 This information is important for the evaluation of
investments in terms of choosing reinvestment rates, as well as to respond to
the moral obligations of food security.

7 Some evidence on the distribution of benefits from R&D can be found in Freebairn et al.
(1982) and Alston and Scobie (1983).
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8. Conclusion

Perhaps too much emphasis has been placed on the technical aspects of
econometric estimation in models of the returns-to-research. Much has been
learned from these studies, but it is apparent that future improvement and
refinement of these models will come from refocusing on the basic ingredients
of the model—the raw data, the data construction methods, and the guiding
economic theory. The sophistication of the econometric estimation proce-
dures is sufficient for these models provided we have access to accurate
detailed data, employ the appropriate economic data construction methods
and avoid other common specification errors.
It is important to note that the variables used to estimate knowledge

productivity functions are commonly nonstationary and become stationary
after first-differencing. This means a linear combination of the variables could
form a stationary time series, which allows for consistent estimation of
research elasticities using an OLS procedure. Additional econometric
problems related to the structure of the error terms can be handled with
the use of the appropriate estimator, such as the PCSE and the FGLS
estimators described above.
A final important decision must be made about the calculation of a

financial return to the R&D investments, and the most important distinction
relates to if they are public of private investments. Historically, the most
widely reported measure of financial return to public agricultural R&D is an
IRR, but recent research points to the MIRR as a superior measure. If the
investments are private, then either an IRR or a BC is recommended, and if
they are public, then a MIRR or a BC is recommended. When an IRR is used
to evaluate public agricultural R&D, the resulting estimated return has been
gigantic, usually exceeding 50 per cent per annum. A corresponding MIRR
with appropriate assumptions about the cost of debt capital and the
reinvestment rate will be much lower, on the order of one-half to one-quarter
of the IRR.
The raw data, the important economic assumptions regarding data

construction, the econometric estimation methods and the financial calcula-
tions – each potentially impact the estimated return to investments in R&D.
It is the responsibility of the economic researcher to get these correct so that
we are reporting results that are consistent with empirical observations,
historical facts, and current realities. Finally, agricultural economists may
debate the size of the benefit, but they generally agree that the economic
return to public investment in agricultural R&D is large.
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