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PREFACE

From certain viewpoints intercorrelation (that is, correlation between
independent variables) is not a major problem in statistical analysis. Routine
instructions for solving multiple-regression problems include formulas for net
regression coefficients and standard errors which autcanaticaJLly take account
of the effects of intercorrelation. Nevertheless, research workers are fre-
quently surprised when two analyses showing nearly the same direct correlations!
between the dependent and each independent variable yield widely differing net

j

regression and mxxltiple correlation coefficients.

Many of the three -variable calculations discussed in this paper were
developed by the senior author in May 19^7 to explain such happenings in a
precise way. Late in 1952 the Junior author rechecked and extended the three

-

variable calculations. He also developed representative calculations for the
four-variable case, setting up the intercorrelation formulas in a matrix nota-
tion which permits generalization to any nximber of variables.

The authors are indebted to Frederick V. Waugh for helpful siiggestions

on the foxar-variable and general cases. The four-variable computations were
carried out by Jacqueline Spiro,
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EFFECTS OF INTERCORREIATION UPON MULTIPLE
CORRELATION AND REGRESSION MEASURES

Karl A. Fox, Chief, Statistical, and Historical Research Branch,
and James F. Cooney, Jr., Mathematical Statistician

Agricultural. Marketing Service

Trained statisticians have known the effects of intercorrelation in a
general way for some 60 years. They have given particular attention to the
extreme case ("multicollinearity" ) in which two or more independent variables
are so highly correlated that their separate effects cannot be distinguished.
At the other extr«iie, where there is no intercorrelation, the effects of the
different independent variables are strictly additive.

Many users of the graphic method of regression analysis know that inter-
correlation between independent variables tends to delay the convergence of
successive graphic approximations toward the mathematical solution.

Trained statisticians are also aware that increasing levels of intercor-
relation are reflected in increasing standard errors of net regression coeffi-
cients—that is, hi^ intercorrelation tends to mean lowered reliability for
the individual regression constants. But apparently it is safe to^say^that
most students of elementary statistics and most persons who make regression
analyses as an adjunct to their applied work have only a vague idea of the
effects of intercorrelation and frequently get results from multiple-correla-
tion analyses that they are unable to explain. More concrete information on
the effects of intercorrelation through its whole range of variation and not

merely at the points 0 and 1 is therefore expected to be useful. This infor-

mation for the three-variable case is shown by means of charts and tables for

a number of pairs of values of the simple (or gross) correlation coefficients

between the dependent variable and each of the two independent variables. The

foiir-variable case is treated for a more limited range of numerical values but

in a notation which permits generalization of the results to any number of

variables

.

SUMMARY

With given values for r^^ and r^^^ and a specified size of sample, all of

the correlation measures in a three-variable problem can be expressed simply

as fxmctions of r23. In certain cases as r23 increases the coefficient of

multiple determination declines continuously. In other cases it trends down

to a minimum value and then increases. For given values of ri2 and r^^^, r23

can take only a limited range of values . In some cases •as the degree of

Intercorrelation increases beyond a ceirtain level, the "weaker" of the two

partied regression coefficients changes sign. Within a considerable range of

values of r23 in the region of this sign change, the value of the correspond-

ing partial rejp:*ession coefficient, for samples of about 20 observations, does

not differ significantly frcmi zero.
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The four-variable case is more eomplicated because six siciple correlation
coefficients are involved. The same approach can be used, however, by speci-
fying five of these and allowing the sixth one to vary over its entire
range of possible values. When each of the three simple intercorrelation
coefficients is very hi^ the values of the partial regi'ession coefficients
are very unstable and, in samples of about 20 observations, are smaller than
their standard error in aU but a small portion of the range of permissible
values of As T22 ^2k smller values, the partial regression
coefficients acquire greater stability and exceed their standard error over a
large part of the permissible range of

EFFECTS OF INTERCORKSIATION HI THE THREE -VARIABLE CABE

The Approach

The general problem of three-variable regression analysis is to estimate

the values of a dependent variable, based on given values of two independ-

ent variables, X2 ^3* Assume that we have already calculated the direct

correlation coefficients (rig and ri^) between Xi and X2 on the one hand and

Xi and X3 on the other for a nur^er of different problems. Svppose that sev-

eral. of the analyses, based on entirely different sets of data, have yielded

the same values of r-jp and 3^13 • Nevertheless, in each case, we vaay obtain

different values for the multiple and partial correlation coefficients and for

the net regression, or beta, coefficients. The coefficient of multiple deter-

mination, Hi^23^ almost 1.0 down to 0.5, or lower.

We then ask, Why do these differences occtar? In the three-variable case,

these variations can be wholly explained by variations in the value of the

intercorrelation coefficient, r23, between the independent variables X2 and X^.

Basic Formulas

Several standard methods of calculating multiple correlation and re^ssion

coefficients start out from the determinant of staple correlation coefficients,

which for the three-variable case is as follows;

1 3:12 1^13

ri2 1 r23 = 1 + 2 ri2 3^23 " ^12

^13 ^23 ^
\

All the basic correlation and regression measures in the three-variable case
can be derived from the values of the three sinple correlation coefficients,
with the following exceptions which are trivial in the present context: First,
if we '^rish to talk about net regression coefficients in terms of original units
(pomds, dollars, and so on) rather than nonnalized or standard deviation units
we must multiply the beta coefficients by the ratio of the standard deviation
of the dependent variable to that of the particular independent variable con-
cerned. Second, the standard error of the beta coefficient, or of the corre-
sponding net regression coefficient, is affected by the number of observations
in the sai^le.
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It may "be seen from these formulas that once we have fixed the values of rip
and the various measures can be es^ressed sis^jly as functions of r23. In
the charts and tables that follow, the value of each correlation laeasvire was
calculated for series of values of the intercorrelation coefficient r23 cover-

ing all or nearly all of the range of possible values of that coefficient,
* given the stated values of rj_2 smd ^

Discussion of Charts emd Tables

In figure 1 the values of rip and r^^ were chosen in such a way that the3^13 ^

Ls OJcoefficient of multiple determination is 0*98 vrtien the intercorrelation coeffi-

cient is zero. As r23 increases, the value of %f23 ^®clines continuously,

approaching a lower Imit of 0 .if9 as r23 approaches 1 . At this point the var-

iable X3 adds nothing to the explanation of Xi that is not already given by
the single independent variable X2« The partial correlation coefficient ri2.3
decreases continuously as r23 increases, approachii^ zero as r23 approaches 1.

The beta coefficient also decreases through this entire range and its standard

error increases. By the time r23 exceeds 0,7, the beta coefficient (based on

an asstnaed 20 observations) is no longer significantly different from zero at

'the commonly used 5 -Percent probability level.

Figure 2 illustrates the fact that the values of ri2 and r^o set certain

limits upon the range of values which r23 may take. Obviously, if X2 and X3

are both closely correlated with X^ they have some degree of correlation with

each other. The exact nature of the limits set t^n r23 by the values of r22

and ri3 is shown in appendix note 1 . In this particular case, r23 cannot be

lower than 0.62,

Figure3 shows a resixlt_that may be s\nprislng to many applied workers.
As Intercorrelation increases beyond a certain level, the "weaker" of the two
partial regression coefficients changes sign from positive to negative. This

In the charts and tables that follow, rj2 and ri3 are always taken as
positive, and the corresponding values of r23 and other measures are predom-
inantly iKJSitive. If the same absolute values of T12 taken with
negative signs, the corresponding values of Ri,23^ ^23 ^ ^^12 3* ^^13 2
the same as before; absolute values of ^12, 3^ <^13,2» ^12,3 ^13.2
same as before but with the opposite sign. If we take T\g positive and ri3
negative, r23 will be predminantly negative. Values of Ri^23 * ^022 3* ^013 2*

^12,3 ^^.3 ssun® "the first case (r^^^ ^13 ^"^h posi-
tive); and the absolute values of 02.3,2 ^13.2 ^ same as in the
first case but with opposite sign. Finally, lx we take rip negative and ri3
positive, the values of r23 will be predominantly negative; those of Rif23'

^022 3* ^^13 2* ^13*2 ^13,2 '^11 "the same as in the first case; ‘and

the absolute values of ^12.3 8^^ r^^
3
will be the same as in the first case

but with opposite sign. As the absolute values of all the measures axe un-
changed by these interchanges of signs, the figures tabulated below each chart
can be used for all four cases with appropriate changes in signs.
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Equations (2) through (7) define the various correlation and regression

measures in terms of the three siiEple correlation coefficients;

1.23

^12^ ^ ^13^ ~ ^12 ^13 ^23

1 - r232

^ ^12 " ^13 ^23

23

^12.3 ^12.3
Si

where and Sg are the standard deviations of Xj and X2 respectively.

^3.2
^13 ~ ^12 ^23

^23

^13.2 - ^13.2 • 0^ »

' 5

where is the standard deviation of X^.

^12.3
ri2 - r^^^ ^2^

13.2
^13 ' ^12 ^23

N/(l-r23
"^ ^l-ri2^^

= Si
’^12.3

"
"^13.2 ’

(1-^13)

\,^F-i!23 \/3^griori3r^^ia--i-i3^-r23^

(l-r|3) 4W-

^‘‘la.s
“

®Pi2.3
• Si , and

= wS .

13.2 "^13.2 ’ S3

(2 )

(3)

(3.1)

(4.1)

(5)

(6 )

(T)

(7.1)

(7.2)
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chan^ in sign occurs at a value of r23 soaaewiiat abovejbhe value of the lower
of the two siaiple correlation coefficients, rx2 Within a consider-
able Twage of values of in the region of this sign-change, the value of
the correj^onding beta coefficient would not differ significantly from 2@ro«
Other features illustrated in figure 3 are (l) that the "stronger" of the two
regression coefficients increases for a time as the intercorrelation incr^ses,
and ( 2 ) timt the coefficient of multiple determination trends down to a mini-
mum at some value of r23 neater than the lower of the two direct coefficients
and then increases again.

The characteristics of figure 3 r^eated in the data Blmm ia tables
4 and 5 and in figure 4 . Each shows minimum values 2/ for the coefficient of
multiple detemination, Rif23# stronger partial correlation coefficient,
^12 . 3 > stronger regression coefficient, ^ 22.35 each shows a sign
chaise for the weaker coefficients, /?13.2 ^13 ,2 * spread between

ri2 and ri3 increases, so also does the range of permissible values of r23»
When rj^o falls to 0 . 3 ^ 3^23 take on small negative values as well as posi-
tive values. If r23 equals 0 .1, then r23 can take values slightly lower than
-0.3.

The s^^Emary tables contain values of the "t-ratios", that is, ratios of
the rej^ctive net re^^ssion coefficients to their standard errors. As in
each of the last four cases ^22.3 ^ minlsRaa and

3
^ ssaxlmusa, the

correE^onding t-ratio has a mlnimjjaa beyond -idaich it rises again with further

Increases in r23e

£/ Tlv>^t jg, HilnliEta In the math)Mffi.tieal sense of points at which the slc^
with respect to r23 is zero and becomes positive as r23 increases and negative

as r23 decreases. Further informtion on these sdniiffim values is given ia

appendix note 2.
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Figure 1

Table 1.- Data for case in which r^^ = 0.7, rj^2 “ 0.7> and N 20

: t-ratio for -

^23
p2 •

^1.23 : ^12.3 : ^13.2 : *‘l2.3 : ^13.2 :

:
^

;

®12.3
;

^13.2

-0.020 1.0000 0.7143 0.7143 1.0000 1.0000 0 ...

0 .9800 .7000 .7000 .9803 .9803 0.0346 20.2312 20.2312
.100 .8909 .6364 .6364 .8866 .8866 .0806 7.8958 7.8958
.200 .8167 .5833 .5833 .8003 .8003 .1058 5.5132 5.5132
.300 .7538 .5385 .5385 .7193 .7193 .1261 4.2704 4.2704
.iKX) .7000 .5000 .5000 .6417 .6417 .1449 3.4507 3.4507
.500 .6533 .4667 .4667 .5659 .5659 .1649 2.8302 2.8302
.600 .6125 .4375 .4375 .4901 .4901 .1887 2.3185 2.3185
.700 .5765 .4118 .4118 .4118 .4118 .2209 1.8642 1.8642
.800 .5W .3889 .3889 .3267 .3267 .2728 1.4256 1.4256
.900 .5158 .3684 .3684 .2249 .2249 .3872 .9514 .9514
.950 .5026 .3590 .3590 .1570 .1570 .5478 .6553 .6553
.9^ .49l^9 .3535 .3535 .0985 .0985 .8655 .4084 .4084
.990 .4925 .3518 .3518 .0695 .0695 1.2278 .2865 .2865
.999 .4902 .3502 .3502 .0219 .0219 3.1623 .1107 .1107

1.000 iJ ... --- ... --- --- 0 0

^ Identical for each P.

2/ Lowest possible value of '^

2^
3/ Highest possible value of rgg*
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Table 2.- Data for ceise In which r-j^ = 0.9, r-j^j = 0-9> N = 20

^23 r2^1.23
!

^12.3 : P13.2
i

^12.3 ^13.2
i/

t-ratlo for -

^12.3 = ^13.2

0.620 2/ 1.0000 0.5556 0.5556 1.0000 1.0000 0 ... ...

.700 .9529 .5294 .5294 .8710 .8710 0.0735 7.2073 7.2073

.800 .9000 .5000 .5000 .6883 .6883 .1277 3.9154 3.9154

.900 .8526 .4737 .4737 -4737 .4737 .2135 2.2183 2.2183

.950 .8308 .4615 .4615 .3306 .3306 • 3195 1.4444 1.4444

.980 .8182 .4545 .4545 .2076 .2076 .5193 .8752 .8752

.990 .8l4l .4523 .4523 .1463 .1463 .7431 .6087 .6087

.999 .8000 .4500 .4500 .0462 .0462 2.0000 .2250 .2250

1.000 ^ ... ... ... ... ... ... ... ...

l/ Identical for each p.

2/ Lowest possible value of

Highest possible value of
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Figure 3

Table 3-* Data for case in which = 0,9, r^^j = 0.7 and N = 20

^23
p2
^.23 Pl2.3 ^13.2 ^12.3 ^13.2

Sp

1/

t-ratio

^12.3 !

for -

^13.

2

0.3187 2/ 1.0000 0.7535 0,1*599 1.0000 1.0000 0 ... ...

.hooo ,91*88 .7381 .401*8 .9473 .8511 0,0599 12.3222 6.7579

.1*500 .9191 .7335 .3695 .9172 .7578 .0772 9.5013 4.7863

.5000 .8933 .7333 .3333 .8892 .6623 .0917 7 .9967 3.6347

.5500 .&703 .7381* .2939 .8635 .5632 .1046 7.0593 2.8098

.6000 .8500 .7500 ,2500 ,8402 .4588 .1175 6.3830 2.1277

.6500 .8329 .7706 .1991 .8200 .3472 .1305 5.9050 1.5257

.7000 .8196 .8039 .1373 .8039 .2249 .1442 5.5749 .9521

.7500 .8111* .8571 .0571 .7938 .0867 .1592 5.3838 .3587

.8000 .8111 .91*41* -.0556 .7935 -.0765 .1758 5.3720 -.3163

.8500 .8252 1.0991 -.231*2 .8107 -.2831 .1925 5.7096 -1.2166

.9000 .8737 1.1*211 -.5789 .8673 -.5789 .1977 7.1882 -2.9282

.91*13 ij 1.0000 2.1149 -1.2912 1.0000 -1,0000 0

]J Identical for each p ,

2/ Lowest possible value of

2/ Highest possible value of
.
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Table k „~ Data for case In which == 0»9 j> 2*13 0<.5 aad N = 20

r
23

j
%.23

•
•

:

%

0

j

•
*

^12.

3

^13-2 3^12.3 ^13 0 2 H
1/

: t -ratio for -

: ^12.

3

•
•

; P13.2

•

0 • to 1.0000 0.8684 0.4371 1.0000 1.0000 0
.1000 .9798 .8586 ,4l4l .9864 .9454 0.0346 24,8150 11.9682
.2000 »9167 . .8333 .3333 .9428 .7492 .0714 11.6709 4.6681
.3000 ,8681 .8242 .2527 .9079 .5532 .0922 8.9393 2.7408
,4000 • 8333 .8333 .1667 .8819 .3504 .1082 7.7015 1.5407
.5000 •8133 .8667 .0667 ,8667 .1325 .1208 7.1747 .5522
.6000 .8125 ^9375 -.0625 .8661 -.1147 .1311 7.1510 -.4767
.7000 .8431 1.0784 -.2549 .8892 ».4176 .1345 8.0178 -1.8952
.8000 0 1.3889 »,6lll .9623 -.6413 .0954 14.5587 -6.4057
.8275 ^ 1.0000 1.5428 -.7766 1.0000 -1.0000 0

"y Identical for each 3»

y Lowest possible value of ^23*

y Highest possible value of 2*23,

Table 5.- Data for case in which ri2 = 0.9# 2^13 =0.3 and N = 20

•
• •

: t

r23 . 1.23
j

s :

312.3 313.2

0

^12.3 .* ^13.2
Sp

1/

t -ratio for -

«

^12.3 :

:

^13.2

•

-0.1458 2/: 1.0000 0.9642 0.4406 1.0000 1.0000 0
-.1000 : .9636 .9394 • 3939 •9798 .8992 0.0465 20.2022 8.4710
0 % .9000 .9000 .3000 .9435 .6882 .0767 11.7340 3.9113
.1000 . .8545 .8788 .2121 .9166 .4842 .0930 9.4495 2.2806
.2000 j .8250 .8750 .1250 .8987 .2810 .1035 8.4541 1.2077
.3000 . .8110 .8901 .0330 ,8^1 .0722 .1105 8.0552 .29^
.4000 : .8143 ,9286 -.0714 .8921 -.1502 .1141 8.1385 -.6258
.5000 s .8400 1.0000 -.2000 .9079 -.3974 .1120 8.9286 -1.7857
.6000 : .9000 1.1250 -.3750 .9439 -.6883 .0959 11.7310 “3-9103
.6858 1.0000 1.3107 -.5988 1.0000 -1.0000 0

^ Identical for each 3.

^ Lowest possible value of ^23^

^ Highest possible value of ^23.
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EFFECTS OF INTERCORRELATION
3-Variabie Case: ri2=.9; ri3 = .l; N =20

1

%
a

^\ 2
'
i

2.3

%
%

<

N.-J

^ f
13.2

\
a

1.23

^—

1

s,

1

%
<

1

iS^ 13.2

\>
-.2 0 .2 .4 .6 .8 1.0

rjs

U. S. DEPARTMENT OF AGRICULTU RE NEG. 484-53(1 1) AGRICULTURAL MARKETING SERVICE

Figure h

Table 6.- Data for case In which “ 0 . 9 , r^^ “ 1, and H “ 20

^23 r2^1.23 : ^12.

3

^13.2 : ^12.3 ^13.2 ; ^
!

^

1
t-ratlo for -

s ^12.3 ^13.2

-O.B^fST 2/ 1.0000 1.0595 0.4641 1.0000 1.0000 0 — ...

-.3000 .9601* 1.0220 .4066 .9798 .8899 0.0510 20.0392 7 .9T25

-.2000 .8917 .9583 .2917 .9437 .6556 .0812 U.8OI7 3.5924

-.1000 .8465 .9192 .1919 .9192 .4381 .1010 9.1010 1.9000

0 .8200 .9000 .1000 .9045 .2294 .1030 8.7379 .9709

.1000 .8101 .8990 .0101 .8990 .0231 .1122 8.0125 .0900

.2000 .8167 .9166
j

-.0833 .9027 -.1873 .1058 8.6635 -.7873

.3000 .8418 .9560 -.1868 .9166 -.4089 .1010 9.4653 -1.8495

.1*000 .8930 1.0000 -.3023 .9319 -.6432 .0854 11.7096 -3.5398

• 5000 .9733 1.1333 -.4667 .9864 -.9272 .0458 24.7445 10.1900

.5237 3/ 1.0000 1.1680 -.5116 1.0000 -1.0000 0 — ...

Xj Identical for each p

.

2/ Lowest possible value of r23 .

3/ Highest possible value of rgj*
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EFFECTS OF INTEFCOKREIATTON IN THE FOOT-YARIABLE CASE

Differences from the Three-Variable Case

The problem of intercorrelation in the four-variable case is much more
complicated because there are now three intercorrelation coefficients instead
of one. We have three independent variables, X^, X^, and Xj^, and we may have

intercorrelation between X2 and X^, X^ and Xj^, and X^ and Xj^*

Following the approach used in the three-variable case, let us suppose
that we have a large number of four-variable regression analyses on different
sets of data. We select a number of these analyses in which the values of

^12’ ^13’ ^lU
direct or simple correlation coefficients between the

dependent and each independent variable) are about the same. Nevertheless,
we find that the partial correlation and net regression coefficients are
different in each case. These differences are due to the varying degrees of
Intercorrelation, represented by combinations of values of ^3^*

A systematic exploration of the effects of intercorrelation in the
four-variable case would Involve a great deal of labor. One possibility
wc»uld be to fix the values of rg^

'^2k
trace the effects of variations

in r^. upon the different regression measures. Except for a change in

notation, such a demonstration would apply equally well to changes in either

of the other intercorrelation coefficients, T2 -^
or rg^j^. Before doing this,

however, we shall illustrate the complications of the four-variable case in

terms of the basic formulas for correlation and regression coefficients.

Basic Formulas

It will be convenient at this point to introduce a determinant notation,
which avoids excessive rewriting of the simple correlation coefficients.
This notation can be extended to five or more variables, and also to the
three-variable case previously considered.

In the three-variable case, the three-rowed determinant of correlation
coefficients

12

ri2

^13 ^23

^13

^23

1

( 1 )

can be made to yield nine different two-rowed determinants by deleting one
column and one row of /§\ . Suppose we call the two-row determinant obtained
by deleting the first column and the first row^^^^ (= 1 - ^

23^ obtained
by deleting the first column and the second row, (= r^g - r,- rg^)! and
so on. The complete set of two-row determinants, which we call the @ . is
as follows

:
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^11 = ""^
23^ (1.1)

A 22
^ ^ “ ^13^ (1.2)

A 33
= ^ “ ^12^ ( 1 . 3 )

A 12 " ^12 "
^13 ^23 " A21 (l.M

A 13
= -

("13 ^12 "23^=A3i (1.5)

A23 "
^^23

“
^12 ^13^ " A32 (1.6)

formulas for correlation and regression measures given in the

the *8, as follows:

^1.23 ^

^ 12 .^ ^^12
' ^

^13.2
" “

12.3 A12

13.2

=

12.3 *^13.2
11 \/ h-3

= s

(2)

(3)

(M

(5)

( 6 )

(7)

Once we have fixed the values of r,^ and r, , /3\ and all hut two of
12 T ^

the *s are functions only of r ; these two, and^ , are constants
• T 1 ^ SIJ 23 22 ‘33

Each of the six formulas In this paragraph Involves/^^, which changes with ^23^
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and another detemlnant ^ich also changes with ^
23

* aieans that we

cannot vary r^^ arhltrarlly without consistently varying and the ^ 3 .

In the four-variable case, the determinant of correlation coefficients is

A=

1 ^12 "13 "*lh

^12 1 "^23 ^2k

""13 "*23 1
''3k

^lU ^21^ "34 1

The determinant of the three intercorrelation coefficients is

1 r r
23

^23
^

^24 3k 1

3^
1 + 2 r,

23 ^2k ^3h

2 2 .
’
^23

"
"*21^

(8 )

(9 )

Each of the I5 other posslble^^^^ 's is now also a three-rowed detennlnant

.

The formulas in the preceding paragraph still apply, with an appropriate
change in notation: For example.

12. 3t^

*‘12 "23 CVJ

""is
1

^12 =
^Ik "Zk

1

1 ^23 ^24

1 r .

23 3k

^2k
1

( 10 )

All of the *s for which 1 V J involve all three intercorrelation

coefficients. and/^V^^j^ each contain only one of these coefficients.

But this last point is not very helpful, as each fomula (2) through (7 ) in*
eludes either/^itself or a^. . for which i ^ J.

^J



- lU -

We noted In the three-variable case that the values assumed for r^ and

1*2^2 impose certain limits upon the values vhich might be assumed by

Similarly, the values assumed for r^^g and r^^j^ restrictions on r^j^, and

those assumed for r^o and r,. impose restrictions on r,j^. For example, If

^12 “
^13 ^14 “ ^ each of the three intercorrelation coefficients may range

from - 0.02 to 1.0, However, the values of rgo and r^j^ also set limits to the
,

permissible values of r^^. a consistent set of limits for the six simple r*s

can be derived from the fact that/^^g./^ oo . and^il^^ii must all lie

between 0 and 1

Discussion of Charts end Tables

Figures 5 through 10 and tables 7 through 13 provide some insights into

the effects of intercorrelation in the four-variable case. The first five

cases assume that all three of the direct correlation coefficients r^g, and

are equal to 0.7, Two of the Intercorrelation coefficients, r22 and rgj^,

are then set equal to 0.9^ 0.7, 0.5, 0,3 and 0.1, respectively. In each case,

the third intercorrelation coefficient, is allowed to vary over its entire

range of possible values given the values^of the other five coefficients and

the basic requirements 234^ ^ 1^3u|^
^

The fact that we have set all three of the direct coefficients equal to

one another, and two of the Intercorrelation coefficients equal to each other,

produces several symmetries in the results. One is that|3jL2.2U ®“^^1U.23
equal in each case. Another is that at the point where r^i^ is equal to r23 and

r2i^, all three beta coefficients are equal.

Figure 5 reflects a very high degree of Intercorrelation, One symptom of
this is the fact that^^jj^, the determinant of Intercorrelation coefficients,
takes on very small values— O.036 or less—over its entire range. In figure
10, in contrast, the value of^^-^^^ reaches a peak of 1.0 when all three inter-
correlation coefficients are zero, and exceeds 0.5 over a considerable range of
values of r^j^. In fact, figure 5 approaches the extreme of goltleol 1 1wearity to
which Frisch gave so much attention in the early thirties. The values of the
beta coefficients are very unstable and are smaller than their standard errors
in all but a small portion of the range of permissible values of r-. , And the
range of permissible values of r^j^ is limited.

^

Figure 6, in which said rgj^ equal 0.7, shows a greater stability of the

beta coefficients with respect to given changes in r-u than does figure The
standard error of the beta coefficients is also more"^stable than in the pre-
ceding chart. The beta coefficients exceed their standard errors over a
considerably wider range of values, although they do not reach twice the level
of their standard errors anywhere in the permissible range. In both of these
figures the behavior of^^^ corresponds to that of the weaker coefficient
in some of the three-vsa*l^le charts. When the level of r^j^ drops significantly
below the levels of T2-^ and

3U
sign from positive to negative.

Visually, it appears that ^13,24 ^lk,23 ) » reflection of ^22 about the
particular level at which all three intercorrelation coefficiently hence all
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three teta coefficients, are equal. The value of the "betas at this point of
equality Increases from one case to the next as the paired intercorrelation
coefficients (rg^ and rgi^) decrease.

Figure 7 shows still greater stability in the values of the beta
coefficients and their standard errors. The beta coefficients exceed their
standard errors over a large part of the penaissible range and for certain
limited veJ-ues of r^i^? near zero, they exceed two standard errors.

The data given in table 10 shw increasing stability of the beta
coefficients and their standard errors within the range of permissible values.
However, that range itself is somewhat reduced. Apparently, as rg^ ®ad r^i^ are

lowered, r-. must remain significantly above zero if the other constraints on
the varlous^correlation measures are to be met. If all three intercorrelation
coefficients were zero the coefficient of multiple determination, H i , should
be equal to the sum of squares of the three direct correlation coeff£ci@ntS”“in
this case, 3 ^ (0.7)^ = I.I7. As this is an impossible value of bb®
value of r^i^ which leads to it is not permissible. While the ratios of the beta
coefficients to their standeird errors etre greater theai 1 over most of the range
of permissible values, at no point does any one of these ratios exceed 2.0,

Figure 8 shows a still greater contraction of the rang® of permissible
values of The values of the beta coefficients are quite stable within

this limited range, but th© standard errors of these coefficients is changing
rapidly within it. The t-ratlo, /^/S^

,
for ^^2 exceeds 2.0 toward th© lower

end of the permissible range of t-ratios for th© other beta coefficients

do not exceed 1.3 at any value of r^j^.

It is evident from the above results that to have each of the 3 direct
correlation coefficients equal to 0.7 already constitutes a high degree of
intercorrelation if one hopes to achieve significant regression coefficients
in a four-variable equation Involving only 20 or so observations.

In figure 9> the direct correlation coefficients are reduced to 0.5 and
two of the Intercorrelation coefficients are also set equal to 0.5. This chart
may be compared with that of figure 6, in which all 5 of these coefficients were
set equal to 0.7, The beta coefficients and their standard errors in figure 9
are considerably more stable and cover a wider range of permissible values than
in figure 6. The coefficients exceed their standard errors over most of th©
permissible range, and the t-ratios for

23
over a

sizable range, reaching a maximum of 2.83 when r^j^ reaches its lowest value.

In figure 10 the three direct correlation coefficients are again set equal
to 0.5 and two of the Intercorrelation coefficients are set at zero. The rang©
of permissible values of r^^j^ is about the seuao as in figure 9 but the degree of
stability of the beta coefficients and their standard errors is considerably
greater. The coefficient ^ ^2 34 i® independent of 2‘24* The t-ratios are

greater than 1 over almost the full range of permissible values and exceed 2.0
over considerable portions of this range.



- 16 -

EFFECTS OF INTERCORRELATION

r34

U. S. DEPARTMENT OF AGRICULTURE N EG. 485 - 53 ( 11 ) AGRICULTURAL MARKETING SERVICE

Figure 5

Table 7.- Data for case In which =
^13

=

^23 “ ^2h = N = 20

^34 P12.34 ^13.24 ^14.23

^12.34 .’

t -ratio for

^13.24 ^14.23

0.6392 2/ -5.8586 3.6436 3.6436 3.0000 -1.9529 1.2145 1.2145

.6500 -3.5000 2.3333 2.3333 2.2105 -1.5834 1.0556 1.0556

.6900 -1.1000 1.0000 1.0000 1.3474 -.8164 .7422 .7422

. 69^1 -1.0000 .9444 .9444 1.3102 . -.7633 .7208 .7208

.7000 -.8750 .8750 .8750 1.2627 -.6930 6930 .6930

.7500 -.2692 .5385 .5385 1.0429 -.2582 .5163 .5163

.7720 -.1290 .4605 .4605 1.0000 -.1290 .4605 .4605

.8000 0 .3889 .3889 .9721 0 .4000 .4000

.8500 .1522 .3044 .3044 .9825 .1549 .3098 .3098

.8645 .1847 .2862 .2862 1.0000 .1847 .2862 .2862

.9000 .2500 .2500 .2500 1.0827 .2309 .2309 .2309

.9500 .3182 .2121 .2121 1.4044 .2266 .1510 .1510

1.0000 — - ... ...

1/ Identical for each P.

2/ Lowest possible value of r^l^*

^ Highest possible value of r2l(..
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EFFECTS OF INTERCORRELATSON

f
(
r34

1.2

.8

.4

0

-.4

U. S. DEPARTMENT OF AGRICULTURE N EG . 4 86 - 53 ( 11 ) AGRICULTURAL MARKETING SERVICE

4-Variable Case: ri 2 = ri3 = ri4 = .7; r23 = r24 = .7; N = 20

1

\

T‘ '

1

\
>

.3, 24
" ^14.;23

•

«l
•

IS

s
\ /

.y
»• "1

12.34— 1

-.2 0 .2 .4 .6 .8 1.0

r34

Figure 6

Table 8.- Data for case in which =
^^2^4

= 0.7)

^23
“ ^24 “ 0.7, and N = 20

^ 12.311 P 13.24 P 14.23
; ^

:

^
t-ratio for -

= Pi2.34 • P 13.24
;

P 14.23

0.1529 2/
-1.0000 1.2143 1.2143 0.6532 -1.5310 1.8590 1.8590

.1900 - .7000 1.0000 1.0000 .5782 -1.2106 1 .729*^ 1.7294

.2000 - .6364 .95*^6 .95*f6 .5625 -1.1314 1.6971 1.6971

.3000 - .2188 .6562 .6562 .4622 - .4733 1.4199 1.4199

.Uooo 0 .5000 .5000 .4167 0 1.2000 1.2000

.5000 .1346 .4038 .4038 .3982 .3381 1.0142 1.0142

.5765 .2071 .3521 .3521 .3973 .5214 .8862 .8862*

.6000 .2258 .3387 .3387 .3992 .5657 .8485 .8485

.7000 .2917 .2917 .2917 .4210 .6928 .6928 .6928

.8000 .3415 .2561 .2561 .4772 .7155 .5367 .5367

.9000 .3804 .2283 .2283 .6309 .6030 .3618 .3618

.9592 .3998 .2145 .2145 .9520 .4199 .2253 .2253

.9632 .4010 .2136 .2136 1.0000 .4010 .2136 .2136

.9800 .4060 .2100 .2100 1.3440 .3021 .1562 .1562

1.0000 2/
...

1/ Identical for each g

.

2/ Lowest possible value of r^i^.

jJ Highest possible value of r^j^.
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Figure 7

Table 9.- Data for case In which « <• « 0.7,

^23 “ ^2k “ H = 20

^34

t

^12.34
;

^13.24 ^14.23
Sp

1/ ^12.34

t-ratlo for -

: ^13.24 • ^14.23

-0.0196 2/ -0.0286 0.7286 0.7286 0.3572 -0.0600 2.0396 2.0396
0 0 .7000 .7000 .3500 0 2.0000 2.0000
.1000 .1167 .5833 .5833 .3224 .3618 1.8091 1.8091
.2000 .2000 .5000 .5000 .3062 .6532 1.6330 1.6330
.2500 .2333 .4667 .4667 .3012 .7746 1.5492 1.5492
.3000 : .2625 .4375 .4375 ,2981 .8806 1.4676 1.4676
.4000 : .3111 .3889 .3889 .2970 1.0474 1.3093 1.3093
.5000 : .3500 .3500 .3500 .3031 1.1547 1.1547 1.1547
.6000 .3818 .3182 .3182 .3182 1.2000 1.0000 1.0000

.7000 .4083 .2917 .2917 .3472 1.1762 .8402 .8402

.8000 .4308 .2692 .2692 .4038 1.0667 .6667 .6667

.9000 .4500 .2500 .2500 .5449 .8259 .4588 .4588

.9500 .4586 .2414 .2414 .7538 .6084 .3202 .3202

.9800 .4635 .2365 .2365 1.1763 .3940 .2010 .2010

1.0000 3/ ... ••• •••

^ Identical for each

2/ Lowest possible value of r^)^.

^ Hic^est possible value of
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EFFECTS OF INTERCORRELATION
4 -Variable Case: ri 2 = fia = ri4 = .7; r23 = r 24 = .l; N = 20

-.2 0 .2 .4 .6 .8 1.0

r34

U. S. DEPARTMENT OF AGRICULTURE NEG. 488-53 (11) AGRICULTURAL MARKETING SERVICE

Figure 8

Table 11.- Data for case in 'vrtiich ri? = r^j = ^lU = 0"7>

rg
3 = rglj. = 0.1, and N = 20

r34 ^12. 3k P13.23 P 14.23
Sp

y

t-ratio for

P12.34 P13.24 P 14.23

0.5765 2/ 0.6191 O.hOhS 0.4048 0.3079 2.0105 1.3145 1 . 3l'+5

.6000 .6202 .3987 .3987 .3133 1.9799 1.2728 1.2728

.7000 .6250 .3750 .3750 .3455 1.0891 1.0854 1.0854

.8000 .6292 .3539 • 3539 .4054 1.5522 .8731 .8731

.9000 .6330 .3351 • 3351 .5507 1.1494 .6085 .6085

.9500 . 63i)7 . 3261) .3264 .7641 .8307 .4272 .4272

1.0000 2/
... — — ... ... ... ...

l/ Identical for each p

.

2/ Lowest possible value of

^ Highest possible value of r
3i|..
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EFFECTS OF SNTERCORRELATION
4 -Variable Case: ri 2 = ri 3 = ^14 = .5

;
r23=r24 = -5; N = 20

34 ) \

\

\

\
3.24= ^ 14.23

®

»
*’

> f^l2.34.

_JJ
-.2 0 .2 .4 .6 .8 KO

r34

U S. DEPARTMENT OF AGRICULTURE N EG, 489 - 53 ( I 1 ) AGRICULTURAL MARKETING SERVICE

Figure 9

Table 12 .- Data for case in which

/

= = 0 .5 , ^23
= ^24 =0.5, and N » 20

%2.3h
i ^3.24 :

^14.23 1

H ;

t-ratio for -

y
;

;

^12. 34 : ^13.24
s

: ® 14.23

-0.3333 2/ -1.0000 1.4999 1.4999 0.5303 -1.8856 2.8285 2.8285
- .3000 - .7500 1.2500 1.2500 .4586 -1.6353 2.7255 2.7255
- .2500 - .5000 1.0000 1.0000 .3873 -1 .2910 2.5820 2.5820
- .2000 - .3333 .8333 .8333 .3402 - .9798 2.4495 2.4495
- .1000 - .1250 .6250 .6250 .2827 - .4422 2.2111 2.2111
0 0 .5000 .5000 .2500 0 2.0000 2.0000

.1000 .0833 .4167 .4167 .2303 .3618 1.8091 1.8091

.2000 .lJt29 .3571 .3571 .2187 .6532 1.6329 1.6329

.3000 .1875 .3125 .3125 .2129 .8806 1.4676 1.4676

.IfOOO .2222 .2778 .2778 .2122 1.0474 1.3093 1.3093

.5000 .2500 .2500 .2500 .2165 1.1547 1.1547 1.1547

.6000 .2727 .2273 .2273 .2273 1.2000 1.0000 1,0000

.7000 .2917 .2083 .2083 .2480 1.1762 .8401 .8401

.8000 .3077 .1923 .1923 .2885 I.O667 .6667 .6667

.9000 . 321^ .1786 .1786 .3892 .8259 .4588 .4588

1.0000 2/
... ...

l/ Identical for each p.

2/ Lowest possible value of

3/ Highest possible value of
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Figure 10

Table I3 .- Data for case In which ri2 “ ^13 “ *'l4
” ®*5>

^23 ^24 ” N = 20

P12.34 P13.24 ® 14.23

:

^

t-ratlo for -

= ^ 12.34 : ® 13.24 : ^14.23

-0.3333 2/ 0.5000 0.7500 0.7500 0.2652 1.8856 2.8284 2.8284
- .3000 .5000 .7li*3 . 71*»3 .2574 1.9429 2.7756 2.7756
- .2500 .5000 .6667 .6667 .2472 2.0226 2.69^ 2.6968
- .2000 .5000 .6250 ,6250 .2387 2.0949 2.6186 2.6186
- .1000 .5000 .5556 .5556 .2255 2.2172 2.4636 2.4636
0 .5000 .5000 .5000 .2165 2.3094 2.3094 2.3094

.1000 .5000 .4546 .4546 .2109 2.3708 2.1553 2.1553

.2000 .5000 .4167 .4167 .2083 2.4000 2.0000 2.0000

.3000 .5000 .3846 .3846 .2088 2.3950 1.8423 1.8423

.4000 .5000 .3571 .3571 .2125 2.3525 1.6803 1.6803

.5000 .5000 .3333 .3333 .2205 2.2678 1.5118 1.5118

.6000 .5000 .3125 .3125 .2344 2.1333 1.3333 1.3333

.7000 .5000 .2941 .2941 .2582 1.9363 1.1390 1.1390

.8000 .5000 .2778 .2778 .3027 1.6518 .9177 .9177

.9000 .5000 .2632 .2632 .4109 1.2170 .6405 .6405

1.0000 iJ
... ... ... ...

^ Identical for eachp.

^ Lowest possible value of r^j^.

2/ Highest possible value of r^j^
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APPENDIX

Note 1 Limits Imposed on Values of tij Given Values of and Tg-

By definition, no simple or multiple correlation coefficient can exceed
1 in absolute value.

Let us repeat text equation (2), as follows,

2

1.23
^12 ^13

^ “ ^^12 ^13 ^23

1 - r
23

( 2 )

noting that must lie between 1 and 0,

If El 2^
* 1, we have

, 2 2 2 ^*
^23

“
^12

^
^13 ^12 ^13 ^23* (2 . 1 )

Eearranglng terms, we have

rgj® - 2 ^ ^
( 2 . 2 )

and, using a standard formula of elementary algebra, we obtain

^23 = ^12 ^13 * y (l"ri2^) (l-ri3^). (2.3)

If r^g 0,9 and r^^ » 0.7, as In figure 3> ve have

1*23 = 0.63 + >/ (0.19) (0.51) = 0.63 i 0.3113;

hence, r_^ = O.3187 or 0,9^13. Substituting these values back in equation

(2), we obtain Ef 23
“ ^ each case.

Only if r,^ = r can r reach the maximum value of 1. But when

2 0 ^3 23

^23 “ ®1.23 ~ ^12 » which is, in general, less than 1. This is shown in

figures 1 and 2.
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Thus, if = r = 0,7, equation (2,3) gives us
13

^23 ~ 0.1«-9 + 0.51 = 1 or - 0.02.

Substituting “ 0.02 for in equation (2) we obtain

2^
' 0-98 - 0.98 (- O.Qg) = 0.9996 • 1 .

^ ^ 1 -(-o;02)2 0.9996

But if we substitute = 1 we obtain

1.23
0.98 - 0 98(1)

1 -d")

0 .

an Indeterminate value.

This indeterminacy can be resolved by applying L*Hopltal's rule, 2/
from which we obtain

Note 2. Minimum Values of Specified Correlation and EegreBslon Measures

Assume that we are given the values of r^ and r,» and wish to obtain the
values of rg- at which various coefficients reach their minimum values within

the permissible ranges in which (1) is equal to or less than 1 and (2)

r2^ is equal to or less than 1 in absolute value. A necessary condition for

a minimum is that the partial derivative with respect to r of a measure that
is a function of rg^ -b© zero.

1, Starting with equation (2),

1.23 12
+ r

il
2_2r

12 ^23

1 -

we find that E
2

1.23
reaches a minimum when

(2 )

2/ See pp, 15“16 of Woods, 'Frederick S,, Advanced Calculus, new ed.,

397 pp.» lllus.. New York, 193^ > or other standard calculus texts.
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w© 30© that the sign Is determined hy the numerator only.

If >-23 = ^ , ^,3,3
. 0;

12

if r
23 < f o > 0; and

ri2 13

if r,
23 > -ii ,

^3.2
< 0 .

3. The minima for the partial correlation coefficients,
^ ^3^2 2‘

respectively are given at the points where

^23 = ^
( 5 . 1 )

^12

and r = ^12
23 •

^13
(6.1)

In tables 3 through 6, r^^ < r^ and r^^ o minimum in the permissible

range of values for However, r^g
^
has a minimum at the level indicated

by equation (5.1)

•

When r,^ = r--, r « end r ^ are equal and reach their lowest point in
12 13 12.3 13.2

the permissible range when rg^ = 1,

4. Finally, the mlnimimi value of the standard errors of the beta
coefficients can be obtained easily from formula (7)>

?
=

12.3 ^13.2
M.

(7)

(1-^23^)^

When E- = 1, So =0 (provided r ^ is loss than 1). Thus, in
1.23 ^

23

.tables 3 through 6, S
Q = 0 at two points, on© at each end of the permissible

12.3

range of values of r^.,. in figures 1 and 2, Sa
P12.3

0 at one point, the
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23
(^12 ^13

) ± (^12 - ri3^) .

' 2:, o
12 13

(2.M

that Is, when = ^12 or ^13

13 ^12

o
When figures 1 and 2), ^^^23 2°©aches Its minimum value

when T
22 = !• When r^^ ^ ^±2^ only one of the two values of r2^ given by

equation (2.U) will be less than 1, and hence a permissible value. In figure 3;

we have r^o = 0.7 ® 0,78; in the data shown in table = 0,56; aai so on.
^ 0.9

It is clear that these are minimum rather than majclmum values.

2. Using the same approach, the minima for the beta coefficients,

^12.3 ®“^^13,2, r®sp©ctlvely, are given at the points where

and

23

23

^12 1 \/^12^ ~ ^13'^

13

^13 -\/^13
2

12

(3.2)

i^.2)

12

If r
12

r^^, the two beta coefficients are identical and reach their

low point when rg^ = 1, If r^^^ > r^g^ the low point forjS^^g
3

imaginary,

while that for ^^3 2
^ value somewhat greater than ^13 . The

^12

converse is true if the data shown in table for example,

^13.2 minimum value in the permissible range; ^22 Z
^ minimum value

at the point

rpq = 0.9 - sT 0*^1 “ 0.25 = 0.900 i 0.7^ = 0«304 .

0.5 0.5

The second value of rg^ is outside the pemlssible range,

A prominent feature of cases 3 to 6 is the fact that^S^^
2

at a value of rg^ somewhat greater than that of r^^* Seferring to equation (4),

^11.2 = liilliiikL.

.

1 - rg^a
(•*)
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lowest pemlsslble value of r.

Figures 1 and 2 indicate that, if approaches infinity
12 * 3

as rp- approaches 1. This follows readily from equation (7), since if "Pr ig
0 1 *23

less than 1 at the point where rp^ = 1, we have a real number divided by zero.

If we set ^^12,3 = 0 we obtain

"23

*23^ - ^^12 ''ll
I-,,® + ZF(ri2® + - 17 1-23 - r^2 r,, = 0 . {7.3)

For given values of r^^ and r^^ this can be solved most readily by plotting the

values of the function for a range of values of r^^. Thus, for table 5, the

expression (7 *3) becomes

3 2
^23 - 0.81 r23 + 0.8 r23 - 0.27 « 0 .

This equals zero when r^^ is approximately 0.1|.2U. It is clear from the table

that this is a maximum, or upper turning point, rather than a minimum.

Note 3» Relation of Correlation Formulas in Determinant Notations to the
Table or Inverse Correlation Matrix

The elements of the inverse of a matrix of simple correlation coefficients
may, in the three -variable case, be written as follows;

(3)

zi\ii -A 12 Ai3A A
-Ai2 A 22 -As^
A A A
^13 -^23 A33

The array of elements in the inverse is often referred to as " the table"

in confutation methods such as those developed by Waugh U/. In this notation,

^11 ~ ^^^11 ^ ^12
“

~ z^l2 , and so on,

^ A
Waugh, F.V. A samplified Method of Determining Multiple Regression

Constants, Amer. Statis, Assoc. Jour. 3^569^-700. 1935

•
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To calculate
^

Inverse or table, we divide -P^g by P^^.

This is equivalent to equation (3*);

12.3
"^12 = ^ 12 .

11
4]

42 .

4i
( 3 *)

All the other formulas in the text can be derived in the same fashion
from the P table . For example

.

^J

E
1.23

= 1-1 = 1 - A
-P

12.3
12

-n

= A 12

\/4Li'^g 'J\x ’ Aa

(2*)

(5')

and so on.

The text formulas in determinant notation can be generalized for any
number of variables. The same is true of the corresponding formulas in the

notation. Thus, ^

12 . 3^
A\i2

. (10 )

where P^^ and P^g are the

U-rowed determinant.

first and second elements in the first row of a






