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Abstract 
Use of modern trade specifications which account for new trade theory and gains from 

increasing variety, such as Krugman (1980) and Melitz (2003), remains in its infancy in CGE 

modelling. Central to determining the gains from new product varieties and the impacts on 

welfare, trade patterns and factor returns is the elasticity of substitution between varieties. 

Thus, this paper develops the research underpinning these trade specifications by assessing 

a range of approaches for estimating substitution elasticities at the GTAP sector level. 

Soderbery (2015) showed that previous estimates of the elasticity of substitution were 

significantly biased in the US context. We apply this approach to produce estimates for the 

UK, extending it to provide estimates at the product and GTAP sector level. Our results 

corroborate Soderbery’s (2015), with our estimates between 15% and 39% lower than 

previous UK estimates, suggesting they understated the gains from product variety in the 

UK. Investigating the importance of aggregation, we find that estimates are sensitive to the 

level of aggregation methodology, with product level estimates significantly higher than their 

GTAP counterparts. Using CGE simulations, we demonstrate the importance of estimating 

parameters at the same level of aggregation as modelling is carried out on. 

1. Introduction 
As the number of free trade agreements has increased in recent decades, computable 

general equilibrium (CGE) models have become a central tool in analysing their economy-

wide impacts (Hertel et al, 2007). Standard CGE modelling in trade relies on the Armington 

assumption, whereby products are imperfect substitutes depending on their origin. In this 

setup, trade policy changes result in efficiency gains from reallocation of factors across 

sectors and terms-of trade changes. However, new trade theory provides additional avenues 

for gains from trade in the form of scale economies and a greater number of varieties 

through an increase in imports. Beyond this, Melitz (2003) has also emphasised the 

importance of firm heterogeneity in capturing gains from trade in such a context. 

Whilst the international trade literature has found substantial evidence for these new 

channels of gains from trade, the question on whether and how to include imperfect 

competition, scale economies and firm heterogeneity in CGE models remains unanswered in 

academic circles (Nilsson, 2019). Part of the reluctance to move to incorporating these 

features in CGE modelling may stem from the lack of empirical evidence on some of the key 

parameters governing the gains from trade in these models, particularly on elasticities, which 

Hillberry and Hummels (2013) and Nilsson (2019) emphasise are central to the results of 

CGE modelling on welfare, trade patterns and factor returns.  

This paper seeks to develop the research underpinning trade specifications incorporating 

new trade theory and gains from increasing variety by estimating one of the key elasticities 

in such models, the elasticity of substitution between varieties. Using a constant elasticity of 

substitution (CES) utility function, Feenstra (1994) demonstrates this parameter is central to 

 
1 The views expressed in this paper are the authors’ and do not represent the views of the UK Department for 

International Trade. 
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determining the gains from new product varieties through trade. With a high elasticity of 

substitution among varieties, the potential for gains from variety are small, yet if the elasticity 

of substitution among varieties is low, the potential for gains from variety are high, 

demonstrating the importance of using frameworks that allow for variety gains in CGE 

modelling of trade policy. 

Previous studies estimating the elasticity of substitution rely on restricting identifying 

assumptions, as in the case of Romer (1994) and Hummels (1999), or result in an estimator 

with substantial biases, such as in Broda and Weinstein (2006). More recent research from 

Soderbery (2015) proposes an alternative estimator to reduce the biases in Broda and 

Weinstein (2006), but only applies this to data from the US. As these parameters can differ 

substantially by country, we apply the Soderbery (2015) method to sectors within the UK 

economy. Previous literature has confined estimates to HS6 or CN8 products. Given the 

frequency with which the GTAP database is used in CGE modelling, we extend the previous 

research to provide results at the GTAP sector level, providing a valuable contribution in 

improving the foundations of CGE models in new trade theory and thus the robustness of the 

results.  

Our findings support Soderbery’s (2015) conclusion that the Broda and Weinstein (2006) 

estimators produce biased elasticities, with our median elasticities between 15% and 39% 

lower than previous UK estimates. This suggests previous estimates significantly 

understated the benefits from additional product variety to the UK economy. Our results also 

provide evidence that the elasticity of substitution is sensitive to aggregation, with significant 

differences between the network level and GTAP estimations across the 47 GTAP sectors. 

This finding is important given the conclusions of McDaniel & Balistreri (2003) that elasticities 

should be estimated at a level close to that of simulation and demonstrates the importance 

of estimating parameters at the GTAP level used in CGE modelling. Using a Krugman style 

CGE model, we simulate unilateral tariff liberalisation for the UK, comparing across different 

sets of elasticities to highlight the differences in overall welfare. The stark differences in the 

results between the sets of elasticities estimated at different aggregations reinforces our 

argument that aggregation matters. Consequently, if modellers aim to run simulations based 

on New Trade Theory in a CGE framework, they should aim to estimate a set of elasticities 

at same aggregation as their model, in this instance, the 65 GTAP sectors.  

The structure of the paper will be as follows: section 2 outlines the key theoretical and 

empirical literature, section 3 describes the methodology, section 4 explains the estimation 

procedure applied, section 5 gives a description of the dataset used for both the CN8 

network and GTAP sector level analysis, and section 6 outlines and compares the key 

results from both analyses, before section 7 concludes. 

2. Literature review 
 

2.1 Monopolistic Competition and New Trade Theory 
 

The movement towards trade models of monopolistic competition and increasing returns to 

scale, first formally introduced by Dixit and Stiglitz (1977) and Krugman (1980), marked an 

important shift away from perfectly competitive and constant returns models toward more 

realistic production processes. Monopolistic competition accounts for firms who enjoy some 

market power, as there are many firms in a market creating different varieties of the same 

good. These markets create intra-industry trade between countries due to “love of variety” 

demand functions, and therefore better explain the pattern of world trade which has occurred 

over recent decades. 
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Dixit and Stiglitz (1977) argue that a love for variety is already inherent in the assumption of 

monotonic preferences present in a typical CES utility function. It is widely agreed that 

increasing returns are apparent in production, and therefore firms cannot sustain pricing 

equal to marginal cost. Firms thus price a mark-up above their marginal cost to cover the 

fixed cost to enter the market; however, as entry is free, there are zero profits in equilibrium. 

As each firm operates under increasing returns, it does not make sense to produce identical 

goods across firms, but instead specialise in a distinct variety, creating some degree of 

market power. Firms are assumed to have the same cost structures (fixed and variable) and 

thus price similarly. It can be shown that the larger the population, the larger the number of 

available varieties and consumers always prefer an average of two products to extremes of 

either. Therefore, as shown in Dixit and Stiglitz (1977), utility is strictly increasing in the 

number of varieties within an industry and even more so with a lower elasticity of substitution 

between varieties, σ. 

Krugman (1980) bases his model of international trade and monopolistic competition on Dixit 

and Stiglitz (1977). He sheds light on observed intra-industry trade between similar countries 

and the positive correlation between the size of exports and domestic markets. He builds on 

ideas from Balassa (1967) and Grubel (1967) to present a formal analysis of trade in the 

context of imperfect competition, differentiated products and economies of scale. In contrast 

to Armington (1969), firms incur fixed costs to produce and the total number of varieties is no 

longer exogenously set. In this context, Krugman (1980) identifies a gain from trade through 

a ‘love of variety’. Consumers who are exposed to the same goods from abroad, though 

differentiated products, will shift purchases away from their autarky basket to one with 

greater variety. This utility maximising tendency produces the same outcomes as Armington 

(1969), cross-border trade of the same good; however, instead of assuming one 

representative good per industry there exists a continuum of differentiated goods. 

Krugman (1980) illustrates how economies of scale rewards industries that reside within the 

nation with the greatest demand for that good: an industry’s competitiveness depends on 

domestic demand for the good under autarky. Increased domestic demand allows firms to 

benefit from economies of scale and increasing productivity, thus gaining a substantial share 

of global trade of the good once economies open to trade. The key parameter affecting gains 

from trade in Dixit and Stiglitz (1977) and Krugman (1980) is the elasticity of substitution 

between varieties within an industry, σ. It is therefore imperative for users of modern multi-

sector multi region trade models, dependant on these micro foundations, to estimate such 

parameters robustly. 

 

2.2 Empirical Literature 

 

Feenstra (1994) argues that models which allow for product differentiation and whose results 

are reliant on increasing varieties as a result of trade lack empirically founded elasticities of 

substitution. He derives the CES model and importantly includes the impact of new varieties 

on the price index. In the conventional price index, all new product varieties are homogenous 

and perfect substitutes for existing ones and so there is no price fall from additional varieties. 

This highlights the shortcomings of Armington-based trade specifications in CGE models, 

which do not recognise this channel of impact in international trade and only differentiate 

imports by country, not firm. Using a panel of US import data from various partners across 

six manufactured products between 1964 and 1987, he estimates the elasticity of 

substitution between varieties using a supply and demand equilibrium. His findings show that 
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correcting the price index for increasing varieties reduces the income elasticity of import 

demand, especially in developing countries. 

Hummels (1999) estimates elasticities of substitution as part of research analysing barriers 

to trade. He takes a gravity approach to estimation, estimating the trade-distance 

relationship to infer an elasticity of substitution. Using data from the US and Latin America, a 

one sector model produces estimates ranging from 2-5.26, significantly lower than the 

estimates from the multi-sector model, where estimates range from 3-8. The results also 

suggest that the level of aggregation affects the elasticity, with a narrower definition of a 

good resulting in a higher substitution elasticity. 

Broda and Weinstein (2006) take a different approach to estimating the elasticity of 

substitution in research on the impact of variety on welfare. They argue that Hummels’ 

(1999) approach relies on extreme identifying assumptions, such as trade costs being 

completely passed on to consumers and changes in trade costs being unaffected by 

changes in import demand. Thus, they instead present a model of import demand and 

supply equations to estimate the elasticity of substitution, adapting a method based on 

Feenstra (1994) that provides estimates robust to simultaneity bias and measurement error. 

Using US data from 1972-2001, Broda and Weinstein (2006) estimate almost 30,000 

elasticities at the lowest level of disaggregation available. Similar to Hummels (1999), they 

find varieties are increasingly substitutable at lower levels of disaggregation, with an average 

elasticity of 12 for 8-digit goods compared to 6 at the 3-digit good level. They also find the 

elasticity of substitution has decreased over time, implying increasing differentiation among 

traded goods. They use their elasticity of substitution estimates to demonstrate how the 4-

fold increase in global varieties over the period substantially increased US welfare, 

confirming the importance of using the Dixit-Stiglitz framework in international trade. 

In a subsequent paper, Broda et al (2006) use the same method to estimate elasticities of 

substitution for approximately 200 3-digit sectors across 73 countries. They find that the 

typical country has a median elasticity of 3.4 and mean elasticity of 6.8, with the latter higher 

as the elasticity has a lower bound of 1. For the UK, they estimate a median elasticity of 

substitution of 2.4, indicating that the UK tends to value variety more than the typical country. 

Soderbery (2015) argues that the structural estimator developed by Feenstra (1994) and 

adapted by Broda and Weinstein (2006) to estimate the elasticity of substitution has 

substantial biases, particularly in small samples. Instead, Soderbery (2015) proposes using 

a hybrid estimator based on limited information maximum likelihood (LIML). Using Monte 

Carlo analysis, Soderbery (2015) shows that the standard estimator is biased because it 

overweights outlier observations, a problem reduced using the hybrid estimator. Converting 

to the hybrid estimator reduces the median elasticity of substitution for HS8 products 

imported by the US from 1993 to 2007 by 35%. As a result, Soderbery (2015) shows the 

bias in the standard estimator underestimates consumer gains from variety by a factor of 6 

over the period. 

However, in a subsequent paper using data on all global trade flows at HS4 level from 1991 

to 2007, Soderbery (2018) uses an approach similar to Broda and Weinstein (2006) because 

of the computationally intensive nature of LIML. The results indicate a global median 

elasticity of substitution of 2.88, compared to a median of 2.98 for the UK, slightly higher 

than the median estimate in the Broda et al (2006) study. 

In a recent study, Ahmad and Riker (2019) note that the method of estimating elasticities of 

substitution using a system of demand and supply equations developed by Feenstra (1994) 

and adapted by Broda and Weinstein (2006) and Soderbery (2015) relies on the assumption 
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of uncorrelated supply and demand errors, alongside the small sample biases identified by 

Soderbery (2015). Thus, they take a different approach to estimation, relying on the 

structural relationship between the price-cost mark-up and the elasticity of substitution in 

industries operating under monopolistic competition. Using US manufacturing data from 

2012, they compute elasticities of substitution at differing levels of aggregation. At the 3-digit 

industry level, their estimates range from 1.8 to 7, with a median elasticity of 2.6. They also 

find that elasticity estimates are similar at different levels of industry aggregation, in contrast 

to Broda and Weinstein (2006) who find that elasticity estimates depend on the level of 

aggregation specified. 

Overall, whilst the empirical literature has developed to address substantial biases in early 

estimates, it is limited in country and aggregation scope, particularly in relation to the GTAP 

sector aggregation widely used in CGE modelling. 

3. Methodology 
 

Our contribution is to apply the approach of Soderbery (2015) to data for the UK economy. 

This allows us to run Krugman style trade models of the UK economy and to assess how the 

results that Soderbery (2015) finds for the US are robust to changes in country sample. 

This approach works by deriving theoretical estimation equations from the monopolistic 

competition framework of Krugman (1979). In this, a constant elasticity of substitution utility 

function is used to specify preferences across a variety of products produced by different 

exporters. This leads to the level of competition between varieties in each sector being 

determined by the elasticity of substitution between these products; in cases where varieties 

are perfectly substitutable, competition is perfect, whilst decreasing the elasticity of 

substitution introduces degrees of imperfection in that competition.  

The innovation of Soderbery (2015) is to show, both theoretically and empirically, that earlier 

approaches to estimating this elasticity parameter (such as Feenstra (2004) and Broda and 

Weinstein (2006)) suffer from bias and proposes an alternative estimation procedure based 

on limited information maximum likelihood methods. This is applied to data for the United 

States2 to estimate substitution elasticities for a large range of imported products. Our 

research examines how the substitution elasticities for the US and the UK differ, offering 

important lessons on the extent to which researchers need to replicate the analysis for their 

countries of interest to ensure robust inference.  

Furthermore, Broda and Weinstein (2006) raise important points about the previous literature 

on variety. The fact that previous studies have only estimated one or two elasticities of 

substitution, and that “all varieties enter into the utility function with a common elasticity” 

leads to three key issues. Firstly, that it leads to the assumption that consumers value 

variety the same for all types of goods, secondly, that they value variety the same across 

different goods as they do across different countries exporting the same good and thirdly, 

that the aggregation bias can lead to meaningless estimates as it averages the impact of a 

price change across different countries and commodities. Therefore, our research 

endeavours to estimate and compare the substitution elasticities at two levels of 

aggregation, the 8-digit commodity code level and the GTAP 65 sector level. As Broda and 

Weinstein (2006) have shown, the level of aggregation is important, and that intuitively the 

more disaggregate the data, the greater the substitution elasticity. GTAP is the level of 

 
2 Due to data constraints in this type of analysis firm level data on different varieties of products is not available, 

so a good is defined as the 8-digit product and a variety of that good is defined as the origin of that 8-digit 
product, also known as the Armington assumption (1969). 
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aggregation which will be used to simulate overall welfare impacts using a CGE model and 

because these models rely so heavily on these trade elasticities, it is important to shed light 

on the differences between pre and post estimation aggregation.  

4. Estimation procedure 
 

4.1 Deriving a theoretically consistent form for the estimation equation 
 

The theoretical framework used to derive the supply and demand equations for estimation 

follow Feenstra (1994), Broda and Weinstein (2006) and Soderbery (2015). They set up a 

standard model of trade, maximising a consumer’s CES utility function and deriving a 

demand equation. On the supply side, firms who export operate under monopolistic 

competition and have upward sloping export supply curves. Our focus in this paper is on the 

demand side elasticities which reflect the extent to which consumers prefers more variety in 

imported goods3. Below we present an extremely reduced-form derivation of the key 

equations as we want to avoid repetition of the work already published in the literature, for 

the full detail please refer to Feenstra (1994). To estimate the demand and supply 

elasticities, quantities are converted into their respective market shares for variety v of good 

g in time t4. This produces two structural equations and before combining both, we follow 

Feenstra (1994) to eliminate time and product specific unobservables present in supply and 

demand. To remove the good specific shocks, he presents both equations in logs and takes 

first differences. He then differences again, to remove time-specific unobservables, using a 

reference variety k (i.e. from a specific country). This brings us to equations (1) and (2) from 

Soderbury (2015): 

∆𝑘𝑙𝑛𝑠𝑔𝑣𝑡 ≡  ∆𝑙𝑛𝑠𝑔𝑣𝑡 −  ∆𝑙𝑛𝑠𝑔𝑘𝑡 =  −(𝜎𝑔 − 1)∆𝑘 ln(𝑝𝑔𝑣𝑡) + 𝜀𝑔𝑣𝑡
𝑘   (1) 

∆𝑘𝑙𝑛𝑝𝑔𝑣𝑡 ≡  ∆𝑙𝑛𝑝𝑔𝑣𝑡 − ∆𝑙𝑛𝑝𝑔𝑘𝑡 =  (
𝜔𝑔

1+𝜔𝑔
) ∆𝑘 ln(𝑠𝑔𝑣𝑡) + 𝛿𝑔𝑣𝑡

𝑘   (2)  

Where 𝜀𝑔𝑣𝑡
𝑘  = ∆𝑘 ln(𝑏𝑔𝑣𝑡) and 𝛿𝑔𝑣𝑡

𝑘  = ∆𝑘 (
𝜂𝑔𝑣𝑡

1+𝜔𝑔
)  

Where σ is the elasticity of substitution to be estimated,  𝜀𝑔𝑣𝑡
𝑘  and 𝛿𝑔𝑣𝑡

𝑘  are unobservable 

demand and supply shocks. They include 𝜂𝑔𝑣𝑡, a random technology factor, 𝜔𝑔 ≥ 0 the 

inverse export supply elasticity and 𝑏𝑔𝑣𝑡 a random taste parameter.  

Feenstra (1994) lastly takes the above system of equations, multiplies the demand and 

supply shocks together, scales and rearranges to produce equation (3) below to be 

estimated:  

 
 

𝑌𝑔𝑣𝑡 = 𝜃1𝑔𝑋1𝑔𝑣𝑡 + 𝜃2𝑔𝑋2𝑔𝑣𝑡 + 𝑢𝑔𝑣𝑡 

 

(3) 

Where: 

𝑌𝑔𝑣𝑡 ≡ (∆𝑘𝑙𝑛𝑝𝑔𝑣𝑡)
2

, 𝑋1𝑔𝑣𝑡 ≡  (∆𝑘𝑙𝑛𝑠𝑔𝑣𝑡)
2

, 𝑋2𝑔𝑣𝑡 ≡ (∆𝑘𝑙𝑛𝑠𝑔𝑣𝑡)(∆𝑘𝑙𝑛𝑝𝑔𝑣𝑡), 𝑢𝑔𝑣𝑡 =
𝜀𝑔𝑣𝑡

𝑘 𝛿𝑔𝑣𝑡
𝑘

(1−𝜌𝑔)
, 

       𝜌𝑔 =
𝜔𝑔(𝜎𝑔−1)

1+𝜔𝑔𝜎𝑔
 and  𝜃1𝑔 and 𝜃2𝑔are non-linear functions of 𝜎𝑔 and 𝜌𝑔.  

 
3 Varieties are differentiated by their country of origin. 
4 For a detailed derivation please refer to Feenstra (1994).  
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4.2 A hybrid estimator 
 

Following Soderbery (2015), we estimate equation (3) using limited information maximum 

likelihood methods. This two-stage approach uses a set of country fixed-effects in its first 

stage to isolate the country-specific factors that influence the relative quantity and value of 

trade (𝜃1𝑔 and 𝜃2𝑔 respectively). The second stage of the approach weights the fitted values 

from the first stage using the t-statistic to give greater power to more tightly identified 

estimates. Given the a-priori theory that demand elasticities should be negative and supply 

elasticities should be positive, the estimators are obtained using a grid-search technique that 

constrains the estimates to align with their theoretically feasible values. 

This estimator was shown by the Monte Carlo analysis of Soderbery (2015) to be superior to 

previous approaches which took a 2SLS approach. In samples which differ by the number of 

years used, LIML estimates outperform 2SLS estimates in terms of bias and in terms of the 

fraction of estimates that fall into the theoretically infeasible regions, prior to constraints 

being set. 

5. Data 
 

The methodology of Soderbery (2015) requires data on just two fundamental variables, trade 

values and trade quantities. Import value and quantity data is obtained from the UK customs 

authority, HMRC OTS (Her Majesty’s Revenue and Customs Overseas Trade Statistics) and 

we download these at the 8-digit commodity code level across 12 years from 2009 to 2020. 

As these CN8 commodity codes change over the period of interest, we use the HMRC 

concordance tables to aggregate this data to networks of CN8 codes that are consistent over 

the time period. A number of products at this level of aggregation are suppressed due to 

their sensitive nature and so we do not estimate elasticities covering this data.  

5.1 CN8 Network Level Analysis 
For the network level analysis, data on trade values and weights are used to calculate unit 

value indices for each observation. Following Soderbery, observations where trade value 

and weights are zero are excluded from the estimation as unit value indices cannot be 

calculated for these. This reduces the number of observations from 25,558,848 to 2,045,298, 

removing almost 92% of the observations. 

5.2 GTAP Sector Level Analysis 
For the GTAP sector level analysis, the above CN8 network level data on trade values and 

weights is used to generate data at the GTAP level of aggregation. Trade data is usually 

mapped to GTAP sectors using the standard GTAP-HS6 concordance tables. However, as 

the aggregation to networks of products that are consistent over time can lead to products 

from different GTAP sectors being grouped, networks are allocated to GTAP sectors based 

on whichever sector has the highest proportion of the networks trade. 

To ameliorate the issue of bias that occurs when using unit value indices in place of survey-

based price data, GTAP sector level price data is obtained by calculating price indices using 

network level unit values as elementary indices, rather than creating GTAP level unit value 

indices. This creates an issue that is not present in the network level analysis; where the 

network level regressions can easily drop zero trade observations with its impact isolated to 

that country-time observation in that network only, the creation of price indices requires price 

information on all networks relevant to a GTAP sector for each country-time observation to 
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ensure comparability between observations5. One approach would be to drop the sector 

level country-time observation in instances where any of the underlying networks for those 

observations are missing, leading to an approach comparable to that of the network level 

analysis with missing observations simply being dropped from the estimation stage. 

However, given the greater possibility that there would be at least one missing network for 

each country-time observation, this approach results in significant proportions of missing 

observations in the dataset.  

To avoid this issue, we employ the standard technique used by statistical agencies to fill in 

required data that is missing and impute the CN8 network price observations where 

required. To control the proportion of the data that is being imputed, we first identify the 

proportion of network-time observations that are missing from each GTAP sector and 

choose a threshold of countries to include, based on the proportion of data available6. To 

investigate the extent to which results are sensitive to the method of imputation, we then 

follow two alternative approaches.  

In the first approach, we solely use data from related observations to fill in gaps. Once a set 

of countries to be included has been chosen, we then impute within-network price data by 

chaining available observations for a country-product across years7. This allows us to fill 

missing observations where a product is temporarily missing, in line with the suggestion of 

IMF handbook of importer price indices8. For products that are missing across all of the 

years studied, we then move to impute where the price of similar goods is available. 

Specifically, when a product network is entirely non-traded with a partner across all time 

periods, the unit price for that partner is taken from the HS6 product that the majority of that 

CN8 network’s trade falls into9. For observations that are still missing, the price is then taken 

from the HS4, or HS2 product sequentially.  Finally, any remaining missing data are imputed 

using the corresponding network-year average across all available countries.  Through this 

process we ensure that all missing price observations are imputed using the most relevant 

available data. The proportion of the data that is created by each stage of this approach is 

shown in Table 1. 

In the second approach, we supplement the above process using XGBoost (Chen & 

Guestrin, 2016), a gradient boosting machine learning technique, as an extra stage of 

imputation after the price data has been chained across years.  This technique uses a 

gradient boosted trees-based regressor to estimate missing data with dummy variables 

formed from the corresponding observation’s year, network, and country.  We use grid-

search to tune the hyperparameters (number of estimators and maximum depth). The 

proportion of the data that is created by each stage of this approach is shown in Table 2. 

 

 
5 This can create serious issues of inconsistency for the estimation. For example, if a missing price was assumed 

to be 0 (i.e. is left out of the calculated price index for that sector level observation) it would bias the index 
downward and make it appear that the price fell in that period. However, given the fact that no units of that 
network’s product was sold in that observation, this would indicate an incorrect demand relationship where fewer 
units of a product are demanded as its price falls. 
6 A cap of 80% of a partner’s potential observations across products and years is used. This was chosen to 
reflect a good proportion of major trade partners. 
7 This is to say, when observations are available for some years for a given product and country, we use those 
existing unit price observations to impute data for the remaining years of that product for that country. 
8 IMF(2009) 
9 This is to say, if 60% of a particular CN8 network’s trade falls into a particular HS6 sector, that HS6 sector’s 
trade value and quantity is used to calculate a unit price which is then applied to the CN8 network for each year. 
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Table 1: Cumulative proportion of non-missing data after each stage of imputation (without machine learning stage) 

GTAP 
Sector 

Before 
Imputation 

Chaining 
Across 
Time 

HS6 HS4 HS2 
Average 
Across 

countries 

BPH 45.2% 71.0% 72.7% 91.7% 100.0% 100.0% 

B_T 38.9% 67.8% 83.8% 92.7% 99.5% 100.0% 

CHM 45.9% 71.8% 77.3% 92.7% 99.8% 100.0% 

CMT 43.1% 71.7% 84.0% 97.7% 100.0% 100.0% 

COA 50.4% 82.7% 86.4% 89.1% 100.0% 100.0% 

CTL 26.2% 47.1% 52.7% 63.8% 100.0% 100.0% 

C_B 53.3% 86.7% 86.7% 97.0% 100.0% 100.0% 

EEQ 58.7% 85.8% 88.3% 96.7% 100.0% 100.0% 

ELE 54.2% 80.9% 83.0% 91.8% 99.8% 100.0% 

ELY 83.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

FMP 57.0% 83.9% 86.8% 93.4% 98.5% 100.0% 

FRS 36.2% 66.1% 74.4% 93.1% 98.5% 100.0% 

FSH 34.5% 63.9% 69.3% 94.3% 99.4% 100.0% 

GAS 50.3% 66.7% 66.7% 96.9% 100.0% 100.0% 

GDT 41.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

GRO 44.6% 73.3% 77.6% 91.5% 100.0% 100.0% 

I_S 41.1% 74.7% 81.8% 94.7% 100.0% 100.0% 

LEA 47.6% 71.0% 76.3% 82.9% 94.2% 100.0% 

LUM 38.9% 66.1% 71.9% 92.5% 98.8% 100.0% 

MIL 47.1% 72.8% 93.7% 97.3% 100.0% 100.0% 

MVH 46.6% 71.1% 80.8% 92.1% 100.0% 100.0% 

NFM 44.8% 74.5% 77.2% 86.7% 99.1% 100.0% 

NMM 47.1% 77.2% 81.1% 87.9% 100.0% 100.0% 

OAP 32.2% 64.6% 68.6% 81.6% 98.3% 100.0% 

OCR 42.1% 68.0% 75.3% 87.9% 99.0% 100.0% 

OFD 41.8% 67.0% 81.7% 96.3% 99.7% 100.0% 

OIL 32.2% 65.2% 75.1% 75.6% 98.0% 100.0% 

OME 51.1% 80.2% 83.1% 93.2% 99.9% 100.0% 

OMF 55.7% 84.0% 86.1% 91.7% 99.0% 100.0% 

OMT 50.6% 76.7% 86.6% 97.8% 100.0% 100.0% 

OSD 44.7% 73.0% 76.9% 86.2% 99.9% 100.0% 

OTN 36.8% 66.2% 73.0% 82.5% 98.7% 100.0% 

OXT 40.0% 71.0% 72.1% 78.7% 99.8% 100.0% 

PCR 48.1% 85.9% 98.7% 100.0% 100.0% 100.0% 

PDR 59.2% 96.0% 98.7% 99.7% 100.0% 100.0% 

PFB 39.4% 81.2% 86.3% 92.9% 100.0% 100.0% 

PPP 47.7% 74.6% 77.2% 87.7% 97.9% 100.0% 

P_C 45.8% 74.4% 89.9% 96.6% 100.0% 100.0% 

RMK 61.8% 88.9% 94.8% 99.7% 100.0% 100.0% 

RPP 57.4% 82.5% 85.6% 93.8% 99.6% 100.0% 

SGR 46.5% 74.2% 85.1% 97.6% 100.0% 100.0% 

TEX 47.5% 78.0% 80.3% 93.4% 99.9% 100.0% 

VOL 41.3% 69.9% 81.9% 92.2% 100.0% 100.0% 
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V_F 47.0% 71.1% 76.3% 90.6% 100.0% 100.0% 

WAP 63.3% 88.8% 93.2% 98.5% 99.8% 100.0% 

WHT 43.7% 79.5% 83.2% 97.5% 99.1% 100.0% 

WOL 39.5% 75.2% 81.7% 86.9% 99.5% 100.0% 

 

Table 2: Cumulative proportion of non-missing data after each stage of imputation (with machine learning stage) 

GTAP 
Sector 

Before 
Imputation 

Chaining 
Across 
Time XGBoost HS6 HS4 HS2 

Average 
Across 
Countries 

BPH 45.2% 71.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

B_T 38.9% 67.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

CHM 45.9% 71.8% 99.4% 99.4% 99.5% 100.0% 100.0% 

CMT 43.1% 71.7% 94.8% 97.5% 99.9% 100.0% 100.0% 

COA 50.4% 82.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

CTL 26.2% 47.1% 92.9% 92.9% 93.8% 100.0% 100.0% 

C_B 53.3% 86.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

EEQ 58.7% 85.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

ELE 54.2% 80.9% 99.5% 99.5% 100.0% 100.0% 100.0% 

ELY 83.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

FMP 57.0% 83.9% 96.6% 97.0% 97.9% 99.2% 100.0% 

FRS 36.2% 66.1% 100.0% 100.0% 100.0% 100.0% 100.0% 

FSH 34.5% 63.9% 96.5% 97.0% 100.0% 100.0% 100.0% 

GAS 50.3% 66.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

GDT 41.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

GRO 44.6% 73.3% 100.0% 100.0% 100.0% 100.0% 100.0% 

I_S 41.1% 74.7% 100.0% 100.0% 100.0% 100.0% 100.0% 

LEA 47.6% 71.0% 98.9% 99.3% 99.5% 99.8% 100.0% 

LUM 38.9% 66.1% 98.8% 98.9% 100.0% 100.0% 100.0% 

MIL 47.1% 72.8% 97.1% 99.6% 99.8% 100.0% 100.0% 

MVH 46.6% 71.1% 97.8% 98.4% 99.3% 100.0% 100.0% 

NFM 44.8% 74.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

NMM 47.1% 77.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

OAP 32.2% 64.6% 97.1% 97.1% 98.6% 99.9% 100.0% 

OCR 42.1% 68.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

OFD 41.8% 67.0% 99.3% 99.3% 100.0% 100.0% 100.0% 

OIL 32.2% 65.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

OME 51.1% 80.2% 99.4% 99.4% 99.4% 99.9% 100.0% 

OMF 55.7% 84.0% 99.6% 99.6% 99.8% 100.0% 100.0% 

OMT 50.6% 76.7% 99.5% 99.5% 99.9% 100.0% 100.0% 

OSD 44.7% 73.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

OTN 36.8% 66.2% 93.5% 93.6% 95.8% 99.1% 100.0% 

OXT 40.0% 71.0% 98.0% 98.0% 98.0% 100.0% 100.0% 

PCR 48.1% 85.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

PDR 59.2% 96.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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PFB 39.4% 81.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

PPP 47.7% 74.6% 100.0% 100.0% 100.0% 100.0% 100.0% 

P_C 45.8% 74.4% 96.6% 98.9% 99.7% 100.0% 100.0% 

RMK 61.8% 88.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

RPP 57.4% 82.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

SGR 46.5% 74.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

TEX 47.5% 78.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

VOL 41.3% 69.9% 99.3% 99.5% 99.9% 100.0% 100.0% 

V_F 47.0% 71.1% 100.0% 100.0% 100.0% 100.0% 100.0% 

WAP 63.3% 88.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

WHT 43.7% 79.5% 100.0% 100.0% 100.0% 100.0% 100.0% 

WOL 39.5% 75.2% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

Following imputation of the elementary unit value indices, laspeyres indices are calculated to 

obtain price data at the GTAP level. When comparing prices of imported goods across 

countries, it is important to ensure that comparable baskets of goods are used. As import 

bundles might differ across certain countries, the weights for the basket of goods are 

calculated as the proportion of each network product that is imported across all partners as a 

proportion of total imports from that GTAP sector. 

Total trade value for each GTAP sector is calculated by summing the trade values of each 

network by GTAP sector and total trade quantity is obtained by deflating this value by the 

above price index. 

Given the use of imputation to fill in missing price data that underpins the sector level price 

indices, it is possible to run the sector level regressions including observations where traded 

value is zero. To further investigate the sensitivity of results, we test how elasticity estimates 

are affected by the inclusion of these zero trade observations. Removing zero trade 

observations has the benefit of removing observations where all the underlying elementary 

unit value indices are imputed and hence which are potentially of a lower reliability, whilst 

including zero trade observations has the benefit of including additional information if the 

imputation is deemed reliable. This gives four aggregate datasets that results are estimated 

on: the first imputation approach above, both with and without zeros, and the second 

imputation approach above, both with and without zeros. 
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6 Results 
 

6.1 CN8 Network level results 
 
Estimating the elasticities at the CN8 

network level results in 7,110 

estimations from 8,451 networks.10 

Whilst it is infeasible to report all 

estimated elasticities, row 1 of table 1 

contains summary statistics11. As the 

elasticities of substitution have a lower 

bound of 1 but no upper bound in 

calculation, the mean is higher than 

the median, at 6.33 compared to 2.03. 

Figure 1 illustrates the distribution of 

the network level elasticities, showing 

that almost 50% of the elasticities are 

less than 2, with a small number of 

outliers greater than 100.  

The median estimate is over 18% lower than other UK estimates of the elasticity of 

substitution using the previous estimator developed by Feenstra (1994) and Broda and 

Weinstein (2006). Thus, our results confirm Soderbery’s (2015) finding that previous 

estimates significantly overestimate the elasticity of substitution, understating the consumer 

gains from variety. Compared to the median elasticity of substitution for the US estimated by 

Soderbery (2015) of 1.86, our median is slightly higher, suggesting that the UK values 

additional varieties less than the US. This is consistent with previous estimations suggesting 

that the elasticity of substitution is higher in the US than the UK. 

Network level elasticities of substitution were assigned to GTAP sectors following the 

method outlined in section 5, with each elasticity trade weighted according to the proportion 

of trade it accounted for within a GTAP sector. Column 3 in Table 3 displays the results for 

each GTAP sector, illustrating that the elasticity of substitution varies significantly dependent 

on sector. By a significant margin, the sector with the highest elasticity of substitution is 

plant-based fibres. This appears to be driven by a specific network within the GTAP sector, 

with the median elasticity within the sector 2.03. Other sectors with high elasticities include 

oil and meat sectors. In particular, the commodity nature of the oil sector suggests this is 

intuitive, as varieties in commodity sectors are likely to matter less. 

In contrast, sectors with low elasticities of substitution, thus suggesting additional varieties 

matter more, include energy sectors such as electricity, gas and coal. This appears 

contradictory to other commodity sectors which have higher elasticity values but is likely 

influenced by the low number of networks which map into each GTAP sector, with only one 

network mapped to the electricity sector and two mapped to the gas sector. 

 
10 It was not possible to estimate an elasticity of substitution for all networks, as for some the number of country 
pairs and/or periods with positive trade values were insufficient. This is similar to Soderbery (2015), in which 
around 10% of goods did not have sufficient data to estimate an elasticity of substitution. 
11 Following Soderbery (2015), elasticities are censored at 131.05 for exposition. This is due to increases in 

already large elasticities having little significance for estimated variety gains, an issue outlined in footnote 21 in 
Broda and Weinstein (2006). Out of 7,110 estimations, 103 were censored. 

Figure 1: Histogram: network level elasticities of 
substitution 
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Table 3: Summary statistics 

 Observations Mean St dev Min Max Median 

𝜎𝑁𝑒𝑡𝑤𝑜𝑟𝑘 7,110 6.33    17.93 1.00    131.05 2.03 

𝜎𝐺𝑇𝐴𝑃 𝐼𝑚𝑝 1 41 6.27 9.90 1.04 55.01 1.82 
𝜎𝐺𝑇𝐴𝑃 𝐼𝑚𝑝  2 41 5.65 8.02 1.04 41.02 2.43 
𝜎𝐺𝑇𝐴𝑃 𝑀𝐿 1 40 8.12 20.84 1.04 131.05 1.63 
𝜎𝐺𝑇𝐴𝑃 𝑀𝐿 2 40 5.35 8.51 1.04 40.76 1.85 

 

Table 4: Estimated elasticities of substitution, GTAP sectors 

GTAP sector name Code Network 
GTAP 
Imp 1 

GTAP 
Imp 2 

GTAP 
ML 1 

GTAP 
ML 2 

Bovine cattle, sheep and goats, 
horses CTL 3.96 1.75 1.75 1.49 1.49 
Animal products n.e.c (not 
elsewhere classified) OAP 2.45   1.53 1.53 

Bovine meat products CMT 11.18 1.81 1.81 1.96 1.96 

Meat products n.e.c OMT 12.94 1.05 1.05 1.05 1.05 

Fishing FSH 2.27 1.04 1.04 1.58 1.58 

Food products n.e.c OFD 7.91 5.33 5.33 5.92 5.92 

Raw milk RMK 1.51 7.23 7.23 10.99 10.99 

Dairy products MIL 4.19     

Manufactures n.e.c OMF 7.16 1.05 1.05 2.16 2.16 

Crops n.e.c OCR 4.63 1.05 1.05 1.05 1.05 

Vegetables, fruit, nuts V_F 3.87 1.06 1.06 1.10 1.10 

Wheat WHT 6.72 8.36 15.60 8.37 15.61 

Cereal grains n.e.c GRO 7.90 1.53 1.53 1.23 1.23 

Paddy rice PDR 2.25 2.50 2.51 8.25 2.39 

Processed rice PCR 4.90 26.26 26.26 37.39 37.39 

Oil seeds OSD 3.26 1.98 1.98 9.26 9.26 

Vegetable oils and fats VOL 5.46 1.22 1.22 1.32 1.32 

Sugar cane, sugar beet C_B 1.98 12.87 8.83 13.96 7.85 

Forestry FRS 2.31 1.82 2.19 1.62 1.75 

Basic pharmaceutical products BPH 5.25 6.97 6.97 1.75 1.75 

Chemical products CHM 3.52 1.04 1.04 1.04 1.04 

Sugar SGR 8.86 1.11 1.11   

Beverages and tobacco products B_T 3.06 3.49 3.49 3.74 3.74 

Other Extraction OXT 3.27 12.30 12.30 1.46 1.46 

Mineral products n.e.c NMM 3.30 1.14 1.14 1.08 1.08 

Ferrous metals I_S 2.77 5.22 5.22 3.87 3.87 

Metals n.e.c NFM 4.52 7.30 7.30 1.64 1.64 

Coal COA 1.30 55.01 2.43 138.10 2.44 

Petroleum, coal products P_C 9.06 24.98 24.98   

Gas manufacture, distribution GDT 1.97 1.23 3.23 1.23 3.23 

Crude Oil OIL 11.03 21.17 41.02 21.19 40.76 

Gas GAS 1.95 1.36 3.25 1.41 2.26 

Electricity ELY 1.16     

Rubber and plastic products RPP 4.49 1.45 1.45 1.24 1.24 

Paper products, publishing PPP 2.52 1.20 1.20 1.60 1.60 

Manufacture of electric equipment EEQ 7.08     

Leather products LEA 3.37 1.07 1.07 1.07 1.07 
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Wearing apparel WAP 5.20 1.08 1.08 1.08 1.08 

Wood products LUM 10.09 3.58 3.58 3.66 3.66 

Metal products FMP 5.86     

Wool, silk-worm cocoons WOL 7.74 5.99 5.99 11.04 11.04 

Textiles TEX 4.87 7.44 7.44 10.41 10.41 

Plant-based fibres PFB 106.70 1.29 1.29 1.46 1.46 

Machinery and equipment n.e.c OME 4.66 1.44 1.44 1.44 1.44 

Transport equipment n.e.c OTN 10.91 7.73 7.73 8.70 8.70 

Motor vehicles and parts MVH 10.50     
Computer, electronic and optical 
products ELE 5.69 4.42 4.42 3.26 3.26 

  

6.2  GTAP Results 
 
Table 3 includes summary statistics for the four estimations run on the GTAP sector 

aggregation, where GTAP Imp refers to the dataset created using the first imputation method 

detailed above and GTAP ML refers to the dataset created using second approach. Both 

datasets were created accounting for zero trade value observations differently, with method 

1 including zero trade observations in the dataset and method 2 dropping any zero trade 

observations. Whilst removing observations with zero trade values is consistent with 

Soderbery (2015) and the estimation run at the network level, removing these observations 

potentially excludes useful information from the estimation if the price data is deemed 

reliable. 

Comparing the median estimates, Table 3 shows that the methods that exclude observations 

with zero trade result in higher medians both for the imputation and machine learning based 

datasets. All median estimates except for imputation these two sets of estimates are lower 

than previous estimates for the UK using the Feenstra/Broda & Weinstein estimator, 

supporting Soderbery’s (2015) finding that the estimator overestimates the elasticity of 

substitution.  

Columns 4-7 in Table 4 display the GTAP sector elasticity estimates across methods. We 

note that elasticities of substitution across the four methods are broadly similar across 

sectors, particularly on the pattern of sectors with the highest and lowest elasticities of 

substitution. A notable exception is coal, in which the machine learning method with zero 

trade value observations included gives a substantially higher elasticity than other methods. 

The similarity of these results gives an important insight into the approach that modellers 

should take when constructing their data. Where the differences in the aggregate and 

network level results highlight the importance of estimating elasticities at the level of 

simulation, the concern of economists must then turn to the method by which the data is 

aggregated. The lack of sensitivity that is evidenced in Tables 3 and 4 indicate that results 

are invariant to the assumptions used in aggregation process and that the choice of 

approach is therefore of less concern. In light of this, we focus our analysis on the estimates 

in column 4, namely those produced using the first imputation method and including 

observations with zero trade values in the dataset. This method is chosen as it includes a 

large set of information in the parameter estimates, as well as involving less data processing 

in the imputation process compared to the machine learning approach. 

Focusing on the column 4 estimates, sectors with the highest elasticities of substitution and 

thus indicating that additional varieties matter less, include energy sectors such as coal, 

petroleum and crude oil. This demonstrates the homogeneous nature of these commodities 
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and is consistent with findings from Broda and Weinstein (2006) that commodity goods are 

more likely to have higher elasticities of substitution.  

In contrast, sectors with the lowest elasticities of substitution include chemical products, 

fishing, other meat products and other crops. As the other crops sector includes products 

such as plants used in perfumery or pharmacy, living plants, cut flowers, and spice and 

aromatic crops, it is likely that these will have much lower levels of elasticity than in standard 

commodity crops. This hypothesis is consistent with agricultural sectors that have higher 

elasticities of substitution, which include more homogeneous crops such as wheat and sugar 

cane, alongside raw milk. 

6.3  Comparison of Results 
 
Comparing across median elasticities of substitution, the level of aggregation has a 

significant influence on the estimates, with a higher median under the network level 

estimation compared to the primary GTAP sector estimation (GTAP Imp 1). This implies 

consumers value variety less at lower levels of aggregation, likely driven by the relative ease 

at which consumers can substitute between disaggregated products compared to highly 

aggregated sectors. This finding of different elasticities of substitution depending on the level 

of aggregation supports that of Hummels (1999) and Broda and Weinstein (2006) yet 

contradicts that of Ahmad and Riker (2019), who conclude that changing the aggregation 

level does not change the estimated elasticities. 

However, using a central elasticity of substitution risks obscuring significant differences 

between sectors, as table 3 illustrates. For the 41 sectors where both network level and 

GTAP sector estimations were obtained, over 66% of sectors had higher elasticities of 

substitution under the network level estimation compared to the GTAP estimation, with 

network level estimates over 4 times higher than GTAP estimates on average. This suggests 

that estimating elasticities at the most disaggregated level available and trade weighting 

estimates to produce a GTAP sector value risks overestimating the elasticity of substitution, 

highlighting the importance of estimating model parameters at the level of aggregation used 

in modelling.  

 

6.4  CGE Simulation Results 
 

To understand the impact that each parameter estimation technique has at the macro level 

we simulate UK unilateral tariff liberalisation using a Krugman style CGE model developed 

by Thomas Rutherford and Christoph Böhringer. This structure builds on the GTAPinGAMS 

framework, extending the basic Armington trade structure to include imperfectly competitive 

sectors and increasing aggregate productivity linked to the number of firms (varieties) in an 

industry, as shown in the Dixit-Stiglitz model. The model follows that of Balistreri, Böhringer 

and Rutherford (2018) 12, with the ability to exogenously define the Dixit-Stiglitz elasticity of 

substitution between varieties, σ. Using the GTAP10A database we aggregate up to 6 

regions and 62 sectors (see Annex, table 2), remove UK defensive tariffs across imports 

from all regions and run the model using different elasticities of substitution, σ, shown in 

 
12 We follow the same model structure and assumptions as used in Balistreri, Böhringer and Rutherford (2018). 

Note that not all sectors operate under increasing returns to scale; see the Annex, table 2 for a mapping of these 
sectors. 
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table 513. As we have not been able to estimate services sectors due to data constraints, we 

assign all services sectors elasticities to the median estimate for that method.  

Table 5: CGE Simulation Results 

Estimate Value 
Overall 

Welfare Gain 

Authors network level estimates trade weighted 
to GTAP 65 sectors 

Differentiated by sector, 
ranging 1.16 – 20 

0.01% 

Authors GTAP level estimates 
Differentiated by sector, 
ranging 1.04 – 20 

0.19% 

Authors Network level estimates median 2.03 0.11% 

Authors GTAP level estimates median 1.82 0.16% 

Broda and Weinstein (2006) UK median 2.4 0.07% 

Soderbery (2018) UK median 2.98 0.04% 

Balistreri, Böhringer and Rutherford (2018)14 3 0.04% 

 

The simulations show positive welfare gains across all sets of elasticities and the lower the 

median value of sigma, the higher the welfare gains. This is intuitive because a lower value 

of sigma implies that new varieties are valued more by consumers and therefore the 

introduction of new, differentiated varieties due to UK import liberalisation provides higher 

overall welfare gains.  

We include the median estimates from alternative estimation techniques used in Soderbery 

(2018) and Broda and Weinstein (2006) for comparison. The welfare results in table 5 

corroborates the argument that the LIML estimator used in this analysis (which produces 

lower elasticity values) reduces the risk of underestimating the welfare gains from trade 

liberalisation, with higher welfare gains under the network and GTAP level medians 

compared to those from previous literature. Our results also show that the simulations which 

apply differentiated elasticities by sector result in the highest and lowest welfare gains 

across all methods, with the network level gain significantly lower than that of the GTAP 

level. This relates to the fact that estimating the variety elasticity at a more disaggregated 

level (i.e., the network level) generates higher values as consumers do not value different 

varieties as much. In doing this and trade weighting up to the 62-sector aggregation used in 

the CGE modelling, on average larger elasticities are simulated across sectors and we 

therefore risk underestimating the gains from liberalisation in the modelled sectors. 

7 Conclusion 
 

Despite evidence for new theories of trade, most CGE modelling relies on standard 

Armington theory to demonstrate the effects of trade policy. The move towards incorporating 

new trade theory in CGE modelling has likely been slow due to the lack of evidence on some 

of the key parameters governing the gains from trade in these models, such as the elasticity 

of substitution, which determines the extent to which new varieties benefit consumers. 

Thus far, literature on estimating the elasticity of substitution has primarily focused on the 

US, with approaches providing estimates for wider sets of countries, including the UK, 

suffering from substantial biases. Sectoral aggregation is also limited to CN8 products or HS 

 
13 For computational reasons, we constrain the upper bound of the elasticity at 20; this only affects two sectors. 
14 This is not estimated econometrically rather it is the default value for the elasticity recommended by the 
authors who developed the CGE model in use.  
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sectors. Given that most CGE modelling is confined to 65 sectors15, modellers are faced with 

using arbitrary parameters or parameters estimated at different levels of aggregation to their 

modelling. By estimating the elasticity of substitution between varieties across UK GTAP 

sectors, this paper develops the research underpinning the use of new trade theory 

specifications in CGE modelling. 

Our results first contribute to the recent literature arguing previous elasticity of substitution 

estimates suffer from significant upward biases, with our median elasticity estimates 

between 15% and 39% lower than previous UK estimates16. This implies that previous 

estimates significantly understated the benefits from additional product variety to the UK 

economy. 

Furthermore, our results provide evidence that the elasticity of substitution is sensitive to 

aggregation, with significant differences between the network level and GTAP estimations 

across the GTAP sectors. On average, across sectors, network level estimates are over 4 

times higher than GTAP level estimates, indicating the importance of estimating parameters 

at the level of aggregation used in CGE modelling. To demonstrate this further, we use a 

Krugman style CGE model to run a unilateral tariff liberalisation simulation for the UK. This 

results in starkly different results dependent on the estimates used, with network level 

estimates producing a welfare gain that is approximately 1/20th of the gain under the GTAP 

level estimates. Considering the importance of aggregation to estimates, we go a step 

further by investigating multiple approaches to aggregation, demonstrating that elasticity 

estimates are largely insensitive to the assumptions required when constructing GTAP level 

price data. These findings are important to modellers who are interested in conducting 

Krugman style CGE modelling of their own country, showing the necessity of using 

aggregate estimates whilst reassuring modellers that results are robust to assumptions used 

in the data cleaning process. 

In future, the research could be further developed in two directions. Firstly, although we have 

provided estimates for elasticities of substitution across GTAP sectors, there is no 

consensus in the literature on which sectors should be defined as imperfectly competitive 

and thus benefit from Krugman variety effects depending on the magnitude of the elasticity 

of substitution. Increased evidence on the classification of individual GTAP sectors would 

greatly improve the accuracy of CGE modelling in a Krugman style model structure. 

Secondly, future research could use the elasticity of substitution estimates to establish how 

product variety has contributed to welfare in the UK, similar to Broda and Weinstein (2006), 

who use elasticity estimates to calculate how growth in product variety from US imports 

impacted US welfare. This would illustrate the magnitude of the mechanism by which trade 

increases product variety and welfare in the UK, thus determining the importance of 

including such mechanisms in CGE modelling of trade policy. 

 

 

 

 

 

 
15 This also includes services sectors, which we were unable to provide estimates for due to data availability. 
16 Based on the network level estimation or our primary GTAP level estimation, GTAP Imp 1. 
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Annex 

Table 1: GTAP estimation summary statistics 
  Mean St. dev of the mean Mean of the st. dev 

GTAP Unit Without ML With ML Without ML With ML Without ML With ML 

 B_T  Price  
                          
440  

                          
449  

                      
1,378  

                      
1,416  

                      
1,045  

                      
1,070  

 B_T  Value  
          
248,721,233  

          
234,964,169  

          
298,778,355  

          
296,990,861  

            
52,269,131  

            
43,311,036  

 B_T  Weight  
            
21,879,681  

            
23,063,817  

            
34,206,990  

            
36,361,122  

            
13,037,656  

            
12,790,044  

 
BPH  Price  

                          
351  

                          
342  

                          
634  

                          
630  

                          
150  

                          
148  

 
BPH  Value  

          
760,161,615  

          
751,355,414  

       
1,110,598,3
13  

       
1,110,672,6
73  

          
244,066,254  

          
239,682,379  

 
BPH  Weight  

               
4,905,748  

               
5,229,769  

               
6,718,759  

               
7,265,325  

               
1,921,971  

               
2,042,884  

 C_B  Price  
                            
61  

                            
66  

                            
61  

                            
57  

                            
80  

                            
82  

 C_B  Value  
               
4,565,262  

               
4,575,716  

               
6,956,303  

               
6,968,026  

               
4,078,673  

               
4,085,803  

 C_B  Weight  
                  
142,060  

                  
142,647  

                  
164,979  

                  
181,277  

                  
154,188  

                  
156,637  

 
CHM  Price  

                    
10,718  

                    
10,699  

                    
27,949  

                    
27,864  

                    
24,792  

                    
24,851  

 
CHM  Value  

       
1,119,731,1
91  

       
1,030,562,2
40  

       
1,260,723,7
78  

       
1,220,410,0
08  

          
204,605,300  

          
169,789,504  

 
CHM  Weight  

               
5,882,110  

               
7,168,843  

               
7,581,729  

               
9,643,765  

               
3,197,575  

               
3,627,027  

 
CMT  Price  

                            
14  

                            
13  

                            
20  

                            
20  

                            
16  

                            
17  

 
CMT  Value  

          
129,855,071  

          
123,788,489  

          
208,675,258  

          
205,358,540  

            
22,092,931  

            
21,456,992  

 
CMT  Weight  

            
27,726,799  

            
27,138,691  

            
52,999,453  

            
51,248,388  

               
4,214,205  

               
4,525,770  

 
COA  Price  

                            
70  

                            
17  

                          
171  

                            
43  

                          
109  

                            
15  

 
COA  Value  

          
114,339,578  

          
123,725,759  

          
180,516,366  

          
195,841,154  

            
77,775,884  

            
84,659,535  

 
COA  Weight  

       
1,223,887,6
04  

          
608,384,758  

       
2,387,016,6
24  

          
939,860,358  

          
907,958,308  

          
543,229,305  

 CTL  Price  
                          
995  

                      
1,148  

                      
1,934  

                      
2,195  

                      
1,590  

                      
1,827  

 CTL  Value  
            
41,396,785  

            
35,730,313  

            
91,378,394  

            
78,147,170  

            
10,336,880  

               
8,196,586  

 CTL  Weight  
                  
221,621  

                  
170,495  

                  
501,768  

                  
387,627  

                  
138,436  

                  
104,263  
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EEQ  Price  

                      
1,443  

                      
1,448  

                      
9,000  

                      
9,095  

                      
1,369  

                      
1,376  

 
EEQ  Value  

          
352,666,452  

          
347,268,223  

          
629,951,888  

          
631,455,282  

            
80,204,769  

            
78,321,467  

 
EEQ  Weight  

            
11,111,771  

            
11,563,946  

            
50,557,415  

            
51,850,043  

               
3,541,381  

               
3,439,490  

 ELE  Price  
                          
934  

                          
936  

                      
2,502  

                      
2,522  

                      
1,489  

                      
1,500  

 ELE  Value  
          
750,074,197  

          
742,987,136  

       
1,568,671,6
66  

       
1,566,008,9
60  

          
168,295,135  

          
166,511,700  

 ELE  Weight  
               
3,043,235  

               
3,046,942  

               
8,188,616  

               
8,217,772  

                  
855,516  

                  
852,423  

 ELY  Price  
            
20,983,229  

            
20,983,229    

               
7,777,137  

               
7,777,137  

 ELY  Value  
          
251,097,959  

          
251,097,959    

            
98,480,746  

            
98,480,746  

 ELY  Weight  
                            
12  

                            
12    

                              
1  

                              
1  

 
FMP   Price  

                          
285  

                          
271  

                      
1,202  

                      
1,152  

                            
74  

                            
51  

 
FMP  Value  

          
194,152,280  

          
190,546,577  

          
316,723,926  

          
317,762,535  

            
64,230,947  

            
63,079,846  

 
FMP  Weight  

            
10,122,776  

               
9,957,542  

            
41,068,831  

            
38,170,329  

               
3,576,251  

               
3,510,702  

 FRS  Price  
                          
370  

                          
350  

                      
1,189  

                      
1,177  

                          
924  

                          
894  

 FRS  Value  
               
3,133,542  

               
2,977,028  

               
2,444,409  

               
2,393,661  

               
2,331,169  

               
2,286,372  

 FRS  Weight  
                  
900,661  

                  
745,081  

               
1,358,007  

                  
898,776  

                  
892,480  

                  
731,043  

 FSH  Price  
                      
1,093  

                      
1,156  

                      
2,136  

                          
436  

                      
1,458  

                      
1,291  

 FSH  Value  
            
58,478,074  

            
43,718,616  

            
67,999,127  

            
49,246,359  

            
23,014,000  

            
17,990,431  

 FSH  Weight  
               
2,845,162  

               
1,903,955  

               
3,759,689  

               
2,530,924  

               
2,879,544  

               
3,021,311  

 
GAS  Price  

                  
402,759  

                  
427,783  

               
1,099,688  

               
1,168,062  

               
1,395,134  

               
1,481,841  

 
GAS  Value  

          
620,205,771  

          
794,524,035  

       
1,148,379,2
11  

       
1,224,640,1
15  

          
359,095,219  

          
421,808,734  

 
GAS  Weight  

       
4,309,581,4
93  

       
3,159,082,5
99  

       
8,171,420,0
11  

       
5,678,875,4
19  

       
1,853,450,8
89  

       
1,385,786,1
04  

 
GDT  Price  

                          
382  

                          
382  

                          
636  

                          
636  

                          
405  

                          
405  

 
GDT  Value  

                    
37,034  

                    
37,034  

                    
61,872  

                    
61,872  

                    
17,156  

                    
17,156  

 
GDT  Weight  

                    
16,264  

                    
16,264  

                    
40,511  

                    
40,511  

                      
9,232  

                      
9,232  

 
GRO  Price  

                              
3  

                              
2  

                              
3  

                              
2  

                              
2  

                              
1  

 
GRO  Value  

            
19,228,834  

            
15,582,763  

            
33,162,074  

            
26,973,711  

            
10,547,141  

               
7,664,288  

 
GRO  Weight  

            
57,763,138  

            
17,703,919  

          
180,741,711  

            
37,041,401  

            
48,015,104  

            
13,542,908  

 I_S  Price  
                            
50  

                            
45  

                            
45  

                            
44  

                            
24  

                            
22  

 I_S  Value  
          
232,828,566  

          
217,460,439  

          
188,749,561  

          
182,388,249  

            
49,914,620  

            
45,526,783  

 I_S  Weight  
            
11,798,353  

            
13,761,423  

            
14,555,995  

            
18,853,395  

               
6,174,526  

               
6,772,709  

 LEA  Price  
                            
70  

                            
70  

                            
54  

                            
53  

                            
44  

                            
44  



Draft not for publication 

 LEA  Value  
          
116,032,355  

          
115,093,936  

          
276,277,674  

          
276,393,053  

            
32,826,840  

            
32,489,616  

 LEA  Weight  
               
5,807,617  

               
5,843,608  

            
22,916,628  

            
23,298,325  

               
1,550,758  

               
1,549,063  

 
LUM  Price  

                          
100  

                            
93  

                          
134  

                          
141  

                          
140  

                          
137  

 
LUM  Value  

          
165,716,545  

          
147,292,004  

          
187,820,162  

          
157,980,728  

            
47,536,464  

            
43,560,312  

 
LUM  Weight  

            
25,081,016  

            
24,978,659  

            
40,413,503  

            
38,781,336  

            
13,435,666  

            
13,219,058  

 MIL  Price  
                              
8  

                              
6  

                            
12  

                              
6  

                              
5  

                              
4  

 MIL  Value  
          
233,033,619  

          
218,606,217  

          
199,921,198  

          
194,576,070  

            
36,127,257  

            
33,417,954  

 MIL  Weight  
            
48,637,740  

            
48,176,539  

            
43,466,700  

            
44,247,902  

            
15,820,913  

            
15,131,523  

 
MVH  Price  

                          
221  

                          
162  

                          
572  

                          
449  

                          
383  

                          
246  

 
MVH  Value  

       
1,352,404,6
58  

       
1,263,499,7
80  

       
3,088,592,8
93  

       
3,046,576,0
47  

          
335,778,071  

          
310,727,238  

 
MVH  Weight  

            
69,579,069  

            
78,039,148  

          
166,205,152  

          
196,399,582  

            
42,484,682  

            
42,604,441  

 
NFM  Price  

                      
5,287  

                      
6,109  

                      
7,388  

                      
8,053  

                      
6,571  

                      
7,188  

 
NFM  Value  

       
1,089,944,2
91  

       
1,022,726,8
59  

       
1,516,536,6
19  

       
1,452,142,3
25  

          
821,460,755  

          
793,633,254  

 NFM  Weight  
                  
301,341  

                  
249,767  

                  
404,772  

                  
364,101  

                  
191,887  

                  
170,719  

 
NMM  Price  

                          
119  

                            
81  

                            
92  

                            
73  

                            
76  

                            
46  

 
NMM  Value  

          
100,770,402  

            
95,145,766  

          
145,732,186  

          
146,556,138  

            
22,919,467  

            
19,369,957  

 
NMM  Weight  

               
4,602,825  

            
10,853,291  

            
14,937,138  

            
43,993,232  

               
2,819,127  

               
3,474,915  

 
OAP  Price  

                          
558  

                          
376  

                          
700  

                          
510  

                          
729  

                          
434  

 
OAP  Value  

            
31,565,335  

            
33,724,642  

            
30,891,683  

            
28,356,723  

               
7,143,693  

               
7,864,325  

 
OAP  Weight  

                  
730,932  

                  
786,074  

               
1,597,010  

               
1,199,267  

                  
501,995  

                  
268,156  

 
OCR  Price  

                            
93  

                            
90  

                          
163  

                          
158  

                          
167  

                          
164  

 
OCR  Value  

            
55,567,000  

            
53,091,178  

          
139,928,232  

          
139,039,515  

               
8,573,697  

               
7,528,791  

 
OCR  Weight  

               
4,360,790  

               
6,865,184  

            
14,802,024  

            
27,073,723  

               
1,982,973  

               
2,377,465  

 
OFD  Price  

                            
11  

                            
11  

                            
14  

                            
14  

                              
3  

                              
3  

 
OFD  Value  

          
702,697,569  

          
668,912,412  

          
565,484,575  

          
560,890,711  

          
127,991,160  

          
123,909,779  

 
OFD  Weight  

          
121,715,104  

          
134,523,316  

          
113,774,885  

          
134,818,242  

            
37,597,895  

            
44,487,338  

 OIL  Price  
                            
21  

                              
5  

                            
91  

                            
22  

                            
26  

                              
6  

 OIL  Value  
          
928,964,484  

          
858,523,892  

       
2,023,000,2
81  

       
1,991,152,3
51  

          
601,964,590  

          
551,183,399  

 OIL  Weight  

       
2,256,626,7
52  

       
2,127,078,6
89  

       
5,275,003,5
83  

       
5,138,730,0
66  

       
1,082,854,7
21  

       
1,020,667,0
56  

 
OME  Price  

                          
242  

                          
222  

                          
187  

                          
157  

                          
165  

                          
159  
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OME  Value  

          
624,993,838  

          
602,245,966  

          
956,859,183  

          
962,003,651  

          
111,165,684  

          
105,952,787  

 
OME  Weight  

               
7,216,894  

               
7,892,817  

            
16,601,885  

            
17,528,735  

               
2,751,893  

               
3,386,877  

 
OMF  Price  

                      
9,561  

                      
9,633  

                    
29,141  

                    
29,395  

                      
8,875  

                      
8,963  

 
OMF  Value  

          
346,672,323  

          
339,501,698  

          
695,451,301  

          
697,788,024  

            
86,674,437  

            
81,846,463  

 
OMF  Weight  

                  
464,488  

                  
424,141  

               
1,523,058  

               
1,486,513  

                  
484,773  

                  
447,604  

 
OMT  Price  

                            
15  

                            
16  

                            
29  

                            
32  

                            
31  

                            
32  

 
OMT  Value  

          
325,896,040  

          
309,590,989  

          
302,440,507  

          
284,511,318  

            
51,594,846  

            
49,818,598  

 
OMT  Weight  

            
82,286,964  

            
82,626,813  

            
93,753,432  

            
94,897,396  

            
22,051,927  

            
22,146,336  

 
OSD  Price  

                            
18  

                            
12  

                            
24  

                            
19  

                            
22  

                            
17  

 
OSD  Value  

            
14,469,768  

            
14,339,822  

            
15,514,917  

            
14,592,185  

               
9,096,076  

               
8,741,180  

 
OSD  Weight  

               
7,498,235  

               
9,231,736  

            
13,118,250  

            
13,032,499  

               
6,540,204  

               
6,874,128  

 
OTN  Price  

                  
150,106  

                  
155,094  

                  
522,190  

                  
542,714  

                    
30,868  

                    
29,048  

 
OTN  Value  

          
863,270,889  

          
827,896,872  

       
1,402,898,5
49  

       
1,395,397,0
85  

          
352,528,130  

          
316,818,148  

 
OTN  Weight  

               
1,472,739  

               
1,344,535  

               
2,605,466  

               
2,673,166  

                  
611,755  

                  
495,898  

 
OXT  Price  

                  
179,962  

                  
191,396  

                  
386,935  

                  
415,763  

                    
81,075  

                    
84,726  

 
OXT  Value  

          
150,895,061  

          
128,439,801  

          
236,915,052  

          
209,648,079  

            
77,137,449  

            
71,265,252  

 
OXT  Weight  

                    
36,180  

                    
34,639  

                    
52,204  

                    
47,494  

                    
40,059  

                    
32,358  

 P_C  Price  
                          
232  

                            
17  

                          
459  

                            
21  

                          
495  

                            
15  

 P_C  Value  
          
708,555,252  

          
664,478,161  

          
707,433,430  

          
684,509,680  

          
278,881,540  

          
258,649,539  

 P_C  Weight  
          
148,989,135  

          
223,652,131  

          
198,780,375  

          
298,389,520  

          
101,155,099  

          
131,471,180  

 
PCR  Price  

                              
2  

                              
2  

                              
1  

                              
1  

                              
1  

                              
1  

 
PCR  Value  

            
17,187,226  

            
16,186,984  

            
26,136,268  

            
25,313,040  

               
4,942,571  

               
4,540,656  

 
PCR  Weight  

            
21,578,461  

            
20,782,756  

            
38,183,439  

            
37,116,193  

               
7,592,193  

               
7,403,314  

 
PDR  Price  

                              
2  

                              
3  

                              
2  

                              
2  

                              
2  

                              
3  

 
PDR  Value  

                  
555,705  

                  
555,483  

                  
798,188  

                  
798,338  

                  
395,027  

                  
395,696  

 
PDR  Weight  

                  
427,367  

                  
420,591  

                  
492,595  

                  
496,075  

                  
307,885  

                  
306,941  

 PFB  Price  
                            
73  

                            
71  

                            
88  

                            
96  

                            
51  

                            
45  

 PFB  Value  
               
1,383,913  

               
1,121,981  

               
1,125,537  

                  
815,618  

                  
777,383  

                  
707,729  

 PFB  Weight  
                  
110,038  

                    
82,132  

                  
149,692  

                  
100,864  

                    
55,071  

                    
45,755  

 PPP  Price  
                          
105  

                            
93  

                          
260  

                          
239  

                          
122  

                          
106  

 PPP  Value  
          
199,776,705  

          
187,801,608  

          
262,716,302  

          
262,402,172  

            
33,305,287  

            
29,513,353  

 PPP  Weight  
            
15,967,169  

            
17,083,552  

            
31,176,955  

            
33,650,018  

               
8,802,377  

               
9,614,480  
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RMK  Price  

                            
13  

                            
11  

                            
20  

                            
20  

                              
6  

                              
4  

 
RMK  Value  

            
10,177,771  

            
10,048,032  

            
18,933,230  

            
18,937,829  

               
4,334,179  

               
4,245,997  

 
RMK  Weight  

               
4,888,067  

               
5,072,538  

            
11,711,674  

            
12,423,187  

               
2,780,239  

               
2,616,839  

 
RPP  Price  

                            
49  

                            
48  

                          
103  

                          
103  

                            
69  

                            
69  

 
RPP  Value  

          
241,131,692  

          
236,888,481  

          
400,364,392  

          
401,100,367  

            
49,915,711  

            
48,409,697  

 
RPP  Weight  

            
26,942,622  

            
29,419,550  

            
74,260,541  

            
81,720,935  

            
10,182,993  

            
10,814,912  

 
SGR  Price  

                            
18  

                            
18  

                            
38  

                            
39  

                            
12  

                            
12  

 
SGR  Value  

            
21,645,679  

            
20,870,692  

            
40,227,157  

            
39,936,462  

               
5,831,732  

               
5,558,621  

 
SGR  Weight  

            
14,424,321  

            
15,085,271  

            
26,968,624  

            
29,238,245  

               
7,141,499  

               
6,973,368  

 TEX  Price  
                            
57  

                            
56  

                            
62  

                            
60  

                            
39  

                            
38  

 TEX  Value  
          
208,616,161  

          
204,448,695  

          
308,187,963  

          
308,549,689  

            
67,201,514  

            
66,455,602  

 TEX  Weight  
            
16,701,876  

            
16,628,920  

            
42,788,379  

            
43,473,923  

               
4,951,637  

               
4,813,896  

 V_F  Price  
                              
5  

                              
6  

                              
4  

                              
5  

                              
4  

                              
4  

 V_F  Value  
          
188,674,755  

          
174,510,123  

          
265,073,664  

          
261,543,224  

            
38,497,137  

            
35,537,277  

 V_F  Weight  
            
70,333,815  

            
65,852,340  

          
109,865,367  

          
117,595,249  

            
20,633,150  

            
18,046,815  

 VOL  Price  
                            
18  

                            
19  

                            
42  

                            
45  

                            
14  

                            
14  

 VOL  Value  
          
114,321,387  

          
104,012,815  

          
128,827,912  

          
124,859,475  

            
24,491,741  

            
22,996,182  

 VOL  Weight  
            
37,674,530  

            
37,153,166  

            
68,422,132  

            
71,359,168  

               
9,939,606  

               
9,813,682  

 
WAP  Price  

                            
84  

                            
84  

                            
75  

                            
74  

                            
61  

                            
61  

 
WAP  Value  

          
252,748,124  

          
250,731,911  

          
534,271,865  

          
534,227,383  

            
60,946,198  

            
60,285,468  

 
WAP  Weight  

            
11,150,797  

            
11,105,065  

            
35,827,680  

            
35,877,977  

               
3,186,449  

               
3,169,163  

 
WHT  Price  

                              
3  

                              
3  

                              
6  

                              
6  

                              
2  

                              
2  

 
WHT  Value  

            
12,423,402  

            
11,620,632  

            
22,357,499  

            
21,276,868  

               
7,616,607  

               
7,047,161  

 
WHT  Weight  

            
39,310,614  

            
43,005,693  

            
77,751,613  

            
85,072,097  

            
26,898,226  

            
29,696,629  

 
WOL  Price  

                          
217  

                          
212  

                          
456  

                          
442  

                          
165  

                          
158  

 
WOL  Value  

            
12,531,679  

            
11,583,910  

            
12,934,598  

            
12,808,327  

               
3,779,884  

               
3,309,239  

 
WOL  Weight  

                  
287,434  

                  
269,516  

                  
387,019  

                  
378,602  

                    
93,321  

                    
80,332  

 

Table 2: CGE simulation regional aggregation 

Country Code Country Name 

TPP 9 CPTPP members 

ROW Rest of World 

CHN China 

USA United States 

REU EU 27 



Draft not for publication 

GBR Great Britain  

 

Table 3: CGE simulation Sectoral and IRTS/CRTS mapping 

Sector code Sector Name IRTS or CRTS 

ric Rice CRTS 

wht Wheat CRTS 

gro Cereal grains nec CRTS 

v_f Vegetables, fruit, nuts CRTS 

osd Oil seeds CRTS 

c_b Sugar cane, sugar beet CRTS 

pfb Plant-based fibers CRTS 

ocr Crops nec CRTS 

ctl 
Bovine cattle, sheep and 
goats, horses 

CRTS 

oap Animal products nec CRTS 

rmk Raw milk CRTS 

wol Wool, silk-worm cocoons CRTS 

frs Forestry CRTS 

fsh Fishing CRTS 

col Coal CRTS 

crg Crude oil and gas CRTS 

oxt 
Other Extraction (formerly 
omn Minerals nec) 

CRTS 

cmt Bovine meat products CRTS 

omt Meat products nec CRTS 

vol Vegetable oils and fats CRTS 

mil Dairy products CRTS 

sgr Sugar CRTS 

ofd Food products nec IRTS 

b_t 
Beverages and tobacco 
products 

IRTS 

tex Textiles IRTS 

wap Wearing apparel IRTS 

lea Leather products IRTS 

lum Wood products IRTS 

ppp Paper products, publishing IRTS 

oil Oil CRTS 

chm Chemical products IRTS 

bph 
Basic pharmaceutical 
products 

IRTS 

rpp Rubber and plastic products IRTS 

nmm Mineral products nec IRTS 

i_s Ferrous metals IRTS 

nfm Metals nec IRTS 

fmp Metal products IRTS 

CEO 
Computer, electronic and 
optical products 

IRTS 

eeq 
Manufacture of electric 
equipment 

IRTS 

ome 
Machinery and equipment 
nec 

IRTS 

mvh Motor vehicles and parts IRTS 

otn Transport equipment nec IRTS 
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omf Manufactures nec IRTS 

ele Electricity CRTS 

gdt Gas manufacture, distribution CRTS 

ser Water and dwellings CRTS 

cns Construction IRTS 

trd Wholesale and Retail Trade IRTS 

afs 
Accommodation, Food and 
service activities 

IRTS 

otp Transport nec CRTS 

wtp Water transport CRTS 

atp Air transport CRTS 

whs 
Warehousing and support 
activities for transportation 

CRTS 

cmn Communication IRTS 

ofi Financial services nec IRTS 

ins Insurance (formerly isr) IRTS 

rsa Real estate activities IRTS 

obs Business services nec IRTS 

ros 
Recreational and other 
services 

IRTS 

osg 
Public Administration and 
defense 

CRTS 

edu Education CRTS 

hht 
Human health and social 
work activities 

CRTS 
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