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ABSTRACT 
 

Electricity price forecasting is an important tool used by market players in 
decision-making and strategizing their participation in the electricity market. In most 
studies, market-clearing price is forecasted as it gives an aggregated overview of 
system price. However, locational marginal price (LMP) gives better outlook of the 
price particular to the customer location in the electrical power grid. This study 
utilizes Artificial Neural Networks to forecast weekday LMP of generator and load 
nodes. Various inputs such as historical prices and demand, and temporal indices 
were used. Using data for selected nodes of the Philippine Wholesale Electricity Spot 
Market, forecast Mean Average Percentage Error (MAPE) of 6.8% to 6.9% were 
obtained for generator and load node forecasts, with better prediction intervals than 
ARIMA models. The results showed that the proposed method of using the LMP of 
adjacent generator nodes in forecasting load node LMP results in significant 
improvement of forecast accuracy. 

 

Keywords: short-term forecasting, electricity markets, locational marginal price,  
     artificial neural networks 

 

Introduction 

In recent years, the traditionally 
regulated and monopolistic electric power 
industry has undergone deregulation and 
restructuring to reduce electricity costs and 
ensure a reliable energy supply through 
competition. Competitive electricity markets 
were introduced to promote long-run gains 
in efficiency and stimulate technical 
innovation, leading to efficient capital 
investments. Like other commodities, market 
participants trade electricity through bids and 
offers that would maximize their profits 
under market rules using spot and derivative 
contracts. The Electric Power Industry 
Reform Act of 2001 initiated the 
development of the electricity market 
dynamics in the Philippines, allowing 
customers and suppliers to participate 
actively in the market. Load customers may 
strategize their use of demand to save 
operational costs, while power-generating 
suppliers may strategize their bids for 
dispatching power in the network.  

However, electricity is a special 
commodity type. It is non-storable, and 
therefore it must be consumed as soon as 
it is produced (no inventory) to maintain a 
balance between production (generation) 
and consumption (load) that is critical in 
maintaining power system stability. The 
generation of and demand for electricity is 
highly dependent on weather, while 
demand is dependent on the intensity of 
business and daily activities exhibited by 
residential, commercial, and industrial 
consumers. These features result in 
electricity prices that  have  the  following 
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characteristics: high volatility, sharp price spikes, mean-reversion, and seasonality in 
different frequencies. Due to these idiosyncratic characteristics, accurate forecasting of 
electricity prices becomes a challenging task.   Generator   companies, distribution 
companies, or large industrial customers require an accurate short-term forecast of the volatile 
wholesale prices so that they can adjust their bidding strategy and their own production, 
consumption, or pool purchase schedules to reduce financial risk or maximize profits in real-
time or day-ahead trading. In the Philippine Wholesale Electricity Spot Market (Philippine 
Electricity Market Corporation [PEMC] 2019), there are two different types of electricity 
prices: Market Clearing Price (MCP) and Locational Marginal Price (LMP). MCP refers to the 
price cleared once the total generation meets the total demand of the network, as seen in 
Figure 1. LMP, on the other hand, refers to the price at the node where the customer or 
supplier is connected (Shahidehpour, Yamin, and Li 2002). This is different from MCP as 
MCP is the clearing price applicable to the whole system, whereas LMP is the price particular 
to the location of the customer or supplier, considering the added cost in the delivery of power 
due to the difference in locations. 

 

Figure 1. Market clearing price determination for four generators (G1 to G4) 
 

Under perfect competition, marginal cost pricing will result in economic efficiency 
or social optimality. This is the price of the last unit of a commodity that balances supply and 
demand. However, the oligopolistic nature of electricity generation leads to imperfect 
competition Furthermore, electricity demand is also inelastic as the usage of power is more 
affected by the need to use electricity than by its price. Actual consumer use of electricity (in 
the industrial, commercial, residential sectors) is driven less by market prices but rather by 
other factors such as commercial product or service contracts dictated by the demand/supply 
of these products/ services, preferences in the timing or intensity of usage of electric 
appliances, and operating business hours or work shift schedules. 

Locational marginal pricing is designed to achieve two economic objectives 
simultaneously: (a) minimize the cost of generating enough electricity to meet load by using 
the least-cost set of available generators given various constraints, through what is known as 
a least-cost, security-constrained dispatch; and (b) produce the instantaneous price of 
electricity (LMP), at every point in the system, which reflects the instantaneous short-run 
marginal cost of serving one incremental unit of load at that location. The LMPs are the 
shadow prices of the power balance equality constraints of an optimization problem that 
maximizes the total social welfare function subject to the constraints of the physical power 
system, based on the offer and bid functions of the sellers and buyers, respectively, for a 
specified point of time (Singh, Padhy, and Sharma 2010). 
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There are various factors that affect the price of electricity like market characteristics, 
system uncertainties, market behavior, and temporal effects (Aggarwal, Saini, and Kumar 2008, 
Li et al. 2005, Muñoz et al. 2010, Weron 2014). In most cases, the behavior of electricity price 
follows the same behavior as the electricity demand (Muñoz et al. 2010), especially for 
forecasting the MCP. Compared to MCP forecasting, LMP forecasting is more challenging 
because it may be affected by different factors that are particular to the bus/node location, 
requiring more information about the system. This may be observed in Figure 2, where the 
behavior of one week-LMP of the load node considered in this study exhibits a different 
behavior compared to the load demand, especially for price spikes and dips. 

 

 

Figure 2. One-week load LMP vs. load demand 
 

In addition to being load-dependent, LMP is also influenced by renewable generation 
and transmission constraints. Consequently, LMPs can become highly volatile and undergo 
unpredictable price spikes. The best results may be obtained from optimal power flow 
solutions that consider generation and transmission constraints, however, without extensive 
knowledge of the system state or its network model – which is usually not available to the 
customer, this will not be possible. LMP forecasting has previously been done using the 
behavior of historical data associated with the node, including node demand, through Artificial 
Neural Network (ANN) and time series methods. ANN utilizes a set of data and learns the 
behavior of that data by “training” (doing iterative simulations) the network structure to best 
represent the data. In some cases, modifications to the training models were also done to 
improve the results (Hong and Wu 2012, Ji et al. 2013, Kim 2015).  

LMPs provide market participants with a clear and accurate signal of the price of 
electricity at every location on the power grid. These prices reveal the value of locating new 
generation, upgrading the transmission network, or reducing electricity consumption. In a 
well-functioning market, these elements are needed to alleviate constraints, increase 
competition and improve the systems’ ability to meet power demand. In electricity markets, 
the purpose of marginal cost pricing is to differentiate consumption by time of use and 
geographical area so that costs could be conveyed to consumers in a clear and fair manner. 
Consumers can then make an informed decision about the appropriate economic level and 
timing of their use of electricity. Therefore, it is imperative that an accurate forecast of LMPs 
be available for market participants to make informed market and investment decisions. 
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MCPs are usually forecasted like forecasting electricity demand because they behave 
almost the same way. LMP, however is better forecasted using more input variables in addition 
to demand because the location of the node in the electrical network greatly affects the price. 
ANNs usually produce better performance in dealing with nonlinearities and difficulties 
encountered in time series forecasting methods (Aggarwal, Saini, and Kumar 2009, Kim 2015). 
Compared to MCPs, LMP forecasting are more complex because they are affected by the node 
location. Artificial Neural Networks will be used in this study to forecast the LMP in an 
electrical network by studying the behavior of different input variables such as historical price 
and demand, time of the day, day of the week, and electrical price of adjacent generators. The 
main contribution of this study is the use of the LMPs of adjacent generator nodes in 
forecasting the LMPs of consumer load nodes, which results in significant improvement in 
forecast accuracy over previous works that utilized only historical price and demand. Forecast 
performance will be measured using Mean Average Percentage Error (MAPE), Root Mean 
Square Error (RMSE), and Mean Absolute Error (MAE) from the actual electricity price. 
Autoregressive Integrated Moving Average (ARIMA) will be used to benchmark the accuracy 
of the ANN forecast model through prediction intervals. The rest of the paper is organized as 
follows: methodology to define the terms and methods used in the study, results and 
discussion of the study, conclusion from these results, and recommendations for future work. 

 

Methodology 

In this study, power system nodes, or buses, are classified as being either a generator 
node or a load node. A generator node is a node that has a connected generator or has both 
load and generator connected but with the generated power greater than the load. A load node 
is a node that has a connected load or has both load and generator connected but with the 
generated power less than the load. Due to the limited data available, generator node prices 
will be forecasted using only its historical price. Generators are assumed to be oligopolistic in 
nature, as they usually set the prices for the node. Therefore, the assumption for this study is 
that generator bid offers have a certain pattern that resemble their previous bids. Load node 
prices are affected by various factors, including time and prices of adjacent generator nodes.  

The general framework of the study will be as follows: 

 

Figure 3. The general framework of the study 
 

The dataset is divided into a training dataset and a test dataset. The training dataset 
will be used to train the forecast models through ANN. Training will find the best fit of the 
input and output parameters. Out-of-sample data were reserved through the test dataset to 
measure the forecast performance of the generated models when predicting future values. 

  

DATA 
PRE-PROCESSING

• Identifying the dataset for 
training and testing the ANN 
models

• Cleaning the data (refer to 
Dataset Features)

ANN TRAINING AND 
FORECASTING

• Determining the Forecast 
Horizon

• Training and Forecasting the 
Generator Node LMPs

• Training and Forecasting the 
Load Node LMPs (model 1-5)

PERFORMANCE 
EVALUATION AND 
BENCHMARKING

• 100 runs of ANN performed 
to check for consistency of the 
results, and generated the 
prediction intervals

• Select and use optimal ANN 
model to forecast LMP on the 
Test Data

• Simulating ARIMA as 
benchmark

• Evaluation of error metrics on 
the Test Data
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ANN Structure 

The general ANN structure that will be used for this study is shown in Figure 4. In 

the neural network1, training starts with the feed forward pass, which produces the output of 

the network (right) from the normalized2 inputs (left) through a set of neurons in the hidden 
layer (middle) as determined by corresponding weights in the model (Thomas 2017). 

 

Figure 4. General ANN structure to be used in the study 
 

Using the normalized input, the hidden neuron values are obtained using a weight3 
matrix A, as shown below: 

 

I𝑛𝑜𝑟𝑚,1×𝑚 ×  A𝑚×10 = H1×10   (1) 

 
 where I𝑛𝑜𝑟𝑚 = normalized input 
  A = weights between the input layer and the hidden layer 
  H = hidden layer output 
  𝑚 = number of inputs 

 
The training starts with a random set of weights A (and B), which will be refined 

throughout the training process. Once H is determined, the effect of the input parameter on 
the output is determined by how much it ‘activates’4 the neuron. The activation of each neuron 
is determined through the sigmoid function s(H) (Hyndman and Athanasopoulos 2018). From 
the activated hidden layer, the output O of the network can be obtained, using the weight 
matrix B: 

 

𝑠(H)1×10 ×  B10×1 = 𝑂    (2) 
 

 
1 The ANN structure is composed of three layers: input layer which accepts normalized input, hidden layer that processes 
these inputs towards the output layer. This is illustrated in Figure 4. 
2 Because the ANN structure usually accepts input that are of different data types (like demand [kWh], day, [Monday 
through Sunday], and electricity rate [PhP/kWh], it is important that the input variables are scaled properly first through 
data normalization before proceeding with the ANN. 
3 The weights A (and B) serve as coefficients of the structure that relates the input to the hidden layer, and the hidden layer 
to the output. 
4 ANN is inspired by the activation of biological synapses through a stimulus. This behavior of the synapses is imitated by 
the ANN through a sigmoid function. 
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The error E of the output from the target T is also computed using the sigmoid function of 
the output s(O) as follows: 

 

E = T − 𝑠(O)                  (3) 
 

 where B  = weights between the hidden layer and the output layer 
  O = output 
  T = target values 

  E = output error  
 

The model is optimized by determining the weights that have minimal error. Most 
methods use the square-of-error as the cost function to refine the weights, which is done 
through the process of back-propagation. This then concludes a training run. After the back-

propagation, the necessary adjustments, ∆A, and ∆B, were determined and applied on A and 
B for the next training run. This will eventually result in a better model with minimal error E. 

 

C =
1

2
E2 =

1

2
(T − 𝑠(O))2                    (4) 

 
 

𝜕C

𝜕B
=

𝜕C

𝜕𝑠(O)
×

𝜕𝑠(O)

𝜕B
      (5) 

 
 

𝜕C

𝜕B
= −(T − 𝑠(O)) × [𝑠(O) × (1 − 𝑠(O))]𝑠(H) =  𝜇∆B                       (6) 

 
 

𝜕C

𝜕A
=

𝜕C

𝜕𝑠(O)
×

𝜕𝑠(O)

𝜕𝑠(H)
×

𝜕𝑠(H)

𝜕A
         (7) 

 
 

𝜕C

𝜕A
= −(T − 𝑠(O)) × [𝑠(O) × (1 − 𝑠(O))]B × [𝑠(H) × (1 − 𝑠(H))]𝑠(H) = 𝜇∆A 

          (8) 
 

In this study, the ANN is composed of one hidden layer with ten neurons, trained 
by minimizing the squared errors and weights to find the best fit for the model5. The ANN is 
used to perform the simulations. The input variables used vary for the different models that 
will be proposed in the study. For each ANN model, 100 training runs were done to observe 
the forecast precision of each model. 

Forecast Horizon 

Different forecast horizons (from day-ahead to week-ahead forecasts) will be tested 
to determine the best forecast horizon applicable for the quantity of available data. An ANN 
that will generate the LMP forecast for a generator node by using only the historical prices of 
the node as an input variable will be used for this purpose. The oligopolistic nature of 
generators in electricity markets assumes that the forecast price is mainly a function of past 
prices possible. This will be done for a selected generator node, and forecast performance will 
be evaluated using the above-mentioned error measures. 

 
5 This is known as Bayesian regularization. 
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Generator Node Forecast 

Forecasts of generator nodal prices were simulated using a generator ANN model 
for 100 runs with the following input data: Day of the week, Time of the day, and the LMP of 
the chosen load node. The generator nodes used in this study are those electrically adjacent to 
the load node considered. An illustration of this is shown in Figure 5. In this study, directly 
adjacent nodes are termed as primary adjacent, while generators adjacent to the load through 
another node are termed as secondary adjacent. 

 

Figure 5. Node adjacency diagram 
 

Load Node Forecast 

Unlike generator nodes, nodal prices at load nodes are highly sensitive to the nodal 
prices of adjacent generator nodes. To observe the effect of adding adjacent generator prices 
on the LMP forecast, models were designed to take in the historical load demand, historical 
load price, and historical generator price, aside from the time of the day and day of the week 
input parameters. In this study, four different ANN models using various combinations of 
input variables, each to be done for 100 runs, will be used to forecast the LMP of the load 
node: 

Model 1: Time t(d-k), Day D(d-k), and Load L(d-k) k-day before forecasted day d 

Model 2: Time t(d-k), Day D(d-k), and Load LMP PL(d-k) k-day before forecasted day d 

Model 3: Time t(d-k), Day D(d-k), Load L(d-k), and Load LMP PL(d-k) k-day before 
forecasted day d 

Model 4: Time t(d-k), Day D(d-k), Load LMP PL(d-k), and Primary Adjacent Generator 
Price Pgp(d-k)k-day before forecasted day d 

Model 5: Time t(d-k), Day D(d-k), Load LMP PL(d-k), and Secondary Adjacent Generator 
Price Pgs(d-k) k-day before forecasted day d 

Models 1, 2, and 3 are composed of a combination of historical load demand and 
load LMP. It aims to forecast the LMP using these load characteristics, as used by most 
literature.  

Models 4 and 5 will incorporate the adjacent generator prices to show how these 
parameters affect the forecast of the LMP in comparison to the models that only consider 
load characteristics. 

All the input variables are k-day before the forecasted day d (i.e., for a day-ahead 
forecast, the input variables are all d-1 data, for a two-day ahead forecast, d-2, and so on). The 
forecast horizon of the final model will be the same as what will be previously determined in 
the first part of the methodology, based on the quantity of available data. 

PP

S

S

S S
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Dataset Features 

Typical data for the LMP of the load node used in this study is shown in Figure 6. 
From the figure, the volatility of the prices can be observed. Since weekends generally have a 
different load profile compared to weekdays, this study limits the forecast to weekday forecasts 
to avoid distortion in the training of the models. There are instances when the prices are 
negative, where generators pay the customers to consume power, particularly when there is an 
over-generation in the network. This happens sometimes but is not the normal behavior for 
the market. Therefore, negative prices are replaced with a price of zero. This study only used 
publicly available data, which is the last 3-months data from the Philippine Electricity Market 
Corporation (PEMC 2019) website. 

 

Figure 6. Load node LMP from November 2018 to February 2019 

 

Results and Discussion 

Forecast Horizon 

Using the historical data for the nodal price at a generator node, the performance of 
using different forecast horizons in a single-input ANN model was measured and compared 
to get the best forecast horizon suitable for the quantity of data available. The results for 100 
training runs of the ANN for each candidate forecast horizon are shown in Table 1. 

Table 1. Performance of the five different forecast horizons on 100 simulation runs 

 MAPE 
(%) 

RMSE 
(PHP/MWh) 

MAE  
(PHP/MWh) 

Week-ahead 24.42 1,817.84 971.95 

Four-day ahead 24.58 1,406.80 809.88 

Three-day ahead 27.00 1,415.41 891.42 

Two-day ahead 7.39 397.36 263.26 

One-day ahead 13.98 644.13 493.22 

 
From the results in Table 1, a two-day ahead forecast performed best among the 

different forecast horizons. Though the one-day ahead forecast is closer to the present day, 
the removal of the weekends adversely affects the ANN training as Mondays were trained to 
be forecasted using data from Fridays. The two-day ahead forecast trained the model to 
account for this error because all the days are trained with a one-day gap between the 
forecasted and forecasting data, resulting in better training performance for the chosen input 
data and biases on the hidden layer of the ANN. 
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Generator Node Forecast 

Generator nodal prices are forecasted using three ANN input variables: Day, Time, 
and Generator LMP from d-2 day (based on the chosen forecast horizon). To simplify the 
presentation of the results, only the forecasts for the primary adjacent generator nodes, G1 
and G2, are presented in this paper. The other generator nodes show similar behavior as the 
two. The two-day-ahead forecast for G1 and G2 are shown in Figure 7, with the forecast 
performance tabulated in Table 2. 

 

 
Figure 7. LMP two-day ahead forecasts for G1 (top) and G2 (bottom) 

 
Table 2. Two-day ahead LMP forecast performance for generator nodes, G1 and G2 

Generator Node 
MAPE 

( %) 
RMSE 

(PHP/MWh) 
MAE  

(PHP/MWh) 

G1 7.39 397.36 263.26 

G2 6.90 397.51 252.09 

 
From these results, one prominent observation is that the shape of the forecast 

imitates the shape of the actual generator LMP. This shows that the model was able to mimic 
the behavior of the price using the input variables chosen in the study. However, there are 
spikes in the actual values that this model was not able to predict. Comparing the two graphs 
for G1 and G2, the behavior of the LMPs are almost identical, suggesting that the LMP, 
though different, follow a certain common behavior (i.e., the market-clearing price). 
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Load Node Forecast 

Using the five different models for load node ANN structure, the two-day ahead 
forecasts for each model are shown in Figure 8, with their performance tabulated in Table 3. 

 

 
Figure 8. Comparison of different models for the load node forecast 

 
Table 3. Two-day ahead LMP forecast performance of the different models for the load node 

Model 
MAPE 

(%) 
RMSE 

(PHP/MWh) 
MAE  

(PHP/MWh) 

1 18.50 817.52 659.44 

2 7.33 392.87 265.21 

3 14.09 652.42 499.50 

4 6.86 376.87 246.93 

5 6.76 387.55 246.41 

 
The first three models (models 1, 2, and 3) combine different parameters specific to 

the load (i.e., day of the week, time of the week, load LMP, load demand). Among these three, 
model 2 performed best on 100 runs of the ANN. This shows that the LMP of a load node at 
a given instant is greatly affected by its LMP in preceding time instants. Since model 1 is trained 
using the load demand as an input, the behavior of the forecast of model 1 follows the 
variation of the load demand as shown on the graph. This behavior is also visible in model 3. 

The last models (models 4 and 5) combine different parameters specific to the load 
and the adjacent generators of the load (i.e., day of the week, time of the week, load LMP, 
primary and secondary adjacent generator LMPs). Generally, an improvement in the forecast 
can be observed if, instead of just the load parameters, LMPs from the adjacent generators are 
also included as ANN inputs in the forecast training. A better forecast MAPE is obtained 
from model 5, which may be attributed to the number of training inputs that model 5 has 
compared to model 4. Both models performed better than the first three suggesting that the 
addition of generator LMPs as ANN inputs can improve the model performance. 
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Prediction Intervals 

Prediction intervals were used to identify the area in which the forecast values will 
likely fall (i.e., forecast distribution). ANNs train models according to activation functions, 
hence prediction intervals were not calculated similar to stochastic models. In this study, 
prediction intervals for ANN were generated from 100 training runs, producing 100 
forecasting models. These were compared to Autoregressive Integrated Moving Average 
(ARIMA) models with prediction intervals to compare the model accuracy. 

ARIMA models produced good estimates using the 3-month data, with the ACF and 
PACF plots suggesting seasonality every 24 hours, hence seasonal ARIMA (i.e., ARIMA (p, d, 
q)(P, D, Q)) was used. The data used first-order trend differencing for stationarity. Using 
different orders for p and q simulated on MatLab, the best fit ARIMA model was obtained. 
Shown in Figure 8 are the ARIMA parameters used in modeling and the ARIMA LMP 
forecast. 

 

Figure 8. ARIMA model forecasting (from top left to bottom right):  
ACF, PACF, ARIMA model fitting, ARIMA model forecast with 95% prediction intervals 

 
Looking closely at the ARIMA forecast, there is a broad range of values that the 

forecast may fall at 95% prediction interval of this model. This is because of the huge price 
spikes present in the three-month training data that cause large residuals. Shortening the 
training to only one-week data improved the prediction accuracy, and introducing a price cap 
(in this case, PHP 5.00/kWh) improved this further, as shown in Figure 9. The results showed 
that price spikes, even in low frequency, significantly affect the prediction interval. 
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Figure 9. Comparison of prediction intervals of ARIMA models trained  
using 3-month data vs. 1-week data 

 
On all models of ARIMA, the forecast distribution widens as the forecast step goes 

farther from the last known data. This shows that the accuracy of the model decline as the 
forecast horizon increases. This is different from ANN as ANN was trained to capture the 
behavior of the price at any specific time for a specific forecast horizon. This results in a 
forecast that is consistently precise even the step forecast increase, as shown in Figure 10 and 
Figure 12. 

 

Figure 10. ANN 100-run forecasts: 2-day ahead hourly forecast 
 

 
Figure 12. ANN 100-run forecasts: forecast deviation histogram 
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The presence of price spikes also did not affect the prediction interval of ANN too 
much compared to ARIMA, where even a single spike causes the prediction interval to widen 
by a significant value. This makes the selection of price caps crucial in improving the ARIMA 
model. ANN, however, can learn this and adjust the model accordingly based on the time (and 
day) the price spike happens (or usually happens). Therefore, the ANN model is more 
vulnerable to sudden spikes and returns a more normal model for the LMP. It is also 
interesting to note that comparing the ARIMA model trained using a 3-month data and the 
ARIMA model trained using 1-week data with a price cap, the ARIMA model trained using a 
3-month data has a better resemblance to the actual LMP than the other model, despite having 
the worse prediction interval. The ARIMA model trained with 1-week data with price capped 
may have a narrower prediction interval, but it also loses more information about the shape 
of the LMP through the process. This is not the case for the ANN-trained model, as this 
model captured the price behavior without too much intervention on the input variables. The 
comparison of the different forecast models is shown in Figure 13. 

 

Figure 13. Comparison of actual LMP vs. various forecasts between ARIMA and ANN models 
 

Summary and Conclusion 

Locational Marginal Cost Pricing (LMP) is an important information that players 
may use in participating in a competitive electricity market. LMP is a decision factor that might 
affect resource allocation and network operations. Unlike Marginal Cost Pricing (MCP), LMP 
is more local and is more difficult to forecast. This study presents a novel Artificial Neural 
Networks (ANN) based methodology for forecasting the LMP of generation and load nodes 
in a market-based power system. To forecast generator node LMP, an ANN that uses 
generator historical LMP as inputs is proposed. A preferred forecasting horizon can initially 
be determined for the given quantity of available LMP historical data by using an ANN that 
forecasts generator node LMP. Load node LMP forecasting is performed by ANNs that use 
a combination of time, day, historical load power, historical load LMP, and historical adjacent 
generator nodes LMPs as inputs. Results show that the inclusion of the LMPs of adjacent 
generator nodes as inputs to the ANN for load node LMP forecasting is found to produce a 
significant improvement in forecast accuracy that has not been previously investigated in the 
existing literature. Prediction intervals generated by ANN are also better than those generated 
by other stochastic models such as ARIMA. ANN was able to precisely model the behavior 
of the LMP and maintain this precision through the whole forecast horizon. 
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Recommendations 

The artificial neural network models used in this study have successfully forecasted 
the behavior of the nodal electricity prices in the market. However, the availability of data 
limits the forecast horizon to only two days. Longer dataset may improve the forecast and 
forecast horizon. Other exogenous variables may be considered to predict spikes in prices on 
the generator nodes. Load nodes, however, were trained well with the incorporation of 
generator node prices as input variables. Further improvement in the generator node forecast 
may also help improve the load node forecast. 
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