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Abstract 47 
 48 

This paper provides a critical assessment of the literature estimating the consequences of climate 49 
impacts in agriculture and the food system. This literature focuses overwhelmingly on the impact 50 
of elevated CO2 concentrations in the atmosphere, higher temperatures and changing precipitation 51 
on staple crop yields. While critically important for food security, we argue that researchers have 52 
gravitated to measuring impacts ‘under the streetlight’ where data and models are plentiful. We 53 
argue that prior work has largely neglected the vast majority of potential economic impacts of 54 
climate change on agriculture. A broader view must extend the impacts analysis to inputs beyond 55 
land, including the consequences of climate change for labor productivity, as well as the rate of 56 
total factor productivity growth in the face of more rapidly depreciating knowledge capital. This 57 
broader view must also focus more attention on non-staple crops, which, while less important from 58 
a caloric point of view, are critically important in redressing current micronutrient deficiencies in 59 
many diets around the world. The paper closes with numerical simulations that demonstrate the 60 
extent to which limited input and output coverage of climate impacts can lead to considerable 61 
underestimation of the consequences for food security and economic welfare – particularly in the 62 
poorest regions of the world. 63 
 64 
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1. Introduction and Knowledge Gaps 70 

All empirical research is opportunistic – at least to some degree. We tend to focus on topics for 71 

which data and methods are readily available. There is a widely employed metaphor used to 72 

describe research that focuses on accessible topics to the exclusion of other important avenues of 73 

research, suggesting that you are searching for your car 74 

keys under the streetlight. This relates to the apocryphal 75 

tale of a drunk who is confronted by a police officer 76 

while searching for his keys under a well-lit section of 77 

sidewalk. When the man admits that he lost the keys in 78 

the park, the officer asks: ‘So why aren’t you looking 79 

over there?’ At this point the drunk responds: ‘this is where the light is’! While admittedly a 80 

caricature, this paper will argue that most of those researchers currently analyzing the impacts of 81 

climate change on agriculture (present authors included!) have fallen prey at some point to 82 

searching for such impacts ‘under the streetlight’ where well established data and methods already 83 

exist. Meanwhile we have abstracted from potentially larger and more significant, but harder to 84 

quantify, impacts elsewhere in the agricultural sector. 85 

The field of research where climate impact assessments have been most fully developed 86 

pertains to the impacts of climate change on staple crops such as maize and wheat. It was natural 87 

for crop modelers who had spent their career developing tools to guide management decisions in 88 

wealthy, industrialized economies, typically in temperate climates, to turn to these models when 89 

first asked to assess climate change challenges at global scale. Indeed, when White et al. (2011) 90 

reviewed 221 studies of climate impacts on crops, they found that only a handful studies considered 91 

the effects of elevated CO2 on canopy temperature, and similarly few studies considered direct 92 
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heat effects on key crop developments. While these features were not central to management 93 

decisions in the temperate environments where most of these crop models were developed, they 94 

are critically important under future climate change – particularly in the tropics where elevated 95 

temperatures already pose a challenge. This is problematic given the high degree of exposure and 96 

vulnerability of the world’s low-income populations currently living in the tropics. Fortunately, 97 

through the efforts of AgMIP: the Agricultural Modeling Intercomparision Project (Rosenzweig 98 

et al. 2013), there have been significant efforts to extend the validity of these crop models to 99 

developing countries.  100 

The vast majority of these climate impact analyses have focused on a few staple crops, 101 

including maize, rice, soybeans and wheat. Yet staple grains and oilseeds account for only about 102 

one-quarter of global agricultural output, measured in value terms. And, while these staple food 103 

products are the predominant sources of caloric intake in the world (that is why they are called 104 

staples), today’s malnutrition challenges are much broader (Gómez et al. 2013), and the coverage 105 

of climate impacts on crops providing critical micro-nutrients is relatively weak. Furthermore, 106 

there is now evidence that climate change itself may reduce the micro-nutrient intensity of many 107 

of the world’s crops (Myers et al. 2014). In addition, analysis of climate impacts on livestock 108 

production – a key source of protein globally – has been largely neglected (McCarl and Hertel 109 

2018). In this paper, I will highlight just how important are these gaps in our knowledge of climate 110 

impacts, calling for researchers to start looking for key impacts beyond the bright streetlights. 111 

A decomposition of sources of output growth over the past half-century complied by 112 

USDA/ERS (2019) highlights a critical dimension of food production which has received 113 

relatively little attention from climate scientists, namely total factor productivity (TFP) growth. 114 

TFP growth is typically attributed to one of two sources: economic reforms that result in improved 115 
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efficiency in the farm sector, and the accumulation of knowledge capital which, in turn, is 116 

translated into innovations that improve farm productivity (Alston et al. 2010). Economic reforms 117 

typically generate one-off gains, and so it is hardly surprising that the world has come to rely ever 118 

more heavily on knowledge-driven TFP gains (Fuglie et al. 2020). However, the rate at which 119 

knowledge capital is translated into TFP growth varies greatly across regions and is likely related 120 

to the agro-climatic environment in which innovations are being undertaken (IPCC 2014). This is 121 

a dimension of climate change that has received almost no attention to date by those seeking to 122 

quantify climate impacts on food security. How will higher temperatures and more variable rainfall 123 

affect the cost and success of future plant breeding?  124 

The paper is organized as follows. We begin by introducing an analytical framework that 125 

permits a more comprehensive assessment of all of the factors affecting the growth in global food 126 

output, thereby putting climate impacts into the broader context. This allows us to consider the full 127 

range of inputs whose productivity might be affected by climate change. We then turn to a deeper 128 

input -- namely knowledge capital -- that underlies must of the recent growth in total factor 129 

productivity (TFP) in agriculture. Section five focuses on the question of product coverage, 130 

highlighting just how limited has been the focus on staple crops. We then turn to computational 131 

examples to illustrate the potential magnitude and importance of the missing climate impacts on 132 

agricultural production, food prices and economic welfare. The paper concludes with a discussion 133 

of future research directions. 134 

2. Analytical Framework  135 

In order to assess the relative importance of different factors driving food production, both at a 136 

regional and global scale, we use the lens of an aggregate, agricultural production function: 137 
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( )Y Af= X  where Y  is aggregate agricultural output, X  is a vector of inputs, and A  is an index 138 

of Total Factor Productivity (TFP). In light of the fact that the agricultural sector is generally 139 

populated by a large number of producers, with relatively free entry and exit, we can use the result 140 

of Diewert (1981) to assert that the aggregate production function will exhibit constant returns to 141 

scale, regardless of the farm level technologies. Furthermore, assuming that farmers minimize 142 

costs, we can derive the following relationship between the change in individual agricultural 143 

inputs, iX , expressed in percentage change form in lower case, ix , and the percentage change in 144 

aggregate output, also in lower case, y . In addition to percentage changes in TFP (A in the 145 

production function), denoted with lower case a , we introduce the possibility of input-augmenting 146 

technological change, ia :  147 

( )i i i
i

y a x aθ= + +∑          (1) 148 

In equation (1), /i i iW X PYθ = is the cost share of input i, iW  is the input price, and P is the price 149 

of output. This cost share reflects the marginal productivity of input i due to the assumption of cost 150 

minimization by individual farms since this implies that: ( ) /i if X W P=  . Within this framework, 151 

climate impacts will be introduced through the terms a and ia  capturing Hicks-neutral changes 152 

in total factor productivity and input-biased impacts that only affect the productivity of a specific 153 

input.  154 

In addition to altering the production function directly through the technology terms, 155 

climate impacts can also alter relative prices. For example, a decline in seasonal precipitation may 156 

lead to a shortage of water locally, in turn, raises the price of water, iW , thereby altering the cost 157 
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minimizing use of irrigation in farming. This endogenous response alters the marginal productivity 158 

of water and, along with these changes, there is likely to be a change in the associated cost share, 159 

iθ . If the elasticity of substitution between water and other inputs is less than one ( 1σ < ), then 160 

such an input price increase will increase the cost share of water, thereby rendering this an 161 

economically more important input in the overall production of food. This, in turn, will place a 162 

higher value on innovations which conserve water ( 0Wa > ). On the other hand, if existing 163 

technologies allow for a high degree of substitution between water and other inputs, then the cost 164 

share of water will fall when water becomes more scarce. In summary, there is an important 165 

interplay between prices in the economy and the impacts of climate change on food production 166 

that will arise endogenously as a function of climate change, or exogenously as a function of 167 

broader economic developments as conveyed to farmers through changing prices. 168 

To obtain an analytical expression for the partial equilibrium change in food output in the 169 

face of climate change, we must augment this simple model of agricultural production in several 170 

ways. First of all, we add a downward sloping farm level demand curve for food, with elasticity 171 

Dη− . To reflect supply constraints, we add an upward sloping supply schedule for the land/water 172 

composite (simply call this land, denoted L for the sake of convenience) with land rental supply 173 

elasticity Lν . Next, we assume that capital, labor and intermediate inputs are in perfectly elastic 174 

supply over the long run (i.e., their input prices are dictated by the non-farm economy). Finally, 175 

we must specify precisely how the system is affected by climate change, i.e., which technology 176 

terms in (1) will be shocked: a or some combination of the ia variables. 177 

The most popular representation of climate change in equilibrium models of agriculture 178 

(Robinson et al. 2014) involves shocking La  with the size of the shock dictated by biophysical 179 
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models’ predictions of the change in yield as we move from current to future climate (see also                180 

summary in Table 1 in Hertel, Baldos, and van der Mensbrugghe 2016). The logic is that, if these 181 

crop models predict (e.g.) a 10% decline in yields under future climate, then that means that land 182 

will be 10% less productive. However, if none of the other ia variables are perturbed, then these 183 

other inputs will remain as productive as before. This opens the possibility of substituting those 184 

inputs for land, the effective price of which ( / )L LW A has risen. This characterization of climate 185 

change gives rise to the following equilibrium change in output (Hertel, Baldos, and van der 186 

Mensbrugghe 2016): 187 

(1 ) /L D Ly aν η η= +          (2) 188 

Where D Sη η η= + is the aggregate price responsiveness in the market (i.e., the sum of supply and 189 

demand elasticities). The two terms in the numerator of (2) capture the direct impact on output of 190 

the shift in land supply /D Laη η and the indirect effect through the impact of climate change on 191 

land rents and therefore on cropland use (hence the presence of the land supply elasticity: 192 

/L D Laν η η ). Clearly, if the biophysical models predict a future decline in yields, 0La < ,  output 193 

will fall. It will fall more, the more price sensitive is the farm level demand for food, and the more 194 

responsive is the land supply to agricultural returns. 195 

3. Which inputs are affected by climate change?  196 

Cost Shares as a Key Metric: As noted above, most of the existing literature has focused on 197 

changes in crop output per unit of land (i.e., crop yields) when characterizing climate impacts in 198 

agriculture. Before going further let us pause to think about the relative economic importance of 199 

land—the one input which has commanded the most attention from previous authors. With 200 
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equation (1) in mind, the most natural way to undertake such a comparison across diverse inputs 201 

is through the relative size of the cost shares, iθ . Estimates of cost shares may be obtained from 202 

econometric studies of agricultural production. These studies recognize that farms’ choices of 203 

input intensities are endogenous and a function of relative prices. Furthermore, in any given year, 204 

there are many stochastic factors operating on the observed input costs (Ball 2006). The GTAP 205 

data base (Aguiar et al., 2019) reports national agricultural cost shares wherein the composition of 206 

national-level value-added is obtained regional econometric studies. Figure 1 summarizes these 207 

cost shares aggregated to the level of the entire world, as well as for two very different regions: 208 

United States (USA) and Sub-Saharan Africa (SSA).  209 

 210 

Figure 1. Shares of inputs in 211 
total costs for agriculture, for 212 
select regions. Source: GTAP 213 
v.10 data base, Aguiar et al., 214 
2019. 215 

 216 

 217 

 218 

 219 

There are several remarkable things about the estimates of agricultural cost shares shown 220 

in Figure 1. First is the enormous difference in the share of intermediate inputs, and, by subtraction, 221 

the share of value-added in total costs. In the US, value-added (land, labor and capital) accounts 222 

for only 40% of input costs whereas in the SSA region, this share is more than 80%. Within the 223 

value-added composite, labor is dominant in the SSA region, followed by capital1 and land. This 224 

                                                           
1 When evaluating these cost shares it is important to recognize that these depend on both the quantity of the input 
used per unit of output and the price of the input, relative to output price. In the USA region, for example, capital is 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Land Labor Capital Intermediates

World SSA USA



10 
 

suggests that anything that alters the productivity of labor in the region (e.g., heat stress) could 225 

have a dramatic impact on agricultural output. And if the heat stress impact in SSA is larger than 226 

in other regions, this will be magnified by the large labor cost share in that region. In the US, 227 

capital and labor exhibit comparable cost shares. In both regions, land is the least important input 228 

from the cost share point of view. (Although globally, land’s cost share is larger than that of the 229 

capital input.) The modest economic importance of the land input will be somewhat surprising to 230 

those who are used to thinking of agricultural production as being largely driven by land. However, 231 

the declining relative importance of agricultural land in the economy was first highlighted more 232 

than 60 years ago by Nobel Laureate T.W. Schultz (1953). He emphasized the increasing 233 

importance of other inputs, in particular, skilled labor, capital and knowledge (in the form of new 234 

technologies). Indeed, the role of technological improvements in promoting agricultural 235 

production is a theme which will be explored in some depth below.   236 

Climate Impacts as TFP Changes: An important conceptual question has to do with how 237 

we interpret the climate impact results emerging from biophysical models of crop production. As 238 

noted above, the predominant approach has been one in which the changes in yields predicted by 239 

crop models are treated as a perturbation to the productivity of land ( La ), leading to the long run 240 

equilibrium change in output reported in equation (2). But others have challenged this, suggesting 241 

a different thought experiment for incorporating the climate induced yield impacts into equation 242 

(1) (Hertel, Burke, and Lobell 2010). For example, consider the case where, if the farmer engaged 243 

in exactly the same activities under the new climate (i.e., no climate-induced input substitution), 244 

                                                           
relatively abundant and this serves to dampen its cost share despite the capital intensity of the farm sector in USA. In 
the SSA region, capital is scarce, and this price effect tends to bolster the cost share, even though its intensity of use 
is lower. 
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then yields would be 10% lower. If both the land and the non-land input levels are unaltered in this 245 

thought experiment, then the output reduction of 10% is equivalent to a decline in ia  for all the 246 

inputs in equation (1). This, in turn, is equivalent to a Hicks-neutral productivity shock of -10%, 247 

i.e., 10a = − . As we will see, this subtle difference in translation of the agronomic results into 248 

economic consequences has dramatically different food security implications.  249 

Adopting this alternative view of yield impacts, we now solve the same partial equilibrium 250 

model as before for the long run change in food output under a Hicks-neutral productivity shock 251 

to obtain: 252 

(1 ) /S Dy aη η η= +          (3) 253 

Where the elasticity of commodity supply is the sum of the extensive and intensive margins of 254 

supply response: 1 1( 1)S L L Lη θ ν σ θ− −= + − . In this expression 1
Lθ
− is the inverse of the cost share of 255 

land and σ  is the elasticity of substitution between land and other inputs governing the scope for 256 

intensification (or de-intensification) of agricultural production. Comparing (3) and (2) we see 257 

that, even ignoring the possibility of variable input substitution for land (assuming 0σ = ), the 258 

inverse cost share applied to the land supply elasticity, Lν , will sharply magnify the impact of this 259 

climate shock on agricultural output. For example, taking the USA cost share of land from Figure 260 

1 as roughly 0.10, this implies a ten-fold magnification effect when the yield shock is interpreted 261 

as a perturbation to TFP.   262 

How can this be? To gain a better understanding, consider the zero-profit condition which 263 

is dual to equation (1): 264 
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( )i i i
i

p a w aθ+ = −∑           (4) 265 

A negative shock to TFP operates like a decline in output price in this expression, thereby 266 

dampening profitability. In the long run, with other input prices dictated by the non-farm economy, 267 

all of this diminished profitability must be borne by the quasi-fixed factors of production – in this 268 

case land (although other factors may also be in limited supply, in which case their cost share 269 

should also be included in this calculation). Therefore: 1( )L Lw p aθ −= + .  This is source of the 270 

magnification effect noted above. Since the long prices of the other inputs are dictated by the non-271 

farm economy, all of the adjustment must occur in the returns to the quasi-fixed factor (land). 272 

Adding to this magnification effect the potential for a response at the intensive margin of supply, 273 

through the second term in the supply elasticity, 1( 1) 0Lσ θ − − ≥ , it is clear that the decision about 274 

whether it is just land productivity that is affected by climate change is a critical one deserving 275 

careful scrutiny and further empirical investigation. 276 

Heat Stress and Labor Capacity in Agriculture: Beyond the agronomic assessments of 277 

climate impacts on plant growth, there is now mounting evidence that global warming will sharply 278 

reduce labor capacity – particularly when workers are outdoors and exposed to solar radiation. 279 

Research in this area has been advancing recently and is summarized in the Annual Reviews paper 280 

by Buzan and Huber (2020). Those authors emphasize the importance of considering the 281 

combination of heat and humidity as presenting a significant threat to human’s ability to function, 282 

since, in the presence of high humidity, the human body has great difficulty releasing internally 283 

generated heat. The US military developed a metric to address the risk posed to personnel from 284 

prolonged exposure to the combination of high heat and humidity (Minard, Belding, and Kingston 285 

1957). It is called Wet Bulb Globe Temperature (WBGT) and has also been adopted by the 286 



13 
 

International Standardization Organization (ISO) to measure workplace heat stress (Parsons 2006). 287 

While WBGT has not been computed at global scale based on climate model outputs, a simplified 288 

version of this measure (sWBGT) has been incorporated into climate models (J. R. Buzan, Oleson, 289 

and Huber 2015).  290 

Buzan and Huber (2020) use the sWBGT measure, in combination with the Dunne et al. 291 

(2013) equation for determining labor capacity, to compute global gridded labor capacity in their 292 

end of 20th century baseline (deemed to be current climate) as well as for a world in which there is 293 

an average of +4 degrees C global warming. In their baseline, current global annual (population-294 

weighted) labor capacity is estimated to be 80% with regional averages varying from 98% in the 295 

high latitudes (i.e., almost no constraints) to 71% in the tropics (significant capacity limitations 296 

under current climate). At +4 degrees C, the global average drops to 59%, with labor capacity in 297 

the tropics falling to 40%. This is a dramatic shock to the productivity of labor and it is indicative 298 

of the kinds of productivity losses that are likely to occur on non-mechanized farms where workers 299 

are exposed to direct solar radiation. Even in the US, where agriculture is highly mechanized – 300 

particularly for row crops, the impact on workers cultivating and harvesting specialty crops has 301 

been shown to be significant (Stevens 2017). 302 

Lima et al. (Lima et al. 2020) incorporate the combination of sWBGT estimates from a 303 

suite of climate models into the GTAP model of global trade and production. In terms of equation 304 

(1), these are treated as shocks to ia , i.e., partial factor productivity losses applied to labor. The 305 

authors proceed to compare the welfare cost of these labor capacity losses to the losses based on a 306 

meta-analysis of IPCC studies of crop yield losses (Moore et al., 2018). Importantly, in that prior 307 

study, the yield losses were treated as total factor productivity shocks (perturbations to a ). Even 308 
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with this aggressive interpretation of crop yield impacts, Lima et al. (2020) find that global welfare 309 

losses at +3C were comparable between the two scenarios ( ia  shocks to labor capacity vs. a  310 

shocks to crop productivity). Furthermore, they find that the distribution of losses from these two 311 

sets of climate impacts are quite different, with the labor capacity losses concentrated in Southeast 312 

Asia, South Asia and Sub Saharan Africa. In short, ignoring the impacts of combined heat and 313 

humidity on labor capacity paints a very distorted picture of how climate change affects 314 

agriculture. And, it greatly understates the adverse impacts in some of the world’s poorest 315 

countries. 316 

Pests, weeds and disease: Both global warming and elevated CO2 concentrations are likely 317 

to affect biotic stresses (Ziska et al. 2011). Invasive weeds tend to be more responsive than crops 318 

to changes in resource availability. Higher temperatures reduce the latency period for plant 319 

pathogens, thereby speeding up their rate of evolution and with it their capacity to adapt to the new 320 

environment (Cairns et al. 2012). Insects are highly dependent on temperatures and thrive with a 321 

warming environment (Bale et al. 2002). Diminished frost frequencies can expand the ranges of 322 

many important pests and diseases affecting agriculture as has been documented for the case of 323 

potato blight in Finland (Hannukkala et al. 2007) and for kudzu weed in the US Corn Belt (Ziska 324 

et al. 2011).  325 

Changes in agroecological conditions also elicit adaptation responses from producers 326 

which can affect the mix of inputs employed as well as agricultural productivity. In a recent study 327 

of maize producers in Kenya, Jagnani et al. (Jagnani et al. 2020) find that, when confronted with 328 

warmer than normal temperatures during critical growing periods, farm households increase the 329 

application of pesticides (often at the expense of fertilizer) as well as increasing the use of labor 330 

for weeding. In addition to the increase in direct labor requirement, there is likely to be an further 331 
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burden on labor due to the adverse health impacts of increased pesticide use (Sheahan, Barrett, and 332 

Goldvale 2017).  In terms of the analytical framework laid out above, the effects of climate change 333 

on the Kenyan maize farms may be viewed as a new technology that is both labor- and pesticide 334 

using ( 0ia < ) and therefore a drag on farm output growth.  335 

Other Inputs: Just as humans are affected by the combination of heat, humidity and solar 336 

radiation, so too are animals (Mader 2014). And, in much of Africa, these remain an important 337 

source of draft power – an input that appears in the capital cost share in the poorest countries of 338 

the world. Yet, to our knowledge, there have been no studies quantifying this effect. One of the 339 

challenges is the huge variation in animal species (vs. the studies of the more uniform homo 340 

sapiens species referred to above). Of course, livestock products also represent an important 341 

agricultural output – a point to be discussed below. 342 

There is also little evidence available about how the productivity of intermediate inputs 343 

will be affected by climate change. In the richest economies, where there is significant R&D 344 

capacity and a well-developed private sector supply chain for delivering modern inputs to farmers, 345 

there is considerable scope to adapt the characteristics of these intermediate inputs to a changing 346 

climate – including new seed varieties as well as improved pest control. However, in the world’s 347 

poorest countries, the small cost share for commercial inputs belies the lack of private sector 348 

investment in this area and it seems unlikely that there will be rapid adaptation of these inputs to 349 

changing climatic conditions. 350 

While labor and land may become less productive under climate change, irrigation water 351 

is an input for which the marginal value product may actually rise. This could help offset some of 352 

the other, adverse impacts of a warming climate. Haqiqi et al. (2019) estimate the marginal value 353 
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product of additional soil moisture (via irrigation) in corn production and find that this depends on 354 

the initial state of soil moisture as well as commodity prices. In a season with high heat and low 355 

rainfall, as well as elevated commodity prices, the value of applying additional irrigation water 356 

can be very high. Provided supplemental irrigation water can be obtained, it can play an important 357 

role in mitigating yield losses (Schlenker and Roberts 2009).  358 

4. Knowledge Capital  359 

The preceding discussion has missed one of the most overlooked inputs into the growth in 360 

agricultural output: knowledge capital. To understand the growing importance of knowledge 361 

capital in the evolving agricultural economy, consider Figure 2, produced by USDA-ERS (2019).  362 

Isolating TFP growth on the left-hand side of equation (1), and applying FAO data on inputs and 363 

outputs from 1961 to the present, the authors have obtained an estimate of the historical growth 364 

rate in Hicks-neutral TFP growth as a residual: i i
i

a y xθ= −∑ . Combining these TFP estimates 365 

with observed input growth rates over this period, the individual sources of global agricultural 366 

output growth can be decomposed (Figure 2). From the decadal averages reported in Figure 2, it 367 

is clear that the sources of growth in food production have changed dramatically since the 1960’s 368 

when it was largely driven by input intensification. Since 1990, TFP has become the dominant 369 

source of growth in agricultural output. Like much of the rest of the modern economy, agriculture 370 

is now knowledge-driven (Fuglie 2018). 371 
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 372 

Figure 2. Sources of global agricultural output growth, by decade, 1961-2016. Source: USDA-373 
ERS (2019). 374 

 375 

Fuglie (2018) formally explores the role of knowledge capital in the evolution of TFP 376 

around the world. Following earlier work by Alston et al. (2010), he postulates that A in equation 377 

(1) is itself a function of knowledge capital in the innovating region, as well as in other ‘spillover 378 

regions’, as shown in the following equation: 379 

O S
O O SA A R Rδ δ=           (5) 380 

where initial productivity, OA , is enhanced by growth in the stock of own-research capital, OR  ,  381 

and spill-in research capital, SR  with the elasticities Oδ  and Sδ  governing the responsiveness of 382 
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TFP to these investments. He surveys the literature aimed at estimating these elasticities, on a 383 

region-specific basis, and uses these empirical estimates, along with equation (5), to provide an 384 

attribution of TFP growth, by region, to knowledge capital. In so doing, he assumes a specific lag 385 

structure through which the impact of knowledge capital rises through time, peaks, and then 386 

declines as the value of this knowledge depreciates. The lag between R&D spending and TFP 387 

growth can be very long. For example, Baldos et al. (2019) estimate that, in the United States, over 388 

the course of the 20th century, the productivity impact of public R&D investments in agriculture 389 

did not peak until 22 years following the initial investment. And the knowledge capital depreciated 390 

relatively slowly over this period, with lingering impacts in the fifth decade after the money was 391 

spent. (Not surprisingly, this closely mirrors the career profile of scientist!) Using this framework, 392 

Fuglie (2018) is able to explain a large share of the TFP growth between 1990 and 2011 in the 393 

OECD countries as well as Latin America and South Asia. (In other regions, such as China, 394 

economic reforms also played a key role in boosting TFP.) 395 

Given the dominant role of TFP in agricultural growth, a central question becomes: How 396 

will climate change affect the future rate of TFP growth? Within this framework, there are two 397 

distinct pathways for such impacts to be felt. First of all, climate change could accelerate the rate 398 

of depreciation of existing knowledge capital – thereby depleting the stocks on the right hand side 399 

of equation (5). This, in turn, will slow future TFP growth. The second channel is through the 400 

elasticities in equation (5). Based on Fuglie’s (2018) survey of the literature, there is tremendous 401 

variation in these elasticities across regions – ranging from 0.07 for public R&D spending in 402 

developing countries to figures in excess of 0.30 in the US. Surely much of this variation can be 403 

explained by infrastructure, proximity to top research scientists and institutional stability and 404 

governance. But agro-climatic conditions in some regions are likely to pose more significant 405 
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challenges than others. In the tropics, temperatures are already close to, or perhaps beyond, their 406 

agronomic ideal. Increasing this threshold via tolerance to heat stress is likely to prove more 407 

challenging than other measures aimed at boosting yields (Fischer, Byerlee, and Edmeades 2014). 408 

Therefore, it seems reasonable that climate change might reduce these elasticities, thereby slowing 409 

future TFP growth, for any given knowledge capital pathway.  410 

The pathways for climate change to alter the rate of depreciation in knowledge capital, or 411 

reduce the elasticities in equation (5), have received no formal analysis to date, yet this could be 412 

critically important due to its implications for long run growth. It is notable that, in their review of 413 

climate impacts and adaptation for the IPCC, Working Group II alludes to the possiblity that rising 414 

temperatures and uncertain rainfall are likely to make future innovation more difficult. They go so 415 

far as to speculate that, at mid-century, climate change could remove one year of productivity 416 

growth over the course of each decade – or about a 10% reduction in the rate of growth in 417 

knowledge-driven productivity (IPCC, 2014). This type of impact will accumulate gradually over 418 

time, with long-lasting implications. In short, this is an area crying out for empirical research. This 419 

problem is particularly important, given the long lag between R&D spending today and future TFP 420 

growth. If decision makers seek to offset a potential climate change-driven slowdown in TFP at 421 

mid-century, R&D investments will need to be made in the coming decade. Cai et al. (2018) 422 

explore this problem of irreversible investment in public R&D, in the face of long lags between 423 

that spending and TFP growth, in the context of uncertain climate as well as uncertain population 424 

and income growth. They conclude that the best path is likely to be one in which near term R&D 425 

spending is based on food scarcity (pessimistic) scenarios, with higher current levels of spending 426 

than might otherwise be considered optimal. 427 

 428 
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5. Product coverage  429 

Closely related to the issue of geographic coverage is the question of product coverage. The FAO 430 

identifies 175 distinct crops, yet the vast majority of research on climate impacts in agriculture has 431 

been undertaken on just 4 crops – the main staples: maize, wheat, rice and soybeans. Indeed, of 432 

the 1782 climate impact yield estimates (from 94 independent studies) reported to the IPCC for 433 

the AR5, these four crops accounted for 1165 of the total (74 of the 94 studies) (Challinor et al. 434 

2014). And the remaining studies were so thinly spread that a statistical meta-analysis of climate 435 

impacts was not possible beyond these four major crops (Moore et al., 2018). From a caloric point 436 

of view, these four crops are also indeed dominant, accounting for nearly two-thirds of global 437 

caloric consumption (FAO 1995). However, from a broader nutritional point of view, other crops 438 

which are rich in micro-nutrients – particularly fruits and vegetables, as well as livestock products 439 

which bring much needed protein to the diets of the poor -- are increasingly important and these 440 

are largely missing from the climate impacts literature.  441 

Analogously to the input aggregation above, the proper economic metric for aggregation 442 

and comparison of outputs is that of revenue shares (assuming revenue maximization on multi-443 

product farms). Figure 3 provides data analogous to that in Figure 1, but now reporting output 444 

revenue shares for agriculture. Each bar in the figure reports the share of total agricultural revenue 445 

accounted for by a given product category, by region. We can see that, accounting for about one 446 

quarter of global agricultural sales, the grains and oilseeds (staples) sector is hardly dominant. 447 

Indeed, other crops are more significant, accounting for nearly one-third of global farm output. 448 

And the global value of livestock output is even higher. Furthermore, livestock are susceptible to 449 

heat and humidity in the same way as humans. Heat stress reduces feed intake and results in 450 
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diminished productivity (Key and Sneeringer 2014). Clearly the dominant focus on grains and 451 

oilseeds in the climate impacts literature reflects a serious imbalance. 452 

 453 

Figure 3. Share of food product 454 
categories in global agricultural 455 
sales: Source, GTAP 10 data 456 
base, Aguiar et al., 2019. 457 

 458 

 459 

 460 

 461 

6. Climate Impacts on Nutrition  462 

The consequences of climate change for aggregate caloric availability have been well-documented, 463 

primarily in the context of studies of changing yields for staple grains and oilseeds (Schlenker and 464 

Roberts 2009). However, recent evidence suggests that elevated CO2 concentrations in the 465 

atmosphere could significantly reduce the nutrient density of crops. Smith and Myers (2018)  466 

analyze the impacts of reaching 550 ppm atmospheric CO2 for the protein, iron and zinc content 467 

of all major crops. They find that these densities are likely to fall by 3-17%. Assuming 2050 468 

demographics and unchanged diets, this would result in 175 million additional zinc deficient 469 

individuals and 122 million more protein deficient people globally. Reductions in dietary iron 470 

could be particularly problematic for women of child-bearing age and young children in Asia and 471 

parts of Africa where the prevalence of anemia is already very high. While changes in diet may 472 

limit some of these impacts, this is a wake-up call for those working on global nutrition. More 473 

attention to the implications of climate change for micro-nutrient consumption is clearly important.  474 

0

0.1

0.2

0.3

0.4

0.5

0.6

World SSA USA

Farm Revenue Shares: Food Products

Staples OthCrops Livestock



22 
 

7. Computational Illustrations 475 

We conclude this discussion of climate impacts on agriculture with a set of global economic 476 

simulations, drawing on the previous work of Moore et al. (2017) and Lima et al. (2020). Those 477 

authors have documented the impact of climate driven shocks to crop yields as well as climate 478 

driven shocks to labor productivity. Here, we draw on their models and climate-induced 479 

productivity shocks to illustrate the issues raised in the foregoing discussion. Both sets of authors 480 

used the version 7 GTAP model and version 9 GTAP data base (Aguiar, Narayanan, and 481 

McDougall 2016; Corong et al. 2017) to assess the impacts of climate change on production, 482 

consumption, trade and welfare. Individual sectors in the standard GTAP model have the same 483 

structure as the analytical partial equilibrium model detailed in equations (1) – (4). However, since 484 

GTAP is a general equilibrium model, the farm-level demand elasticity in any given region is a 485 

function of both domestic and foreign demands (including intermediate as well as final 486 

consumption) as well as supply response in the rest of the world. I.e., when viewed from a regional 487 

perspective, this demand response is now an excess demand elasticity – referring to the excess of 488 

rest of world demand, over and above their own supplies. And the supply of non-land factors of 489 

production is constrained by national market clearing conditions in this general equilibrium model 490 

so that their prices are now endogenous.  491 

Experimental Design: Table 1 provides the design for our four computational experiments. 492 

They involve varying commodity coverage of the impacts (staples vs. all crops), as well as varying 493 

the type of productivity shock (partial factor productivity impacts on land or labor, as in equation 494 

(2) vs. total factor productivity impacts as in equation (3)). From Moore et al. (2017), we have 495 

meta-analysis-based estimates of the impacts of climate change on staple crop yields for various 496 
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levels of global warming.   (As noted previously, there are insufficient data points for the other 497 

171 FAO crops to allow for a meta-analysis outside of these staple crops.) Here, we focus on 498 

warming of +3C and utilize the authors’ median estimates of yield impacts.  The labor impacts are 499 

estimated following the methodology outlined in Lima et al. (2020), using the combination of the 500 

sWBGT measure of heat and humidity and the NIOSH method for estimating human labor 501 

capacity.  502 

Comparing experiments E1 and E2 in Table 1 503 

allows for a comparison of the all-input coverage 504 

with the land-only impacts approach to modeling 505 

yield impacts. Contrasting the labor and land partial factor productivity shocks (E2 and E3) allows 506 

us to explore in greater detail the relative importance of these two types of climate impacts. While 507 

we don’t have yield impact estimates for other crops or for livestock, we can explore the 508 

consequences of expanding product coverage in the case of labor productivity shocks, and for this, 509 

we contrast experiments E3 and E4.  510 

Aggregate food price effects: The impact of the experiments in Table 1 on agricultural prices 511 

can be readily anticipated from equation (4). Since the cost shares in this expression, iθ , are less 512 

than one (recall Figure 1), the impact of the partial factor productivity shocks on price will 513 

necessarily be diluted. This effect is evident when we compare the change in the composite staple 514 

grains and oilseeds price reported in Figure 4 across experiments E1 and E2. Of course, the 515 

difference in commodity price changes between the two experiments is less than that suggested by 516 

the land cost shares in Figure 1, since other input prices also change in general equilibrium.  517 
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The impact on staple food prices of the partial factor productivity labor shock, due to heat 518 

stress limiting human’s capacity to work, is even more modest than the shock to land productivity 519 

(E3 vs. E2). Furthermore, expansion of the labor shocks to other crops sectors in E4, while boosting 520 

the staples price impact somewhat, still does not reach the level of the partial factor land shock. 521 

The fact that there is such a large difference in the staple food price effects of the two rival 522 

interpretations of agronomic yield change estimates (E1 vs. E2) is a cause for great concern, as 523 

there has been almost no discussion of these competing approaches. 524 

 525 

Figure 4. Impact of climate change experiments on the composite price of staple grains and 526 

oilseeds. E1: Staple-TFP; E2: Staple-Land; E3: Staple-Labor; E4: All-Crops-Labor.  Source: 527 

Authors calculations.  528 

Aggregate welfare effects: The cross-experiment comparison is quite different when we 529 

focus on global welfare impacts (Figure 5). Here, we see that the global welfare loss suffered 530 

when yields reduce TFP is far greater than that when only land productivity is affected. 531 
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However, when we compare the welfare loss from partial factor productivity reductions for land 532 

only, vs. labor only, the latter is now dominant. Furthermore, in the case of welfare impacts, as 533 

the extent of labor productivity losses broadens from staples to all crops, the losses increase 534 

sharply. This makes sense, since, unlike the staples price index, welfare is an economywide 535 

measure, so the more sectors are affected, the larger the impact. 536 

 537 

 538 

Figure 5. Impact of climate change experiments on global welfare. E1: Staple-TFP; E2: Staple-539 

Land; E3: Staple-Labor; E4: All-Crops-Labor. Source: Authors calculations.  540 

 To gain deeper insight into these results, we turn to equation (6) which provides an 541 

analytical decomposition of regional welfare changes in general equilibrium, measured as 542 

Equivalent Variation for a given region s ( sEV ). (See Huff and Hertel (2001) for the derivation 543 

of this expression.) The climate change induced productivity shocks (in percentage change) are 544 

represented by isa in the case of TFP shocks to sector i in region s, and is
ja in the case of partial 545 

factor productivity shocks to input j employed in sector i in region s. The first term in this 546 
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expression states that, if farmers plant the same crop using the same mix of inputs at mid-547 

century, but harvest 1% less output, then the direct economic loss is equal to 1% of the value of 548 

output ( is isP Y ) of commodity i in region s. The second term in (6) captures the impact of the 549 

partial factor productivity shocks. Here, a 1% loss in (e.g.) labor capacity induces a direct 550 

welfare loss which is valued at 1% of the cost of labor employed in that sector ( is is
j jW X ). These 551 

first two terms comprise the direct (first-order) welfare impacts of climate change. To translate 552 

these dollar changes into welfare terms, they must be multiplied by the EV scaling factor,  ( )sψ , 553 

which is itself a function of the elasticity of expenditure with respect to utility.  554 
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     (6) 555 

Since the cost shares of labor and land are less than one, / 1i i iW X PYθ = < , it is hardly 556 

surprising that the aggregate welfare impacts of the partial factor productivity shocks are only a 557 

fraction of the TFP-driven welfare impacts. Somewhat more surprising, in light of the fact that 558 

the global cost shares of labor and land are quite similar (recall Figure 1), is the much larger 559 

welfare impact from the labor vs. land partial factor productivity shocks. Deeper investigation 560 

into the source of this discrepancy reveals that, while the agronomic-based yield shocks are quite 561 

variable, depending on the crop, climate and location, the labor capacity reductions are uniformly 562 

negative (Figure 6). Furthermore, the labor losses are greatest, precisely in those regions where 563 
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labor cost shares are relatively high, particularly rice production in Asia (Figure 6). The other 564 

point that emerges from Figure 6 is that in the most heat/humidity stressed regions of the world, 565 

where labor capacity losses are largest, the plants seem to fare better than the people under 566 

warming. This is particularly true for rice production in Asia where the yield impacts are modest 567 

– rice has a high optimal growing temperature – but the labor impacts are quite significant. 568 

 569 

 570 

Figure 6. Cost of climate-affected agricultural inputs used in staple crops production. Land (E2: 571 

left hand panel) and Labor (E3: right hand panel) are each plotted against the shock to partial 572 

factor productivity of land and labor, respectively. The size of the circle denotes the welfare loss 573 

associated with each crop/input/region combination. Crop losses are color-coded by sector. 574 

To investigate the plants vs. people impacts more fully we turn to Figure 7 which reports the 575 

impacts on output by region for rice and wheat. Rice is relatively well-adapted to warm, humid 576 

climates, with a high agronomic optimal temperature. Estimated yield losses under global warming 577 

are concentrated in South and Southeast Asia, while Europe, Japan, South America and Australia 578 

are projected to experience higher yields under +3C warming. And this is reflected in the output 579 
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changes for rice, by region, in the top panel of Figure 7. This contrasts sharply with the labor 580 

impacts. While rice thrives in a warm, humid environment, the combination of heat and humidity 581 

is deadly for humans who can no longer dissipate their internally generated body heat under such 582 

conditions. Thus, the impacts of climate change on rice production through the labor input are 583 

much larger than that through the agronomic channels. Despite the fact that all regions of the world 584 

experience diminished labor productivity in rice production, those experiencing the more modest 585 

impacts (North America, Europe, Australia) increase rice production in order to make up for the 586 

large declines in rice output in Central America, Asia and Africa. 587 

The differential impact of climate change on wheat vs. labor employed in cultivating wheat is 588 

quite different from rice, as shown in the bottom panel of Figure 7. Wheat has a much lower 589 

optimal agronomic temperature. Furthermore, it is often grown in dry, cooler regions of the 590 

world. As a consequence, the labor impacts are more modest than for rice. Therefore, the wheat 591 

output impacts of a changing climate are much more dramatic in the agronomic-based scenarios. 592 

Southeast Asia and SSA are exceptions, but these are not major wheat producing regions.  593 

 594 

 595 

 596 
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 597 

Figure 7. Impacts of land (E2) vs. labor (E3) climate impacts on the pattern of staple crops 598 

output: Rice (left panel) and Wheat (right panel). 599 

 600 

The remaining terms in equation (6) are the result of indirect (second-order) effects flowing 601 

from changes in equilibrium quantities and prices in the wake of direct climate impacts. The 602 

third term in (6) captures the interplay between climate change impacts and government policies. 603 

For example, if the climate impacts cause shrinkage in a sector ( 0isdY < ) that is subsidized (604 

0isτ < ), then there will be an efficiency gain in general equilibrium, as resources are re-allocated 605 

to higher value uses ( 0is is isP dYτ > ). (In the GTAP model, this allocative efficiency effect 606 

comprises thousands of terms, reflecting the plethora of existing distortions in the economy – not 607 

just those related to output taxes or subsidies.)  608 

The final two terms in (6) refer to the terms of trade effects on regional welfare. The most 609 

hard-hit regions under climate change will reduce production, which, in turn, will cause their 610 

prices to rise, relative to the world average. (This model reflects the fact that agricultural 611 

products are not homogeneous. Rather they are differentiated – in this case by region of origin, 612 



30 
 

as first pointed out by Armington (1969).) With export prices rising, relative to import prices, 613 

those hard-hit regions ( isr isrdPFOB dCIF> ) which are significant net exporters of climate-614 

impacted commodities ( is isE M>> ), are expected to see large terms of trade gains. However, 615 

since this component of the welfare change simply amounts to income transfers amongst regions, 616 

when summed over all regions in the world, this effect washes out and therefore has no influence 617 

in the global welfare impacts reported in Figure 5. Overall, the direct effect of climate change 618 

accounts for about 90 percent of the global welfare change in all of our experiments, with the 619 

allocative efficiency effects accounting for the remainder (roughly 10 percent of the global 620 

welfare impact).  621 

Figure 8 reports the geographic distribution of the full regional welfare impacts (i.e., 622 

considering all of the terms in equation (6)) stemming from the land and labor partial factor 623 

productivity shocks to staple crops (E2 and E3). Contrasting the two panels, we see that the losses 624 

in Southeast Asia and Sub-Saharan Africa stand out when labor capacity reductions are taken into 625 

account. Central America and the Middle East also contribute significantly to the global welfare 626 

losses under the labor stress experiment. In the labor stress experiment (E3), the benefitting regions 627 

are fewer, and these gains are driven by improvements in the regions’ terms of trade, not by 628 

productivity gains, in contrast to the yield-based experiment (E2). 629 
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 630 

Figure 8. Impact of climate change experiments E2 and E3 on the regional welfare. Changes are 631 

relative to the 2011 baseline. The maps show the total welfare changes reported as equivalent 632 

variation for Staples-Land and Staples-Labor experiments. Welfare changes are normalized by the 633 

value of crop production of all staple crops.  Source: Authors’ calculations 634 

  635 

8. Discussion and Conclusions 636 

The purpose of this paper is not to provide comprehensive new estimates of the food price and 637 

welfare impacts of climate change in agriculture, but rather to highlight the extent to which those 638 

of us in the climate impacts community have been effectively ‘looking for our keys under the 639 

streetlight’. The majority of the research to date on climate impacts in agriculture has focused 640 

solely on four staple crops, accounting for only about one-quarter of the total value of agricultural 641 

output. Furthermore, when it comes to assessing these impacts, the sole focus has been the 642 

productivity of the cropland input employed in farming, which itself accounts for only about 16% 643 

of total production costs. Viewed from the entirety of the global agricultural sector, this means 644 

researchers have been focusing on only 4% (.25 * 0.16 * 100%) of the economic value of global 645 

farming. What about the other 96%? This paper offers some evidence of significant impacts 646 
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outside of the staple plant domain. In particular, the workers employed in agriculture are likely to 647 

be adversely affected by a warmer, more humid climate, and, in some regions, these impacts are 648 

much larger than the impacts on the plants themselves. It is time to move beyond assessing yield 649 

impacts for staple commodities where we have the best models and data, and venture into the realm 650 

of other food products as well as other farm inputs and nutritional impacts. 651 

 We also identify a significant discrepancy in the literature pertaining to how the agronomic 652 

yield shocks are implemented in economic models. Depending on whether these yield impacts are 653 

interpreted as a reduction solely in the productivity of land, or whether adverse yield impacts 654 

should be interpreted as a shock to all factors employed in crop activities, makes a big difference. 655 

This is particularly striking when it comes to the ensuing food price impacts – a key aspect of the 656 

climate/food security debate. Since the null hypothesis of no climate change impact on non-land 657 

input productivity is a testable hypothesis, the differences highlighted in this paper should provide 658 

ample motivation for future empirical work. 659 

 One aspect of climate impacts on agriculture that has received next to no attention relates 660 

to the consequences for productivity enhancement through agricultural research and development. 661 

As agriculture becomes increasingly knowledge-driven, the linkage between investments in 662 

science – quantified through the accumulation of knowledge capital – and future growth rates in 663 

agricultural productivity is central to global food and environmental outcomes. Current evidence 664 

suggests that this linkage – quantified as the elasticity of productivity growth with respect to 665 

knowledge capital -- is greater in highly developed, temperate regions (Fuglie 2018). If global 666 

warming results in a reduction in this elasticity – in both rich and poor countries -- due to 667 

challenges posed by higher temperatures, then climate change could have a significant long term, 668 
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dynamic impact on food output, resulting in higher food prices and reduced real incomes by mid-669 

century.  670 

 This broader view of climate impacts on agriculture also has important policy implications. 671 

Firstly, agricultural impacts are an important contributor to the social cost of carbon. Upward 672 

revision of these estimates can boost significantly the overall social cost of carbon (Moore et al. 673 

2017). A higher social cost of carbon implies that more climate mitigation effort is justified. 674 

Furthermore, since much of the low cost greenhouse gas mitigation currently available is land-675 

based and relates directly to the spatial extent of farming on the planet (Smith et al. 2014). More 676 

mitigation will likely contribute to higher food prices, raising further concerns about food security 677 

and poverty (Hussein, Hertel, and Golub 2013) 678 

 The prominence of heat stress on labor in the poorest countries of the world also suggests 679 

that current studies omitting this factor are greatly understating the economic and human impacts 680 

of climate change in the most vulnerable regions. Adaptation to such stresses will be challenging. 681 

New technology pathways for the agricultural sector, including not only plant breeding but also 682 

rapid mechanization of many farming activities will be required. These adaptations can be greatly 683 

facilitated by additional investments in research and development, in both the public and private 684 

sectors. Indeed, public-private collaboration will be essential to the development and 685 

dissemination of new technologies in the face of a warming planet. 686 

 687 

 688 

 689 

  690 
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 830 
 831 

This appendix offers a set of more detailed, pairwise comparisons of the experiments in Table 832 

1 to provide additional insights into how the differential treatment of climate change impacts on 833 

agriculture affect regional staples outputs as well as regional welfare. Figures A.1 and A.2 compare 834 

regional impacts of experiments E1 and E2, highlighting the difference between treating staple 835 

grains yield shocks as total factor production (TFP) shocks vs. partial factor shocks on land 836 

productivity. Not surprisingly, the regional output and welfare patterns are quite similar between 837 

experiments 1 and 2, with the impacts more muted when yield shocks are interpreted as simply a 838 

reduction in land productivity, as opposed to TFP. There are some cases where the sign of the 839 

output change is reversed. This is due to the impact on world prices and hence trade.  840 

  841 
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 842 

Figure A.1: Impacts of TFP (E1) vs. land (E2) climate impacts on the pattern of Coarse Grains, 843 
Oil Seeds, Rice, and Wheat outputs. 844 

 845 

 846 

Figure A.2. Impacts of TFP (E1) vs. land (E2) on regional welfare changes.   847 

  848 
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Figures A.3 and A.4 compare the regional impacts of the partial factor productivity shocks due 849 

to climate-induced reductions in yields (implemented as shocks to land productivity), and labor 850 

capacity (implemented as shocks to labor productivity). The relative sizes of the output impacts 851 

are generally larger for the yield shocks. This reflects the relative immobility of cropland, as 852 

compared to the relatively greater mobility of labor across sectors. In the case of oilseeds and 853 

wheat the output changes from yield shocks are quite dominant (Figure A3). This stands in sharp 854 

contrast to the welfare impacts which tend to be larger in the case of the labor capacity reductions 855 

(Figure A4). Further insight into the welfare comparison can be gained by referring to Figure 6 in 856 

the main text which shows the positive correlation between the size of the partial factor 857 

productivity shocks and the relative importance of the affected inputs. Labor capacity is often 858 

hardest hit in regions where it is most important. 859 

 860 

Figure A.3: Impacts of land (E2) vs. labor (E3) climate impacts on the pattern of Coarse Grains, 861 
Oil Seeds, Rice, and Wheat outputs.  862 

 863 
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 864 

Figure A.4. Impacts of land (E2) vs. labor (E3) on regional welfare changes. 865 

 866 
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Figures A.5 and A.6 compare the regional impacts of the partial factor productivity shocks due 868 

to climate-induced reductions in labor capacity when the sectoral coverage of the shocks expands 869 

from staples only (E3) to all crops (E4). Even though the shocks to staples are the same in the two 870 

experiments, the output impacts are magnified when the labor capacity reductions hit all of the 871 

crops. This is because it is no longer possible to divert resources from other crops to staples to 872 

offset the labor productivity reductions in rice, wheat, maize and oilseeds. When it comes to the 873 

welfare impacts, it is hardly surprising that broader adverse impacts carry with them larger welfare 874 

losses and this is the case in Figure A.6. 875 

 876 

Figure A.5. Impacts of labor (E3) vs. all crops labor (E4) climate impacts on the pattern of 877 
Coarse Grains, Oil Seeds, Rice, and Wheat outputs.  878 

 879 
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 880 

Figure A.6. Impacts of labor (E3) vs. all crops labor (E4) on regional welfare changes. 881 

 882 
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