

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Cloning and Bioinformatics Analysis of *TpiA* Gene of *Vibrio alginolyticus* HY9901

Ling ZUO, Liangchuan CHEN, Shuai YANG, Xing XIAO*, Fuyuan ZENG, Junlin WANG, Weijie ZHANG, Huanying PANG*

Fisheries College of Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Diseases Controlling for Aquatic Economic Animals of Guangdong Higher Education Institutions, Zhanjiang 524088, China

Abstract [Objectives] To clone and analyze the *TpiA* gene of *Vibrio alginolyticus* HY9901. [Methods] According to the *TpiA* gene sequence of *V. alginolyticus*, a pair of specific primers was designed, and its full length was amplified by PCR. [Results] The full length of *TpiA* gene is 771 bp, encoding 256 amino acid residues in total, and the NCBI accession number is OM906798. According to the deduced amino acid sequence, its molecular weight was predicted to be about 26.975 48 kDa, and its isoelectric point was 4.78. The amino acid sequence of the N-terminal signal peptide structure was predicted, and it was found that there was no obvious signal peptide cleavage site, no signal peptide, and no transmembrane region; the amino acid sequence contained 3 N-glycosylation sites, 4 protein kinase C phosphorylation sites, 2 casein kinase II phosphorylation sites, 6 N-myristylation sites, 7 microbody C-terminal target signal site, and 1 triose phosphate isomerase active site. The prediction results of protein subcellular localization showed that *TpiA* may be located in mitochondria or cytoplasm, with probability of 39.1% and 34.8%, respectively. The amino acid sequence of the *TpiA* gene of *V. alginolyticus* shared 98.83%–99.61% homology with other *Vibrio* species, and it was clustered into the same subfamily with *Vibrio parahaemolyticus* and had a close relationship. In the secondary structure prediction, the proportions of α -helix, random coil and extended chain were 44.53%, 41.41% and 14.06%, respectively, and the similarity of its tertiary structure model to template 1aw1.1. A was 85.16%. [Conclusions] This study is intended to provide a basis for further research on the role of *TpiA* gene in the type III secretion system and related research on antibiotic resistance.

Key words *Vibrio alginolyticus*, Gene amplification, *TpiA*, Bioinformatics analysis

1 Introduction

In recent years, due to such factors as the expansion of mariculture scale and the deterioration of environmental conditions, the diseases of China's aquaculture fishes frequently occur^[1]. *Vibrio*, as one of the most common bacterial diseases^[2], exists widely in aquaculture, estuaries, and living organisms^[3], and has a huge impact on marine life^[4–5]. *Vibrio alginolyticus* is a halophilic and mesophilic Gram-negative bacterium^[6], and is a main pathogenic bacteria of fish, shrimp, shellfish and other marine aquaculture animals^[9]. It is about 1.4–2.6 μ m long and 0.5–0.8 μ m wide, mostly in the shape of short rod. It has no structure of capsule and spore, but has terminal and pericytic flagella, which is

conducive to movement in solid-liquid medium. Its suitable temperature is 17–35 °C, the pH range is 6.0–9.0, and the NaCl concentration range is 2%–10%^[7–8]. It can lead to human food poisoning, diarrhea enteritis, sepsis and many other diseases^[10]. The pathogenic mechanism of *V. alginolyticus* is complex. After approaching the host by chemotaxis, it adheres to the host cell through adhesin^[11], and then damages the tissue and cells of the host cell by means of invasion and proliferation, and finally, it interferes and destroys the physiology and function of the host through toxin-containing metabolites^[12]. Pathogenic factors include biofilms, extracellular products, siderophores, lipopolysaccharides, attachment factors, etc.^[13], and *TpiA* may be involved in the adhesion to host cells^[14]. Triose phosphate isomerase encoded by *TpiA*, which converts glyceraldehyde-3-phosphate to dihydroxyacetone phosphate, is a key step linking glucose metabolism to glycerol and phospholipid metabolism and is essential for energy generation. Removal of the *TpiA* gene from growth-optimized *E. coli* strains may lead to an increase in the content of attack-end molecules (including DNA and RNA) and the highly toxic metabolite glyoxal that disrupts the nucleotide level^[15], and affects the tricarboxylic acid cycle of the strain, thereby affecting the growth of the bacterial cell^[16]. A counter-intuitive crossover between carbon starvation and inorganic phosphate signaling is revealed in a *TpiA*-deficient strain, which requires mutations in the

Received: February 6, 2022 Accepted: April 27, 2022

Supported by Project for Outstanding Undergraduates Entering the Laboratory in Fisheries College of Guangdong Ocean University; National Natural Science Foundation of China (32073015); Natural Science Foundation of Guangdong Province (2021A1515011078); Special Fund for Science and Technology Innovation Strategy of Guangdong Province (Scientific and Technological Innovation Cultivation of College Students) (pdjh2021b0239); Students' Platform for Innovation and Entrepreneurship Training Program of Guangdong Ocean University (CXXL2021122); Undergraduate Innovation Team Project of Guangdong Ocean University (CCTD201802).

* Corresponding author. Xing XIAO, master candidate, research direction: aquatic animal medicine; Huanying PANG, PhD., associate professor, research direction: aquatic animal medicine.

inorganic phosphate signaling machinery to alleviate. Studies have revealed that *TpiA* plays an important role in the metabolism, virulence and antibiotic resistance of *Pseudomonas aeruginosa*^[17]. The type III secretion system (T3SS) is closely related to the pathogenicity of bacteria and is a highly conserved secretion system of *V. alginolyticus*^[18-21], and it is a complex transmembrane channel composed of apparatus proteins, transposon proteins, effector proteins, regulatory proteins and molecular chaperones^[22-26]. *P. aeruginosa* T3SS is cytotoxic to a variety of cells, while mutations in the *TpiA* gene can reduce the expression of the T3SS^[17]. The advanced 2-D SDS-PAGE technique was used to study the differentially expressed whole protein map of *V. alginolyticus* under the induction of erythromycin, and it was found that the expression of triose phosphate isomerase decreased after induction, showing that the drug resistance mechanism of *V. alginolyticus* is closely related to the energy metabolism of *V. alginolyticus*^[27]. Studies have shown that mutations in the *TpiA* gene can reduce the resistance of *P. aeruginosa* to aminoglycoside antibiotics^[17].

TpiA is essential for energy generation, but there are few studies on the specific regulatory mechanism of *TpiA* involvement in *V. alginolyticus*. Through cloning and analyzing the *TpiA* gene of *V. alginolyticus* HY9901, we intended to provide a basis for further research on the role of *TpiA* gene in the type III secretion system and related research on antibiotic resistance.

2 Materials and methods

2.1 Materials

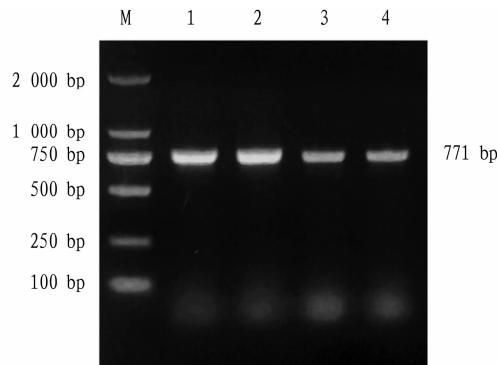
2.1.1 Strain. *V. alginolyticus* strain HY9901 was obtained by our laboratory through isolation from the diseased red snapper (*Etelis coruscans*) in the sea area of Zhanjiang, Guangdong Province^[28], and the cloning vector pET-32a was purchased from Takara Bio Incorporation (USA).

2.1.2 Main reagents. ExTaq DNA polymerase was purchased from Takara; bacterial genomic DNA extraction kit and DNA gel recovery kit were purchased from Tiangen Biotech (Beijing) Co., Ltd.; other reagents were of imported or domestic analytical reagents. PCR primer synthesis and sequence determination were completed by Sangon Biotech (Shanghai) Co., Ltd. Antibiotic concentration: Ampicillin (Amp) 100 μ g/mL.

2.2 Methods

2.2.1 Extraction of total DNA from *V. alginolyticus* HY9901. The *V. alginolyticus* strain HY9901 was spread on TSA plate, and a single colony was selected and inoculated in TSB (5% NaCl) medium, and cultured at 28 °C with shaking for more than 12 h. Took an appropriate amount of bacterial liquid into an EP centrifuge tube, centrifuged at 10 000 rpm for 1 min to collect bacterial cells, extracted genomic DNA in accordance with the kit instructions, and stored at -20 °C for later use.

2.2.2 Clone of *TpiA* gene. A pair of primers were designed according to the *TpiA* gene sequence of *V. alginolyticus*, the upstream primer *TpiA*-F1 was: ATGCGTCCTCCTGTAGTGATGG,


and the downstream primer *TpiA*-R1 was: TTAAGCTTT GCTT-TAGCAGCTGC. The extracted total DNA of *V. alginolyticus* HY9901 was used as the template, and the PCR reaction conditions were: pre-denaturation at 95 °C for 3 min; 95 °C, 30 s; 58 °C, 30 s; 72 °C, 50 s; a total of 30 cycles, and then extended at 72 °C for 5 min. The PCR products were examined by 1% agarose gel electrophoresis, and then DNA was recovered by cutting the gel with a gel recovery kit.

2.2.3 Sequencing of PCR products. According to the operating steps in the instructions, the PCR product was ligated to the pMD18-T vector, then *E. coli* DH5 α competent cells were then transformed, screened on LB plates containing ampicillin resistance, and positive clones were picked and sent to Guangzhou Biotechnology Center for sequencing.

2.2.4 Bioinformatics analysis of *TpiA* gene of *V. alginolyticus* HY9901. With reference to the method of Pang Huanying *et al.*^[25], ExPASy (<https://web.expasy.org/cgi-bin/protparam/protparam>) was used to analyze the physicochemical properties of *V. alginolyticus* HY9901TpiA protein, and SignalP 5.0 Server (<https://services.healthtech.dtu.dk/service.php?SignalP-5.0>) was used to predict the signal peptide structure of *TpiA* amino acid sequence. Transmembrane domains predicted by TMHMM Server 2.0 (<https://services.healthtech.dtu.dk/service.php?TMHMM-2.0>), and the distribution of functional sites in amino acid sequences was predicted by SoftBerryPsire (<http://linux1.softberry.com/berry.phml?topic=psite&group=programs&subgroup=proloc>). Subcellular localization was predicted using PSORT II Prediction (<http://psort.hgc.jp/form2.html>); sequence homology alignment and similarity analysis were performed using NCBI (<http://blast.ncbi.nlm.nih.gov/Blast.cgi>); amino acid homology alignment analysis was performed using DNAMAN Version 6.0 (Lynnon Biosoft); ORF Finder (<http://www.ncbi.nlm.nih.gov/gorf/gorf.html>) and ExPASy Proteomics Server (<http://ca.expasy.org>) were used to deduce amino acid sequence, determine open reading frame (ORF), molecular weight calculated value (Mw) and theoretical isoelectric point (pI), etc. Protein structural domains were analyzed using InterProScan Sequence Search (<http://www.ebi.ac.uk/Tools/InterProScan>). The phylogenetic tree was constructed by neighbor-joining method using Clastal 2.0 and MEGA 7.0 software. Modeling was performed using the SWISS-MODEL (<http://www.swissmodel.expasy.org/>) program of the ExPASy server and analyzed by the 3D structural analysis software PyMOL Viewer.

3 Results and analysis

3.1 Amplification of *TpiA* gene A specific band of about 771 bp was successfully obtained by PCR amplification (Fig. 1). Sequencing showed that the *TpiA* gene contained an open reading frame of 771 bp, encoding 256 amino acids. The gene was imported to GenBank with accession number OM 906798.

Note: M: DL2000 DNA molecular weight standard; Lane 1 - 4: *TpiA* PCR product.

Fig. 1 Amplification of *TpiA* gene

3.2 Physicochemical properties of *TpiA* With the aid of Ex-PASy software, the TpiA protein of *V. alginolyticus* HY9901 was analyzed. The results showed that the total number of atoms was 3 788, and the molecular structure was $C_{1190}H_{1891}N_{325}O_{375}S_7$. The theoretical molecular weight was 26.975 48 kDa, and the theoretical *pI* value was 4.78. The instability coefficient was 24.17 (stable), the fat coefficient was 93.20, the overall average hydrophilicity was -0.016, and the protein overall was hydrophilic. The protein does not contain selenocysteine (Sec) and pyrrolysine (Pyl), and the molar extinction coefficient at the wavelength of 280 nm was 40 005 (mol/cm). The total number of acidic amino acids (Asp + Glu) was 35, the total number of basic amino acids (Arg + Lys) was 22, and the N-terminal was methionine (Met). The half-life of expression in yeast and *E. coli* was greater than 20 and 10 h, respectively, and the half-life of expression in mammalian reticulocytes *in vitro* was estimated to be 30 h.

3.3 Sequence analysis of *TpiA* The N-terminal signal peptide structure of *TpiA* amino acid sequence was predicted using SignalP 5.0 Server program, it is found that there is no obvious signal peptide cleavage site and no signal peptide. The protein was predicted to have no transmembrane domain by TMHMM Server 2.0 program. Through prediction using SoftBerry-Psite program, it is found that amino acid sequence contained 3 N-glycosylation sites (13-16aa, 71-74aa, 105-108aa), 4 protein kinase C phosphorylation sites (98-100aa, 176-178aa), 191-193aa, 214-216aa), 2 casein kinase II phosphorylation sites (181-184aa, 225-228aa), 6 N-myristylation sites (35-40aa, 64-69aa, 74-79aa, 163-168aa, 175-180aa, 231-236aa), 7 microbody C-terminal target signal sites (15-17aa, 59-61aa, 91-93aa, 177-179aa, 248-250aa, 252-254aa, 254-256aa), 1 triose phosphate isomerase active site (167-177aa), as shown in Fig. 2. Using PSORT II Prediction to predict protein subcellular localization, the results show that *TpiA* may be located in mitochondria or cytoplasm, 39.1% and 34.8%, respectively, followed by cytoplasm and nucleus, with a probability of 8.7%, while the probability of being located in peroxisome and vacuole is 4.3%.

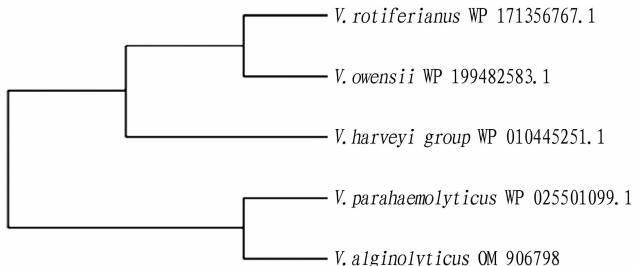
3.4 Homology and evolution analysis of TpiA Through BLAST analysis, it found that the TpiA of *V. alginolyticus* had high homology with the TpiA of other *Vibrio* species. Among them, the homology with the TpiA amino acid sequence of *V. parahaemolyticus*

was up to 99%, and the multiple sequence similarity comparison shows that *TpiA* in *Vibrio* was highly conserved (Fig. 3).

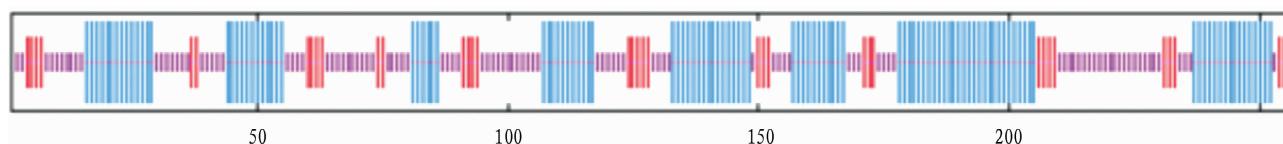
1 ATGCGTCGCTCTGTAGTGGTAACTGGAACTAAACCGCAGCAAAGCAATGGTA
1 M R R P V V M G N W K L N G S K A M V T
61 GAGCTCTAACTGGCTTAAACGCTGAACTTGAAGGCGTTGAAGGTTGACGTAGCAGTC
21 E L L T G M L E G V G E V G D V D M
121 GCTCCACCAAGCACTTTACATCGAACCTAGCGAACGCGCTTATCGCTGAAGGCGTTAAACAG
41 A P P A L Y I D L A E R V I A E E G G N K
181 ATCATCTAGGTGCTAAACACTGACCTAAACACAGCGGTGCGTTACTGGCGATATG
61 ~~E~~ I L G A Q N T D L N N S G A F T G D M
241 TCTCCAGAAATGCTGAAGAATTGGTGTACTCATCATCATCGTCACTCAGAGCGT
81 S P E M L K L D F G A T H T I I G H S E R
301 CGTGAATACCAACGAATCTGACGAGTCATCGCTAAAGATTCAACTCTCTAAAGAA
101 R E Y H N E S D E F I A K R F N F L K E
361 AACGGCTAACACCTGTTTCTGTATCGGTGAATCTGAAGCGCAAATGAGCTGGCGAA
121 N G L T P V F C I G E S E A Q N E A G E
421 ACTGAAGCTGTATGTGACGTCAAATCAACGCACTATCGACACTTACGGTGTGAAGCT
141 T E A V C A R Q I N A V I D T Y V O W E A
481 CTAACCGCGCAATCATCGCTTACGGAACCAATCTGGCTATCGGTACTGGTAAAGCAGCA
161 L N G A I I A Y E P I V A I G T S R A A
541 ACACCTGAAGATGCAACAGCATTACCGCTTCTATCCGCGCACTAAATCCGACCGAAAAGAC
181 ~~T~~ A E D A Q R I H A S I R A L I A A K D
601 GAAGCAGTGTGACGCAACAGTAATCATCAAATACGGCGTTCTGTTAAGCGAGAAAACGCT
201 E A V A A Q V I I Q Y G G S V K P E N A
661 GAAGCTTACTCTCACAACAGACATCGACGCGCTTCGTTGCGGTCTCTAGAC
221 E A Y F S Q P F D I D G A L V G G A S L D
721 GCGAAAAGCTTCGCGCAATCGCTAAAGCAGCTAAAGCAGCTAAAGCAAAAGCTTAA
241 A K S F E A A I K A A K A K N A

Note: terminators are indicated by * , N-glycosylation sites are indicated in yellow, protein kinase C phosphorylation sites are indicated in green, casein kinase II phosphorylation sites are indicated in blue, N-myristoylation sites are indicated by black underline, the microbody C-terminal target signal site is indicated by strikethrough, and the triose phosphate isomerase active site is indicated by underlined dots.

Fig. 2 *TpiA* gene nucleotide and its encoded amino acid sequence


<i>V. alginolyticus</i>	LNGAIAYEPIWAIGTGAATAEDAQRIRHASIRALIAAKD	200
<i>V. harveyi</i> -group	LNGAIAYEPIWAIGTGAATAEDAQRIRHASIRALIAAKD	200
<i>V. owensii</i> . Txt	LNGAIAYEPIWAIGTGAATAEDAQRIRHASIRALIAAKD	200
<i>V. parahaemolyticus</i>	LNGAIAYEPIWAIGTGAATAEDAQRIRHASIRALIAAKD	200
<i>V. rotiferianus</i> . t	LNGAIAYEPIWAIGTGAATAEDAQRIRHASIRALIAAKD	200
Consensus	lNGAIAYEPIWAIGTGAATAEDAQRIRHASIRALIAAKD	
<i>V. alginolyticus</i>	EAVAAQVIIQYGGSVKPFENAEAYFSQFDIDGALVGGASLD	240
<i>V. harveyi</i> -group	EAVAAQVIIQYGGSVKPFENAEAYFSQFDIDGALVGGASLD	240
<i>V. owensii</i> . Txt	EAVAAQVIIQYGGSVKPFENAEAYFSQFDIDGALVGGASLD	240
<i>V. parahaemolyticus</i>	EAVAAQVIIQYGGSVKPFENAEAYFSQFDIDGALVGGASLD	240
<i>V. rotiferianus</i> . t	EAVAAQVIIQYGGSVKPFENAEAYFSQFDIDGALVGGASLD	240
Consensus	eavaaqviiqyggsvkpenenaeayfsqfdidgalvggasld	
	Identity	
<i>V. alginolyticus</i>	AKSFIAIAKAAAFAK 100%	255
<i>V. harveyi</i> -group	AKSFIAIAKAAAFAK 99.22%	255
<i>V. owensii</i> . Txt	AKSFIAIAKAAAFAK 98.83%	255
<i>V. parahaemolyticus</i>	AKSFIAIAKAAAFAK 99.61%	255
<i>V. rotiferianus</i> . t	AKSFIAIAKAAAFAK 98.83%	255
Consensus	aksf aia aaa ak	

Note: *V. alginolyticus* (OM906798); *V. harveyi* group (WP_010445251.1); *V. owensii* (WP_199482583.1); *V. parahaemolyticus* (WP_025501099.1); *V. rotiferianus* (WP_171356767.1).


Fig. 3 Homology comparison of the deduced amino acid sequence of *TpiA* gene

With the aid of MEGA 7.0 software, we constructed a phylogenetic tree by combining the deduced amino acid sequence of TpiA with other microorganisms using Neighbor-joining method. The results show that the TpiA protein of *V. alginolyticus* HY9901 was obviously the same subfamily as *V. parahaemolyticus*, indicating that they were closely related (Fig. 4), which is consistent

with the traditional classification results of morphological and biochemical characteristics.


Fig. 4 TpiA amino acid phylogenetic tree constructed based on NJ method

Note: blue: alpha helix; purple: random coil; red: extended strand.

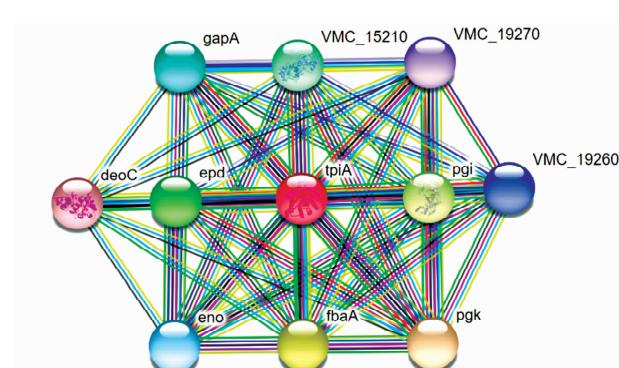
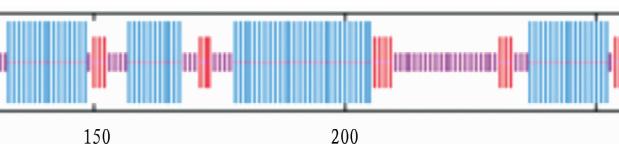
Fig. 6 Secondary structure prediction of TpiA

The amino acid sequence of TpiA was imported to the SWISS-MODEL program, and homologous proteins were automatically searched as templates to obtain the tertiary structure model of TpiA single subunit (Fig. 7).

Note: template: 1awl.1. A; similarity: 85.16%.

Fig. 7 Tertiary structure prediction of TpiA

3.6 TpiA protein network interaction In the protein network interaction, it can be found that the TpiA protein can be co-expressed with pgk, fbaA, pgi, epd, VMC-15210, gapA, eno, VMC-19260, VMC-19270, and there are pgk, fbaA, pgi, eno in Text mining (Fig. 8).



4 Discussion

Based on the amino acid sequence of the *TpiA* gene of *V. alginolyticus* HY9901, through a comprehensive comparative analysis of its secondary structure and tertiary structure, transmembrane region, hydrophilicity, protein network interaction and other parameters, we predicted the possible role of TpiA protein. Triose-

Fig. 5 Functional domains of TpiA

3.5 Functional domain, secondary and tertiary structure prediction of TpiA Through prediction using the SMART program, it was found that there is a TpiA functional domain (4-248aa) (Fig. 5). In the secondary structure prediction, alpha helix accounted for 44.53%; random coil accounted for 41.41%; the extended strand accounted for 14.06% (Fig. 6).

Fig. 8 TpiA protein network interaction

phosphate isomerase (TPI) is a catalytic enzyme in the process of glucose metabolism, and it can catalyze the conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (G3P). Glycolytic pathway can be associated with lipid metabolism, pentose phosphate pathway, gluconeogenesis pathway through DHAP and G3P. Therefore, TPI plays an important role in regulating the metabolic balance of the body^[28]. At present, there are few studies on the *TpiA* gene and protein in *Vibrio*. In *P. aeruginosa*, Crc, Hfq, Small RNA (including miRNA, ncRNA, siRNA, snoRNA, piRNA, rasirRNA, etc.) and CrcZ are central regulators of carbon metabolism. Through screening for mutants of carbon metabolism-related genes, we found that mutations in the *TpiA* gene reduce the expression of the type III secretion system (T3SS) and bacterial resistance to aminoglycoside antibiotics. *TpiA* is a triose phosphate isomerase that converts glyceraldehyde-3-phosphate to dihydroxyacetone phosphate, which is a key step linking glucose metabolism to glycerol and phospholipid metabolism. The mutated *TpiA* gene enhances bacterial carbon metabolism, respiration, and oxidative phosphorylation, increases membrane potential, and promotes the intake of aminoglycoside antibiotics. Further studies showed that the level of CrcZ was in-

creased in mutated *TpiA* due to enhanced stability. In the context of mutated *TpiA*, mutation of the *crcZ* gene restores T3SS gene expression and bacterial resistance to aminoglycoside antibiotics. This study revealed that *TpiA* plays a great role in metabolism, virulence and antibiotic resistance of *P. aeruginosa*^[17]. Pyruvaldehyde is a highly toxic metabolite produced in all organisms and it can attack terminal molecules (including DNA and RNA) and disrupt nucleotide levels. Deletion of the *TpiA* gene from growth-optimized *E. coli* strains resulted in increased levels of pyruvaldehyde. In a *TpiA*-deficient strain, it revealed a counterintuitive crossover between carbon starvation and inorganic phosphate signaling, which requires mutations in the inorganic phosphate signaling machinery to alleviate. Split flux of glycolytic intermediates through low glycolytic depletion requires a large number of synchronized and coordinated mutations at non-intuitive network locations to retune metabolic flux for optimal growth^[15]. Such mutations include systematic inactivation of the phosphotransferase system (PTS) and alteration of the activity of all biosynthetic enzymes in the cell. As an exocine protein of *Toxoplasma gondii*, triose phosphate isomerase can trigger a strong immune response in the host^[29].

5 Conclusions

In this study, we successfully amplified the complete gene sequence of *TpiA* from *V. alginolyticus* HY9901. The full length of *TpiA* gene is 771 bp, encoding 256 amino acid residues in total. Its protein is stable and hydrophilic, and its molecular weight was predicted to be about 26.975 48 kDa, and its isoelectric point is 4.78. There is no obvious signal peptide cleavage site, no signal peptide, and no transmembrane region; the amino acid sequence contains 3 N-glycosylation sites, 4 protein kinase C phosphorylation sites, 2 casein kinase II phosphorylation sites, 6 N-myristylation sites, 7 microbody C-terminal target signal site, and 1 triose phosphate isomerase active site. The prediction results of protein subcellular localization showed that *TpiA* may be located in mitochondria or cytoplasm, with probability of 39.1% and 34.8%, respectively. The amino acid sequence of the *TpiA* gene of *V. alginolyticus* shared 98.83% – 99.61% homology with other *Vibrio* species, and it was clustered into the same subfamily with *V. parahaemolyticus* and had a close relationship. In the secondary structure prediction, the proportions of α -helix, random coil and extended chain were 44.53%, 41.41% and 14.06%, respectively, and the similarity of its tertiary structure model to template 1aw1.1. A was 85.16%. In the protein network interaction, it can be found that the *TpiA* protein can be co-expressed with *pgk*, *fbaA*, *pgi*, *epd*, *VMC-15210*, *gapA*, *eno*, *VMC-19260*, and *VMC-19270*. It is feasible to further study the role and mechanism of this gene in transcriptional regulation through knocking out the *TpiA* gene in *V. alginolyticus* and comparing with the wild strains.

References

- AGARWAL RK, SANYAL SC. Experimental studies on enteropathogenicity and pathogenesis of group 'F' vibrio infections [J]. Zentralblatt für Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical Microbiology, Infectious Diseases, Virology, Parasitology, 1981, 249 (3) : 392 – 399.
- AGUIRRE-GUZMÁN G, ASCENCIO F, SAULNIER D. Pathogenicity of *Vibrio penaeicida* for white shrimp *Litopenaeus vannamei*: A cysteine protease-like exotoxin as a virulence factor [J]. Diseases of Aquatic Organisms, 2005, 67 (3) : 201.
- THOMPSON FL, IIDA T, SWINGS J. Biodiversity of *Vibrios* [J]. Microbiology and Molecular Biology Reviews, 2004, 68 (3) : 403 – 431.
- HASSAN MA, ALLAH N, MABROK M. Inevitable impact of some environmental stressors on the frequency and pathogenicity of marine vibrios [J]. Aquaculture, 2021, 536 (3) : 736447.
- GWAB C, SCAB C, YWAB C, et al. Immune effect of *Vibrio harveyi* formalin-killed cells vaccine combined with chitosan oligosaccharide and astragalus polysaccharides in ♀ *Epinephelus fuscoguttatus* \times ♂ *Epinephelus lanceolatus* [J]. Fish & Shellfish Immunology, 2020 (98) : 186 – 192.
- HÖRMANSDORFER S, WENTGES H, NEUGEBAUR-BÜCHLER K, et al. Isolation of *Vibrio alginolyticus* from seawater aquaria [J]. International Journal of Hygiene and Environmental Health, 2000, 203 (2) : 169 – 175.
- QIAN RH. Cloning, expression and immunogenicity of main virulence-related genes of *Vibrio alginolyticus* [D]. Hangzhou: Zhejiang University, 2007. (in Chinese).
- ZHOU ZJ. Functional study of the molecular chaperone escort protein VscO in the type III secretion system of *Vibrio alginolyticus* [D]. Zhanjiang: Guangdong Ocean University, 2013. (in Chinese).
- BALCÁZAR JL, GALLO BUENO A, PLANAS M, et al. Isolation of *Vibrio alginolyticus* and *Vibrio splendidus* from captive-bred seahorses with disease symptoms [J]. Antonie van Leeuwenhoek, 2010, 97 (2) : 207 – 210.
- XUE LL, PANG HY, HUANG YC, et al. Prokaryotic expression and purification of the recombinant Hemin-Binding protein (HutB) of *Vibrio alginolyticus* strain HY9901 [J]. Journal of Guangdong Ocean University, 2014, 34 (3) : 47 – 51. (in Chinese).
- CHANG YS. Functional study of vscB gene of *Vibrio alginolyticus* type III secretion system and the cloning and expression of vscD gene [D]. Zhanjiang: Guangdong Ocean University. (in Chinese).
- PANG HY. Screening of *Vibrio alginolyticus* virulence proteins and protective antigens [D]. Beijing: Graduate University of Chinese Academy of Sciences. (in Chinese).
- RUI HP. From fish to man: A study on the pathogenic mechanism of the main pathogenic *Vibrio* [D]. Shanghai: East China University of Science and Technology, 2011. (in Chinese).
- LIAN LY, GONG XM, GUO LZ, et al. Isolation and identification of a strain of *Mycoplasma synovialis* and preparation of triose phosphate isomerase (Tpi) and pyruvate kinase (PK) antibodies [J/OL]. Chinese Journal of Animal Infectious Diseases, 2022; 1 – 11 [2022-02-28]. (in Chinese).
- MCCLOSKEY D, XU SB, SANDBERG TE, et al. Adaptation to the coupling of glycolysis to toxic methylglyoxal production in *TpiA* deletion strains of *Escherichia coli* requires synchronized and counterintuitive genetic changes [J]. Metabolic Engineering, 2018 (48) : 82 – 93.
- SHEN XL, YUAN QP. Metabolic network balance depends on a novel pathway using glycerol to produce 1, 2-propanediol in *Escherichia coli* [J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2014, 41 (4) : 83 – 88. (in Chinese).
- XIA YS, WANG D, PAN XL, et al. *TpiA* is a key metabolic enzyme that affects virulence and resistance to aminoglycoside antibiotics through *CrcZ* in *Pseudomonas aeruginosa* [J]. mBio, 2020, 11 (1) : e02079 – 19.
- SUKHAN A, KUBORI T, GALAN JE. Synthesis and localization of the salmonella SPI-1 Type III secretion needle complex proteins PrgI and PrgJ [J]. Journal of Bacteriology, 2003, 185 (11) : 3480 – 3483.

od of the fruit body. If the light is too strong, the color of the mushroom body will turn white in the later stage of growth, and it will cause certain damage to the mycelium of the fungus bed.

When the water storage channel is used to control the humidity, after the mushroom buds are found, the water storage depth of the working road is increased to 25 cm, which is maintained for 1 h, and then the water is drained. The operation is repeated once a day. After 1–3 d, the fungus buds grow into mushrooms. Generally, it can be harvested 3–5 d after the primordia appears.

4.7 Harvest and time interval management When the white spots on the surface of the pileus of *S. rugosoannulata* are gradually reduced until disappearing and the fungus membrane is about to be broken, it can be harvested. The stipe is held with the thumb and forefinger, and rotated gently to separate the base of the stipe from the mycelium in the material; the mushroom body is gently pulled out, and the mycelium on the border surface should not damage as far as possible. After the mushroom body is pulled out, the small hole left by the mushroom harvesting is gently backfilled with the soil covering the border surface. After harvesting, the soil at the foot of the mushrooms is removed in time, and the mushrooms are packed for fresh sale or sliced and dried. The mushrooms are dried at about 45 °C, and dehumidified with strong wind to fix the shape of the mushrooms. After the shape and color of the mushrooms are stable, the temperature is raised to 60 °C to dry the mushroom body.

Generally, *S. rugosoannulata* can be harvested 4 times in one production cycle, and the time interval between two harvests is about 25 d. The key points of the harvest time management technology of *S. rugosoannulata* are "resting, watering thoroughly, and moisturizing". After the mushrooms are harvested, the surface of the border bed is cleaned to let the mycelium grow back

for 2–3 d. Afterwards, the entire border bed is irrigated by drip irrigation or sprinkling irrigation, and there is water flowing out from the edge of the border bed. The moisture content of the border bed and relative air humidity are kept at above 85% until the next mushrooms grow.

5 Summary

To sum up, there is still a lot of room for improvement in the cultivation techniques of *S. rugosoannulata*. On the basis of clarifying the planting status and planting goals, it is necessary to grasp the current cultivation points, so as to improve the cultivation techniques and economic benefit of *S. rugosoannulata*, realize the stable and high yield of *S. rugosoannulata*, and promote the development and progress of the industry.

References

- [1] LI YR, CHEN ZL, WEN LH, et al. Pollution-free cultivation technology of *Stropharia rugosoannulata* in Guizhou [J]. Agricultural Technology Service, 2020, 37(4): 52–54, 56. (in Chinese).
- [2] YANG ZY, CHEN JW, LI X, et al. Simple cultivation techniques of *Stropharia rugosoannulata* in winter idle fields in Qiandongnan Prefecture, Guizhou Province [J]. Edible Fungi, 2021, 43(3): 53–54. (in Chinese).
- [3] LI X, CHEN JW, WANG ZW, et al. Techniques for cultivation of *Stropharia rugosoannulata* in the open field under forests in Qiandongnan Prefecture, Guizhou Province [J]. Edible Fungi, 2020, 42(3): 50–51. (in Chinese).
- [4] CHEN JW, GUI Y, SUN HJ, et al. Simple cultivation of *Stropharia rugosoannulata* in greenhouses in Qiandongnan Prefecture [J]. Edible Fungi, 2020, 42(4): 52–53. (in Chinese).
- [5] CHEN WW. Cultivation and management techniques of ecological *Stropharia rugosoannulata* under forest based on leisure picking [J]. Edible Fungi of China, 2020, 39(10): 70–72, 76. (in Chinese).
- [6] (From page 26)
- [19] SUZUKI M, DANILCHANKA O, MEKALANOS J. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases [J]. Cell Host & Microbe, 2014, 16(5): 581–591.
- [20] PHA K, NAVARRO L. Yersinia type III effectors perturb host innate immune responses [J]. World Journal of Biological Chemistry, 2016, 7(1): 1–13.
- [21] ROEHRICH AD, BORDIGNON E, MODE S, et al. Steps for shigella gatekeeper MxiC function in hierarchical type III secretion regulation [J]. Journal of Biological Chemistry, 2017, 292(5): 1705–1723.
- [22] WU PW, ZHOU SH, SU ZH, et al. Functional characterization of T3Ss C-ring component VscQ and evaluation of its mutant as a live attenuated vaccine in zebrafish (*Danio rerio*) model [J]. Fish & Shellfish Immunology, 2020(104): 123–132.
- [23] WU ZH, FAN MJ, LIAO JM, et al. Molecular cloning and bioinformatics analysis of type I secretion system effector protein *Va1686* gene of *Vibrio alginolyticus* [J]. Agricultural Biotechnology, 2018, 7(5): 8–12.
- [24] WANG JL, ZHAO Y, SUN YY, et al. Construction and characterization of gene *exsD* knock-out mutant of *Vibrio alginolyticus* type III secretion system [J]. Journal of Guangdong Ocean University, 2021, 41(5): 35–43. (in Chinese).
- [25] PANG HY, ZHOU ZJ, DING Y, et al. Molecular cloning and bioinformatics analysis of T3SS chaperone escort protein VscO from *Vibrio alginolyticus* [J]. Biotechnology Bulletin, 2014(6): 155–161. (in Chinese).
- [26] LU PL, CAI SP. Advances in the pathogenicity of bacterial type III secretory system and its effective proteins [J]. Chinese Journal of Zoonoses, 2020, 36(3): 245–249. (in Chinese).
- [27] ZHENG YQ. Proteomic study on the resistance of *Vibrio alginolyticus* to four antibiotics [D]. Zhanjiang: Guangdong Ocean University, 2011. (in Chinese).
- [28] CAI SH, WU ZH, JIAN JC, et al. Cloning and expression of the gene encoding an extracellular alkaline serine protease from *Vibrio alginolyticus* strain HY9901, the causative agent of vibriosis in *Lutjanus erythopterus* (Bloch) [J]. Journal of Fish Diseases, 2007, 30(8): 493–500.
- [29] XIE YX. Acetylation of triose phosphate isomerase and its effect on proliferation of A549 cells and HFL1 cells [D]. Changchun: Jilin University, 2021. (in Chinese).
- [30] SHEN S, YIN XR, SONG LJ, et al. Preliminary research on prokaryotic expression and immune protection of triosephosphate isomerase of *Toxoplasma gondii* [J]. Chinese Journal of Schistosomiasis Control, 2017, 29(6): 780–783. (in Chinese).