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Abstract

Use of modern trade specifications which account for new trade theory and gains from
increasing variety, such as Krugman (1980) and Melitz (2003), remains in its infancy in CGE
modelling. Central to determining the gains from new product varieties and the impacts on
welfare, trade patterns and factor returns is the elasticity of substitution between varieties.
Thus, this paper develops the research underpinning these trade specifications by assessing
a range of approaches for estimating substitution elasticities at the GTAP sector level.

Soderbery (2015) showed that previous estimates of the elasticity of substitution were
significantly biased in the US context. We apply this approach to produce estimates for the
UK, extending it to provide estimates at the product and GTAP sector level. Our results
corroborate Soderbery’s (2015), with our estimates between 15% and 39% lower than
previous UK estimates, suggesting they understated the gains from product variety in the
UK. Investigating the importance of aggregation, we find that estimates are sensitive to the
level of aggregation methodology, with product level estimates significantly higher than their
GTAP counterparts. Using CGE simulations, we demonstrate the importance of estimating
parameters at the same level of aggregation as modelling is carried out on.

1. Introduction

As the number of free trade agreements has increased in recent decades, computable
general equilibrium (CGE) models have become a central tool in analysing their economy-
wide impacts (Hertel et al, 2007). Standard CGE modelling in trade relies on the Armington
assumption, whereby products are imperfect substitutes depending on their origin. In this
setup, trade policy changes result in efficiency gains from reallocation of factors across
sectors and terms-of trade changes. However, new trade theory provides additional avenues
for gains from trade in the form of scale economies and a greater number of varieties
through an increase in imports. Beyond this, Melitz (2003) has also emphasised the
importance of firm heterogeneity in capturing gains from trade in such a context.

Whilst the international trade literature has found substantial evidence for these new
channels of gains from trade, the question on whether and how to include imperfect
competition, scale economies and firm heterogeneity in CGE models remains unanswered in
academic circles (Nilsson, 2019). Part of the reluctance to move to incorporating these
features in CGE modelling may stem from the lack of empirical evidence on some of the key
parameters governing the gains from trade in these models, particularly on elasticities, which
Hillberry and Hummels (2013) and Nilsson (2019) emphasise are central to the results of
CGE modelling on welfare, trade patterns and factor returns.

This paper seeks to develop the research underpinning trade specifications incorporating
new trade theory and gains from increasing variety by estimating one of the key elasticities
in such models, the elasticity of substitution between varieties. Using a constant elasticity of
substitution (CES) utility function, Feenstra (1994) demonstrates this parameter is central to

! The views expressed in this paper are the authors’ and do not represent the views of the UK Department for
International Trade.
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determining the gains from new product varieties through trade. With a high elasticity of
substitution among varieties, the potential for gains from variety are small, yet if the elasticity
of substitution among varieties is low, the potential for gains from variety are high,
demonstrating the importance of using frameworks that allow for variety gains in CGE
modelling of trade policy.

Previous studies estimating the elasticity of substitution rely on restricting identifying
assumptions, as in the case of Romer (1994) and Hummels (1999), or result in an estimator
with substantial biases, such as in Broda and Weinstein (2006). More recent research from
Soderbery (2015) proposes an alternative estimator to reduce the biases in Broda and
Weinstein (2006), but only applies this to data from the US. As these parameters can differ
substantially by country, we apply the Soderbery (2015) method to sectors within the UK
economy. Previous literature has confined estimates to HS6 or CN8 products. Given the
frequency with which the GTAP database is used in CGE modelling, we extend the previous
research to provide results at the GTAP sector level, providing a valuable contribution in
improving the foundations of CGE models in new trade theory and thus the robustness of the
results.

Our findings support Soderbery’s (2015) conclusion that the Broda and Weinstein (2006)
estimators produce biased elasticities, with our median elasticities between 15% and 39%
lower than previous UK estimates. This suggests previous estimates significantly
understated the benefits from additional product variety to the UK economy. Our results also
provide evidence that the elasticity of substitution is sensitive to aggregation, with significant
differences between the network level and GTAP estimations across the 47 GTAP sectors.
This finding is important given the conclusions of McDaniel & Balistreri (2003) that elasticities
should be estimated at a level close to that of simulation and demonstrates the importance
of estimating parameters at the GTAP level used in CGE modelling. Using a Krugman style
CGE model, we simulate unilateral tariff liberalisation for the UK, comparing across different
sets of elasticities to highlight the differences in overall welfare. The stark differences in the
results between the sets of elasticities estimated at different aggregations reinforces our
argument that aggregation matters. Consequently, if modellers aim to run simulations based
on New Trade Theory in a CGE framework, they should aim to estimate a set of elasticities
at same aggregation as their model, in this instance, the 65 GTAP sectors.

The structure of the paper will be as follows: section 2 outlines the key theoretical and
empirical literature, section 3 describes the methodology, section 4 explains the estimation
procedure applied, section 5 gives a description of the dataset used for both the CN8
network and GTAP sector level analysis, and section 6 outlines and compares the key
results from both analyses, before section 7 concludes.

2. Literature review

2.1 Monopolistic Competition and New Trade Theory

The movement towards trade models of monopolistic competition and increasing returns to
scale, first formally introduced by Dixit and Stiglitz (1977) and Krugman (1980), marked an
important shift away from perfectly competitive and constant returns models toward more
realistic production processes. Monopolistic competition accounts for firms who enjoy some
market power, as there are many firms in a market creating different varieties of the same
good. These markets create intra-industry trade between countries due to “love of variety”
demand functions, and therefore better explain the pattern of world trade which has occurred
over recent decades.
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Dixit and Stiglitz (1977) argue that a love for variety is already inherent in the assumption of
monotonic preferences present in a typical CES utility function. It is widely agreed that
increasing returns are apparent in production, and therefore firms cannot sustain pricing
equal to marginal cost. Firms thus price a mark-up above their marginal cost to cover the
fixed cost to enter the market; however, as entry is free, there are zero profits in equilibrium.
As each firm operates under increasing returns, it does not make sense to produce identical
goods across firms, but instead specialise in a distinct variety, creating some degree of
market power. Firms are assumed to have the same cost structures (fixed and variable) and
thus price similarly. It can be shown that the larger the population, the larger the number of
available varieties and consumers always prefer an average of two products to extremes of
either. Therefore, as shown in Dixit and Stiglitz (1977), utility is strictly increasing in the
number of varieties within an industry and even more so with a lower elasticity of substitution
between varieties, o.

Krugman (1980) bases his model of international trade and monopolistic competition on Dixit
and Stiglitz (1977). He sheds light on observed intra-industry trade between similar countries
and the positive correlation between the size of exports and domestic markets. He builds on
ideas from Balassa (1967) and Grubel (1967) to present a formal analysis of trade in the
context of imperfect competition, differentiated products and economies of scale. In contrast
to Armington (1969), firms incur fixed costs to produce and the total number of varieties is no
longer exogenously set. In this context, Krugman (1980) identifies a gain from trade through
a ‘love of variety’. Consumers who are exposed to the same goods from abroad, though
differentiated products, will shift purchases away from their autarky basket to one with
greater variety. This utility maximising tendency produces the same outcomes as Armington
(1969), cross-border trade of the same good; however, instead of assuming one
representative good per industry there exists a continuum of differentiated goods.

Krugman (1980) illustrates how economies of scale rewards industries that reside within the
nation with the greatest demand for that good: an industry’s competitiveness depends on
domestic demand for the good under autarky. Increased domestic demand allows firms to
benefit from economies of scale and increasing productivity, thus gaining a substantial share
of global trade of the good once economies open to trade. The key parameter affecting gains
from trade in Dixit and Stiglitz (1977) and Krugman (1980) is the elasticity of substitution
between varieties within an industry, o. It is therefore imperative for users of modern multi-
sector multi region trade models, dependant on these micro foundations, to estimate such
parameters robustly.

2.2 Empirical Literature

Feenstra (1994) argues that models which allow for product differentiation and whose results
are reliant on increasing varieties as a result of trade lack empirically founded elasticities of
substitution. He derives the CES model and importantly includes the impact of new varieties
on the price index. In the conventional price index, all new product varieties are homogenous
and perfect substitutes for existing ones and so there is no price fall from additional varieties.
This highlights the shortcomings of Armington-based trade specifications in CGE models,
which do not recognise this channel of impact in international trade and only differentiate
imports by country, not firm. Using a panel of US import data from various partners across
six manufactured products between 1964 and 1987, he estimates the elasticity of
substitution between varieties using a supply and demand equilibrium. His findings show that
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correcting the price index for increasing varieties reduces the income elasticity of import
demand, especially in developing countries.

Hummels (1999) estimates elasticities of substitution as part of research analysing barriers
to trade. He takes a gravity approach to estimation, estimating the trade-distance
relationship to infer an elasticity of substitution. Using data from the US and Latin America, a
one sector model produces estimates ranging from 2-5.26, significantly lower than the
estimates from the multi-sector model, where estimates range from 3-8. The results also
suggest that the level of aggregation affects the elasticity, with a narrower definition of a
good resulting in a higher substitution elasticity.

Broda and Weinstein (2006) take a different approach to estimating the elasticity of
substitution in research on the impact of variety on welfare. They argue that Hummels’
(1999) approach relies on extreme identifying assumptions, such as trade costs being
completely passed on to consumers and changes in trade costs being unaffected by
changes in import demand. Thus, they instead present a model of import demand and
supply equations to estimate the elasticity of substitution, adapting a method based on
Feenstra (1994) that provides estimates robust to simultaneity bias and measurement error.
Using US data from 1972-2001, Broda and Weinstein (2006) estimate almost 30,000
elasticities at the lowest level of disaggregation available. Similar to Hummels (1999), they
find varieties are increasingly substitutable at lower levels of disaggregation, with an average
elasticity of 12 for 8-digit goods compared to 6 at the 3-digit good level. They also find the
elasticity of substitution has decreased over time, implying increasing differentiation among
traded goods. They use their elasticity of substitution estimates to demonstrate how the 4-
fold increase in global varieties over the period substantially increased US welfare,
confirming the importance of using the Dixit-Stiglitz framework in international trade.

In a subsequent paper, Broda et al (2006) use the same method to estimate elasticities of
substitution for approximately 200 3-digit sectors across 73 countries. They find that the
typical country has a median elasticity of 3.4 and mean elasticity of 6.8, with the latter higher
as the elasticity has a lower bound of 1. For the UK, they estimate a median elasticity of
substitution of 2.4, indicating that the UK tends to value variety more than the typical country.

Soderbery (2015) argues that the structural estimator developed by Feenstra (1994) and
adapted by Broda and Weinstein (2006) to estimate the elasticity of substitution has
substantial biases, particularly in small samples. Instead, Soderbery (2015) proposes using
a hybrid estimator based on limited information maximum likelihood (LIML). Using Monte
Carlo analysis, Soderbery (2015) shows that the standard estimator is biased because it
overweights outlier observations, a problem reduced using the hybrid estimator. Converting
to the hybrid estimator reduces the median elasticity of substitution for HS8 products
imported by the US from 1993 to 2007 by 35%. As a result, Soderbery (2015) shows the
bias in the standard estimator underestimates consumer gains from variety by a factor of 6
over the period.

However, in a subsequent paper using data on all global trade flows at HS4 level from 1991
to 2007, Soderbery (2018) uses an approach similar to Broda and Weinstein (2006) because
of the computationally intensive nature of LIML. The results indicate a global median
elasticity of substitution of 2.88, compared to a median of 2.98 for the UK, slightly higher
than the median estimate in the Broda et al (2006) study.

In a recent study, Ahmad and Riker (2019) note that the method of estimating elasticities of
substitution using a system of demand and supply equations developed by Feenstra (1994)
and adapted by Broda and Weinstein (2006) and Soderbery (2015) relies on the assumption
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of uncorrelated supply and demand errors, alongside the small sample biases identified by
Soderbery (2015). Thus, they take a different approach to estimation, relying on the
structural relationship between the price-cost mark-up and the elasticity of substitution in
industries operating under monopolistic competition. Using US manufacturing data from
2012, they compute elasticities of substitution at differing levels of aggregation. At the 3-digit
industry level, their estimates range from 1.8 to 7, with a median elasticity of 2.6. They also
find that elasticity estimates are similar at different levels of industry aggregation, in contrast
to Broda and Weinstein (2006) who find that elasticity estimates depend on the level of
aggregation specified.

Overall, whilst the empirical literature has developed to address substantial biases in early
estimates, it is limited in country and aggregation scope, particularly in relation to the GTAP
sector aggregation widely used in CGE modelling.

3. Methodology

Our contribution is to apply the approach of Soderbery (2015) to data for the UK economy.
This allows us to run Krugman style trade models of the UK economy and to assess how the
results that Soderbery (2015) finds for the US are robust to changes in country sample.

This approach works by deriving theoretical estimation equations from the monopolistic
competition framework of Krugman (1979). In this, a constant elasticity of substitution utility
function is used to specify preferences across a variety of products produced by different
exporters. This leads to the level of competition between varieties in each sector being
determined by the elasticity of substitution between these products; in cases where varieties
are perfectly substitutable, competition is perfect, whilst decreasing the elasticity of
substitution introduces degrees of imperfection in that competition.

The innovation of Soderbery (2015) is to show, both theoretically and empirically, that earlier
approaches to estimating this elasticity parameter (such as Feenstra (2004) and Broda and
Weinstein (2006)) suffer from bias and proposes an alternative estimation procedure based
on limited information maximum likelihood methods. This is applied to data for the United
States? to estimate substitution elasticities for a large range of imported products. Our
research examines how the substitution elasticities for the US and the UK differ, offering
important lessons on the extent to which researchers need to replicate the analysis for their
countries of interest to ensure robust inference.

Furthermore, Broda and Weinstein (2006) raise important points about the previous literature
on variety. The fact that previous studies have only estimated one or two elasticities of
substitution, and that “all varieties enter into the utility function with a common elasticity”
leads to three key issues. Firstly, that it leads to the assumption that consumers value
variety the same for all types of goods, secondly, that they value variety the same across
different goods as they do across different countries exporting the same good and thirdly,
that the aggregation bias can lead to meaningless estimates as it averages the impact of a
price change across different countries and commodities. Therefore, our research
endeavours to estimate and compare the substitution elasticities at two levels of
aggregation, the 8-digit commaodity code level and the GTAP 65 sector level. As Broda and
Weinstein (2006) have shown, the level of aggregation is important, and that intuitively the
more disaggregate the data, the greater the substitution elasticity. GTAP is the level of

2 Due to data constraints in this type of analysis firm level data on different varieties of products is not available,
so a good is defined as the 8-digit product and a variety of that good is defined as the origin of that 8-digit
product, also known as the Armington assumption (1969).



Draft not for publication

aggregation which will be used to simulate overall welfare impacts using a CGE model and
because these models rely so heavily on these trade elasticities, it is important to shed light
on the differences between pre and post estimation aggregation.

4. Estimation procedure
4.1 Deriving a theoretically consistent form for the estimation equation

The theoretical framework used to derive the supply and demand equations for estimation
follow Feenstra (1994), Broda and Weinstein (2006) and Soderbery (2015). They set up a
standard model of trade, maximising a consumer’s CES utility function and deriving a
demand equation. On the supply side, firms who export operate under monopolistic
competition and have upward sloping export supply curves. Our focus in this paper is on the
demand side elasticities which reflect the extent to which consumers prefers more variety in
imported goods®. Below we present an extremely reduced-form derivation of the key
equations as we want to avoid repetition of the work already published in the literature, for
the full detail please refer to Feenstra (1994). To estimate the demand and supply
elasticities, quantities are converted into their respective market shares for variety v of good
g in time t*. This produces two structural equations and before combining both, we follow
Feenstra (1994) to eliminate time and product specific unobservables present in supply and
demand. To remove the good specific shocks, he presents both equations in logs and takes
first differences. He then differences again, to remove time-specific unobservables, using a
reference variety k (i.e. from a specific country). This brings us to equations (1) and (2) from
Soderbury (2015):

Aklnsgvt = Alnsgy — Alnsgy, = —(ag - 1)Ak ln(pgvt) + ngt (2)
w
A¥Inpgpe = Alnpgye — Alnpge = (ﬁ) A¥In(sgpe) + 6t (2)

Where €, = A¥In(b,,,;) and 6%, = A¥ (M)

gvt ( gvt) gvt 1+wg

Where o is the elasticity of substitution to be estimated, Egvt and 5§vt are unobservable
demand and supply shocks. They include n,4,;, a random technology factor, w, > 0 the
inverse export supply elasticity and by, a random taste parameter.

Feenstra (1994) lastly takes the above system of equations, multiplies the demand and
supply shocks together, scales and rearranges to produce equation (3) below to be
estimated:

ngt = glgxlgvt + 92gX29vt + Ugye 3)
Where:
— (Ak 2 — (Ak 2 — (A k Eguegue
Your = (A lnpgvt) Xigot = (A lnsgvt) Xogut = (A lnsgvt)(A lnpgvt),ugvt = Tpg)’
pg = ©g(%~1) and 6,4 and 6,4are non-linear functions of g, and p,.

1+a)gag

3 Varieties are differentiated by their country of origin.
4 For a detailed derivation please refer to Feenstra (1994).
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4.2 A hybrid estimator

Following Soderbery (2015), we estimate equation (3) using limited information maximum
likelihood methods. This two-stage approach uses a set of country fixed-effects in its first
stage to isolate the country-specific factors that influence the relative quantity and value of
trade (6,4 and 6,4 respectively). The second stage of the approach weights the fitted values
from the first stage using the t-statistic to give greater power to more tightly identified
estimates. Given the a-priori theory that demand elasticities should be negative and supply
elasticities should be positive, the estimators are obtained using a grid-search technique that
constrains the estimates to align with their theoretically feasible values.

This estimator was shown by the Monte Carlo analysis of Soderbery (2015) to be superior to
previous approaches which took a 2SLS approach. In samples which differ by the number of
years used, LIML estimates outperform 2SLS estimates in terms of bias and in terms of the
fraction of estimates that fall into the theoretically infeasible regions, prior to constraints
being set.

5. Data

The methodology of Soderbery (2015) requires data on just two fundamental variables, trade
values and trade quantities. Import value and quantity data is obtained from the UK customs
authority, HMRC OTS (Her Majesty’s Revenue and Customs Overseas Trade Statistics) and
we download these at the 8-digit commadity code level across 12 years from 2009 to 2020.
As these CN8 commodity codes change over the period of interest, we use the HMRC
concordance tables to aggregate this data to networks of CN8 codes that are consistent over
the time period. A number of products at this level of aggregation are suppressed due to
their sensitive nature and so we do not estimate elasticities covering this data.

5.1 CN8 Network Level Analysis

For the network level analysis, data on trade values and weights are used to calculate unit
value indices for each observation. Following Soderbery, observations where trade value
and weights are zero are excluded from the estimation as unit value indices cannot be
calculated for these. This reduces the number of observations from 25,558,848 to 2,045,298,
removing almost 92% of the observations.

5.2 GTAP Sector Level Analysis

For the GTAP sector level analysis, the above CN8 network level data on trade values and
weights is used to generate data at the GTAP level of aggregation. Trade data is usually
mapped to GTAP sectors using the standard GTAP-HS6 concordance tables. However, as
the aggregation to networks of products that are consistent over time can lead to products
from different GTAP sectors being grouped, networks are allocated to GTAP sectors based
on whichever sector has the highest proportion of the networks trade.

To ameliorate the issue of bias that occurs when using unit value indices in place of survey-
based price data, GTAP sector level price data is obtained by calculating price indices using
network level unit values as elementary indices, rather than creating GTAP level unit value
indices. This creates an issue that is not present in the network level analysis; where the
network level regressions can easily drop zero trade observations with its impact isolated to
that country-time observation in that network only, the creation of price indices requires price
information on all networks relevant to a GTAP sector for each country-time observation to
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ensure comparability between observations®. One approach would be to drop the sector
level country-time observation in instances where any of the underlying networks for those
observations are missing, leading to an approach comparable to that of the network level
analysis with missing observations simply being dropped from the estimation stage.
However, given the greater possibility that there would be at least one missing network for
each country-time observation, this approach results in significant proportions of missing
observations in the dataset.

To avoid this issue, we employ the standard technique used by statistical agencies to fill in
required data that is missing and impute the CN8 network price observations where
required. To control the proportion of the data that is being imputed, we first identify the
proportion of network-time observations that are missing from each GTAP sector and
choose a threshold of countries to include, based on the proportion of data available®. To
investigate the extent to which results are sensitive to the method of imputation, we then
follow two alternative approaches.

In the first approach, we solely use data from related observations to fill in gaps. Once a set
of countries to be included has been chosen, we then impute within-network price data by
chaining available observations for a country-product across years’. This allows us to fill
missing observations where a product is temporarily missing, in line with the suggestion of
IMF handbook of importer price indices®. For products that are missing across all of the
years studied, we then move to impute where the price of similar goods is available.
Specifically, when a product network is entirely non-traded with a partner across all time
periods, the unit price for that partner is taken from the HS6 product that the majority of that
CNB8 network’s trade falls into®. For observations that are still missing, the price is then taken
from the HS4, or HS2 product sequentially. Finally, any remaining missing data are imputed
using the corresponding network-year average across all available countries. Through this
process we ensure that all missing price observations are imputed using the most relevant
available data. The proportion of the data that is created by each stage of this approach is
shown in Table 1.

In the second approach, we supplement the above process using XGBoost (Chen &
Guestrin, 2016), a gradient boosting machine learning technique, as an extra stage of
imputation after the price data has been chained across years. This technique uses a
gradient boosted trees-based regressor to estimate missing data with dummy variables
formed from the corresponding observation’s year, network, and country. We use grid-
search to tune the hyperparameters (number of estimators and maximum depth). The
proportion of the data that is created by each stage of this approach is shown in Table 2.

5 This can create serious issues of inconsistency for the estimation. For example, if a missing price was assumed
to be O (i.e. is left out of the calculated price index for that sector level observation) it would bias the index
downward and make it appear that the price fell in that period. However, given the fact that no units of that
network’s product was sold in that observation, this would indicate an incorrect demand relationship where fewer
units of a product are demanded as its price falls.

6 A cap of 80% of a partner’s potential observations across products and years is used. This was chosen to

reflect a good proportion of major trade partners.

7 This is to say, when observations are available for some years for a given product and country, we use those
existing unit price observations to impute data for the remaining years of that product for that country.

8 IMF(2009)

9 This is to say, if 60% of a particular CN8 network’s trade falls into a particular HS6 sector, that HS6 sector’s
trade value and quantity is used to calculate a unit price which is then applied to the CN8 network for each year.
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Table 1: Cumulative proportion of non-missing data after each stage of imputation (without machine learning stage)

Chainin Average
Ning Im%igieon Ac_rossg HS6 HS4 HS2 Acros?s
Time countries

BPH 45.2% 71.0% 72.7% 91.7% 100.0% 100.0%
BT 38.9% 67.8% 83.8% 92.7% 99.5% 100.0%
CHM 45.9% 71.8% 77.3% 92.7% 99.8% 100.0%
CMT 43.1% 71.7% 84.0% 97.7% 100.0% 100.0%
COA 50.4% 82.7% 86.4% 89.1% 100.0% 100.0%
CTL 26.2% 47.1% 52.7% 63.8% 100.0% 100.0%
CB 53.3% 86.7% 86.7% 97.0% 100.0% 100.0%
EEQ 58.7% 85.8% 88.3% 96.7% 100.0% 100.0%
ELE 54.2% 80.9% 83.0% 91.8% 99.8% 100.0%
ELY 83.3% 100.0% 100.0% 100.0% 100.0% 100.0%
EMP 57.0% 83.9% 86.8% 93.4% 98.5% 100.0%
FRS 36.2% 66.1% 74.4% 93.1% 98.5% 100.0%
ESH 34.5% 63.9% 69.3% 94.3% 99.4% 100.0%
GAS 50.3% 66.7% 66.7% 96.9% 100.0% 100.0%
GDT 41.7% 100.0% 100.0% 100.0% 100.0% 100.0%
GRO 44.6% 73.3% 77.6% 91.5% 100.0% 100.0%
IS 41.1% 74.7% 81.8% 94.7% 100.0% 100.0%
LEA 47.6% 71.0% 76.3% 82.9% 94.2% 100.0%
LUM 38.9% 66.1% 71.9% 92.5% 98.8% 100.0%
MIL 47.1% 72.8% 93.7% 97.3% 100.0% 100.0%
MVH 46.6% 71.1% 80.8% 92.1% 100.0% 100.0%
NEM 44.8% 74.5% 77.2% 86.7% 99.1% 100.0%
NMM 47.1% 77.2% 81.1% 87.9% 100.0% 100.0%
OAP 32.2% 64.6% 68.6% 81.6% 98.3% 100.0%
OCR 42.1% 68.0% 75.3% 87.9% 99.0% 100.0%
OFD 41.8% 67.0% 81.7% 96.3% 99.7% 100.0%
OlIL 32.2% 65.2% 75.1% 75.6% 98.0% 100.0%
OME 51.1% 80.2% 83.1% 93.2% 99.9% 100.0%
OMF 55.7% 84.0% 86.1% 91.7% 99.0% 100.0%
OMT 50.6% 76.7% 86.6% 97.8% 100.0% 100.0%
OSD 44. 7% 73.0% 76.9% 86.2% 99.9% 100.0%
OTN 36.8% 66.2% 73.0% 82.5% 98.7% 100.0%
OXT 40.0% 71.0% 72.1% 78.7% 99.8% 100.0%
PCR 48.1% 85.9% 98.7% 100.0% 100.0% 100.0%
PDR 59.2% 96.0% 98.7% 99.7% 100.0% 100.0%
PFB 39.4% 81.2% 86.3% 92.9% 100.0% 100.0%
PPP 47.7% 74.6% 77.2% 87.7% 97.9% 100.0%
P C 45.8% 74.4% 89.9% 96.6% 100.0% 100.0%
RMK 61.8% 88.9% 94.8% 99.7% 100.0% 100.0%
RPP 57.4% 82.5% 85.6% 93.8% 99.6% 100.0%
SGR 46.5% 74.2% 85.1% 97.6% 100.0% 100.0%
TEX 47.5% 78.0% 80.3% 93.4% 99.9% 100.0%

VOL 41.3% 69.9% 81.9% 92.2% 100.0% 100.0%
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V_F 47.0% 71.1% 76.3% 90.6% 100.0% 100.0%
WAP 63.3% 88.8% 93.2% 98.5% 99.8% 100.0%
WHT 43.7% 79.5% 83.2% 97.5% 99.1% 100.0%
WOL 39.5% 75.2% 81.7% 86.9% 99.5% 100.0%

Table 2: Cumulative proportion of non-missing data after each stage of imputation (with machine learning stage)

AP e o rerage
Imputation Time XGBoost HS6 HS4 HS2 Countries
BPH 45.2% 71.0% 100.0% 100.0% 100.0% 100.0% 100.0%
B T 38.9% 67.8% 100.0% 100.0% 100.0% 100.0% 100.0%
CHM 45.9% 71.8% 99.4% 99.4% 99.5% 100.0% 100.0%
CMT 43.1% 71.7% 94.8% 97.5% 99.9% 100.0% 100.0%
COA 50.4% 82.7% 100.0% 100.0% 100.0% 100.0% 100.0%
CTL 26.2% 47.1% 92.9% 92.9% 93.8% 100.0% 100.0%
CB 53.3% 86.7% 100.0% 100.0% 100.0% 100.0% 100.0%
EEQ 58.7% 85.8% 100.0% 100.0% 100.0% 100.0% 100.0%
ELE 54.2% 80.9% 99.5% 99.5% 100.0% 100.0% 100.0%
ELY 83.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
FMP 57.0% 83.9% 96.6% 97.0% 97.9% 99.2% 100.0%
FRS 36.2% 66.1% 100.0% 100.0% 100.0% 100.0% 100.0%
FSH 34.5% 63.9% 96.5% 97.0% 100.0% 100.0% 100.0%
GAS 50.3% 66.7% 100.0% 100.0% 100.0% 100.0% 100.0%
GDT 41.7% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
GRO 44.6% 73.3% 100.0% 100.0% 100.0% 100.0% 100.0%
S 41.1% 74.7% 100.0% 100.0% 100.0% 100.0% 100.0%
LEA 47.6% 71.0% 98.9% 99.3% 99.5% 99.8% 100.0%
LUM 38.9% 66.1% 98.8% 98.9% 100.0% 100.0% 100.0%
MIL 47.1% 72.8% 97.1% 99.6% 99.8% 100.0% 100.0%
MVH 46.6% 71.1% 97.8% 98.4% 99.3% 100.0% 100.0%
NFM 44.8% 74.5% 100.0% 100.0% 100.0% 100.0% 100.0%
NMM 47.1% 77.2% 100.0% 100.0% 100.0% 100.0% 100.0%
OAP 32.2% 64.6% 97.1% 97.1% 98.6% 99.9% 100.0%
OCR 42.1% 68.0% 100.0% 100.0% 100.0% 100.0% 100.0%
OFD 41.8% 67.0% 99.3% 99.3% 100.0% 100.0% 100.0%
OIL 32.2% 65.2% 100.0% 100.0% 100.0% 100.0% 100.0%
OME 51.1% 80.2% 99.4% 99.4% 99.4% 99.9% 100.0%
OME 55.7% 84.0% 99.6% 99.6% 99.8% 100.0% 100.0%
OMT 50.6% 76.7% 99.5% 99.5% 99.9% 100.0% 100.0%
OSD 44.7% 73.0% 100.0% 100.0% 100.0% 100.0% 100.0%
OTN 36.8% 66.2% 93.5% 93.6% 95.8% 99.1% 100.0%
OXT 40.0% 71.0% 98.0% 98.0% 98.0% 100.0% 100.0%
PCR 48.1% 85.9% 100.0% 100.0% 100.0% 100.0% 100.0%

PDR 59.2% 96.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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PFB 39.4% 81.2%  100.0%  100.0%  100.0%  100.0%  100.0%
PPpP 47.7% 746%  100.0%  100.0%  100.0%  100.0%  100.0%
PC 45.8% 74.4% 96.6% 98.9% 99.7%  100.0%  100.0%
RMK 61.8% 88.9%  100.0%  100.0%  100.0%  100.0%  100.0%
RPP 57.4% 82.5%  100.0%  100.0%  100.0%  100.0%  100.0%
SGR 46.5% 742%  100.0%  100.0%  100.0%  100.0%  100.0%
TEX 47.5% 78.0%  100.0%  100.0%  100.0%  100.0%  100.0%
VOL 41.3% 69.9% 99.3% 99.5% 99.9%  100.0%  100.0%
V_F 47.0% 71.1%  100.0%  100.0%  100.0%  100.0%  100.0%
WAP 63.3% 88.8%  100.0%  100.0%  100.0%  100.0%  100.0%
WHT 43.7% 79.5%  100.0%  100.0%  100.0%  100.0%  100.0%
WOL 39.5% 75.2%  100.0%  100.0%  100.0%  100.0%  100.0%

Following imputation of the elementary unit value indices, laspeyres indices are calculated to
obtain price data at the GTAP level. When comparing prices of imported goods across
countries, it is important to ensure that comparable baskets of goods are used. As import
bundles might differ across certain countries, the weights for the basket of goods are
calculated as the proportion of each network product that is imported across all partners as a
proportion of total imports from that GTAP sector.

Total trade value for each GTAP sector is calculated by summing the trade values of each
network by GTAP sector and total trade quantity is obtained by deflating this value by the
above price index.

Given the use of imputation to fill in missing price data that underpins the sector level price
indices, it is possible to run the sector level regressions including observations where traded
value is zero. To further investigate the sensitivity of results, we test how elasticity estimates
are affected by the inclusion of these zero trade observations. Removing zero trade
observations has the benefit of removing observations where all the underlying elementary
unit value indices are imputed and hence which are potentially of a lower reliability, whilst
including zero trade observations has the benefit of including additional information if the
imputation is deemed reliable. This gives four aggregate datasets that results are estimated
on: the first imputation approach above, both with and without zeros, and the second
imputation approach above, both with and without zeros.
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6 Results

6.1 CN8 Network level results

Figure 1: Histogram: network level elasticities of
substitution
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Elasticity of substitution

The median estimate is over 18% lower than other UK estimates of the elasticity of
substitution using the previous estimator developed by Feenstra (1994) and Broda and
Weinstein (2006). Thus, our results confirm Soderbery’s (2015) finding that previous
estimates significantly overestimate the elasticity of substitution, understating the consumer
gains from variety. Compared to the median elasticity of substitution for the US estimated by
Soderbery (2015) of 1.86, our median is slightly higher, suggesting that the UK values
additional varieties less than the US. This is consistent with previous estimations suggesting
that the elasticity of substitution is higher in the US than the UK.

Network level elasticities of substitution were assigned to GTAP sectors following the
method outlined in section 5, with each elasticity trade weighted according to the proportion
of trade it accounted for within a GTAP sector. Column 3 in Table 3 displays the results for
each GTAP sector, illustrating that the elasticity of substitution varies significantly dependent
on sector. By a significant margin, the sector with the highest elasticity of substitution is
plant-based fibres. This appears to be driven by a specific network within the GTAP sector,
with the median elasticity within the sector 2.03. Other sectors with high elasticities include
oil and meat sectors. In particular, the commodity nature of the oil sector suggests this is
intuitive, as varieties in commaodity sectors are likely to matter less.

In contrast, sectors with low elasticities of substitution, thus suggesting additional varieties
matter more, include energy sectors such as electricity, gas and coal. This appears
contradictory to other commaodity sectors which have higher elasticity values but is likely
influenced by the low number of networks which map into each GTAP sector, with only one
network mapped to the electricity sector and two mapped to the gas sector.

10 1t was not possible to estimate an elasticity of substitution for all networks, as for some the number of country
pairs and/or periods with positive trade values were insufficient. This is similar to Soderbery (2015), in which
around 10% of goods did not have sufficient data to estimate an elasticity of substitution.

11 Following Soderbery (2015), elasticities are censored at 131.05 for exposition. This is due to increases in
already large elasticities having little significance for estimated variety gains, an issue outlined in footnote 21 in
Broda and Weinstein (2006). Out of 7,110 estimations, 103 were censored.
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Table 3: Summary statistics

Observations Mean St dev Min Max Median

ONetwork 7,110 6.33 17.93 1.00 131.05 2.03
06TAP Imp 1 41 6.27 9.90 1.04 55.01 1.82
OGTAP Imp 2 41 5.65 8.02 1.04 41.02 2.43
0GrAP ML 1 40 8.12 20.84 1.04 131.05 1.63
0GTAP ML 2 40 5.35 8.51 1.04 40.76 1.85

Table 4: Estimated elasticities of substitution, GTAP sectors
GTAP GTAP GTAP GTAP

GTAP sector name Code Network Imp1l Imp2 ML1 ML 2
Bovine cattle, sheep and goats,

horses CTL 3.96 1.75 1.75 1.49 1.49
Animal products n.e.c (not

elsewhere classified) OAP 2.45 1.53 1.53
Bovine meat products CMT 11.18 1.81 1.81 1.96 1.96
Meat products n.e.c OMT 12.94 1.05 1.05 1.05 1.05
Fishing FSH 2.27 1.04 1.04 1.58 1.58
Food products n.e.c OFD 7.91 5.33 5.33 5.92 5.92
Raw milk RMK 151 7.23 7.23 10.99 10.99
Dairy products MIL 4.19

Manufactures n.e.c OMF 7.16 1.05 1.05 2.16 2.16
Crops n.e.c OCR 4.63 1.05 1.05 1.05 1.05
Vegetables, fruit, nuts V_F 3.87 1.06 1.06 1.10 1.10
Wheat WHT 6.72 8.36 15.60 8.37 15.61
Cereal grains n.e.c GRO 7.90 1.53 1.53 1.23 1.23
Paddy rice PDR 2.25 2.50 251 8.25 2.39
Processed rice PCR 4.90 26.26 26.26 37.39 37.39
Oil seeds OsD 3.26 1.98 1.98 9.26 9.26
Vegetable oils and fats VOL 5.46 1.22 1.22 1.32 1.32
Sugar cane, sugar beet CB 1.98 12.87 8.83 13.96 7.85
Forestry FRS 231 1.82 2.19 1.62 1.75
Basic pharmaceutical products BPH 5.25 6.97 6.97 1.75 1.75
Chemical products CHM 3.52 1.04 1.04 1.04 1.04
Sugar SGR 8.86 1.11 111

Beverages and tobacco products BT 3.06 3.49 3.49 3.74 3.74
Other Extraction OXT 3.27 1230 12.30 1.46 1.46
Mineral products n.e.c NMM 3.30 1.14 1.14 1.08 1.08
Ferrous metals IS 2.77 5.22 5.22 3.87 3.87
Metals n.e.c NFM 4.52 7.30 7.30 1.64 1.64
Coal COA 1.30 55.01 2.43 138.10 2.44
Petroleum, coal products P C 9.06 2498 2498

Gas manufacture, distribution GDT 1.97 1.23 3.23 1.23 3.23
Crude Oll OIL 11.03 21.17 41.02 21.19 40.76
Gas GAS 1.95 1.36 3.25 1.41 2.26
Electricity ELY 1.16

Rubber and plastic products RPP 4.49 1.45 1.45 1.24 1.24
Paper products, publishing PPP 2.52 1.20 1.20 1.60 1.60
Manufacture of electric equipment EEQ 7.08

Leather products LEA 3.37 1.07 1.07 1.07 1.07
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Wearing apparel WAP 5.20 1.08 1.08 1.08 1.08
Wood products LUM 10.09 3.58 3.58 3.66 3.66
Metal products FMP 5.86

Wool, silk-worm cocoons WOL 7.74 5.99 5.99 11.04 11.04
Textiles TEX 4.87 7.44 7.44 10.41 10.41
Plant-based fibres PFB 106.70 1.29 1.29 1.46 1.46
Machinery and equipment n.e.c OME 4.66 1.44 1.44 1.44 1.44
Transport equipment n.e.c OTN 10.91 7.73 7.73 8.70 8.70
Motor vehicles and parts MVH 10.50

Computer, electronic and optical

products ELE 5.69 4.42 4.42 3.26 3.26

6.2 GTAP Results

Table 3 includes summary statistics for the four estimations run on the GTAP sector
aggregation, where GTAP Imp refers to the dataset created using the first imputation method
detailed above and GTAP ML refers to the dataset created using second approach. Both
datasets were created accounting for zero trade value observations differently, with method
1 including zero trade observations in the dataset and method 2 dropping any zero trade
observations. Whilst removing observations with zero trade values is consistent with
Soderbery (2015) and the estimation run at the network level, removing these observations
potentially excludes useful information from the estimation if the price data is deemed
reliable.

Comparing the median estimates, Table 3 shows that the methods that exclude observations
with zero trade result in higher medians both for the imputation and machine learning based
datasets. All median estimates except for imputation these two sets of estimates are lower
than previous estimates for the UK using the Feenstra/Broda & Weinstein estimator,
supporting Soderbery’s (2015) finding that the estimator overestimates the elasticity of
substitution.

Columns 4-7 in Table 4 display the GTAP sector elasticity estimates across methods. We
note that elasticities of substitution across the four methods are broadly similar across
sectors, particularly on the pattern of sectors with the highest and lowest elasticities of
substitution. A notable exception is coal, in which the machine learning method with zero
trade value observations included gives a substantially higher elasticity than other methods.
The similarity of these results gives an important insight into the approach that modellers
should take when constructing their data. Where the differences in the aggregate and
network level results highlight the importance of estimating elasticities at the level of
simulation, the concern of economists must then turn to the method by which the data is
aggregated. The lack of sensitivity that is evidenced in Tables 3 and 4 indicate that results
are invariant to the assumptions used in aggregation process and that the choice of
approach is therefore of less concern. In light of this, we focus our analysis on the estimates
in column 4, namely those produced using the first imputation method and including
observations with zero trade values in the dataset. This method is chosen as it includes a
large set of information in the parameter estimates, as well as involving less data processing
in the imputation process compared to the machine learning approach.

Focusing on the column 4 estimates, sectors with the highest elasticities of substitution and
thus indicating that additional varieties matter less, include energy sectors such as coal,
petroleum and crude oil. This demonstrates the homogeneous nature of these commaodities
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and is consistent with findings from Broda and Weinstein (2006) that commodity goods are
more likely to have higher elasticities of substitution.

In contrast, sectors with the lowest elasticities of substitution include chemical products,
fishing, other meat products and other crops. As the other crops sector includes products
such as plants used in perfumery or pharmacy, living plants, cut flowers, and spice and
aromatic crops, it is likely that these will have much lower levels of elasticity than in standard
commodity crops. This hypothesis is consistent with agricultural sectors that have higher
elasticities of substitution, which include more homogeneous crops such as wheat and sugar
cane, alongside raw milk.

6.3 Comparison of Results

Comparing across median elasticities of substitution, the level of aggregation has a
significant influence on the estimates, with a higher median under the network level
estimation compared to the primary GTAP sector estimation (GTAP Imp 1). This implies
consumers value variety less at lower levels of aggregation, likely driven by the relative ease
at which consumers can substitute between disaggregated products compared to highly
aggregated sectors. This finding of different elasticities of substitution depending on the level
of aggregation supports that of Hummels (1999) and Broda and Weinstein (2006) yet
contradicts that of Ahmad and Riker (2019), who conclude that changing the aggregation
level does not change the estimated elasticities.

However, using a central elasticity of substitution risks obscuring significant differences
between sectors, as table 3 illustrates. For the 41 sectors where both network level and
GTAP sector estimations were obtained, over 66% of sectors had higher elasticities of
substitution under the network level estimation compared to the GTAP estimation, with
network level estimates over 4 times higher than GTAP estimates on average. This suggests
that estimating elasticities at the most disaggregated level available and trade weighting
estimates to produce a GTAP sector value risks overestimating the elasticity of substitution,
highlighting the importance of estimating model parameters at the level of aggregation used
in modelling.

6.4 CGE Simulation Results

To understand the impact that each parameter estimation technique has at the macro level
we simulate UK unilateral tariff liberalisation using a Krugman style CGE model developed
by Thomas Rutherford and Christoph Boéhringer. This structure builds on the GTAPInGAMS
framework, extending the basic Armington trade structure to include imperfectly competitive
sectors and increasing aggregate productivity linked to the number of firms (varieties) in an
industry, as shown in the Dixit-Stiglitz model. The model follows that of Balistreri, Béhringer
and Rutherford (2018) 2, with the ability to exogenously define the Dixit-Stiglitz elasticity of
substitution between varieties, 0. Using the GTAP10A database we aggregate up to 6
regions and 62 sectors (see Annex, table 2), remove UK defensive tariffs across imports
from all regions and run the model using different elasticities of substitution, o, shown in

12 we follow the same model structure and assumptions as used in Balistreri, Bohringer and Rutherford (2018).
Note that not all sectors operate under increasing returns to scale; see the Annex, table 2 for a mapping of these
sectors.
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table 5. As we have not been able to estimate services sectors due to data constraints, we
assign all services sectors elasticities to the median estimate for that method.

Table 5: CGE Simulation Results

. Overall
Estimate Value Welfare Gain
Authors network level estimates trade weighted  Differentiated by sector, 0.01%
to GTAP 65 sectors ranging 1.16 — 20 '
Authors GTAP level estimates D|ffer entiated by sector, 0.19%
ranging 1.04 — 20

Authors Network level estimates median 2.03 0.11%
Authors GTAP level estimates median 1.82 0.16%
Broda and Weinstein (2006) UK median 2.4 0.07%
Soderbery (2018) UK median 2.98 0.04%
Balistreri, Bohringer and Rutherford (2018)4 3 0.04%

The simulations show positive welfare gains across all sets of elasticities and the lower the
median value of sigma, the higher the welfare gains. This is intuitive because a lower value
of sigma implies that new varieties are valued more by consumers and therefore the
introduction of new, differentiated varieties due to UK import liberalisation provides higher
overall welfare gains.

We include the median estimates from alternative estimation techniques used in Soderbery
(2018) and Broda and Weinstein (2006) for comparison. The welfare results in table 5
corroborates the argument that the LIML estimator used in this analysis (which produces
lower elasticity values) reduces the risk of underestimating the welfare gains from trade
liberalisation, with higher welfare gains under the network and GTAP level medians
compared to those from previous literature. Our results also show that the simulations which
apply differentiated elasticities by sector result in the highest and lowest welfare gains
across all methods, with the network level gain significantly lower than that of the GTAP
level. This relates to the fact that estimating the variety elasticity at a more disaggregated
level (i.e., the network level) generates higher values as consumers do not value different
varieties as much. In doing this and trade weighting up to the 62-sector aggregation used in
the CGE modelling, on average larger elasticities are simulated across sectors and we
therefore risk underestimating the gains from liberalisation in the modelled sectors.

7 Conclusion

Despite evidence for new theories of trade, most CGE modelling relies on standard
Armington theory to demonstrate the effects of trade policy. The move towards incorporating
new trade theory in CGE modelling has likely been slow due to the lack of evidence on some
of the key parameters governing the gains from trade in these models, such as the elasticity
of substitution, which determines the extent to which new varieties benefit consumers.

Thus far, literature on estimating the elasticity of substitution has primarily focused on the
US, with approaches providing estimates for wider sets of countries, including the UK,
suffering from substantial biases. Sectoral aggregation is also limited to CN8 products or HS

13 For computational reasons, we constrain the upper bound of the elasticity at 20; this only affects two sectors.
14 This is not estimated econometrically rather it is the default value for the elasticity recommended by the
authors who developed the CGE model in use.
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sectors. Given that most CGE modelling is confined to 65 sectors'®, modellers are faced with
using arbitrary parameters or parameters estimated at different levels of aggregation to their
modelling. By estimating the elasticity of substitution between varieties across UK GTAP
sectors, this paper develops the research underpinning the use of new trade theory
specifications in CGE modelling.

Our results first contribute to the recent literature arguing previous elasticity of substitution
estimates suffer from significant upward biases, with our median elasticity estimates
between 15% and 39% lower than previous UK estimates?®. This implies that previous
estimates significantly understated the benefits from additional product variety to the UK
economy.

Furthermore, our results provide evidence that the elasticity of substitution is sensitive to
aggregation, with significant differences between the network level and GTAP estimations
across the GTAP sectors. On average, across sectors, network level estimates are over 4
times higher than GTAP level estimates, indicating the importance of estimating parameters
at the level of aggregation used in CGE modelling. To demonstrate this further, we use a
Krugman style CGE model to run a unilateral tariff liberalisation simulation for the UK. This
results in starkly different results dependent on the estimates used, with network level
estimates producing a welfare gain that is approximately 1/20" of the gain under the GTAP
level estimates. Considering the importance of aggregation to estimates, we go a step
further by investigating multiple approaches to aggregation, demonstrating that elasticity
estimates are largely insensitive to the assumptions required when constructing GTAP level
price data. These findings are important to modellers who are interested in conducting
Krugman style CGE modelling of their own country, showing the necessity of using
aggregate estimates whilst reassuring modellers that results are robust to assumptions used
in the data cleaning process.

In future, the research could be further developed in two directions. Firstly, although we have
provided estimates for elasticities of substitution across GTAP sectors, there is no
consensus in the literature on which sectors should be defined as imperfectly competitive
and thus benefit from Krugman variety effects depending on the magnitude of the elasticity
of substitution. Increased evidence on the classification of individual GTAP sectors would
greatly improve the accuracy of CGE modelling in a Krugman style model structure.

Secondly, future research could use the elasticity of substitution estimates to establish how
product variety has contributed to welfare in the UK, similar to Broda and Weinstein (2006),
who use elasticity estimates to calculate how growth in product variety from US imports
impacted US welfare. This would illustrate the magnitude of the mechanism by which trade
increases product variety and welfare in the UK, thus determining the importance of
including such mechanisms in CGE modelling of trade policy.

15 This also includes services sectors, which we were unable to provide estimates for due to data availability.
16 Based on the network level estimation or our primary GTAP level estimation, GTAP Imp 1.
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Annex

Table 1: GTAP estimation summary statistics

Mean St. dev of the mean Mean of the st. dev
GTAP | Unit Without ML | With ML Without ML | With ML Without ML | With ML
B_T | Price 440 449 1,378 1,416 1,045 1,070
B_T | Value 248,721,233 | 234,964,169 | 298,778,355 | 296,990,861 | 52,269,131 43,311,036
B T | Weight | 21,879,681 23,063,817 34,206,990 36,361,122 13,037,656 12,790,044
BPH | Price 351 342 634 630 150 148

1,110,598,3 | 1,110,672,6
BPH | Value 760,161,615 | 751,355,414 | 13 73 244,066,254 | 239,682,379
BPH | Weight | 4,905,748 5,229,769 6,718,759 7,265,325 1,921,971 2,042,884
C_B | Price 61 66 61 57 80 82
C_B | Value 4,565,262 4,575,716 6,956,303 6,968,026 4,078,673 4,085,803
C B | Weight | 142,060 142,647 164,979 181,277 154,188 156,637
CHM | Price 10,718 10,699 27,949 27,864 24,792 24,851
1,119,731,1 1,030,562,2 1,260,723,7 1,220,410,0
CHM | Value 91 40 78 08 204,605,300 | 169,789,504
CHM | Weight | 5,882,110 7,168,843 7,581,729 9,643,765 3,197,575 3,627,027
CMT | Price 14 13 20 20 16 17
CMT | Value 129,855,071 | 123,788,489 | 208,675,258 | 205,358,540 | 22,092,931 21,456,992
CMT | Weight | 27,726,799 27,138,691 52,999,453 51,248,388 4,214,205 4,525,770
COA | Price 70 17 171 43 109 15
COA | Value 114,339,578 | 123,725,759 | 180,516,366 | 195,841,154 | 77,775,884 84,659,535
1,223,887,6 2,387,016,6

COA | Weight | 04 608,384,758 | 24 939,860,358 | 907,958,308 | 543,229,305
CTL | Price 995 1,148 1,934 2,195 1,590 1,827
CTL | Value 41,396,785 35,730,313 91,378,394 78,147,170 10,336,880 8,196,586
CTL | Weight | 221,621 170,495 501,768 387,627 138,436 104,263
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EEQ | Price 1,443 1,448 9,000 9,095 1,369 1,376

EEQ | Value 352,666,452 | 347,268,223 | 629,951,888 | 631,455,282 | 80,204,769 78,321,467

EEQ | Weight | 11,111,771 11,563,946 50,557,415 51,850,043 3,541,381 3,439,490

ELE | Price 934 936 2,502 2,522 1,489 1,500

1,568,671,6 | 1,566,008,9

ELE | Value 750,074,197 | 742,987,136 | 66 60 168,295,135 | 166,511,700

ELE | Weight | 3,043,235 3,046,942 8,188,616 8,217,772 855,516 852,423

ELY | Price 20,983,229 20,983,229 7,777,137 7,777,137

ELY | Value 251,097,959 | 251,097,959 98,480,746 98,480,746

ELY | Weight | 12 12 1 1

FMP | Price 285 271 1,202 1,152 74 51

FMP | Value 194,152,280 | 190,546,577 | 316,723,926 | 317,762,535 | 64,230,947 63,079,846

FMP | Weight | 10,122,776 9,957,542 41,068,831 38,170,329 3,576,251 3,510,702

FRS | Price 370 350 1,189 1,177 924 894

FRS | Value 3,133,542 2,977,028 2,444,409 2,393,661 2,331,169 2,286,372

FRS | Weight | 900,661 745,081 1,358,007 898,776 892,480 731,043

FSH | Price 1,093 1,156 2,136 436 1,458 1,291

FSH | Value 58,478,074 43,718,616 67,999,127 49,246,359 23,014,000 17,990,431

FSH | Weight | 2,845,162 1,903,955 3,759,689 2,530,924 2,879,544 3,021,311

GAS | Price 402,759 427,783 1,099,688 1,168,062 1,395,134 1,481,841

1,148,379,2 | 1,224,640,1

GAS | Value 620,205,771 | 794,524,035 | 11 15 359,095,219 | 421,808,734
4,309,581,4 | 3,159,082,5 | 8,171,420,0 | 5,678,875,4 | 1,853,450,8 | 1,385,786,1

GAS | Weight | 93 99 11 19 89 04

GDT | Price 382 382 636 636 405 405

GDT | Value 37,034 37,034 61,872 61,872 17,156 17,156

GDT | Weight | 16,264 16,264 40,511 40,511 9,232 9,232

GRO | Price 3 2 3 2 2 1

GRO | Value 19,228,834 15,582,763 33,162,074 26,973,711 10,547,141 7,664,288

GRO | Weight | 57,763,138 17,703,919 180,741,711 | 37,041,401 48,015,104 13,542,908

I_S | Price 50 45 45 44 24 22

I_S | Value 232,828,566 | 217,460,439 | 188,749,561 | 182,388,249 | 49,914,620 45,526,783

IS | Weight | 11,798,353 13,761,423 14,555,995 18,853,395 6,174,526 6,772,709

LEA | Price 70 70 54 53 44 44
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LEA | Value 116,032,355 | 115,093,936 | 276,277,674 | 276,393,053 | 32,826,840 32,489,616

LEA | Weight | 5,807,617 5,843,608 22,916,628 23,298,325 1,550,758 1,549,063

LUM | Price 100 93 134 141 140 137

LUM | Value 165,716,545 | 147,292,004 | 187,820,162 | 157,980,728 | 47,536,464 43,560,312

LUM | Weight | 25,081,016 24,978,659 40,413,503 38,781,336 13,435,666 13,219,058

MIL | Price 8 6 12 6 5 4

MIL | Value 233,033,619 | 218,606,217 | 199,921,198 | 194,576,070 | 36,127,257 33,417,954

MIL | Weight | 48,637,740 48,176,539 43,466,700 44,247,902 15,820,913 15,131,523

MVH | Price 221 162 572 449 383 246
1,352,404,6 1,263,499,7 3,088,592,8 | 3,046,576,0

MVH | Value 58 80 93 47 335,778,071 | 310,727,238

MVH | Weight | 69,579,069 78,039,148 166,205,152 | 196,399,582 | 42,484,682 42,604,441

NFM | Price 5,287 6,109 7,388 8,053 6,571 7,188
1,089,944,2 1,022,726,8 1,516,536,6 1,452,142,3

NFM | Value 91 59 19 25 821,460,755 | 793,633,254

NFM | Weight | 301,341 249,767 404,772 364,101 191,887 170,719

NMM | Price 119 81 92 73 76 46

NMM | Value 100,770,402 | 95,145,766 145,732,186 | 146,556,138 | 22,919,467 19,369,957

NMM | Weight | 4,602,825 10,853,291 14,937,138 43,993,232 2,819,127 3,474,915

OAP_| Price 558 376 700 510 729 434

OAP | Value 31,565,335 33,724,642 30,891,683 28,356,723 7,143,693 7,864,325

OAP | Weight | 730,932 786,074 1,597,010 1,199,267 501,995 268,156

OCR | Price 93 90 163 158 167 164

OCR | Value 55,567,000 53,091,178 139,928,232 | 139,039,515 | 8,573,697 7,528,791

OCR | Weight | 4,360,790 6,865,184 14,802,024 27,073,723 1,982,973 2,377,465

OFD | Price 11 11 14 14 3 3

OFD | Value 702,697,569 | 668,912,412 | 565,484,575 | 560,890,711 | 127,991,160 | 123,909,779

OFD | Weight | 121,715,104 | 134,523,316 | 113,774,885 | 134,818,242 | 37,597,895 44,487,338

OIL | Price 21 5 91 22 26 6

2,023,000,2 | 1,991,152,3

OIL | Value 928,964,484 | 858,523,892 | 81 51 601,964,590 | 551,183,399
2,256,626,7 2,127,078,6 5,275,003,5 | 5,138,730,0 1,082,854,7 1,020,667,0

OIL | Weight | 52 89 83 66 21 56

OME | Price 242 222 187 157 165 159
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OME | Value 624,993,838 | 602,245,966 | 956,859,183 | 962,003,651 | 111,165,684 | 105,952,787

OME | Weight | 7,216,894 7,892,817 16,601,885 17,528,735 2,751,893 3,386,877

OMF | Price 9,561 9,633 29,141 29,395 8,875 8,963

OMF | Value 346,672,323 | 339,501,698 | 695,451,301 | 697,788,024 | 86,674,437 81,846,463

OMF | Weight | 464,488 424,141 1,523,058 1,486,513 484,773 447,604

OMT | Price 15 16 29 32 31 32

OMT | Value 325,896,040 | 309,590,989 | 302,440,507 | 284,511,318 | 51,594,846 49,818,598

OMT | Weight | 82,286,964 82,626,813 93,753,432 94,897,396 22,051,927 22,146,336

OSD | Price 18 12 24 19 22 17

OSD | Value 14,469,768 14,339,822 15,514,917 14,592,185 9,096,076 8,741,180

OSD | Weight | 7,498,235 9,231,736 13,118,250 13,032,499 6,540,204 6,874,128

OTN | Price 150,106 155,094 522,190 542,714 30,868 29,048
1,402,898,5 | 1,395,397,0

OTN | Value 863,270,889 | 827,896,872 | 49 85 352,528,130 | 316,818,148

OTN | Weight | 1,472,739 1,344,535 2,605,466 2,673,166 611,755 495,898

OXT | Price 179,962 191,396 386,935 415,763 81,075 84,726

OXT | Value 150,895,061 | 128,439,801 | 236,915,052 | 209,648,079 | 77,137,449 71,265,252

OXT | Weight | 36,180 34,639 52,204 47,494 40,059 32,358

P_C | Price 232 17 459 21 495 15

P_C | Value 708,555,252 | 664,478,161 | 707,433,430 | 684,509,680 | 278,881,540 | 258,649,539

P_C | Weight | 148,989,135 | 223,652,131 | 198,780,375 | 298,389,520 | 101,155,099 | 131,471,180

PCR | Price 2 2 1 1 1 1

PCR | Value 17,187,226 16,186,984 26,136,268 25,313,040 4,942,571 4,540,656

PCR | Weight | 21,578,461 20,782,756 38,183,439 37,116,193 7,592,193 7,403,314

PDR | Price 2 3 2 2 2 3

PDR | Value 555,705 555,483 798,188 798,338 395,027 395,696

PDR | Weight | 427,367 420,591 492,595 496,075 307,885 306,941

PEB | Price 73 71 88 96 51 45

PFB | Value 1,383,913 1,121,981 1,125,537 815,618 777,383 707,729

PFB | Weight | 110,038 82,132 149,692 100,864 55,071 45,755

PPP_| Price 105 93 260 239 122 106

PPP | Value 199,776,705 | 187,801,608 | 262,716,302 | 262,402,172 | 33,305,287 29,513,353

PPP | Weight | 15,967,169 17,083,552 31,176,955 33,650,018 8,802,377 9,614,480
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RMK | Price 13 11 20 20 6 4

RMK | Value 10,177,771 10,048,032 18,933,230 18,937,829 4,334,179 4,245,997
RMK | Weight | 4,888,067 5,072,538 11,711,674 12,423,187 2,780,239 2,616,839
RPP | Price 49 48 103 103 69 69

RPP | Value 241,131,692 | 236,888,481 | 400,364,392 | 401,100,367 | 49,915,711 48,409,697
RPP | Weight | 26,942,622 29,419,550 74,260,541 81,720,935 10,182,993 10,814,912
SGR | Price 18 18 38 39 12 12

SGR | Value 21,645,679 20,870,692 40,227,157 39,936,462 5,831,732 5,558,621
SGR | Weight | 14,424,321 15,085,271 26,968,624 29,238,245 7,141,499 6,973,368
TEX | Price 57 56 62 60 39 38

TEX | Value 208,616,161 | 204,448,695 | 308,187,963 | 308,549,689 | 67,201,514 66,455,602
TEX | Weight | 16,701,876 16,628,920 42,788,379 43,473,923 4,951,637 4,813,896
V_F | Price 5 6 4 5 4 4

V_F | Value 188,674,755 | 174,510,123 | 265,073,664 | 261,543,224 | 38,497,137 35,537,277
V_F | Weight | 70,333,815 65,852,340 109,865,367 | 117,595,249 | 20,633,150 18,046,815
VOL | Price 18 19 42 45 14 14

VOL | Value 114,321,387 | 104,012,815 | 128,827,912 | 124,859,475 | 24,491,741 22,996,182
VOL | Weight | 37,674,530 37,153,166 68,422,132 71,359,168 9,939,606 9,813,682
WAP | Price 84 84 75 74 61 61

WAP | Value 252,748,124 | 250,731,911 | 534,271,865 | 534,227,383 | 60,946,198 60,285,468
WAP | Weight | 11,150,797 11,105,065 35,827,680 35,877,977 3,186,449 3,169,163
WHT | Price 3 3 6 6 2 2

WHT | Value 12,423,402 11,620,632 22,357,499 21,276,868 7,616,607 7,047,161
WHT | Weight | 39,310,614 43,005,693 77,751,613 85,072,097 26,898,226 29,696,629
WOL | Price 217 212 456 442 165 158

WOL | Value 12,531,679 11,583,910 12,934,598 12,808,327 3,779,884 3,309,239
WOL | Weight | 287,434 269,516 387,019 378,602 93,321 80,332

Table 2: CGE simulation regional aggregation
Country Name

Country Code

TPP
ROW
CHN
USA
REU

9 CPTPP members
Rest of World

China

United States

EU 27




GBR

Great Britain

Table 3: CGE simulation Sectoral and IRTS/CRTS mapping
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Sector code Sector Name IRTS or CRTS
ric Rice CRTS
wht Wheat CRTS
gro Cereal grains nec CRTS
v f Vegetables, fruit, nuts CRTS
osd Oil seeds CRTS
c b Sugar cane, sugar beet CRTS
pfb Plant-based fibers CRTS
ocr Crops nec CRTS
Bovine cattle, sheep and CRTS
ctl goats, horses
oap Animal products nec CRTS
rmk Raw milk CRTS
wol Wool, silk-worm cocoons CRTS
frs Forestry CRTS
fsh Fishing CRTS
col Coal CRTS
crg Crude oil and gas CRTS
Other Extraction (formerly CRTS
oxt omn Minerals nec)
cmt Bovine meat products CRTS
omt Meat products nec CRTS
vol Vegetable oils and fats CRTS
mil Dairy products CRTS
sgr Sugar CRTS
ofd Food products nec IRTS
Beverages and tobacco IRTS
b t products
tex Textiles IRTS
wap Wearing apparel IRTS
lea Leather products IRTS
lum Wood products IRTS
ppp Paper products, publishing IRTS
oil Qil CRTS
chm Chemical products IRTS
Basic pharmaceutical IRTS
bph products
rpp Rubber and plastic products IRTS
nmm Mineral products nec IRTS
i s Ferrous metals IRTS
nfm Metals nec IRTS
fmp Metal products IRTS
Computer, electronic and IRTS
CEO optical products
Manufacture of electric IRTS
eeq equipment
Machinery and equipment IRTS
ome nec
mvh Motor vehicles and parts IRTS
otn Transport equipment nec IRTS
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omf Manufactures nec IRTS
ele Electricity CRTS
gdt Gas manufacture, distribution | CRTS
ser Water and dwellings CRTS
cns Construction IRTS
trd Wholesale and Retail Trade IRTS
Accommodation, Food and IRTS
afs service activities
otp Transport nec CRTS
wip Water transport CRTS
atp Air transport CRTS
Warehousing and support CRTS
whs activities for transportation
cmn Communication IRTS
ofi Financial services nec IRTS
ins Insurance (formerly isr) IRTS
rsa Real estate activities IRTS
obs Business services nec IRTS
Recreational and other IRTS
ros services
Public Administration and CRTS
0sg defense
edu Education CRTS
Human health and social CRTS
hht work activities
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