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Abstract Accurate, timely and adequate forecasting of perishable crops have significant impact on the
farmers’ well-being in Indian agriculture. The time series data of these perishable commodities usually
violate the assumptions of time-series datasets i.e., linearity and stationarity. In such conditions, the
development and selection of the appropriate forecasting models for agricultural commodities plays an
imperative role for various policy decisions. In this study, we are focused on comparison of ARIMA
(linear) and TDNN (non-linear) models to accurately model the potato price. The inclusion of these non-
linear model in this study handles nonstationary, nonlinear, and non-normal features of datasets
simultaneously. The findings revealed that TDNN outperformed ARIMA, and it is regarded as the best fit
model in terms of minimal RMSE and MAPE value. The identification of the best forecasting model and
accurate forecasting of market prices would help all the stakeholders to take appropriate decisions.
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Agricultural commodity prices are often volatile as
these are heavily impacted by factors which are
unpredictable (Kumar et al. 2022). Price volatility plays
a crucial role in promulgating policies with dynamic
political and economic contexts (Kalkuhl, Von, and
Torero 2016). Price volatility is widely recognized to
destabilize farm revenue and impede farmers from
making optimal investments and resource utilization
(Schnepf 1999). Higher volatility reduces overall
welfare of the economy in the long term (Chavas,
Hummels, and Wright 2014). Policymakers, as well as
other stakeholders in agricultural commodity marketing
chain require price modelling and forecasting (Lama
etal. 2015). From a financial perspective, forecasting
volatility of agriculture commodity futures helps to

assess and hedge risks associated with the contracts
and provides the policy makers with tools to evaluate
different scenarios (Sharma 2015). A short-term market
price forecasting has been a challenge for many decades
because of too many factors which cannot be accurately
predicted. (Li, Xu and Li 2010). Time series
investigation has unavoidable application particularly
in agriculture. One of the most important and widely
used time series models is the autoregressive integrated
moving average (ARIMA) model (Gupta, Patra, and
Singh 2019). Lots of application of ARIMA model can
be found in the literature (Paul, Alam, and Paul 2014;
Paul, Gurung, and Paul 2015; Gupta, Rao, and Singh
2018; Gupta, Patra, and Singh 2019; Paul, Paul, and
Bhar 2020). ARIMA model has gained much popularity
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in modeling linear dynamics but it fails to capture the
nonlinearity present in the series. The real-world price
data of agro-products and its underlying market
changes are often nonlinear in nature, and therefore,
linear models may not be suitable when market changes
frequently. To overcome the restriction of the linear
models and to account for certain nonlinear patterns
observed in real problems, several classes of nonlinear
models have been proposed in the literature (Paul and
Garai 2021; Jha and Sinha 2013). Recently, the use of
neural network models in forecasting agriculture
phenomenon is getting more attention (Jha,
Thulasiraman, and Thulasiram 2009; Paul and Sinha
2016; Zhang et al. 2020). Numerous comparative
studies of traditional models and artificial neural
networks (ANNs) have been conducted, for example,
Hill, O’Connor, and Remus (1996), Chin and Arthur
(1996), Elkateb, Solaiman, and Turki (1998) and Paul
and Garai (2021) which proved artificial neural
networks to be a superior method for forecasting.

The conspicuous element of numerous time series of
different horticultural items, primarily the transitory
ones, is the nearness of nonlinearity, non-normality and
nonstationarity. Among those, potato exhibits high
degree of price volatility (Singh, Pynbianglang, and
Pandey 2017). Potato price in India is determined by
free market conditions that depend on the supply which
is highly affected by changes in area under cultivation,
unexpected weather conditions, demand of the potato
from the major cities etc. (Sreepriya and Sidhu 2020).
In the current study, an attempt has been made to assess
the forecasting performance of two methods, the
ARIMA model, the TDNN model for forecasting the
Potato price in the selected Indian markets.

Material and methods

The monthly wholesale price (INR per qtl) of potato
in India traded in Azadpur (Delhi), Burdwan (West
Bengal), Agra (Uttar Pradesh), Ahmadabad (Gujarat),
Jalandhar (Punjab), Bangalore (Karnataka), and
Mumbai (Maharashtra) markets was utilized in this
study. These markets were chosen based on their
percentage share of total potato market arrival. The
data for each market was gathered from the
AGMARKNET portal. The price series spanned a total
of 120 months, from January 2012 to December 2021,
with 80% (96 months) utilized as a training set and
20% (24 months) used as a testing set. For data analyses

purpose R-statistical package was used.

Test for normality: Skewness, Kurtosis, and density
plots were used to determine data normality. The
Shapiro—Wilk test given by Shapiro and Wilk (1965)
was used to provide evidence of normality or non-
normality of the datasets.

Test for stationarity: The first stage in price series
analysis is to look at the stationarity of each price series
individually. A series is considered stationary if its
statistical properties, such as mean and autocorrelation
structures, remain constant over time. To determine the
presence of a non-seasonal unit root in the price series,
the Augmented Dickey Fuller (Dickey and Fuller,
1979) and Phillips-Perron (Phillips and Perron 1988)
tests were used.

ARIMA model: Introduced by Box and Jenkins
(1976), the ARIMA model has been one of the most
popular approaches for forecasting. In an Auto-
Regressive Integrated Moving Average (ARIMA)
model, time series variable is assumed to be a linear
function of previous actual values and random shocks.
Since seasonal time series data is taken for this study.
ARIMA model can be extended easily to handle
seasonal aspects denoted as ARIMA(p,d,q)(P.D,Q), ,
where the small letter parentheses part (p,d,q) indicates
the non-seasonal part of model while the capital letter
part (P,D,Q),, indicates the seasonal part of model, s
being the number of periods per season (Barathi et al.
2011; Gupta et al. 2019). The general seasonal
autoregressive integrated moving average (SARIMA)is
given in equation 1:

Pp(B*)¢p(B) 27V, = 6,(B)0,(B%), (1)
where,

&p(B%)=(1 —®,BS - —@,B) is the seasonal AR
operator of order P;

$,(B)=(1-¢B— .. —¢,B") is the regular AR

operator of order p;

= (1 -B*)P represents the seasonal differences and

D
s
D = (1 -B ) the regular differences;

0y(B%) =(1 —0,B% — .. - 0,B?) is the seasonal moving
average operator of order Q;
0,(B)=(1-6,B— .. —0,B%) is the regular moving
average operator of order q;

T is a white noise process.
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In an ARIMA model, the estimated value of a variable
is supposed to be a linear combination of the past values
and the past errors. The agricultural commodities price
data are inherently noisy in nature and are volatile too
therefore ARIMA model will not be enough to deal
with such series, as it is limited by assumptions of
linearity and homoscedastic error variance.

Brock- Dechert-Scheinkman (BDS) test: The BDS
test is a non-parametric technique of testing for
nonlinear patterns in time series and developed in
Brocket al. 1996. The null hypothesis states that data
in a time series is distributed independently and
identically. The test is unique in its ability to discover
nonlinearities in data that are not dependent on linear
relationships. The residuals of the best-fitting ARIMA
model were used to test for nonlinearity in the data.

Time Delay Neural Networks (TDNN): This has been
developed as a viable alternative to classic statistical
models in order to overcome the constraint of non-
linearity (Darbellay and Slama, 2000). TDNNSs are a
data-driven, non-linear, nonparametric self-adaptive
approach with a few a priori assumptions about the
data series (Zhang, Patuwo, and Hu 1998). It can be
treated as one of the multivariate nonlinear
nonparametric statistical methods (White, 1989; Cheng
and Titterington, 1994). As a result, it’s best for
forecasting agricultural price series, which are typically
noisy and nonlinear. Furthermore, ANNSs are universal
approximators since they can map any nonlinear
connection as long as the structure is acceptable and
sufficient training data is available.

The number of layers and total number of nodes in
each layer of an ANN for a specific issue in time series
prediction must be determined. Because there is no
theoretical foundation for establishing these
characteristics, it is normally discovered by
experimentation. Given a sufficient number of nodes
in the hidden layer and sufficient data points for
training, neural networks with one hidden layer may
approximate any non-linear function. We employed a
neural network with one hidden layer in this research.
The number of input nodes that are lagged observations
of the same variable plays an important role in time
series analysis since it aids in modelling the
autocorrelation structure of the data. It is usually
preferable to use a hidden layer model with fewer
nodes, since this improves out-of-sample prediction

accuracy and minimizes the issue of over-fitting. The
general expression for the final output value y,,in a
multi-layer feed forward time delay neural network is
given by equation (2)

Verr = 91850 4 f (i1 By v )] e

where, f and g denote the activation function at the
hidden and output layers, respectively; p is the number
of input nodes (tapped delay); q is the number of hidden
nodes; B; is the weight attached to the connection
between i" input node to the j* node of hidden layer;
oy, is the weight attached to the connection from the j*
hidden node to the output node; and y,;is the i input
(lag) of the model. Each node in the hidden layer gets
the weighted sum of all inputs, including a bias term
whose value of the input variable is always one. Each
hidden node then transforms the weighted sum of input
variables using the activation function f, which is often
a non-linear sigmoid function. Similarly, the output
node gets the weighted total of all hidden node outputs
and creates an output by converting the weighted sum
with its activation function g. In time series analysis,
the Logistic Sigmoid function (f) and the Identity
function (g) are frequently used. The logarithmic
function is written as an equation (3)

fy) =

For p tapped delay nodes, q hidden nodes, one output
node and biases at both hidden and output layers, the
total number of parameters (weights) in a three layer
feed forward neural network is q(p + 2) + 1. For a
univariate time series forecasting problem, the past
observations of a given variable serves as input
variables. The ANN model attempts to map the
following function

1
1+e™V

(3

Yes1 = f(y["y[‘—l,...y[‘—p+l'w) + Er41 (4

where, y,, pertains to the observation at time t+1, p is
the number of lagged observation, w is the vector of
network weights, and y, , is the error-term at time t+1.

Diebold—Mariano (DM) test: In order to assess
whether the observed differences in forecasting power
across models are statistically significant, the Diebold—
Mariano (DM) test for predictive accuracy was
performed among the models which present best
forecasting power inside each class (Diebold and
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Table 1 Descriptive statistics for the potato prices of major markets in India

Particulars Agra Ahmedabad  Bangalore Burdwan Jalandhar Mumbai Azadpur
Mean 938.35 1163.07 1463.65 1106.35 584.44 1336.00 1064.34
Median 872.06 1048.69 1375.24 1011.58 525.88 1228.33 947.67
Min 333.48 464.71 763.24 317.14 151.67 609.09 399.68
Max 2858.75 2847.06 3242.05 3625.24 2078.26 3254.00 2944.76
Range 2525.27 2382.35 2478.81 3308.10 1926.59 2644.91 2545.08
SE 43.31 43.61 38.37 51.45 32.39 39.98 48.50
SD 474.39 477.77 420.29 563.58 354.87 437.98 531.30
Skewness 1.34 1.00 1.19 1.44 1.52 1.31 1.26
Kurtosis 2.30 0.58 2.20 3.11 2.98 2.77 1.67
Ccv 50.56 41.08 28.72 50.94 60.72 32.78 49.92
CDVI 1.81 0.42 2.87 5.97 0.89 2.47 0.39

Mariano 1995). The DM test approach aims to test the
null hypothesis of equality of accuracy against the
alternative of significantly different accuracy. The best
model was selected on the basis of significance of DM
test.

Results and discussion

In Table 1, we compute the summary statistics of prices
of potato in major markets of India. The descriptive
statistics of potato prices in different wholesale markets
indicated a clear-cut difference among different
wholesale markets in India . The wholesale average
prices of potato were the highest (INR 1464 per quintal)
in the case of Bangalore market in Karnataka state with
minimum of INR 763 per quintal and maximum of INR
3242 per quintal, indicating the lack of production in
the market despite growing consumption demand for
potato-based products in the state. Jalandhar market in
Punjab received the lowest average prices (INR 584
per quintal) of Potato with minimum of INR 151.67
per quintal and maximum of INR 2078 per quintal.
The average wholesale price varied between in range
of INR 584 to 1463 per quintal in all the markets of
India. The selected price series were positively skewed
ranging from 1.01 to 1.52, indicating the distribution
was long on the right side as compared to the left.

Estimates of kurtosis showed that the pattern of prices
among all the selected markets of the different states
were non-stationary with upto-kurtic distribution,
which implying a relatively peak curve than a normal
distribution. The standard deviation in wholesale prices
was more than 400 in unit among all the markets
however, it was the highest in market Burdwan of the
West Bengal state. Further, the skewness and kurtosis
estimates imply that the monthly prices in the respective
markets are widely spread around its mean.

In time series analysis, the first and foremost step is to
plot the data. We have plotted all the price series of all
the selected markets (Figure 3). From the time plot of
the price series, almost a similar pattern has been
observed for all the markets. However, we have
replaced the outliers by using standard practices such
as interpolation as these price spikes has been seen
during month of November of the year 2012 and 2019.
Another important property of the time series analysis
is checking whether the price series is normally
distributed or not. We have used the Shapiro-Wilk test
(Shapiro and Wilk, 1965). The null hypothesis for this
test is the price series of all the selected markets are
normally distributed and results are depicted in Table
2, wherein our null hypothesis was rejected (alternative

Table 2 Shapiro-Wilk test to check the normality for the potato prices of major markets in India

Particulars Agra Ahmedabad  Bangalore Burdwan Jalandhar Mumbai Azadpur
Test-Statistics  0.895 0.921 0.928 0.895 0.869 0.916 0.892
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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hypothesis accepted). It depicts that the datasets of all
the selected markets are non-normally distributed. This
argument can be supported by the Kernel densities
given in Figure 1, which shows highly positive
skewness in all the selected markets.

Before proceeding to the subsequent step, it is pertinent
to see the price series of the selected markets must be
stationary. If not, then further statistical practices such
as differencing has to be applied to make the price
stationary because ARMA methodology can only be
applied for the stationary series.

The "SEAS" test, a measure of seasonal growth strength
was used to test the presence of seasonal unit root,
where seasonal differencing is suggested if the seasonal

Distribution of Agra Market Prices
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strength exceeds 0.64 (Wang, Smith and Hyndman,
2006). The data were seasonally adjusted if the seasonal
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Figure 1 Kernel Density Plot for the potato prices of major markets in India



124

Kumar S, Arora K, Singh P, Gupta A K, Sharma I, Vatta K

Table 3 Stationarity test for the potato prices of major markets in India

Particulars Agra Ahmedabad  Bangalore Burdwan Jalandhar Mumbai Azadpur

ADF -3.998 -3.299 -3.354 -4.227 -3.279 -2.996 -3.916
(0.012) (0.075) (0.065) (0.010) (0.072) (0.163) (0.016)

PP -23.781 -22.710 -21.195 -28.980 -18.05 -21.025 -26.779
(0.025) (0.033) (0.046) (0.010) (0.092) (0.048) (0.013)

Note The figures in parentheses are p-values of their respective figures

selecting best model for better forecasting in all the
selected markets and results are shown in Annexure I.
The performance of different models are evaluated on
the basis of RMSE and MAPE. The various fitted
ARIMA models are identified by above process and
presented in Table 4. The evaluation criterion suggested
that the best fit model for Agra market was {(1,0,1)
(1,1,0)} ;5 followed by Burdwan {(2,0,0) (2,1,1) (1},
Ahmedabad {(3,0,1) (1,1,1) ;;5}, Azadpur {(1,0,1)
(1,1,0) 15y}, Mumbai {(1,0,1) (0,1,1) 5}, Bangalore
1(1,1,2) (0,0,0) 15} and Jalandhar {(2,0,1) (0,0,0) 5}
Additionally, among all the selected markets, the value
of RMSE ranged between 232.76 to 571.98 among all
the selected markets of India. However, the lowest
value of RMSE recorded in Bangalore that suggest

ARIMA {(1,1,2) (0,0,0)} ,,is the best price forecasting
model among all the markets.

Non-linear test

Before proceeding with the TDNN, it is important to
find whether the residuals of the best fitting ARIMA
model of the selected markets are non-linear or not. If
there is nonlinearity, then nonlinear models must be
used to test for nonlinearity in the data. The study used
BDS non-linearity model to test the residuals of the
ARIMA model. The results of nonlinearity test
presented in Table 5, reveal strong rejection of linearity
in the case of residuals of the price series. In other
words, the analysis has indicated the existence of some
hidden structure left unaccounted in the residuals of

Table 4 Comparison of prediction performance of the selected models for the potato prices of selected markets of

India
Market Name ARIMA Artificial Neural Network
Model RMSE MAPE Layers RMSE MAPE
Agra (1,0,1) 484.662 23.79 5:2s:11 303.16 16.27
(1,1,0) (129.221) (11.47) (68.47) (5.74)
Burdwan (2,0,0) 432.105 29.45 3:2s:11 299.73 20.14
(2,1,1) 1y (119.072) (6.93) (82.74) (5.63)
Ahmedabad (3,0,1) 543.378 39.66 1:4s:11 216.49 12.49
(LL1) iy (136.013) (9.52) (61.96) (4.03)
Azadpur (1,0,1) 571.98 56.38 2:2s:11 265.99 24.15
(1,1,0)5 (142.26) (7.28) (103.76) (6.49)
Mumbai (1,0,1) 454.491 16.259 2:6s:11 242.56 11.54
(0,1,1) 11y (131.52) (8.289) (77.14) (4.86)
Bangalore (1,1,2) 232.76 6.740 1:3s:11 213.47 5.93
(0,0,0) 11y (164.91) (7.316) (72.53) (2.99)
Jalandhar (2,0,1) 334.484 40.55 2:3s:11 213.68 28.52
(0,0,0) (15 (144.177) (21.874) (50.47) (9.24)

Note The figures in parentheses are error measures of the training dataset
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Table 5 Brock- Dechert-Scheinkman (BDS) test for nonlinearity for residuals

Markets Epsilon=0.5 Epsilon=1 Epsilon=1.5 Epsilon=2
M=2 M=3 M=2 M=3 M=2 M=3 M=2 M=3
Agra 52.518 988.988 43.251 642.487 36.505 436.952 35.065 334.129
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Burdwan 37.657 665.255 31.026 388.723 25.729 284.006 23.176 237.714
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Ahmedabad 56.453 1270.850 44216 693.013 45.197 690.244 45.557 688.368
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Azadpur 42.159 770.840 34.339 466.604 34.588 453.985 36.154 452.599
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Mumbai 56.71 1210.48 4423 697.58 45.47 686.77 40.56 558.11
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Bangalore -4.85 -2.42 697.5 -31.21 206.35 -13.79 172.17 -19.75
(0.00) (0.015) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Jalandhar -86.88 -38.64 -17.56 -7.64 -86.88 -38.64 -242.75 -108.34
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Note The figures in parentheses are the respective p-value

linear model in selected potato markets. The test
recommended the nonlinear model, i.e, Time Delay
Neural Network (TDNN) for better price forecasting
of potato.

Time delay Neural Network (TDNN)

The study has divided the datasets into two parts i.e.,
training set and testing set. The last 24 months of the
monthly prices have been considered for testing
purpose. Forecast models and its performance was
tested using testing set. The summary of the fitted
neural network model is given in Table 4. We have
selected one hidden layer for best TDNN for this study.
For this study, we have followed an iterative approach
to select the hidden node, and we eventually chose one
output node for better forecasting. We go through the
different input nodes from 1 to 5 and the number of
hidden nodes 2 to 6 for each selected market (Annexure
IT). TDNN model with one hidden layer is represented
as I: Hs: Ol, where I is the number of nodes in the
input layer, H is the number of nodes in the hidden
layer, O is the number of nodes in the output layer, s
denotes the logistic sigmoid transfer function, and I
indicates the linear transfer function. The results of
TDNN are summarized in Table 4 and Figure 2. We
exercised different TDNN model at manual mode for
each market, out of total 25 TDNN models that were

tried, the best fit model for each market was identified
based on the smallest value of RMSE and MAPE
(Annexure II). The best fit TDNN model market was
identified with 5 perceptron input layer and 2
perceptron hidden layer with one output (5:2s:11) for
Agra market of India. Likewise, the best TDNN for
Burdwan market was 3:2s:11 followed by Ahmedabad
(1:4s:11), Azadpur (2:2s:11), Mumbai (2:6s:11),
Bangalore (1:3s:11) and Jalandhar (2:3s:11). In all the
selected markets, this network performed better than
other competing networks for potato prices. Among
all the markets, Bangalore market was performed best
(with minimum value of RMSE 213) in India (Table 4
and Figure 2) with the selected Neural Network model.
In Table 4, we have compared the results for the best
in between ARIMA and TDNN models in terms of
RMSE and MAPE for each market. We can see that
for both the price series, the value of evaluation
criterion (RMSE and MAPE) are comparatively lower
in TDNN model than in ARIMA model. These lower
value of RMSE and MAPE signifies that TDNN is
better performing model. Nonetheless, in the study, we
have used a variety of ARIMA models. However, all
of the markets’ pricing sets were nonlinear in character,
which might be attributed to a nonlinear time series
data set. In the nutshell, the results revealed that the
TDNN model in general provided a better forecast
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Burdwan

Figure 2 Artificial Neural Network layers for the potato prices of major markets in India



Price/Qtl

Price/Qtl

Price/Qtl

Price/Qtl

Performance comparison of ARIMA and Time Delay Neural Network..................

| — Actual Price
& ---- Fitted values
g 4 Predicted Values
(]
o
o |
=
o =
T T T T T T
2012 2014 2016 2018 2020 2022
Years
Agra
| — Actual Price
o ---- Fitted values
g 4 Predicted Values
o
7] / .
3 \/\/ ' 1 J
= 1 /\\/ \/ﬁ\_/\f ~ v
o -
T T T T T T
2012 2014 2016 2018 2020 2022
Years
Ahmedabad
| — Actual Price
o ---- Fitted values
g 4 Predicted Values
™
o
(=3
=
o -
T T T T T T
2012 2014 2016 2018 2020 2022
Years
Mumbai
o
g A
© — Actual Price
& —| ---- Fitted values
g 4 Predicted Values
N
o ] \//\
S |
=) ) .
o -
I T T I T I
2012 2014 2016 2018 2020 2022
Years
Jalandhar

Price/Qtl

Price/Qtl

Price/Qtl

3000

1000

0

3000

1000

0

3000

1000

0

127

- — Actual Price
---- Fitted values
= Predicted Values

T T T T
2016 2020 2022

|

2012 2014 2018

Years

Burdwan

| — Actual Price
---- Fitted values
o SemER Predicted Values

T T T T

2012 2016 2022

2014 2018 2020

Years

Azadpur

_| — Actual Price
---- Fitted values
o Predicted Values

IR
| o

T T T T T T
2012 2014 2016 2018 2020 2022

Years

Bangalore

Figure 3 Actual vs. fitted price series of selected markets of India by using ANN Model



128 Kumar S, Arora K, Singh P, Gupta A K, Sharma I, Vatta K

Table 6 Diebold—Mariano (DM) test to see the forecasting power across models

Markets Training set Testing set
DM p-value DM p-value

Agra 2.731 0.01 2.037 0.05
Burdwan 2.432 0.02 3.272 0.00
Ahmedabad 4.634 0.00 5.131 0.00
Azadpur 2.470 0.02 4.041 0.00
Mumbai 3.316 0.00 2.629 0.01
Bangalore 6.102 0.00 2.093 0.04
Jalandhar 3.068 0.00 3.752 0.00

accuracy in terms of RMSE and MAPE values as
compared to the linear model, i.e., ARIMA (Figure 3).

To this end, Diebold—Mariano test (Diebold and
Mariano, 1995) was applied for statistical comparison
of forecasting performance among the ARIMA and
TDNN models. It is found that the predictive accuracy
of TDNN are significantly different than that of
ARIMA models for all the selected markets (Table 6).

Conclusions

Timely and precise price forecasting of agricultural
commodities have significance in the scenario of Indian
agriculture, as this enables all the stakeholders
associated with particularly perishable crops to take
accurate decisions regarding the production and
marketing. The agricultural time series datasets are
asymmetric, meaning they are non-normal, nonlinear,
and nonstationary. Pre-processing of the datasets is
required for this purpose as our study compared two
types of model, ARIMA and TDNN, as this exercise is
demanding and getting popularity in this research area
of agricultural marketing. In this study for empirical
evaluation, forecasting of potato prices of all the
selected markets across India have been carried out.
Our results elucidate that potato price volatility is
asymmetric in all of India’s chosen markets.
Additionally, the study compared the ARIMA and
TDNN models for forecasting potato prices and the
results found that TDNN performed better than
ARIMA, it is considered as the best fit model with
respect to minimum RMSE and MAPE value. The
study put forward that our efforts must be focused on
machine learning techniques like neural network for
designing market intelligence system, as these models

handles the violation of traditional time series
techniques assumptions. However, combination of
statistical methods with these soft computing
techniques and the local information to the farmers,
traders and policymakers is still lacking. The synergy
of these would help to provide accurate and timely price
forecast.
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