

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Global Trade Analysis Project https://www.gtap.agecon.purdue.edu/

This paper is from the GTAP Annual Conference on Global Economic Analysis https://www.gtap.agecon.purdue.edu/events/conferences/default.asp

Preparing a multi-country, sub-national CGE model: EuroTERM including Ukraine

Glyn Wittwer, Centre of Policy Studies, April 2022

Abstract

The TERM (The Enormous Regional Model) methodology has been applied to many countries over the past two decades to model sub-national regional impacts of policy scenarios. The methodology does not rely on sub-national regional input-output tables. Instead, estimates of regional activity shares are used to split a national CGE database into regions. Activity shares are based on industry by region employment numbers extracted from census data, regional agricultural and mining activity data and international trade data by port.

EuroTERM provides an example of extending the TERM methodology. First, the GTAP master database is aggregated for non-European nations while keeping 31 European nations plus Russia, Ukraine and Moldova (proxied by Rest of Eastern Europe) represented separately. The database is reconfigured to 34 individual CGE databases.

Using NUTS2 data based on similar raw data as TERM, regional shares are estimated. Eurostats is the main source of these data. Regional shares provide the basis for splitting 24 European CGE databases to the NUTS-2 level. The other 10 nations remain as single regions. Industry cost structures or technologies are based on GTAP data for each nation. This approach differs from single-nation TERM, in which a single industry technology applies to each region.

The methodology used to estimate inter-regional trades in TERM has been modified to accommodate matrices of known international trades from GTAP, while splitting origins and destinations into sub-national regions. Port activity data also contribute to estimation of sub-national trade matrices.

Electricity Global data on power plants by location have contributed to a split of electricity into 9 generating sectors plus distribution.

The war in Ukraine has provided motivation for adding Ukraine, represented by 24 oblasts plus Kyiv city. The EuroTERM master database at present includes 74 sectors in 322 regions.

1. Introduction

Single country multi-regional CGE models

The scope of economy-wide modelling has broadened from a concentration of analyses on trade policy scenarios to other topics over the past two decades. Applications include climate change (Adams and Parmenter, 2013; Kompas *et al.*, 2018), water management (Wittwer 2019), civil disruption (Dixon *et al.*, 2017a), transport analysis (Dixon *et al.*, 2017b) and natural disasters (Wittwer and Waschik, 2021), to name a few. In each case, sub-national representation may enhance modelling.¹

There is much interest in sub-national regional analysis. Many politicians are elected on a regional basis. Regional stimulus programs that benefit a particular region may not, from a national perspective, be a good use of resources. On the other hand, inhabitants of regions away from national and regional capitals are aware of disparities in provision of essential services. Interest in regional CGE modelling has grown with model availability.

Global events may lead to starkly different regional outcomes. The GFC that started in 2008 resulted in recessions across much of the globe. Yet some regions prospered due to the resources boom with relatively little interruption. And now the COVID-19 pandemic has hit regions in which entertainment, hospitality and tourism are relatively important much harder than regions heavily reliant on primary industries.

Horridge (2011) elaborates on the TERM approach to depicting a single-nation, multiregional model. For the first time, bottom-up sub-national representation in a CGE model extended to a master database with over 50 regions.² Project-specific demands have resulted in substantial modifications to the theory and database of core TERM models. Dixon *et al.* (2011) provides an example of an application of the TERM approach to regional water issues in the Murray-Darling Basin of Australia. The model included much detail at the regional level, including a split between dry-land and irrigated farming, with farm movements and water trading that reflected the flexibility of farming within the basin. Scenarios with this modified model showed that it was possible to introduce significant reforms, notably water buybacks to reduce the volume of water extracted for irrigation purposes, without regional economic harm. Modifications to reflect observed farm factor mobility gave the modelling credibility.

Moving to multi-country multi-regional CGE models

What is possible in a multi-country model? Recognising the importance of sub-national representation in water management scenarios, Liu *et al.* (2019) introduced some of the theoretical modifications applied by Dixon *et al.* (2011) in splitting existing agricultural industries in the GTAP model into agro-ecological zones. This provided a form of bottom-up detail, by distinguishing a particular sector in different regions of a nation. This is an advance on using top-down shares to allocate activities to different regions, as it enables a given sector

¹ The page https://www.copsmodels.com/pdf/termpublication.doc contains a relatively comprehensive list of TERM publications and papers.

² "Bottom-up" refers to regional representation in which each region has its own industry production functions, labour market and trade matrices. It enables both price and quantity changes to be estimated at the regional level. Top-down modelling of regions is simpler and does not include regional price estimates. In some scenarios, particularly with a national dimension, top-down representation remains useful.

to have different cost and sales structures in different regions. This approach, though introducing more detail to a model, is not ideal for estimating sub-national regional impacts. In dealing with water reforms, greenhouse gas mitigation or other environmental management issues, political resistance often arises from concerns over economic impacts in the regions.

An initial effort to represent sub-national, bottom-up detail in a multi-country model concerned Australia and New Zealand. The master database includes 132 sectors in 88 Australian regions and 17 New Zealand regions. This harmonizes disaggregated national CGE databases for both countries, combined with bilateral, international trade data.³

The present study takes a further step, in splitting a CGE database with 31 nations into many sub-national regions. The objective has been to develop a reproducible methodology for this task in building EuroTERM, a NUTS-2 level multi-country representation of Europe. The number of NUTS-2 regions in each nation are: Austria (9), Belgium (11), Bulgaria (6), Croatia (2), Czechia (8), Germany (38), Denmark (5), Greece (13), Finland (5), France (21 continental plus 6, the islands of Corsica, Guadeloupe, Martinique, Mayotte and Réunion, and French Guiana), Ireland (3), Hungary (10), Italy (21), Netherlands (12), Norway (7), Poland (17), Portugal (7), Romania (8), Slovakia (4), Slovenia (2), Spain (19), Sweden (8), Switzerland (7), United Kingdom (41) and Ukraine (25). Single region nations include Cyprus, Estonia, Iceland, Latvia, Lithuania, Luxemburg, and Malta. The invasion of Ukraine has resulted in Russia and Moldova being added to the list of single-region nations. Appendix A provides a full list of the regions.

2. Overview of EuroTERM database generation

One potentially formidable task is to assemble and reconcile the sectors of input-output tables for different nations. Since the GTAP database contains 30 European nations plus Rest of EFTA, it provides a good starting point for the task. The alternative would be to revisit efforts already undertaken by contributors to the GTAP database in processing Eurostat input-output tables. It is far more efficient to start with the processed, balanced GTAP database.

The initial task requires development of a modified database generation methodology. In devising EuroTERM, we aim to provide a relatively bland multi-regional, sub-national database, based closely on the existing TERM database generation process. Our aim is to devise a reproducible methodology. We are not striving at this stage for database elaborations, such as increasing the number of sectors or adding satellite accounts to the database. These may follow in subsequent research.

It follows that there are virtually no changes to the theory of the TERM model in EuroTERM. There are some modifications that are helpful in preparing the database, such as increasing the number of sources from two (domestic and imported) to three (domestic, imports from Europe and imports from the Rest of the World). The three sources are used in intermediate stages of devising the trade matrix within the EuroTERM database, but are aggregated to two sources late in the database generation process.

³ See https://www.copsmodels.com/archivep.htm#tpgw0199.

Moving from standard TERM to EuroTERM

The starting point for devising EuroTERM is the TERM database generation process (Horridge 2011). Since there are 34 nations to split rather than a single nation, the TERM process requires modifications in order to make use of the additional information that arises from a multi-country database.

Table 1 summarises differences between a single-country TERM database and a multicountry EuroTERM database. The task of reconciling additional data in EuroTERM, such as known national input-output tables and known international trades between nations within EuroTERM complicates the usual TERM database generation programs.

	Standard TERM	EuroTERM
1	Single country, multiple sub-national regions	Multi-country, multiple sub-national regions
2	Identical technologies (cost structures) in industries across all regions	Technologies vary across nations; identical technologies at sub-national level within nations
3	International trade data split using shares based on ports	International import data split using sub- national demand shares + limited port data; export data split using supply shares/port data
4	Single export column and single import source in USE matrix	Two exporters, two import sources: rest of Europe, Rest of World
5	Inter-regional trades estimated using gravity assumption	Inter-regional trades between European nations based on GTAP/Comtrade data; sub-national allocation of international trades based on regional activity shares + known port activity
6	Two tiers of trade: International, sub- national	Three tiers of trade: Rest of World, Rest of Europe, sub-national

Table 1: Standard TERM v. EuroTERM

Figure 1 summarises the steps taken to create EuroTERM. In (1), we aggregate the GTAP master database to nations of interest, namely 30 European nations plus Rest of EFTA, Ukraine, Russia, Moldova and a composite Rest of World region, while preserving the 65 sectors of the master database.

In (2), the GTAP aggregation is reconfigured so that the 34 nations are in a similar format as the single national database split in the TERM database generation process. Unlike the usual TERM process, we know something about inter-regional trades, due to the 65 sector, 35 x 35 trade matrix within the 34 nation GTAP aggregation.

Eurostat data provide NUTS-2 level regional activity shares (3). Data exist on employment by industry and, in agriculture, regional outputs are available for various crops and livestock sectors. National data sources fill in gaps in Eurostat data (4).

In (5), we use the international trade matrix created in (2) for the first time, to add export columns in each nation for sales to Rest of Europe and Rest of World. In addition, at this step, the trade matrix is used to split imports to each nation into two sources, Rest of Europe and Rest of World.

In (6), regional activity shares are computed from NUTS-2 level data for each of the national databases created in (2). In (7), these shares split the 34 nations, providing intermediate and primary costs for each industry in 322 sub-national regions .

Figure 1: Overview of EuroTERM database generation process

^{*} Section 10 under the heading "Iceland" outlines changes to GTAP data to depict Iceland.

Within TERM, international merchandise exports appear in the export column of the use matrix in the port of exit. In the case of a port loading wheat for export, it is possible that the region in which the port is located produces no wheat. Within the trade matrix of TERM, the region of the port would import wheat from another domestic region. Therefore, the movement within the database is depicted as an inter-regional export from the region of production, and an inter-regional import and international export in the region of the port.

Table 5 shows data on activities for major ports. The mapping of these data to the commodities within EuroTERM is relatively coarse. For the present, these port data (8) are

the basis of modified estimates of import and export shares for merchandise trade with the Rest of World only.

Excepting modifications to deal with major ports in trade with Rest of World, default regional export shares are set equal to regional production shares (9). Default regional import shares are set equal to regional use shares (10).

The regional trade shares (8), (9) and (10) provide starting estimates for splitting the national trade matrix (2b) into 295 regional origins and destinations in step (12). The gravity assumption in which commodity trades are inversely proportional to distance is used at this stage. It is used most in the strictly domestic slice of the interim trade matrix, as virtually no data exist for sub-national trades. In the case of the Rest of Europe and Rest of World slices, the national trade matrix (2b) provides control totals.

In (13), the database is aggregated from three to two sources. That is, the domestic slice of the trade matrix covers both sub-national and international trades within European origins and destinations. The two source version of the trade matrix at this stage is adjusted to ensure that the database is balanced.

Stages (14) and (15) are identical to those of the usual TERM procedure. In (14), the database is reconfigured to align with TERM/EuroTERM theory. Finally, the master database is aggregated for a specific project.

3. Converting GTAP to suitably configured multiple national databases

Steps (1) *and* (2)

First, the 65 sector by 151 region master database of GTAP is aggregated to the same 65 sectors in 31 European plus Ukraine, Moldova, Russia and one Rest of World region. Mark Horridge of the Centre of Policy Studies has devised coding that puts all transactions in the GTAP database into three core matrices. These are shown in table 2.

Table 2: GTAP represented in three matrices

Coefficient	Dimensions
NATIONAL	COST x SRC x USER x REG x TYP
MAKE	COM x IND x REG
TRADE	FLOWTYPE x COM x REG x REG

The sets consist of:

COM and IND: both 65 elements

The set COST includes COM (intermediate inputs) plus FACTOR (primary inputs) plus ProdTAX (production taxes). The elements of FACTOR are all labour occupational types, capital, land and natural endowment.

Set SRC includes "dom" and "imp". The latter includes imports from within European.

Set USER includes IND plus FINDEM, where the latter includes households, government and investment. That is, FINDEM excludes exports either to the rest of Europe or the rest of the world.

TYP includes BAS (basic flows) and TAX (indirect taxes).

REG includes 31 European regions (the set NATION) plus a rest of the world composite.

FLOWTYPE consists of BASIC transactions, EXPTAX (export taxes), IMPTAX (import tariffs) plus three international transport margins.

Each nation has its own set of industry technologies (cost shares) for each industry. Within the COST set, the COM elements detail intermediate inputs to industries, and FACTOR and ProdTAX the primary inputs. Sales of COM elements to final users are also in the NATIONAL matrix. Within the NATIONAL matrix, the "BAS" slice of the TYP set for all commodities (a subset of COST) provides the basic commodity usage for all domestic users. The "TAX" slice of the NATIONAL matrix provides corresponding indirect taxes for commodities to all domestic users, and direct taxes on primary factors. The NATIONAL matrix covers all users, that is, industry users (IND) plus final domestic users (FINDEM).

The MAKE matrix details the value of commodity output by each industry. In the case of the GTAP database, each industry produces a unique commodity so the MAKE matrix is diagonal.

The TRADE matrix details bilateral trade flows between all nations in the database for 65 commodities.

4. Data collection and processing for NUTS-2 regions

Steps (*3*) *and* (*4*)

Table 3 shows the main sources used to collect NUTS-2 level data, corresponding to (3) and (4) in figure 1. The primary source of sub-national data is the Eurostat website. Table 4 maps Eurostat codes to GTAP sectors. There are missing data for some countries and some regions in multi-country Eurostat compilations. For example, health data were missing from the core non-agricultural industry by employment data, and were gathered from elsewhere in the Eurostat website. Data for Switzerland are not included in Eurostat employment by industry data. Item 5 in table 3 provides the link to Swiss data. Eurostat data cover Swiss agricultural output and health employment by region.

Agricultural economic data by NUTS-2 regions were not available in Eurostat data for some countries. Other sources covered Belgium (table 3, item 6), Finland (item 7), Norway and Slovenia (item 4). Supplementary sources for Norway are sketchy.

The website http://www.ukrstat.gov.ua/ provided Ukrainian data.⁴ These data include employment by 24 oblasts plus Kyiv city for 16 broad sectors plus regional data on agricultural output.

Online Eurostat data are the most important source for compiling sub-national activity shares. The GTAP contributors make extensive use of the Eurostat supply-use tables for European nations in preparing national data. It was a straightforward decision to start with the readymade GTAP database rather than work with available Eurostat supply-use tables. In a single nation TERM preparation, the number of sectors usually far exceeds the 65 sectors of GTAP. For a multi-country exercise, a larger number of sectors would be fraught. Missing

⁴ The main source was State Statistics Services of Ukraine Statistical Yearbook of Ukraine 2020.

data and potential consistencies in data compilation conventions between nations would add to the complexity.

Table 3: Sources for NUTS-2 activity shares

	Link	Sectoral information
1	https://ec.europa.eu/CensusHub2/query.do?	2011 census data, mainly for
	step=selectHyperCube&qhc=false	NUTS-2 x industry employment
2	https://fgeerolf.com/data/eurostat/	Regional GDP (nama_10r_2gdp), agricultural output by activity (agr_r_accts), industry by employment (sbs_sc_ind_r2 & cens_11empn_r2)
3	https://ec.europa.eu/eurostat/databrowser /view/HLTH_RS_PRSRGcustom_1410955/default /table?lang=en	Health personnel by NUTS-2 region
4	https://ec.europa.eu/eurostat/statistics- explained/index.php?oldid=379564#Main_tables	SI: agricultural census
5	https://www.bfs.admin.ch/bfs/en/home/	CH.
c.	statistics/industry-services/businesses-employment/jobs- statistics.assetdetail.18505604.html	Employment by industry
6	<u>https://statbel.fgov.be/nl/themas/landbouw-visserij/land-en-</u> tuinbouwbedrijven/plus	BE: agriculture
7	https://stat.luke.fi/en/agricultural-census-2020-agricultural-and-	FI: agricultural census
-	horticultural-labour-force-2020-provisional_en	
	https://www.luke.fi/en/henkilosto/heikki-lehtonen/	

An example concerns the health sector. In TERM versions of Australia (Horridge 2011) and USA (Wittwer 2017), the health sector is split beyond the representation in official inputoutput tables. This requires making use of nation-specific data sources, such as detailed census data. The third source shown in table 3 provided regional detail on health personnel in European nations. However, the census data contain less sectoral detail that is available for Australia or USA. The occupations for which data are available are (1) medical doctors, (2) nurses & mid-wives, (3) dentists, (4) pharmacists and (5) physiotherapists.

Agricultural data shown in table 3, source 2, are sufficient to provide a regional split for GTAP agricultural sectors. Data are missing for Slovakia, Belgium and Finland, supplemented by sources 4, 6 and 7 respectively. Swiss data shown in source 5 of the table fill in gaps in Eurostat data.

In any CGE database regional splits, there are sectors in which data are limited. One example in which other data are used to infer shares is "OwnerDwellng". Imputed housing rentals are set equal to each region's share of national labour income. These shares are also used to ascribe regional household spending shares for each commodity. Government regional consumption shares are set equal to "PubAdmDefClb" industry shares.

(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
А	Pdr	PaddyRice	C10	Pcr	ProcRice	C31-C33	Omf	FurnitRepair
А	Wht	Wheat	C10	Sgr	RefSugar	D	Ely	Electricity
А	Gro	OthCereals	C10	Ofd	FoodPrdsNEC	D	Gdt	GasSupDist
А	v_f	RawFruitVeg	C11-C12	b_t	BevTob	E	Wtr	Water
А	Osd	OilSeeds	C13	Tex	Textiles	F	Cns	Construction
А	c_b	SugarBeet	C14	Wap	Apparel	G	Trd	TradeWR
А	Pfb	FibreCrops	C15	Lea	LeatherPrd	1	afs	AccomFood
А	Ocr	Fodder	C16	Lum	WoodProds	H49	Otp	LandTransprt
А	Ctl	CattleSheep	C17	Ррр	PaperProds	H50	Wtp	WaterTrnsprt
А	Oap	PigPltOthAnm	C19	p_c	PetrolCoalP	H51	Atp	AirTransport
А	Rmk	Milk	C20	Chm	ChemicalPrd	H52	Whs	Warehousing
А	Wol	WoolSilk	C21	Bph	Pharmaceutic	H53	Cmn	Communicatn
А	Frs	ForestryLogs	C22	Rpp	RubberPlas	M69	Ofi	Finance
А	Fsh	FishingAqua	C23	Nmm	NonMetMinPrd	M70	Ins	InsurPension
B05	Coa	Coal	C24	i_s	FeMetals	L68	Rsa	RentLease
B06	Oil	Oil	C24	Nfm	NonFeMetals	M71-M75	Obs	OthBusSrv
B06	Gas	Gas	C25	Fmp	FabriMetals	N77-N82		
B07-B09	Oxt	OthMining	C26	Ele	ComputrOptc	R	Ros	RecHeriOtPSv
C10	Cmt	BeefProds	C27	Eeq	ElectricEqp	0	Osg	PubAdmDefClb
C10	Omt	OthMeatPrds	C28	Ome	MachineNEC	Р	Edu	Education
C10	Vol	VegFatOils	C29	Mvh	MotorVehicle	Q	Hht	HealthSocRes
C10	Mil	DairyProds	C30	Otn	OthTransEqp		Dwe	OwnerDwellng

Table 4: Mapping from Eurostat industries to GTAP 65

Key: (1) Eurostat code; (2) GTAP code; (3) EuroTERM name

5. Adding export columns and margins to national data; splitting imports into two

Step (5)

The Horridge program converting GTAP to single country slices creates a BAS (i.e., values at basic or producer prices, excluding taxes or margins) matrix for all domestic users. This is extended by adding a column of commodity exports to European nations ("ExpEU") and the rest of the world ("ExpRoW"). The data to create these new columns for each nation is in the TRADE matrix above, using the destination detail for each exporter. Figure 2 shows a portion of this matrix for Austria.

The GTAP database includes international transport margins. Within the database, international transport margins are treated as a subset of intermediate input costs.

Domestic margins, including "TradeWR" (i.e., wholesale and retail trade) and transport margins, are subtracted from direct flows of margins commodities. For intermediate usage other than "Air transport", 80% of each margin commodity is assigned as a margin rather than a direct flow. For final household and government consumption, 70% of each transport margin is assigned as a margin, and the remaining 30% as direct usage to reflect passenger transport activity. In the case of "Air transport", only 20% of the initial total is assigned to margins activity. This reflects an assumption that most air transport services are for direct use, namely passenger transport.

BasN	Finance	InsurPension	RentLease	OthBusSrv	RecHeriOtPSv	PubAdmDefClb	Education	HealthSocRes	OwnerDwellng	Hou	Inv	Gov	ExpEU	ExpRoW	Total
PaddyRice	0) 0) () 0	0	0	C) (0 0	0	0	0	0	0	1
Wheat	0	0	0 0) 0	0	1	C) (0 0	23	3	0	234	2	329
OthCereals	0	0) () 1	0	1	C) 1	0	21	8	0	253	15	497
RawFruitVeg	0	0) () 1	1	1	C) 3	3 0	190	10	0	240	8	524
OilSeeds	0	0) (0 0	0	0	C) () 0	3	1	0	193	3	226
SugarBeet	0	0) () 0	0	0	C) (0 (6	1	0	9	0	93
FibreCrops	0	0) () 0	0	0	C) (0 0	2	0	0	2	1	7
Fodder	0	0) () 2	0	1	C) ;	0	109	23	0	114	12	855
CattleSheep	0	0) () 4	0	0	C) (0 0	5	19	0	61	66	775
PigPltOthAnm	0	0) () 3	0	0	C) 2	2 0	122	26	1	171	13	1094
Milk	0	0) () 2	0	2	1		2 0	170	25	7	2	1	1168
WoolSilk	0	0) () 0	0	0	C) (0 0	1	0	0	52	5	59
ForestryLogs	0	0) () 4	1	2	C) 7	7 0	350	54	0	108	15	3125
FishingAqua	0	0) () 1	2	3	C) 7	7 0	38	0	0	3	1	93
Coal	0	0) () 0	0	0	0) () 0	0	0	0	0	0	1
Oil	0	0	0) 0	0	0	C) (0 0	0	0	0	0	0	707
Gas	0	0) () 0	0	0	C) (0 0	1	0	0	98	2	145
OthMining	0	0	0) 15	1	22	1	19	2	27	65	0	289	50	2050
BeefProds	1	1	C) 1	3	15	C) 19	0 0	830	0	0	517	39	1722
OthMeatPrds	1	1	0) 0	1	1	C	27	7 0	953	0	0	1071	145	2517
VeqFatOils	0	0	0 0	0 0	0	2	C) 3	3 0	56	0	0	335	15	570
DairyProds	2	: 1	C) 1	5	12	C	46	5 0	1040	0	0	1175	129	3556
ProcRice	0	0 0) () 0	0	0	0) () 0	7	0	0	3	0	14
RefSugar	0	0) () 0	1	3	C) !	5 0	115	0	0	155	74	457
FoodPrdsNEC	5	. 4		8 (8	6	24	21	135	5 0	2424	0	1	3421	604	9151
BevTob	3	2	0) 2	1	17	11	83	3 0	2452	0	0	1267	1483	6807
Textiles	3	1	C	22	7	6	C	22	2 0	122	5	1	1443	612	3227
Apparel	1	1	C) 6	4	8	1	(5 0	96	2	0	2063	101	2359
LeatherPrd	1	0) () 1	1	1	1	1 2	2 0	56	1	1	1215	192	1593
WoodProde	0		, r	n 8	3	5	10	1/	1 2	12	1242	0	3844	695	9692

Figure 2: The national BAS matrix extracted from the GTAP database for Austria

At this point, the trade matrix generated in step (2) is used to split the import slice of the BAS and TAX matrices (i.e, both elements of the set TYP in the NATIONAL matrix). On the assumption that all users source commodities in common proportions, we split imports into Rest of Europe and Rest of World origins.

6. Splitting electricity into different types of generation and distribution

An assumption that has obvious limitations, at least in some sectors, within the default EuroTERM database creation procedure is that of identical technologies across sub-national regions within a given nation. Electricity is a key sector requiring modifications. We know that some regions within a country have mainly coal-generated electricity, while others are dominated by other forms such as wind farms. Differing generation technologies plus the role of electricity generation in the transition to low carbon technologies are motivations for splitting electricity into many generating sectors plus distribution.

A website (see table 5 footnote) provides a global database with estimates of electricity output (Gw-hrs) for 2017. This resource also provides latitude and longitude coordinates and type of generation. Table 7 shows the detail from this source for Germany's NUTS-2 regions. The DEA1 region, for example, produces mainly coal-generated electricity, whereas DE94 in the coastal north-west corner of the nation has significant wind generation.

There are different conventions for representing electricity splits within a CGE database. The international input-output convention is that electricity transmission and distribution are margin costs accompanying sales of generated electricity.⁵ The Adams convention (Adams and Parmenter, 2013) is that electricity generating sectors sell mainly to the electricity transmission and distribution sector. In preparing the database, the author started with the

⁵ From https://www.abs.gov.au/methodologies/australian-national-accounts-input-output-tablesmethodology/2018-19: "This table [Table 34. Electricity margin on supply by product group by using industry and final use category] shows the electricity margin associated with the supply of domestic and imported products to intermediate usage and final use categories. In this case the supplied products are entirely in the product group Electricity generation."

Adams convention. However, in modelling disruptions to electricity supply, it may be advantageous to keep generation and transmission/distribution separate. An attack on a grid may disrupt electricity supply without damaging generating capacity. In this scenario, we prefer to treat transmission and distribution as a margin. The EuroTERM is now aligned with the international convention.

	COAL	GAS	HYDRO	NUCLEAR	OIL	OTHER	SOLAR	WASTE	WIND
DE11	9815	391	24	9409	203	0	11	64	0
DE12	0	3241	0	0	0	0	40	94	0
DE13	91	338	2030	0	0	0	53	29	0
DE14	132	880	375	0	105	185	18	45	0
DE21	0	304	2591	0	0	0	15	19	0
DE22	0	190	655	0	0	0	31	26	0
DE23	0	1121	1154	9980	0	0	262	0	0
DE24	0	0	1471	0	0	0	46	0	0
DE25	86	8984	583	0	0	0	524	167	0
DE26	0	605	491	0	37	0	411	99	0
DE27	102	689	880	17285	34	0	416	21	0
DE30	3820	5072	0	0	1810	0	622	76	398
DE40	1028	2821	0	0	0	412	951	63	0
DE50	4405	0	42	0	296	0	42	191	0
DE60	10098	1369	0	9946	848	0	149	121	0
DE71	15579	5132	0	9866	0	65	74	327	0
DE72	0	0	0	0	0	0	34	0	0
DE73	1148	1326	1197	0	0	0	18	31	0
DE80	2527	419	0	0	0	0	711	36	0
DE91	2033	755	251	0	0	954	20	79	0
DE92	4730	632	381	9140	0	0	0	114	0
DE93	0	44	351	0	0	0	93	0	0
DE94	3722	1547	0	0	84	0	105	0	3060
DEA1	68147	12854	0	0	90	507	2	561	0
DEA2	1468	7958	0	0	119	0	11	215	0
DEA3	13422	8686	0	0	0	53	26	31	0
DEA4	4302	1153	0	0	0	0	4	72	0
DEA5	6775	4139	741	0	0	0	0	27	0
DEB1	0	0	135	0	0	0	61	26	0
DEB2	0	0	6640	0	0	0	65	0	0
DEB3	66	45	325	0	0	0	87	0	0
DEC0	10598	312	124	0	0	281	138	58	323
DED2	3842	1956	131	0	0	0	560	49	268
DED4	5007	1141	2232	0	25	0	87	0	0
DED5	14021	3679	188	0	317	0	951	143	0
DEE0	341	1744	0	0	0	46	948	283	757
DEF0	1588	383	0	0	0	0	120	0	471
DEG0	0	1406	2872	0	0	0	230	24	0

Table 5: Germany's electricity output by region, 2017Gw-hrs

Source: Global Power Plant Database, https://github.com/wri/global-power-plant-database

MSPLITCOM is a series of database splitting programs developed by Mark Horridge (see https://www.copsmodels.com/msplitcom.htm) for use on GTAP-based databases. The programs have been modified for the present task because in their existing form, the initial GTAP database provides targets to which all split values must sum.

In addition, all initial coal sales to electricity are assigned to coal-generated electricity, all gas sales to gas-generated electricity and all oil and petroleum sales to oil-generated electricity.

The initial activity share of the GTAP electricity sector assigned to electricity distribution is 0.5.

We are using electricity output estimates based on Gw-hr to determine shares, not values. Despite concerns about the cost structures of different nations and a reliance on quantities as estimators of value shares, an inspection of figures 3 to 6 show that discrepancies between target values and final values in splitting electricity are generally minor.⁶

Figure 3: Target and final output values for coal-generated electricity

Figure 4: Target and final output values for gas-generated electricity

⁶ Sweden, for example, has higher coal and gas inputs into electricity in GTAP data relative to other European nations than is reflected in data in coal- and gas-fired generation electricity in the country.

Figure 5: Target and final output values for hydro-generated electricity

Figure 6: Target and final output values for nuclear-generated electricity

7. Splitting national data

Steps (7) *and* (8)

The usual TERM methodology, as developed by Horridge (2011), splits a national CGE database into multiple regions. Every region in the initial split accounts for a given share of national user and sales activity. Appendix B lists the 322 sub-national regions of the EuroTERM database.

In the database splitting program of TERM, the formula for splitting the national factor inputs of industries into regions (NATFAC) is:

```
(all,i,IND)(all,g,FACTOR)(all,d,DST)FAC(i,g,d)=R001(i,d)*NATFAC(i,g); (1)
```

The bracketed sets above are those listed in section 3 (table 2). FAC is the value of regional primary factor inputs in each industry and R001 is that region's share of national industry activity.

In the EuroTERM procedure, this is modified to

In the single-nation TERM generating program, R001 has dimensions IND x DST and R001(i,d) sums to one when added across regions. In EuroTERM, splitting shares are nation-specific, having dimensions IND x DST x Nation. The set Nation includes 34 regions in GTAP. That is, for all non-Austrian regions, R001(i,Dst, "AT")=0, while R001(i,Dst, "AT") summed across Austrian NUTS-2 regions equals 1.0. The matrix of regional shares is partitioned in order to preserve available national detail.

Similarly, in splitting sales, the national dimension is preserved:

(all,c,COM)(all,s,Src)(all,u,USR)(all,m,MAR)(all,d,DST)(all,n,Nation) MARGINS(c,s,u,m,d,n)= NatMARGINS(c,s,u,m,n)*Ushr(c,s,u,d,n); (3)

(3) provides the example of the split of national margins (i.e., NatMARGINS) into regional MARGINS demands. Ushr refers to regional demand shares.

8. Trade data by port

Step (9)

In typical TERM database generation exercises, international merchandise exports and imports are limited to international ports. The Australian Bureau of Statistics, for example, collects data from 65 ports. In Europe, there are many land borders and water networks along which international trades may proceed. Given the diffuse nature of entry points for trades, as a starting point, NUTS-2 shares of national exports are set equal to corresponding output shares. NUTS-2 shares of national imports are set equal to regional usage shares. In the first step, no attempt is made to utilize port data within Europe. However, available international trade data provide national target totals for the intra-European TRADE matrix within EuroTERM.

It turns out that some data are available from Eurostat on commodity movements through ports. These data are used (see table 6) to reflect port activity. Indeed, some scenarios, such as depictions of disruptions to port activity, require reasonable estimates of the value of cargo passing through ports.

Table 6 shows activity through most of the main ports of Europe. What is apparent in examining international trade data from the GTAP database, in turn extracted from Comtrade data,⁷ is that the most active ports in Europe are not necessarily in the country of destination or origin of goods passing through. It is no surprise that Rotterdam, as the largest port in Europe and 10th largest in the world (exceeded only by six ports in China, plus Hong Kong, Singapore and Busan, South Korea),⁸ is a transshipment port, handling goods neither originating in nor destined for the Netherlands. At issue is how we depict the movement of goods between regions within EuroTERM.

The motivation for improving the depiction of port activities within EuroTERM arose from a requested aggregation to depict the port of Gdansk, located within PL63. Default assumptions noted above underestimated the port's throughput by about five- to ten-fold, based on the

⁷ See https://comtrade.un.org/data/

⁸ See https://www.shipafreight.com/knowledge-series/largest-ports-in-the-world/

value of Poland's trade with non-European nations. Being the largest seaport in Poland, we might expect around 80% of merchandise trade with non-European countries from Poland to pass through Gdansk.

			spoo	ds	ers	off	•
			8	00	ain	llo	ğ
		tal	lk	k.	ji ji	2	ca
		To	ld l	Ind	5	Ë	ler
			uiq	Ā	55	Ĩ	Det D
NUTS_2	Port		pi	Ū	La	Ro	U
DE21	Antwernen	201 202	71.044	11.840	101.021	2 800	10.180
DE50	Bremerhaven	49 292	274	108	43 728	3,809	571
DE60	Hamburg	118 761	13 650	30.818	72 816		1 117
DE00 DE94	Wilhelmshaven	28 210	18 472	4 180	5 554		5
EE00	Tallinn	18 944	7 223	3 958	1 907	590	788
EL30	Peiraias	45 202	418	353	39 420	2 059	14
ES61	Algeciras	83,465	28.935	1.942	48,532	1,129	3.122
ES51	Barcelona	49.825	14.541	4.466	23.828	2.863	5.815
ES52	Valencia	60,116	3.203	2.279	45,881	237	7,038
FRE1	Dunkeraue	39,085	5.057	24.239	2,305		1,178
FRD2	Le Havre	66,104	40.053	2.238	22.846	25	18
FRL0	Marseille	75,617	46,328	13,615	10,532	2,836	2,750
ITC3	Genova	50,662	14,124	1,662	21,775	2,450	3,435
ITF4	Taranto	20,149	4,504	12,227		2,155	137
ITH4	Trieste	55,165	42,090	2,437	6,005	3,573	2,817
LV00	Riga	32,106	5,532	20,394	3,729	39	2,320
LT00	Klaipeda	40,027	11,497	19,113	4,691	1,701	1,842
NL32	Amsterdam	98,517	45,961	44,585	344	83	7,008
NL33	Rotterdam	433,293	206,610	74,804	119,933	7,589	20,364
PL63	Gdansk	33,940	13,505	8,712	10,674	81	762
PT18	Sines	46,473	22,498	6,361	17,499		109
RO22	Constanta	37,298	5,737	23,654	5,085		2,653
SE23	Göteborg	40,518	23,281	143	6,016	5,704	509
NO05	Bergen	48,092	44,136	2,856	172	71	780
UKE1	Immingham	54,034	20,065	14,056	2,282		1,191
UKI5	London	49,868	14,660	15,644	10,422		1,313
UKL1	Milford Haven	31,990	30,966	86			40
UKJ3	Southampton	34,471	21,446	2,109	9,552		58
UKC1	Tees & Hartlepool	28,447	19,975	3,519	2,162		623
UKD7	Liverpool	31,000	12,180	2,584	10,000	513	5,700

Table 6: Gross weight of goods handled in each port(2017, thousand tonnes)

Source: Eurostat data

https://ec.europa.eu/eurostat/databrowser/view/MAR_MG_AM_PWHC__custom_1762379/default/table?lang= en accessed 14 December 2021

We can use existing data to approximate the trade that might pass through Gdansk. The port accounts for 1.7% of tonnage shown in table 6. A crude guess is that the table covers 90% of the shipment tonnage between Europe and the rest of the world. In the GTAP database, merchandise exports from Europe to the rest of the world in 2017 are around US\$2,000 billion. Assuming that Gdansk handles goods with a similar value per tonne as the average of European ports, a starting estimate might indicate that exports through the port total around US\$31 billion (=0.9 x 0.017 x \$2000 bn). The GTAP database shows that Polish exports to non-European nations exceed US\$40 billion. The initial export shares used in generating EuroTERM lead to only US\$4.4 billion of merchandise exports from PL63, which includes Gdansk. This exposes a clear case for improving the methodology to estimate international trade shares by region. Once Gdansk is treated as an important port (assigning 100% of initial Rest of World Polish merchandise exports to the port as in table 7), exports to the rest of the world via PL63 increase to US\$49 billion. This may be on the large side, but improves markedly on the initial estimate.

			ods	ds	ers	ff	-
			66	00	ain	oll c	061
		tal	alk	lk Ik	nt	2 '	ca.
		T	d b	pu	bo a	UO	her
			in	ŗ.	50 1	llo	O
NUTS-2	Port		Liq	D	La	R	
BE21	Antwerpen	1	1	1	1	1	1
DE50	Bremerhaven	0.008	0.003	0.358	0	0.337	0.008
DE60	Hamburg	0.421	0.878	0.596	0	0.660	0.421
DE94	Wilhelmshaven	0.570	0.119	0.045	1	0.003	0.570
EE00	Tallinn	1	1	1	1	1	1
EL30	Peiraias	1	1	1	1	1	1
ES61	Algeciras	0.620	0.224	0.410	0.267	0.195	0.620
ES51	Barcelona	0.312	0.514	0.202	0.677	0.364	0.312
ES52	Valencia	0.069	0.262	0.388	0.056	0.441	0.069
FRE1	Dunkerque	0.055	0.605	0.065	0.000	0.299	0.055
FRD2	Le Havre	0.438	0.056	0.640	0.009	0.005	0.438
FRL0	Marseille	0.507	0.340	0.295	0.991	0.697	0.507
ITC3	Genova	0.233	0.102	0.784	0.300	0.538	0.233
ITF4	Taranto	0.074	0.749	0.000	0.264	0.021	0.074
ITH4	Trieste	0.693	0.149	0.216	0.437	0.441	0.693
LV00	Riga	1	1	1	1	1	1
LT00	Klaipeda	1	1	1	1	1	1
NL32	Amsterdam	0.182	0.373	0.003	0.011	0.256	0.182
NL33	Rotterdam	0.818	0.627	0.997	0.989	0.744	0.818
PL63	Gdansk	1	1	1	1	1	1
PT18	Sines	1	1	1	1	1	1
RO22	Constanta	1	1	1	1	1	1
SE23	Göteborg	1	1	1	1	1	1
NO05	Bergen	1	1	1	1	1	1
UKE1	Immingham	0.168	0.370	0.066	0.000	0.133	0.168
UKI5	London	0.123	0.412	0.303	0.000	0.147	0.123
UKL1	Milford Haven	0.260	0.002	0.000	0.000	0.004	0.260
UKJ3	Southampton	0.180	0.056	0.278	0.000	0.006	0.180
UKC1	Tees & Hartlepool	0.167	0.093	0.063	0.000	0.070	0.167
UKD7	Liverpool	0.102	0.068	0.291	1.000	0.639	0.102

Table 7: Estimates of shares of national trade with Rest of World

Table 7 provides a start on how we might use the ports data. As with any estimation procedure, new and more detailed data will provide the basis for improved estimates. An obvious deficiency concerns transshipments from Antwerpen, Rotterdam and Amsterdam to other nations. Dealing with transshipment is a task for future database development, although the modified gravity assumption and database balancing procedures currently impose some merchandise movements from/to these ports to/from regions in other European nations.

The shares assume that all trade with the Rest of the World in a given nation occurs through ports shown in the table. For nations with a single NUTS-2 region in table 7, namely Estonia, Latvia and Lithuania, no trade data are split. The main burden of this assumption is that smaller ports, with less than 20 million tonnes of cargo handled each year, are excluded. Table 6 is being used only to impose revised Rest of World trade shares. In Ukraine, the main assumption concerning trade is that 80% of merchandise trade with the rest of the (non-European) world passes through ports in the oblast of Odesa.

The next task is to associate the headings in table 7 with the 45 merchandise commodities in the database. We align "Liquid bulk goods" with *PetrolCoalP*, *ChemicalPrd* and *Oil*; "Dry bulk goods" covers *Wheat*, *OtherCereals*, *Oilseeds*, *SugarBeet*, *FibreCrops*, *Fodder*, *ForestryLogs*, *Coal*, *OthMining*, *FeMetals*, *NonFeMetals*, *FabriMetals* and *NonMetMinPrd*, "Large containers" includes *WoodProds*, *PaperProds*, *RubberPlas* and *FurnitRepair*; "Roll on-roll off" includes motor vehicles, though tourism may be indistinguishable from merchandise trade; and "Other cargo" includes the merchandise commodities not covered above.

Horridge *et al.* (2003) documented the first version of TERM without being aware that the Australian Bureau of Statistics had detailed international trade data by port. Instead, annual reports of port authorities provided the basis for port activity estimates. The main lesson from this is that the absence of very detailed regional data should never impede the process of preparing a multi-regional CGE databases. In any case, CGE databases are periodically updated. As practitioners become familiar with a wider array of database sources, and improve their knowledge of these sources, the data inputs to the model will improve.

The EuroTERM database generation process is a modification of the TERM process. Preparing data programs for the process was a time-consuming task. But once programs are written and running, the process of revising a database is mechanical. Compiling data such as regional shares, port activities, or even better regional household spending data if they can be found, may be a painstaking process. But modifying the selected inputs to the data generation process is a relatively quick mechanical task, which enables the practitioner to generate an improved master database with relative ease.

9. Steps to reconcile EuroTERM trades with GTAP's international trade data: the example of a Nordic aggregation

Client-driven demands have resulted in specific EuroTERM database modifications to deal with Nordic regions. Two major additions to the EuroTERM database are the electricity splits outlined in section 6, the addition of Iceland (using GTAP's Rest of EFTA region as a starting point) and the addition of single country regions, Russia and Moldova, plus 25 oblasts/cities of Ukraine to the database. Moldova is based on the Rest of Eastern Europe region within GTAP. It appears to be a reasonable representation of the nation's economic activity though not derived from a specific Moldovan database.

Steps (10), (11), (12) and (13)

In preparing a master database for a multi-regional CGE model, examples help expose problems with the initial modified database generation methodology. In step (8), the example of Gdnask provided the impetus for improving the depiction of port activity within the database. Another early task using EuroTERM concerned NUTS-2 Nordic regions. This early aggregation showed that a defensible estimate of the initial TRADE matrix in EuroTERM requires actual European trade data. These data are prepared in step (2) of the EuroTERM database generation procedure and used in several steps.

The example that clearly exposed the deficiency in early attempts at devising trade matrices, that is, relying excessively on the Horridge gravity methodology without using international trade data prepared in step (2), was oil and gas sales from NO04 (Agder og RogÅland) in Norway. GTAP data indicate that oil exports from Norway to the rest of Europe are around US\$40 billion, with another \$3 billion to the Rest of the World. NO04's share of national oil output is around 69%, so we might expect the region's international exports to the rest of Europe to be around US\$28 billion. Without scaling to GTAP trade data, the preliminary estimation procedure was not close to a reasonable estimate.

In response to the initial deficient estimation process, the revised method entailed revisiting step (5) to split the NATIONAL matrix into three. In step (12), the TRADE matrix also contains three slices: (1) strictly domestic trades ("dom"), (2) sales between European origins

and destinations in other European nations ("RoE"), and (3) between Europe and the rest of the world ("RoW").

Within the "dom" slice, there are several steps. First, some commodities are treated as strictly local within each NUTS-2 region, and therefore sales are limited to diagonal elements of the region by region matrix. In the next step, partitioning of the matrix of sales shares allocates within country sales for the other commodities. That is, for regions r within nation n, we multiply initial user share estimates by 1, and by 0 for other regions. For example, the assigned multiplier for NO04 is 1 for sales to all Norwegian NUTS-2 regions, and 0 for sales elsewhere. Sales are distributed by excluding exports to the rest of Europe, which appear in a separate final user column in the use matrices.

Figure 3a shows the strictly domestic slice of the interim TRADE matrix, summed across all commodities. The top left hand corner shows the trades between the NUTS-2 regions of Austria. For each commodity in the regions of a given nation, the non-zero segment of the domestic matrix slice is based on a single number in the BAS matrix extracted from the GTAP database. An example is BAS("Wheat","dom","AT"). This single number will be split into a matrix of wheat sales across 9 x 9 Austrian NUTS-2 regions. The modified gravity assumption distributes trades within the domestic slice of the TRADE matrix. Across the EuroTERM TRADE matrix, the domestic slice accounts for 79% of the total value of transactions.

	Figure 3a	a: The	"dom"	slice	of the	interim	TRADE	matrix
--	-----------	--------	-------	-------	--------	---------	-------	--------

TRADE	AT11	AT12	AT13	AT21	AT22	AT31	AT32	AT33	AT34	BE10	BE21	BE22	BE23	BE24	BE25	BE31	BE32	BE33	BE34	BE35	BG31	BG32	BG33	BG34	BG41
AT11	3915	9013	1644	2266	2110	3168	2361	2841	1478	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT12	6190	47814	4154	11538	5819	8985	13781	9002	3414	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT13	315	1175	97326	554	3622	3155	467	831	1730	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT21	1903	14097	2439	9320	3655	5418	4982	4118	1871	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT22	524	2118	4706	1080	47911	7643	874	1518	1771	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT31	961	4005	5075	1963	9344	48285	1782	3626	2601	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT32	2638	22423	2723	6649	3931	6556	11893	8561	2133	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT33	2102	9700	3234	3637	4541	8833	5678	21653	2441	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT34	133	451	835	202	647	773	174	299	9055	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BE10	0	0	0	0	0	0	0	0	0	37734	6238	8533	1576	1172	1140	219	802	15151	525	586	0	0	0	0	0
BE21	0	0	0	0	0	0	0	0	0	4044	135632	3381	6205	3799	3837	521	1946	2693	2322	2480	0	0	0	0	0
BE22	0	0	0	0	0	0	0	0	0	10056	4990	19002	1499	1069	1085	196	723	11741	468	547	0	0	0	0	0
BE23	0	0	0	0	0	0	0	0	0	2703	16296	2212	49002	10954	16326	701	2565	1822	1030	8211	0	0	0	0	0
BE24	0	0	0	0	0	0	0	0	0	2014	7006	1592	11009	27375	13905	786	2868	1339	753	4115	0	0	0	0	0
BE25	0	0	0	0	0	0	0	0	0	2321	11651	1887	19291	16399	44852	739	2664	1564	816	4470	0	0	0	0	0
BE31	0	0	0	0	0	0	0	0	0	991	4509	750	1845	2084	1636	22161	18114	648	327	724	0	0	0	0	0
BE32	0	0	0	0	0	0	0	0	0	1335	5603	1028	2495	2763	2194	6570	40812	899	463	1005	0	0	0	0	0
BE33	0	0	0	0	0	0	0	0	0	21006	14549	14102	3734	2381	3084	639	1995	34563	563	903	0	0	0	0	0
BE34	0	0	0	0	0	0	0	0	0	1022	5347	788	1179	858	792	141	550	675	5015	525	0	0	0	0	0
BE35	0	0	0	0	0	0	0	0	0	1291	6519	1044	10757	5354	4962	354	1347	874	586	6122	0	0	0	0	0
BG31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8330	401	1068	776	6194
8G32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	301	9548	1360	505	860
BG33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	422	257	7344	683	1123
BG34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	153	73	515	10338	461
BG41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3511	265	1551	991	28808
BG42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	486	149	657	442	1494
CH01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C1100	0	0	0		0	0	0	0	0	0	0	0	0	0		0		0	0	0	0				0

The "RoE" (rest of Europe, figure 3b) slice of the TRADE matrix uses sub-national user shares to distribute known imports, gathered from the GTAP international TRADE matrix (see table 2), to NUTS-2 regions. Sub-national export shares provide the regional share of known international trades. Note the partitioned pattern of the matrix, with zeroes in all home country cells and the possibility of non-zeroes elsewhere.

TRADE	AT11	AT12	AT13	AT21	AT22	AT31	AT32	AT33	AT34	BE10	BE21	BE22	BE23	BE24	BE25	BE31	BE32	BE33	BE34	BE35	BG31	BG32	BG33	BG34	BG41	BG42	CH01	CH02
AT11	0	0	0	0	0	0	0	0	0	3	61	2	4	3	4	1	3	3	1	1	3	3	3	4	10	5	44	58
AT12	0	0	0	0	0	0	0	0	0	21	443	14	27	19	24	8	18	17	. 3	8	16	18	23	25	67	35	284	378
AT13	0	0	0	0	0	0	0	0	0	33	364	22	43	30	38	13	29	27	5	12	14	16	20	22	60	31	309	412
AT21	0	0	0	0	0	0	0	0	0	7	156	5	9	7	8	3	6	6	1	3	6	б	8	9	23	12	108	144
AT22	0	0	0	0	0	0	0	0	0	16	338	11	20	14	18	6	14	13	3	6	13	14	18	20	53	27	216	288
AT31	0	0	0	0	0	0	0	0	0	17	476	11	22	15	19	7	15	14	3	6	17	19	23	26	70	36	282	376
AT32	0	0	0	0	0	0	0	0	0	10	167	7	13	9	12	- 4	9	8	2	4	7	7	9	10	27	14	105	140
AT33	0	0	0	0	0	0	0	0	0	12	211	8	16	11	14	5	10	10	2	4	8	9	11	12	33	17	136	181
AT34	0	0	0	0	0	0	0	0	0	5	140	3	6	- 4	6	2	- 4	- 4	1	2	6	7	8	9	24	12	81	108
BE10	10	58	70	20	44	51	23	30	14	0	0	0	0	0	0	0	0	0	0	0	7	8	9	10	28	14	113	150
BE21	18	102	124	36	77	89	41	52	25	0	0	0	0	0	0	0	0	0	0	0	12	13	16	18	48	25	182	242
BE22	8	48	58	17	36	42	19	24	12	0	0	0	0	0	0	0	0	0	0	0	5	6	7	8	22	11	94	126
BE23	17	100	122	35	76	88	40	51	25	0	0	0	0	0	0	0	0	0	0	0	12	14	17	19	51	26	177	236
BE24	7	43	52	15	32	37	17	22	10	0	0	0	0	0	0	0	0	0	0	0	5	5	7	7	20	10	81	107
BE25	15	90	109	32	68	79	36	46	22	0	0	0	0	0	0	0	0	0	0	0	12	14	17	18	50	26	163	217
BE31	5	30	36	11	23	26	12	15	7	0	0	0	0	0	0	0	0	0	0	0	3	4	5	5	14	7	62	83
BE32	9	55	66	19	41	48	22	28	13	0	0	0	0	0	0	0	0	0	0	0	6	7	8	9	24	12	107	142
BE33	11	61	74	21	46	53	25	31	15	0	0	0	0	0	0	0	0	0	0	0	7	8	10	11	29	15	191	255
BE34	1	б	7	2	5	5	2	3	2	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	3	2	12	16
BE35	2	13	16	5	10	12	5	7	3	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2	б	3	29	38
BG31	2	11	14	4	9	10	5	6	3	1	184	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	4	5
BG32	3	16	20	6	12	14	6	8	4	1	243	1	2	1	2	1	1	1	0	1	0	0	0	0	0	0	5	7
BG33	2	14	17	5	10	12	6	7	3	2	168	1	3	2	2	1	2	2	0	1	0	0	0	0	0	0	5	7
BG34	3	15	18	5	11	13	б	8	4	2	140	2	3	2	3	1	2	2	0	1	0	0	0	0	0	0	5	б
BG41	8	49	60	17	37	43	20	25	12	10	398	7	13	9	11	- 4	9	8	2	4	0	0	0	0	0	0	20	26
BG42	5	29	35	10	22	25	12	15	7	3	261	2	4	3	3	1	3	2	0	1	0	0	0	0	0	0	10	14
CH01	34	197	239	69	149	172	79	100	48	25	682	17	33	23	29	10	22	21	- 4	9	- 4	4	5	6	16	8	0	0
CH02	80	468	567	164	354	408	188	238	114	28	1705	19	36	26	32	11	25	23	5	10	9	10	12	13	37	19	0	0
CH03	47	272	329	95	206	237	109	138	66	21	980	14	27	19	24	9	18	17	3	8	5	6	7	8	21	11	0	0
CH04	42	245	296	86	185	213	98	125	60	32	852	21	41	29	36	13	28	26	5	12	5	5	7	7	20	10	0	0
CH05	58	335	406	117	253	292	135	170	82	18	1224	12	23	16	20	7	15	15	3	6	6	7	9	10	26	13	0	0
CH06	33	194	235	68	147	169	78	99	47	14	702	9	18	13	16	6	12	11	2	5	4	4	5	6	15	8	0	0
01107												· ·				5 2					1. 1.			G				1.00

Figure 3b: The "RoE" slice of the interim TRADE matrix

The "RoW" (Rest of World, figure 3c) slice initially used a methodology similar to that of the "RoE" slice. That is, initial EuroTERM database development did not use port activities in estimating trade movements. Instead, sub-national import shares were based on user shares. The methodology has been modified to use port data. The example of Gdansk in step (9) exposed problems with an earlier methodology. The revised methodology makes the "RoW" slice of the TRADE matrix less diagonal. The port role of BE21 (Antwerpen) is evident in figure 3c: the BE21 row indicates that imports through the port are sold to many other regions.

Figure 3c: The "RoW" slice of the interim TRADE matrix

TRADE	AT11	AT12	AT13	AT21	AT22	AT31	AT32	AT33	AT34	BE10	BE21	BE22	BE23	BE24	BE25	BE31	BE32	BE33	8E34	BE35	BG31	BG32	BG33	BG34	BG41	BG42	CH01	CH02 (CH1
AT11	574	84	12	21	10	18	24	23	10	33	10	28	104	83	142	17	39	72	4	21	80	1	3	2	74	2	13	23	-
AT12	41	6028	26	101	24	50	107	68	21	78	24	68	297	297	460	42	99	177	10	59	251	2	5	5	45	5	25	62	
AT13	2	.9	4750	4	13	15	4	6	10	1204	22	284	63	31	51	12	28	1214	9	14	11	1	- 4	127	7	1	9	39	
AT21	10	108	13	1335	13	28	38	29	10	46	12	39	176	245	252	27	64	103	б	38	70	1	2	2	17	3	10	39	
AT22	3	15	23	8	2815	44	7	9	12	85	34	72	132	66	101	20	52	189	41	38	18	10	5	5	7	2	9	278	
AT31	4	28	20	14	38	3517	14	22	16	95	40	86	513	133	253	25	61	218	17	126	36	3	11	5	11	3	8	120	
AT32	13	146	12	46	15	33	1779	55	14	51	14	43	231	246	437	25	59	115	7	43	171	1	3	3	33	3	12	42	
AT33	11	73	16	30	16	- 44	46	2493	14	60	18	52	360	207	957	24	58	137	8	55	131	1	- 4	3	22	3	11	50	
AT34	1	3	3	1	3	4	1	2	181	16	2	14	18	10	17	4	10	36	1	4	4	0	0	1	2	0	2	7	
BE10	0	2	127	1	3	3	1	1	2	2331	12	24	5	3	3	1	1	41	1	1	0	0	1	12	2	0	1	5	
BE21	17	85	187	37	172	245	34	55	53	790	24700	771	1300	489	919	132	379	1566	193	303	115	23	165	58	69	14	77	909	
BE22	1	3	30	1	5	5	1	2	3	50	12	1483	6	3	5	0	2	65	1	2	0	0	1	6	1	0	2	8	
BE23	2	13	10	8	9	34	9	16	4	14	33	8	4233	21	52	2	4	6	1	14	2	0	2	1	6	1	3	17	
BE24	5	26	10	19	9	17	18	16	4	13	21	8	39	2626	48	2	6	6	2	16	3	0	2	1	10	1	7	15	
BE25	4	25	8	14	9	22	23	56	5	11	23	9	65	36	3837	1	6	7	1	11	5	0	1	1	8	1	5	18	
BE31	1	4	5	2	3	4	2	2	2	6	7	з	7	6	5	1589	35	2	1	2	1	0	1	0	3	18	22	4	
BE32	2	8	6	4	7	7	4	4	4	7	10	7	10	9	10	17	2847	5	1	4	1	0	1	1	3	10	31	10	
BE33	1	3	50	1	5	5	1	2	3	108	11	85	5	3	- 4	0	2	2184	1	2	0	0	1	9	1	0	2	8	
BE34	1	2	6	1	14	5	1	2	1	7	16	5	5	4	4	0	2	4	335	3	0	0	1	1	1	0	2	25	
BE35	2	9	7	5	9	29	5	8	3	9	19	7	46	23	23	1	4	6	2	777	1	1	2	1	- 4	0	4	16	
BG31	11	108	7	22	7	19	31	43	7	34	8	36	167	119	298	15	47	99	5	29	1388	1	3	3	26	2	7	26	
BG32	1	10	9	5	61	23	3	6	5	43	13	-44	98	45	77	11	37	122	17	29	16	1000	5	2	- 4	2	5	118	
BG33	2	13	16	6	19	57	5	9	7	58	58	63	155	51	103	11	35	169	13	37	21	3	426	5	8	2	8	80	
BG34	1	5	146	2	7	8	2	3	5	563	9	231	38	17	33	6	18	980	5	8	8	1	2	443	4	1	4	21	
BG41	30	74	15	23	13	28	25	30	18	66	18	68	228	140	304	31	90	192	9	41	153	2	6	6	2192	5	17	43	
BG42	2	16	7	8	9	13	5	7	9	37	7	38	81	55	86	772	883	107	б	19	23	1	2	3	8	1679	63	27	
CH01	7	28	27	14	20	25	12	14	19	89	21	72	144	104	145	303	592	141	11	35	21	2	5	6	21	29	12224	99	
CH02	2	17	27	11	130	67	9	13	15	189	62	160	291	133	215	38	97	302	90	80	21	13	8	6	9	3	8	17144	
CH03	8	64	18	27	18	48	36	71	20	117	19	99	468	259	677	46	107	190	14	75	139	3	3	3	49	3	9	140	10
CH04	6	28	60	13	84	96	13	18	17	187	262	157	328	137	223	36	88	294	52	88	24	9	46	14	21	4	42	902	
CH05	2	14	25	9	54	65	8	11	13	165	137	144	253	107	179	29	73	266	50	66	18	6	10	5	8	2	6	774	
CH06	2	15	20	9	24	144	9	13	12	129	42	112	411	124	239	27	66	209	19	84	22	3	16	4	10	2	5	230	
CH07	4	16	13	8	10	13	6	7	9	43	11	35	78	59	80	551	512	69	5	19	12	1	3	3	11	70	154	51	

10. Database balancing, reconfiguration and aggregation

Steps (13), (14) and (15)

With one exception, the final steps in creating a EuroTERM master database and projectspecific aggregation are identical to the corresponding steps in the TERM process. The only difference is that the source dimension in applicable matrices is aggregated from three to two. The three sources used in the database generation process are necessary to make use of available GTAP data on bilateral trades. In step (5), international imports are split into Rest of Europe and Rest of World. In aggregating the source dimension in preparation for the EuroTERM master database in step (13), the "domestic" slice combines own-country sourcing and imports from the rest of Europe. For example, the slices shown in figures 3a and 3b are aggregated to form the domestic slice of the TRADE matrix. This reassigning of "domestic" sources enables us to retain the core theory of TERM in EuroTERM.

Step (14) uses a RAS procedure to balance the master database. Step (15) reconfigures the master database so that data are in the form required by the TERM/EuroTERM model.

11. Nordic aggregation

A final step in data preparation in the TERM/EuroTERM procedure is to aggregate to sectors and regions of interest. Figure 4 shows a map of 26 Nordic regions in an aggregation of EuroTERM to these regions plus a composite Rest of Europe region. A modification discussed below (but undertaken at step 5 in figure 1) is to modify the Rest of EFTA region to depict Iceland as a separate region.

Figure 4: Nordic regions in a 27 region aggregation of EuroTERM

Economic profile of Nordic NUTS-2 regions

Table 7 shows a breakdown of expenditure-side GDP for each of the Nordic NUTS-2 regions plus Poland in EuroTERM. A new feature in multi-country EuroTERM is that there are three tiers of trade in each region in expenditure-side macroeconomic accounting. These tiers are (1) Rest of World (ExpRoW and ImpRoW), (2) rest of Europe (ExpEU and ImpEU) and (3) sub-national inter-regional trades (Xsubnat and Msubnat). The addition of Russia, Ukraine and Moldova to the EuroTERM database results in trades between NUTS-2 regions and these three countries being treated as rest of Europe trades instead of Rest of World trades.

Norway

The distinctive sales pattern of NO04 data signaled early database generation problems. Table 7 shows that NO04 has the largest exports to the rest of Europe of any of the Nordic regions. Exports to the rest of Europe amount to 45% of NO04's regional GDP (US\$41.4 bn out of US\$85.9 bn). The distinctiveness of NO04 is observable in the income-side GDP breakdown (table 8). Labour's share of regional GDP is only 32% (US\$27.6 bn out of GDP of US\$85.9 bn). This is a consequence of the high oil & gas share (43%, Table 9) of total regional income. That is, NO04 is a resource-based economy and oil & gas is capital- and resource-endowment-intensive in its cost structure. Norway's continental shelf oil fields straddle the west coast, adjacent to the NO04, NO05 and NO06 regions. The most solid evidence for NO04's dominance in the oil & gas sector is based on 2011 census data, which is becoming dated.⁹ However, available forecasts indicate that Norway's oil & gas production plateau is likely to continue through the 2020s.¹⁰

The smallest NUTS-2 economy in Norway is the inland NO02 region (Hedmark og Oppland). Agriculture, forestry and fishing account for almost 7% of the region's income, unmatched in other Nordic NUTS-2 regions. In NO01 (Oslo, the national capital), agriculture's share of GDP is around 0.3%. The high oil & gas share indicated by Table 9 for the Oslo region appears to reflect fly-in, fly-out workers on the oil fields.

The manufacturing share of GDP is lower in Norway's NUTS-2 regions than in other Nordic regions. This may reflect in part the impact of relatively high wages driven by oil revenues on manufacturing competitiveness. An indicator of the degree of urbanization of given NUTS-2 regions is the share of other services, covering an array of business and entertainment services (table 9, column 14), in overall economic activity. As expected, NO01's other services' share of 33.6% is higher than for other Norwegian regions.

Denmark

The agriculture and forestry shares of regional GDP in DK03 (Syddanmark, 2.9%) and DK05 (Nordjylland, 3.2%) are higher than for most Nordic regions. The Nordic-wide average share for these sectors is 2.0%, compared with 1.4% for all of Europe. Nordic regions have lower population densities than the rest of Europe, which may push up the percentage contribution of these primary sectors, though the environment for primary activities is harsher than in more southern parts of Europe.

We can pick Denmark's capital region from the relative size of other services (column 14). In DK01 (Hovedstaden/Copenhagen region), other service's share of GDP of 34.1% is much higher than for other Danish regions.

⁹ https://www.offshore-technology.com/features/featurenorways-giants-the-biggest-oil-fields-on-the-norwegiancontinental-shelf-4191946/ lists each oil field.

¹⁰ See https://www.norskpetroleum.no/en/production-and-exports/production-forecasts/

h	h
Z	Z

	HOU	INV	GOV	STOCKS	ExpRoW	ImpRoW	ExpEU	ImpEU	Xsubnat	Msubnat	NetMar	GDP
DK01	58129	28101	36431	-28	20733	-16053	31477	-33149	45005	-52852	565	118359
DK02	21587	9318	14170	-7	7098	-6248	8541	-13639	36954	-35171	653	43256
DK03	32881	14748	17262	-16	10909	-9316	17228	-20136	42133	-41003	1526	66216
DK04	35642	15591	17652	-10	10899	-10058	16528	-21187	49603	-45183	1100	70577
DK05	15839	6983	9546	61	5184	-4506	6947	-9776	26394	-25881	883	31674
FI19	33251	14493	16078	-188	11174	-5790	13479	-17754	45860	-45230	-281	65092
FI1B	42746	18429	18529	-267	11382	-6939	12745	-20312	40886	-38453	1129	79875
FI1C	28145	12201	13440	-190	9285	-4908	10250	-15248	45258	-43634	393	54992
FI1D	27875	11990	14718	550	7857	-4755	14075	-13344	27005	-32447	263	53787
FI20	1137	936	357	95	242	-201	357	-738	3695	-2939	119	3060
IS	12996	4200	6912	0	4361	-4763	5861	-6595	0	0	81	23053
NO01	49202	25824	31291	-768	5708	-5682	13007	-15304	53634	-57439	3891	103364
NO02	12485	5683	8582	33	984	-1512	2875	-4137	25417	-24922	-238	25250
NO03	31201	14409	16919	-544	2799	-3821	5038	-11320	51561	-44604	1888	63526
NO04	26907	24048	16703	-8	2601	-3226	41378	-9377	39615	-48694	-4046	85901
NO05	30724	15648	16022	624	28060	-29348	30379	-35185	49359	-38517	-2324	65442
NO06	15217	7028	8559	60	1332	-1783	3944	-4527	25634	-24635	-150	30679
NO07	17293	8262	14572	602	1699	-2003	8437	-5182	14424	-20833	-1526	35745
SE11	65064	36415	36788	-903	8884	-7334	17582	-18664	72299	-67870	3429	145690
SE12	35515	18960	25154	43	3433	-3917	14425	-9663	59959	-64726	-406	78777
SE21	18810	10667	11336	-104	1646	-2115	7554	-5515	37541	-36891	100	43029
SE22	33614	18541	20146	38	3592	-3796	16232	-9365	47765	-51108	188	75847
SE23	47637	27119	28291	662	56142	-34402	44333	-63007	66202	-60881	-4173	107923
SE31	18037	10016	13136	-324	1606	-2061	4290	-6598	42887	-40556	865	41298
SE32	9209	5685	7610	216	943	-1040	4441	-3072	22373	-23975	-309	22081
SE33	12200	7114	9195	373	1218	-1338	6948	-3553	21716	-24734	-1007	28132
PL2	89420	25250	29405	-451	2835	-3336	28298	-23187	102826	-107844	-2797	140419
PL4	71271	21119	30536	-126	2295	-2668	20737	-16206	92855	-105892	550	114471
PL5n6r	77144	21381	36825	-149	2346	-2886	17368	-16745	107756	-121942	-1543	119555
PL61	28170	7910	12373	629	36054	-62108	56977	-52931	59629	-37900	-5108	43695
PL7	26025	9569	1115	-111	833	-949	9549	-6990	60922	-55784	2610	46789
PL8	30887	11496	1367	243	1138	-1122	13003	-8532	59965	-55362	3174	56257
PL9	9517	3298	285	-34	141	-172	1607	-2459	12785	-12016	-294	12658
Russia	842298	357314	297216	0	187846	-185104	170517	-152915	0	0	1941	1519113
Ukraine	73517	17278	25425	0	29678	-27506	38896	-46563	0	0	1092	111817
Moldova	8553	2227	1717	0	929	-1990	2481	-4549	0	0	204	9572
RoE	9449499	3425845	3570643	0	2472945	-2401560	529816	-540175	1	-1	-2441	16504572

Table 7: Expenditure-side components of GDP, Nordic NUTS-2 and other regions, 2017 (US\$m)

Key: HOU=household consumption, INV=investment, GOV=government consumption, STOCKS=changes in inventories (balancing item),

ExpRoW=international exports to outside Europe, ImpRoW=imports from outside Europe, ExpEU=exports to other European nations,

ImpEU= imports from other European nations, Xsubnat = exports to other within-nation regions, Msubnat= imports from other within-nation regions,

Net Mar= net margins sales to other regions

	Land	Labour	Capital	PRODTAX	ComTax	Total
DK01	590	57881	39261	209	20418	118359
DK02	92	22637	13042	23	7463	43257
DK03	647	33619	20642	-118	11428	66218
DK04	353	36362	21812	236	11813	70576
DK05	178	16273	9777	7	5439	31674
FI19	374	30781	25443	-379	8872	65091
FI1B	116	36707	32354	-525	11222	79874
FI1C	175	26078	21422	-334	7651	54992
FI1D	306	25332	21049	-295	7395	53787
FI20	31	1069	1622	-43	381	3060
IS	74	10401	10559	226	1792	23052
NO01	2591	47466	41908	-1136	12535	103364
NO02	489	12789	9234	-245	2980	25247
NO03	540	32520	23439	-668	7696	63527
NO04	11950	27584	39000	-252	7621	85903
NO05	2133	30328	25431	-819	8371	65444
NO06	833	15107	11404	-326	3660	30678
NO07	1129	16950	13403	-348	4609	35743
SE11	151	60223	54575	12678	18060	145687
SE12	269	33399	28423	7067	9617	78775
SE21	256	17891	15994	3767	5119	43027
SE22	240	31923	27824	6682	9177	75846
SE23	330	44495	40676	9350	13072	107923
SE31	200	17402	15030	3695	4973	41300
SE32	110	8819	8493	2019	2640	22081
SE33	155	11387	10622	2586	3381	28131
PL2	1780	51948	67520	1483	17688	140419
PL4	1356	41316	56445	1184	14170	114471
PL5n6r	1287	44691	57103	1203	15273	119557
PL61	276	16240	21107	464	5609	43696
PL7	655	14843	25627	484	5179	46788
PL8	1021	17560	30797	602	6277	56257
PL9	14	2747	8771	15	1111	12658
Russia	70340	549194	738535	-132	161176	1519113
Ukraine	2941	58453	38338	478	11607	111817
Moldova	116	4682	3370	98	1306	9572
RoE	65936	7533559	6899026	161244	1844807	16504572

Table 8: Income-side components of GDP, Nordic NUTS-2 and other regions, 2017 (US\$m)

	Crops	Livestock	ForestFishng	CoalOilGas	OthMining	Total primary	FoodProducts	OthManufac	PetrolCoalP	Total manufactures	Utilities	Construction	TradeWR	AccomFood	Transport	OthService	PubAdmHltEdu	OwnerDwellng	Total
	1	2	3	4	5		6	7	8		9	10	11	12	13	14	15	16	
DK01	0.0	0.1	0.1	1.8	0.0	1.9	2.2	13.9	0.1	16.3	0.9	2.8	7.9	2.2	5.6	35.0	22.9	4.6	100
DK02	0.4	0.5	0.3	0.0	0.1	1.2	2.9	16.9	0.2	19.9	2.5	5.2	9.3	1.8	6.2	26.7	24.1	3.1	100
DK03	0.7	1.8	0.4	1.9	0.2	4.8	3.4	19.1	0.0	22.5	2.5	3.3	9.3	1.9	6.7	23.0	22.1	3.8	100
DK04	0.4	1.5	0.4	0.4	0.1	2.8	2.8	19.3	0.0	22.1	2.2	3.5	9.5	1.8	5.3	26.7	22.2	3.9	100
DK05	0.4	2.3	0.5	0.0	0.2	3.5	3.7	18.7	0.0	22.4	3.6	3.6	9.3	2.0	6.4	22.9	22.7	3.6	100
FI19	0.4	1.0	2.1	0.0	0.7	4.2	1.8	17.8	0.2	19.7	2.9	6.9	12.5	2.6	4.5	22.5	17.7	6.5	100
FI1B	0.2	0.4	0.4	0.0	0.1	1.1	1.0	10.3	0.1	11.4	1.2	6.1	12.4	3.0	5.2	33.4	16.8	9.4	100
FI1C	0.2	0.6	1.3	0.0	0.4	2.6	1.8	16.6	0.2	18.6	3.6	7.3	12.5	2.8	5.5	22.2	18.3	6.5	100
FI1D	0.4	0.9	2.3	0.1	0.9	4.6	2.1	12.8	0.2	15.1	4.1	6.6	12.4	3.2	5.5	21.8	19.8	7.0	100
FI20	0.2	0.5	3.3	0.0	0.1	4.1	2.1	4.5	0.0	6.6	42.8	5.6	6.8	3.0	7.1	12.6	7.9	3.7	100
IS	0.2	0.4	0.5	0.0	0.3	1.5	4.9	6.2	0.0	11.1	10.8	4.5	8.7	3.0	6.6	26.9	22.0	5.1	100
NO01	0.2	0.1	0.3	7.8	0.1	8.5	1.0	5.3	0.4	6.6	0.9	4.7	7.8	1.8	7.4	33.6	23.0	5.7	100
NO02	2.5	1.8	3.4	0.0	0.4	8.0	2.7	9.7	0.8	13.2	3.2	8.2	8.8	2.3	5.4	21.8	25.1	4.0	100
NO03	0.9	0.5	1.3	0.5	0.3	3.5	2.0	13.3	0.5	15.8	2.1	8.3	10.1	1.9	6.3	25.4	22.5	4.1	100
NO04	0.4	0.6	0.9	43.1	0.4	45.4	1.1	6.6	0.7	8.4	1.8	4.0	5.0	1.1	5.3	14.0	12.1	2.9	100
NO05	0.7	0.6	1./	7.9	0.4	11.2	2.3	10.5	0.2	12.9	2.8	6.1	7.3	1.8	10.4	21.2	21.6	4.6	100
NO06	1.6	1.5	2.5	4.2	0.3	10.0	2.5	10.1	0.0	12.0	2.7	5.8	7.6	2.0	6.3	22.5	25.7	4.8	100
NO0/	0.8	0.7	2.5	6.4	0.4	10.7	3.0	0.2	0.0	9.8	4.5	5.5	1.2	2.2	8.4	18.5	29.1	4.3	100
SEII	0.0	0.0	0.4	0.0	0.5	1.0	1.1	10.6	0.1	11.8	1.9	5.7	8.5	2.5	6.6	41.2	16.7	4.1	100
SE12 SE21	0.2	0.5	1.1	0.0	1.0	2.0	1.0	13.8	0.1	17.4	3.3	0.0 6.1	9.1	2.5	5.0	27.5	21.0	3.3	100
SE21 SE22	0.3	0.5	0.0	0.0	0.7	4.9	2.1	15.0	0.1	23.4	2.0	5.8	10.0	2.0	63	23.7	17.4	3.2	100
SE22	0.4	0.5	1.1	0.0	0.7	2.5	1.9	16.2	0.2	17.9	2.6	5.0	10.0	2.5	7.2	20.1	17.2	3.2	100
SE25 SE31	0.2	0.3	2.2	0.0	0.9	2.0	1.0	18.6	0.1	20.5	2.0	7.2	10.1	2.4	6.4	29.1	10.0	3.4	100
SE32	0.1	0.3	2.2	0.0	1.7	43	24	15.5	0.2	18.0	77	6.7	8.5	2.8	74	23.2	18.4	2.8	100
SE33	0.1	0.3	1.0	0.0	2.6	4.5	1.9	15.2	0.1	17.2	6.5	5.9	8.1	2.0	73	23.9	20.4	33	100
PL2	0.1	0.3	0.3	27	0.6	44	3.9	19.5	0.1	23.7	23	6.9	13.0	2.1	6.1	21.1	17.3	27	100
PL4	1.6	1.8	0.3	0.3	0.5	4.5	4.3	16.9	0.2	21.4	2.2	8.0	14.5	2.6	6.6	21.0	16.5	2.5	100
PL 5n6r	13	11	0.3	0.2	0.7	3.6	3.4	17.6	0.1	21.4	19	7.6	12.5	2.9	6.5	22.3	19.0	2.7	100
PL61	1.9	1.9	0.3	0.2	0.5	4.8	3.9	17.7	0.1	21.7	3.5	6.7	13.1	1.8	6.5	18.2	21.3	2.5	100
PL7	2.2	1.8	0.4	0.3	0.9	5.5	5.7	24.5	0.1	30.4	3.2	7.9	19.5	2.2	7.4	18.3	2.4	3.2	100
PL8	2.5	2.7	0.6	0.3	1.0	7.1	6.5	19.5	0.2	26.2	3.1	9.3	18.2	2.5	8.8	19.1	2.7	3.2	100
PL9	0.0	0.0	0.1	0.1	0.4	0.6	8.8	23.9	0.6	33.3	4.0	1.6	17.2	1.7	3.4	7.2	0.0	31.0	100
Russia	2.1	1.1	0.6	11.4	0.7	15.9	3.4	8.8	0.6	12.9	6.3	9.0	18.1	4.3	6.8	12.7	13.8	0.2	100
Ukraine	9.2	2.5	0.7	2.4	2.8	17.6	2.7	7.1	0.3	10.1	11.2	2.2	14.8	0.5	6.9	15.7	17.6	3.4	100
Moldova	8.0	1.7	0.2	0.0	1.0	11.0	3.8	8.0	0.0	11.8	2.4	3.8	20.2	0.7	8.6	20.4	15.6	5.4	100
RoE	0.9	0.6	0.2	0.2	0.3	2.2	2.3	15.3	0.1	17.7	2.0	5.6	10.5	3.1	4.8	30.2	17.4	6.5	100

 Table 9: Value-added share of regional total, Nordic NUTS-2 regions, 2017 (%)

Finland

Agricultural shares for Finland's NUTS-2 regions are based on Finland's agricultural census data. In no region does agriculture's share of GDP exceed 1.5%. Åland (FI20), with only 0.5% of Finland's population, has a relatively large share of forestry & fishing in regional GDP, but this appears to reflect the small size of the local economy rather than a substantial forestry sector relative to other Nordic regions.

As in the other Nordic nations, the capital region FI1B (Helsinki-Uusimaa), the business centre of the nation, has the highest other services share of regional GDP among Finnish NUTS-2 regions (Table 9, column 14).

Iceland

The GTAP database includes a "Rest of EFTA" region, ostensibly combining Liechtenstein and Iceland. The Comtrade trade data for the region are relatively reliable, but since there is no input-output table produced by statistical authorities for Iceland, it is more appropriate to treat the default GTAP data for the Rest of EFTA as a residual. Adjustments to Iceland are made early in database processing, prior to the split of GTAP-based national data into subnational regions.

Iceland's relatively abundant hydroelectricity provides energy for non-ferrous metals which is a major export. The other major merchandise export is seafood products.

Since Statistics Iceland (SI) does not produce a publicly available input-output table, the task of estimating the Icelandic component of the CGE database uses available national accounts and other data. A potentially useful database source is Eurostat employment data, compiled at the NUTS-2 regional and NACE sectoral levels for all of Europe. The raw data include 87 sectors. These map conveniently to 39 of the 65 sectors of the GTAP master database. However, these played no role in refining Iceland's sectoral detail.

Data source	Table	Description	Sectors
Landshagir	16.7	Turnover data	69
Landshagir	11.6	Value added shares	11
Landshagir	18.1	Agricultural data	
Landshagir	18.2	Macroeconomic EXP side	
Landshagir	5.8	Household consumption shares	
Landshagir	11.1	Macro income side	
Eurostat	11.5	NUTS level NACE employment data	87

Table 10: Summary of national accounts data for Iceland

The SI statistics yearbook Landshagir 2015¹¹ provides national accounts data, and industry turnover data which provide an approximate guide to CGE database flows (table 10). The GTAP "Rest of EFTA" region has been scaled to fit Iceland national accounts macro targets. In addition, the database has been adjusted using broad value-added targets from Landshagir. Ownership of dwellings rentals have been scaled up to align better with the expected share of the sector's rentals in GDP.

²⁵

¹¹ See https://www.statice.is/publications/yearbook/

Export data are available from the following, although for the present, default GTAP trade data are not adjusted from those for Rest of EFTA:

https://www.pcc.eu/en/silicon-project-iceland/ and *https://commodity.com/data/iceland/* Detailed household consumption expenditure are downloadable from *https://www.statice.is/statistics/economy/national-accounts/consumption-expenditure/*

Sweden

In Sweden, no NUTS-2 region has an agricultural base that exceeds 1.4% of regional GDP, the European-wide average. However, all NUTS-2 regions excluding the capital region of Stockholm (SE11), have forestry & fishing sectors exceeding 1% of regional GDP. In each of these regions, forestry & fishing value-added is substantially greater than that of agriculture.

Coal, oil & gas output in Sweden varies from zero to low levels across all NUTS-2 regions. However, there is non-energy mining activity across all Swedish NUTS-2 regions.

SE11's (Stockholm's) other services share of regional GDP is 41%.

12. The model development road ahead

Further EuroTERM modifications will rely heavily on client demands. Some possible modifications are listed in this section.

Provision for NUTS-3 representation in subset of regions

The NUTS-2 level of regional representation may, for some projects, remain too coarse. It may not depict regional discrepancies as clearly as a finer level of disaggregation. At the NUTS-2 level, cities tend to dominate economic activity in regions. The median population of NUTS-2 regions is 1.43 million and the mean 1.78 million. The smallest region is Åland (FI20) with around 29,000 people, the largest Paris (FR10) with over 12 million. The task of preparing EuroTERM has been undertaken at the NUTS-2 due to data availability. It is possible that 2021 census data will provide employment data for disaggregated industries at the NUTS-3 level, which includes over 1100 regions. If so, this would provide an invaluable resource for further model development. The experience in TERM development particularly for Australia is that takes time to find the best data sources. Client knowledge may enhance access to available data.

One possibility is that for particular projects, a subset of nations are represented at the NUTS-3 level. If census data provide sufficient detail for regional shares at the NUTS-3 level, additional inputs are modest, including a revised distance matrix. The revised database generation programs are generic and can be adapted to a different regional representation.

Depicting tourism

Already, as discussed in section 8, the current project has extended the 65 sectors of GTAP to 74 with the splitting of electricity. Another sector of potential interest is tourism. Tourism satellite accounts are available at the national level.¹² Wittwer (2017) outlines the Dixon-Rimmer methodology for depicting tourism. Sufficient data exist to represent tourism in

¹² See https://ec.europa.eu/eurostat/web/products-statistical-reports/-/KS-FT-19-007

Europe at the national level. A challenge may be to separate domestic tourists, intra-European tourists and visitors from outside Europe.

The task of depicting NUTS-2 level tourism may entail a pilot study limited to a subset of European nations. Such a task would rely on specific national sources rather than Eurostats data.

Decarbonisation scenarios

The addition of satellite accounts and associated theory may enhance modelling of decarbonisation scenarios. Some regions are vulnerable to downturns due to their reliance on coal mining or fossil fuel extraction. Analysis of regional impacts concerning land use change or water allocation reform scenarios are also possible, requiring database and model enhancements.

References

Adams, P. and Parmenter, B. (2013), "Computable General Equilibrium Modeling of Environmental Issues in Australia: Economic Impacts of an Emissions Trading Scheme." In Dixon, P. and Jorgenson, D. (eds.), *Handbook of Computable General Equilibrium Modeling*. North-Holland, Amsterdam, pp 553-657

Dixon, P., Rimmer, M. and Wittwer, G. (2011), "Saving the Southern Murray-Darling Basin: the Economic Effects of a Buyback of Irrigation Water", *Economic Record*, 87(276): 153-168.

Dixon, P., M. Rimmer and R. Waschik (2017b), "Linking CGE and specialist models: Deriving the implications of highway policy using USAGE-Hwy", Economic Modelling 66, pp.1-18. https://doi.org/10.1016/j.econmod.2017.04.022

Dixon, P., Rimmer, M. and Wittwer, G. (2017a), "The Economic Effects of a Hypothetical Nuclear Attack on Downtown LA", in Wittwer, G. (ed.), *Multi-Regional Dynamic General Equilibrium Modeling of the U.S. Economy, USAGE-TERM Development and Applications*, Springer, Gewerbestrasse, pp. 211-227.

Horridge, M. (2011), "The TERM model and its database", CoPS working paper G-219, https://www.copsmodels.com/elecpapr/g-219.htm

Horridge, M., Madden, J. and Wittwer, G. (2003), "Using a highly disaggregated multiregional single-country model to analyse the impacts of the 2002-03 drought on Australia", CoPS/IMPACT working paper G-141, https://www.copsmodels.com/elecpapr/g-141.htm

Liu, J., Hertel, T. and Taheripour, F. (2019), "Analyzing FutureWater Scarcity in Computable General Equilibrium Models", in G. Wittwer (ed.), *Economy-Wide Modeling of Water at Regional and Global Scales*, Springer Nature, Singapore, pp. 37-65.

Wittwer, G. (ed.) (2017), *Multi-Regional Dynamic General Equilibrium Modeling of the U.S. Economy, USAGE-TERM Development and Applications*, Springer, Gewerbestrasse, Switzerland.

Wittwer, G. (ed.) (2019), *Economy-Wide Modeling of Water at Regional and Global Scales*, Springer Nature, Singapore. ISBN 978-981-13-6101-2 doi:10.1007/978-981-13-6101-2.

Wittwer, G. and Waschik, R. (2021), "Estimating the economic impacts of the 2017–2019 drought and 2019–2020 bushfires on regional NSW and the rest of Australia", *Australian*

Journal of Agricultural and Resource Economics 65(4):918-936, doi.org/10.1111/1467-8489.12441

Appendix A: NUTS-2 regions in EuroTERM

1	AT11 Burgenland (AT)	41	CZ07 Strední Morava
2	AT12 Niederösterreich	42	CZ08 Moravskoslezsko
3	AT13 Wien	43	DE11 Stuttgart
4	AT21 Kärnten	44	DE12 Karlsruhe
5	AT22 Steiermark	45	DE13 Freiburg
6	AT31 Oberösterreich	46	DE14 Tübingen
7	AT32 Salzburg	47	DE21 Oberbayern
8	AT33 Tirol	48	DE22 Niederbayern
9	AT34 Vorarlberg	49	DE23 Oberpfalz
10	BE10 Brussels Gewest-Hoofdstad	50	DE24 Oberfranken
11	BE21 Provincie Antwerpen	51	DE25 Mittelfranken
12	BE22 Provincie Limburg	52	DE26 Unterfranken
13	BE23 Provincie Oost-Vlaanderen	53	DE27 Schwaben
14	BE24 Provincie Vlaams Brabant	54	DE30 Berlin
15	BE25 Provincie West-Vlaanderen	55	DE40 Brandenburg
16	BE31 Provincie Waals Brabant	56	DE50 Bremen
17	BE32 Provincie Henegouwen	57	DE60 Hamburg
18	BE33 Provincie Luik	58	DE71 Darmstadt
19	BE34 Provincie Luxemburg	59	DE72 Gießen
20	BE35 Provincie Namen	60	DE73 Kassel
21	BG31 Severozapaden	61	DE80 Mecklenburg-Vorpommern
22	BG32 Severen tsentralen	62	DE91 Braunschweig
23	BG33 Severoiztochen	63	DE92 Hannover
24	BG34 Yugoiztochen	64	DE93 Lüneburg
25	BG41 Yugozapaden	65	DE94 Weser-Ems
26	BG42 Yuzhen tsentralen	66	DEA1 Düsseldorf
27	CH01 Lake Geneva	67	DEA2 Köln
28	CH02 Espace Mitterland	68	DEA3 Münster
29	CH03 Northwestern Switzerland	69	DEA4 Detmold
30	CH04 Zurich	70	DEA5 Arnsberg
31	CH05 Eastern Switzerland	71	DEB1 Koblenz
32	CH06 Central Switzerland	72	DEB2 Trier
33	CH07 Ticino	73	DEB3 Rheinhessen-Pfalz
34	CY00 Cyprus	74	DEC Saarland
35	CZ01 Praha	75	DED2 Dresden
36	CZ02 Strední Cechy	76	DED4 Chemnitz
37	CZ03 Jihozápad	77	DED5 Leipzig
38	CZ04 Severozápad	78	DEE0 Sachsen-Anhalt
39	CZ05 Severovýchod	79	DEF0 Schleswig-Holstein
40	CZ06 Jihovýchod	80	DEG0 Thüringen

DK01 Hovedstaden
DK02 Sjælland
DK03 Syddanmark
DK04 Midtjylland
DK05 Nordjylland
EE00 Estonia
EL30 Attiki
EL41 Voreio Aigaio
EL42 Notio Aigaio
EL43 Kriti
ES11 Galicia
ES12 Principado de Asturias
ES13 Cantabria
ES21 País Vasco
ES22 Comunidad Foral de Navarra
ES23 La Rioja
ES24 Aragón
ES30 Comunidad de Madrid
ES41 Castilla y León
ES42 Castilla-la Mancha
ES43 Extremadura
ES51 Cataluña
ES52 Comunitat Valenciana
ES53 Illes Balears
ES61 Andalucía
ES62 Región de Murcia
ES63 Ciudad de Ceuta
ES64 Ciudad de Melilla
ES70 Canarias
FI1A West Finland
FI1B Helsinki-Uusimaa
FI1C South Finland
FI1D North and East Finland
FI20 Åland
FR10 Ile de France
FRB0 Centre - Val de Loire
FRC1 Bourgogne
FRC2 Franche-Comté
FRD1 Basse-Normandie
FRD2 Haute-Normandie

FRE1 Nord-Pas-de-Calais FRE2 Picardie FRF1 Alsace FRF2 Champagne-Ardenne FRF3 Lorraine FRG0 Pays-de-la-Loire FRH0 Bretagne FRI1 Aquitaine FRI2 Limousin FRI3 Poitou-Charentes FRJ1 Languedoc-Roussillon FRJ2 Midi-Pyrénées FRK1 Auvergne FRK2 Rhône-Alpes FRL0 Provence-Alpes-Côte d'Azur FRM0 Corse FRY1 Guadeloupe FRY2 Martinique FRY3 Guyane FRY4 La Réunion HR03 Jadranska Hrvatska HR04 Kontinentalna Hrvatska (NUTS 2016) HU21 Közép-Dunántúl HU22 Nyugat-Dunántúl HU23 Dél-Dunántúl HU31 Észak-Magyarország HU32 Észak-Alföld HU33 Dél-Alföld IS00 Iceland ITC1 Piemonte ITC2 Valle d'Aosta/Vallée d'Aoste ITC3 Liguria ITC4 Lombardia ITF1 Abruzzo ITF2 Molise ITF3 Campania ITF4 Puglia ITF5 Basilicata ITF6 Calabria ITG1 Sicilia

NUTS-2 regions in EuroTERM (continued)

161	ITG2 Sardegna
162	ITH1 Provincia Autonoma di Bolzano/Bozen
163	ITH2 Provincia Autonoma di Trento
164	ITH3 Veneto
165	ITH4 Friuli-Venezia Giulia
166	ITH5 Emilia-Romagna
167	ITI1 Toscana
168	ITI2 Umbria
169	ITI3 Marche
170	ITI4 Lazio
171	LT00 Lithuania
172	LU00 Luxembourg
172	
174	
1/4	
175	NL11 Groningen
176	NL12 Friesland (NL)
177	NL13 Drenthe
178	NL21 Overijssel
179	NL22 Gelderland
180	NL23 Flevoland
181	NL31 Utrecht
182	NL32 Noord-Holland
183	NL33 Zuid-Holland
184	NL34 Zeeland
185	NI 41 Noord-Brabant
186	NI 42 Limburg (NI)
200	
187	NO01 Oslo og Akershus
188	NO02 Hedmark og Oppland
189	NO03 Sør-Østlandet
190	NO04 Agder og RogÅland
191	NO05 = NO0A Vestlandet
R192	NO06 Trøndelag
193	NO07 Nord-Norge
194	PL21 Malopolskie
195	PL22 Slaskie

197	PL42 Zachodniopomorskie
198	PL43 Lubuskie
199	PL51 Dolnoslaskie
200	PL52 Opolskie
201	PL61 Kujawsko-Pomorskie
202	PL62 Warminsko-Mazurskie
203	PL63 Pomorskie inc. Gdansk
204	PT11 Norte
205	PT15 Algarve
206	PT16 Centro (PT)
207	PT17 Área Metropolitana de Lisboa
208	PT18 Alentejo
209	PT20 Região Autónoma dos Açores (PT)
210	PT30 Região Autónoma da Madeira (PT)
211	RO11 Nord-Vest
212	RO12 Centru
213	RO21 Nord-Est
214	RO22 Sud-Est
215	RO31 Sud - Muntenia
216	RO32 Bucuresti - Ilfov
217	RO41 Sud-Vest Oltenia
218	RO42 Vest
219	SE11 Stockholm
220	SE12 Östra Mellansverige
221	SE21 Småland med öarna
222	SE22 Sydsverige
223	SE23 Västsverige
224	SE31 Norra Mellansverige
225	SE32 Mellersta Norrland
226	SE33 Övre Norrland
227	SK01 Bratislava
228	SK02 Západné Slovensko
229	SK03 Stredné Slovensko

PL41 Wielkopolskie

196

230 SK04 Východné Slovensko 264

EL51 Anatoliki Makedonia, Thraki

265 EL52 Kentriki Makedonia

231	UKC1 Tees Valley and Durham	266	EL53 Dytiki Makedonia
232	UKC2 Northumberland and Tyne and Wear	267	EL54 Ipeiros
233	UKD1 Cumbria	268	EL61 Thessalia
234	UKD3 Greater Manchester	269	EL62 Ionia Nisia
235	UKD4 Lancashire	270	EL63 Dytiki Ellada
236	UKD6 Cheshire	271	EL64 Sterea Ellada
237	UKD7 Merseyside	272	EL65 Peloponnisos
	UKE1 East Yorkshire and Northern		
238	Lincolnshire	273	FRY5 Mayotte
239	UKE2 North Yorkshire	274	HU11 Budapest
240	UKE3 South Yorkshire	275	HU12 Pest
241	UKE4 West Yorkshire	276	IE04 Northern and Wes
242	UKF1 Derbyshire and Nottinghamshire	277	IE05 Southern
	UKF2 Leicestershire, Rutland and		
243	Northamptonshire	278	IE06 Eastern and Midla
244	UKF3 Lincolnshire	279	Lódzkie PL71
	UKG1 Herefordshire, Worcestershire and		
245	Warwickshire	280	Swietokrzyskie PL72
246	UKG2 Shropshire and Staffordshire	281	Lubelskie PL81
247	UKG3 West Midlands	282	Podkarpackie PL82
248	UKH1 East Anglia	283	Podlaskie PL84
249	UKH2 Bedfordshire and Hertfordshire	284	PL91 Warszawski stole
250	UKH3 Essex	285	PL92 Mazowiecki regio
	UKJ1 Berkshire, Buckinghamshire and		
251	Oxfordshire	286	SI03 Eastern Slovenia
252	UKJ2 Surrey, East and West Sussex	287	SI04 Western Slovenia
253	UKJ3 Hampshire and Isle of Wight	288	UKI3 Inner London - W
254	UKJ4 Kent	289	UKI4 Inner London - Ea
	UKK1 Gloucestershire, Wiltshire and		UKI5 Outer London - Ea
255	Bristol/Bath area	290	East
256	UKK2 Dorset and Somerset	291	UKI6 Outer London - So
			UKI7 Outer London - W
257	UKK3 Cornwall and Isles of Scilly	292	West
258	UKK4 Devon	293	UKM7 Eastern Scotland
259	UKL1 West Wales and The Valleys	294	UKM8 West Central Sco
260	UKL2 East Wales	295	UKM9 Southern Scotla
261	UKM5 North Eastern Scotland		
262	UKM6 Highlands and Islands		
263	UKN0 Northern Ireland (UK)		

lada nisos st and Western nd Midland PL72 PL82 ski stoleczny cki regionalny lovenia Slovenia ndon - West ndon - East ndon - East and North ndon - South ndon - West and North Scotland entral Scotland rn Scotland

NUTS-2 regions in EuroTERM (continued)

296 VinnytsiaUKR

- 297 VolynUKR
- 298 Dnipropetrov
- 299 DonetskUKR
- 300 ZhytomyrUKR
- 301 ZakarpattyaU
- 302 ZaporizhiaUR
- 303 IvanoFrankiv304 KyivUKR
- 305 KirovohradUR
- 306 LuhanskUKR
- Soo Eananskon
- 307 LvivUKR
- 308 MykolaivUKR
- 309 OdesaUKR
- 310 PoltavaUKR
- 311 RivneUKR
- 312 SumyUKR
- 313 TernopilUKR314 KharkivUKR
- 315 KhersonUKR
- 316 KhmelnytskUR
- 317 CherkasyUKR
- 318 ChernivtsiUR
- 319 ChernihivUKR
- 320 KyivCityUKR
- 321 Russia
- 521 10551
- 322 Moldova

31

