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Estimating the spatially heterogeneous elasticities of land supply to U.S. crop agriculture 
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Introduction  

The biggest issue that US agriculture is currently facing is its long term sustainability given the increased 

stress on land and water resources resulting from increasing agricultural production. For example, 

intensification of production has led to large amounts of nitrogen being discharged into surface and 

groundwater (Goolsby et al., 2001; Turner and Rabalias, 1991). Elevated nitrogen levels in waterways are 

detrimental to plant and animal life, agriculture and human health as well. Along with water quality, water 

quantity poses a threat to agricultural sustainability. In addition to water resources, expanding croplands 

have put pressure on land with conversion of environmentally sensitive and erosive lands to agriculture 

being the biggest concern (Lark et al., 2015). Moreover, the effectiveness of Conservation Reserve 

Program in achieving its objective of keeping erosive land out of agriculture has been restricted by 

commodity prices and land returns (Hellerstein and Malcolm, 2010). While various models have been used 

to assess long run sustainability of US agriculture, an important limitation of the existing research is the 

limited spatial resolution of the global to national scale modelling. This restricts their usage in 

understanding local environmental impacts and sustainability stresses since land supply responses vary 

by locality due to agro-ecological, economic and institutional factors. The key indicator of land supply 

response is the land supply elasticity which is the percentage change in cropland due to a percentage 

change in land rents accruing to agriculture. The primary objective of this paper is to estimate 

geographically explicit land supply elasticities to changes in agricultural cash rents, at a resolution of 5 arc 

minutes or between 5500 and 7600 hectares depending on the latitude, for the contiguous US using panel 

data on land use and controlling for land quality attributes.  

 Land supply elasticities determine the acreage of natural lands that get converted into croplands 

when agricultural productivity increases. Thus, models that predict environmental indicators related to 

land conversion, like greenhouse gas emissions, biodiversity loss, or changes in water usage, could 

condition on spatially explicit land supply elasticities to more precisely estimate the location of the 

changes in the indicators (Villoria and Liu, 2018). Villoria and Liu (2018) estimated the spatial pattern of 

land supply elasticities with respect to changes in market access for North and South America using cross 

sectional data. The limitation of those estimates is that they need to be scaled to a known elasticity, which 

are unobserved for most of the countries in the study. However, the spatially heterogeneous elasticities 

that the authors estimate, reasonably predict the regions where cropland conversions primarily took place 

as evidenced by estimates found by Lark et al. (2015) and Graesser et al. (2015). In this paper we estimate 

more accurate land supply elasticities for the US by using time series data on county level cash rents from 

the USDA National Agricultural Statistical Service (NASS) and patterns of land cover change from NASS’ 

Cropland Data Layer (CDL). In addition to estimating high resolution land supply elasticities, our research 

will also contribute to improving the ability of economic models to assess impacts of agricultural policies. 
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The gridcell level elasticities will also be used in a SIMPLE-G framework, which is a multi-region, partial 

equilibrium model of gridded cropland use, crop production, consumption and trade (Baldos and Hertel, 

2013), to assess policies aimed at improving agricultural sustainability. 

Conceptual framework  

 

We assume that there are two land uses – cropland and non-cropland. For a landowner, the utility from 

converting a piece of land 𝑖 from its natural state to cropland at time 𝑡, 𝑈𝑖𝑡  can be represented by a probit 

model of binary choice,  

𝑃𝑟𝑜𝑏(𝐼 = 1) = Φ(𝑈𝑖).             (1) 

The indicator 𝐼 is equal to 1 when parcel 𝑖 is a cropland and 0 otherwise, and Φ denotes the standard 

normal cumulative distribution function (CDF). 𝑈𝑖𝑡  can be specified as a function of county level land rents 

accruing to agriculture 𝑅𝑐𝑡, where c is a county index, grid cell level access index 𝐴𝑖  (Verburg et al, 2011), 

and grid cell level soil quality index 𝑄𝑖, ranging from 0 to 1, as represented by the National Commodity 

Crop Productivity Index (NCCPI) which is derived from the Soil Survey Geographic (gSSURGO, 2017) 

database maintained by USDA. 

𝑈𝑖𝑡 = 𝛽0 + 𝛽1𝑅𝑐𝑡 + 𝛽2𝐴𝑖 + 𝛽3𝑄𝑖 + 𝜀𝑖𝑡            (2) 

The parameters from the utility function above are estimated using the regression model of the form: 

𝑍𝑖𝑐𝑡 = Φ(𝛽0 + 𝛽1𝑅𝑐𝑡 + 𝛽2𝐴𝑖 + 𝛽3𝑄𝑖 + 𝜀𝑖𝑡)                 (3) 

where 𝑍𝑖𝑐𝑡  is the fraction of each grid cell under cropland. 𝑍𝑖𝑐𝑡  is obtained from the Cropland Data Layer 

(CDL) data from USDA which classifies land parcels at 30m resolution into over 120 different land use 

types. We reclassify the land use types into five broad land use categories – cropland, forest, grassland 

and pasture, shrubland, and urban. Next, we aggregate the small 30m-by-30m pixels of land use to 5 arc 

minute level grid cells and calculate the proportions of each of the five broad land use classification type 

per grid cell. Given the fractional nature of 𝑍𝑖𝑐𝑡, we estimate the above specification using a fractional 

probit model for panel data as outlined by Papke and Wooldridge (2008). The main advantage of using a 

fractional probit instead of a logistic model in our study is that the conditional logit MLE is not consistent 

unless the dependent variable is binary in nature (Papke and Wooldridge, 2008). Another important issue 

in the estimation of the fractional probit model is the spatial autocorrelation of 𝜀𝑖𝑡. We plan to follow 

Villoria and Liu’s (2018) four pronged strategy to control for spatial autocorrelation. The strategy includes 

(i) using a spatial bootstrap resampling algorithm proposed by Zhu and Morgan (2004) to obtain empirical 

variance estimators robust to spatial autocorrelation; (ii) including spatial lags of the independent 

variables; (iii) estimate the model using random samples of approximately 10% of the data using a 

sampling scheme that preserves the gridded structure of the original data; and (iv) capture the uncertainty 

from sampling by using the resampling techniques proposed by Kleiner et al. (2014). 

 After estimating the model, we estimate the grid cell specific elasticities of the change in cropland 

to change in land rents by  

𝜖𝑖 =
𝛿𝑍𝑖̂

𝛿𝑅𝑐
×

𝑅𝑐

𝑍𝑖̂
= 𝜙[𝛽̂0 + 𝛽̂1𝑅𝑐𝑡 + 𝛽̂2𝐴𝑖 + 𝛽̂3𝑄𝑖]𝛽̂1 ×

𝑅𝑐

𝑍𝑖̂
            (4) 



where 𝜙 is the standard normal density function and 𝑍𝑖̂ are fitted cropland shares computed using 

parameter estimates from the fractional probit model. The partial effects, 
𝛿𝑍𝑖̂

𝛿𝑅𝑐
 are specific to each grid 

cell. 

Data 

In this paper we have used a variety of geo-spatial datasets of varying resolutions which have been 

aggregated or resampled to have a uniform resolution of 5 arcminutes. Table 1 lists the variables used, 

their original resolution, and the sources from where the relevant datasets and in turn the variables are 

obtained.   

Table 1: Data Sources 

Variables Units [resolution/admin level] Source Years  

Cropland Data Layer (CDL) Type (30 m) USDA-NASS 2009 – 2017 
Cropland area County Agricultural Census, USDA 2007, 2012, 2017 
Market Access Index (5 arcminute) Verburg, Ellis, and Letourneau 

(2011) 
2011 

Soil Quality Index (10 m) gSSURGO - USDA Jan 2019 release 
Cash Rents County USDA-NASS 2009-14, 2016-17 
CRP Payments County USDA-NASS 2009-17 
Farm Resource Regions Aggregated county  USDA-ERS NA 
Level III Eco-regions 85 eco-regions EPA NA 
Irrigation 250 m USGS (MODIS MIrAD-US) 2007, 2012, 2017 
Precipitation mm year (county/5 arcmin) PRISM 2009 – 2017 
Growing Degree Days degreedays (county/5 arcmin) PRISM 2009 – 2017 
Cooling Degree Days degreedays (county/5 arcmin) PRISM 2009 – 2017 
Bio-diesel and ethanol plants 
Population (yearly) 

# plants 
County 

National Biorefineries Database 
Census 

2009 
2009 – 2017 

 

The unit of analysis in this paper is a 5 arcminute gridcell for contiguous US. The 5 arcminute gridcells are 

inclusive of the gridcells that are used in the SIMPLE-G partial equilibrium model developed by Baldos and 

Hertel (2012). Since the gridcells are measured in arcminutes, we use a uniform geographic coordinate 

system (GCS) WGS-1984 for all the geospatial datasets used in our analysis. The gridcells from the SIMPLE-

G framework serve as the reference to which the gridcells from aggregated and resampled datasets like 

the Cropland Data Layer are aligned. We use Cropland Data Layer (CDL) for creating a time series (yearly) 

data of proportion of area classified as cropland in each of the 5 arcminute gridcells for the years 2009 

through 2017. The CDL data are obtained from USDA’s National Agricultural Statistics Service (NASS) and 

are in the form of raster files with Albers equal-area conic projection system and a resolution of 30m. The 

CDL classifies crops and vegetation into more than 130 categories including over 100 crop categories. 

These categories are created by NASS using supervised classification of pixels from Landsat satellite 

images.  

We reclassify all crop categories and fallow or idle cropland into a single cropland classification and create 

a new raster data (Lark et al., 2017). Next, we change the projection of the reclassified cropland raster to 

GCS WGS-1984. We aggregate the reprojected rasters to the closest integer value of the ratio of the 

gridcell size of the 5 arc min reference raster to that of the reprojected cropland rasters. The ratio is 

239.810, and therefore we use 240 as the cell size. The aggregated reprojected cropland rasters are next 



resampled to have the same sized gridcells as the reference raster. However, in order to have the gridcells 

of the cropland rasters aligned to those in the reference rasters, in the Resample tool of ArcGIS, the 

Processing Extent option in the Environment Settings is selected, and the Extent and the Snap Raster are 

changed to be the same as the reference 5 arcminute raster. This ensures that the centroids and thus the 

corners of the gridcells for both the cropland and the reference rasters coincide. After completing the 

procedures in ArcGIS, for each of the new aggregated 5 arcminute resolution cropland raster, the raster 

is converted to XYZ (or XY coordinate and Z data) points in R and saved as csv. The coordinates of the 

centroids of the gridcells match to those of the reference raster, and we follow the same procedure for 

obtaining 5 arcminute gridcell level data for area classified as non-cropland. The four primary non-

cropland land use/cover types in our analysis are forests, grassland and pastures, shrubland, and urban 

builtup. Unlike the extensive cropland classification, CDL does not have numerous classifications for 

forests or other primary land use/cover types.   

The gridcell level data for cropland and other land cover types do not have information on which counties 

and states they belong to. In order to find the exact counties for the gridcells, we use the Identity tool in 

ArcGIS. The Identity tool “Computes a geometric intersection of the input features and identity features. 

The input features or portions thereof that overlap identity features will get the attributes of those 

identity features” (ESRI). We use contiguous US county shapefile as the file with identity features, and one 

of the 5 arcminute cropland rasters as the file with input features and use to tool to find corresponding 

counties for each of the gridcells. Post matching the gridcells with counties, we create a unique ID for each 

of the gridcell and create a data key with information on gridcells, the corresponding coordinates of the 

centroids, state and counties, and their IDs. This key is then used to match grdicells from all the 5 

arcminute rasters to the respective counties. Representative maps for four primary land use/cover 

classification types from 2016 CDL are given in figure 1. The blue/green regions correspond to each land 

use/cover type 

 

Figure 1: Primary land use/cover types from CDL 2016 

In this paper, we consider cropland data from 2009 to 2017. This is primarily because, as will be discussed 

later, county level cash rent data from USDA-NASS are missing for most of the counties in 2008. Table 2 

gives brief descriptive statistics for the five primary land use/cover types for all the years together. The 



mean refers to the proportion of contiguous US that is classified as a particular land use/cover type. 

Forests are the most common land cover type, followed by shrublands, grassland and pasture, and 

cropland. The maps in figure 1 show the distinct pattern of land use/cover type in the US. 

Table 2: Descriptive Statistics - Primary land classification types 

 Classification 
#gridcells 
per year Mean Median s.d. Min Max 

       
Cropland 119,756 0.163 0.012 0.256 0 1 
Forest 119,756 0.268 0.122 0.304 0 1 
Grassland & Pasture 119,756 0.206 0.1 0.252 0 1 
Shrubland 119,756 0.221 0.032 0.328 0 1 

Urban 119,756 0.057 0.032 0.112 0 1 

 

Between 2009 and 2017, cropland area has increased in the US. There is significant geographic 

heterogeneity in terms of where changes have taken place. For example, between 2008 and 2012 

conversion to agriculture has primarily taken place in the plains states (Lark et al., 2015). Thus, grassland 

to cropland conversion was more common than conversion from other land cover types to cropland. In 

order to control for the effects of non-cropland dominant land use/cover type for gridcells on land supply 

elasticity, we create dummies for non-cropland dominant land use/cover type. Forest is the dominant 

non-cropland land use/cover type, followed by grassland and shrubland. For any gridcell, the dominant 

land cover type could be marginally more than the next most dominant land cover type. In order to control 

for this, we compare land covers of gridcells such that if a land cover proportion falls within a +-10% range 

of the next highest land cover proportion, the two land cover proportions are considered to be the same. 

Thus, in addition to forest, grassland and shrubland land cover types, we also have FG (forest and 

grassland), FS (forest and shrubland), SG (shrubland and grassland), and FGS (forest, grassland, and 

shrubland) and the dominant non-cropland land cover types. However, the number of cells in the latter 

categories is not high. Since a very small proportion of gridcells have dominant urban land cover type, we 

do not consider them in figure 2. 

 
Figure 2: Number of gridcells by dominant non-cropland land cover type 



We compare regions which saw land conversion as calculated from CDL to those estimated by Lark et al., 

(2015). Level III eco-regions of the US are used to recognize the regions where cropland expansion took 

place. Eco-regions refer to regions where ecosystems are similar. There are 85 eco-regions for contiguous 

US. Eco-region shapefiles are obtained from EPA and then merged to the gridcell key to match gridcells to 

their respective eco-regions. We take the average of cropland proportion for the years 2008, 2009 and 

2010 and compare then to the average of cropland proportion for the years 2012, 2013 and 2014. The 

difference in average cropland proportion by eco-region is given in figure 3. Similar to Lark et al. (2015) 

we find that the Northern Great Plains and the High Plains regions had amongst the highest proportions 

of land converted to agricultural land. Moreover, eco-regions that had higher proportion of land classified 

as cropland at the baseline had higher expansion in cropland. The trends are similar for period between 

2016-18 and 2008-10.  

 

Figure 3: Cropland expansion by eco-region 

CDL uses Landsat imagery to classify vegetation and crops. CDL data are generated by supervised 

classification of images which involves first manually recognizing pixels from images associated with 

particular crop or vegetation type, and then using the recognized sites (training sites) to analyze all other 

pixels in the images of the crops (USGS). Thus, CDL differs from data based on surveys like the Agricultural 

Census. Lark et al. (2017) outlines challenges using CDL data and recommends practices to improve 

accuracy of the data used. The key challenges of using CDL data and how we have addressed them in this 

paper are as follows: 

1. Using data for specific crops could lead to inaccurate estimation of acreage under those crops. 

We follow Lark et al. (2017)’s recommendation of combining all crop classes to create a single 

combined cropland category. 

2. Using CDL data for only specific years could lead to incorporating any misclassification that 

could have occurred for a particular year. Instead we utilize most of the temporal data in our 

panel data analysis. We also take 3 year averages of cropland data when we estimate 



elasticities using long differences estimation. For example, we take the average of cropland 

proportion for 2008-10 as an approximate for the year 2009. 

3. Verifying with independent data improves accuracy of estimates. We compare our cropland 

estimates to those from Agricultural Census. For most of the states, total cropland from 

Agricultural Census is consistently 15% to 20% more than that from CDL. There are exceptions 

like New Hampshire, Vermont and West Virginia which have lower proportion of land 

classified as cropland. Figure 4 shows a state-wise comparison of CDL and Agricultural Census 

data.  

 

Figure 4: Comparison of cropland area – CDL and Agricultural Census 

We also compare cropland estimations for USDA’s Farm Resource Regions (FRR). There are 9 FRRs 

classified on the basis of agricultural intensity, types of crops produced, size of farms and other factors. 

Figure 5 shows a map of FRRs and table 3 compares cropland estimations from CDL and Agricultural 

Census for the FRRs.  

 

Figure 5: Farm Resource Regions (USDA) 

As seen in table 3, CDL underestimates cropland area in the Appalachia. However, the differences are 

lower in the primarily agricultural areas like the Heartland and the Fruitful Rim.  

 

 



Table 3: Ratio of cropland area from Agricultural Census to CDL for FRR’s 

 

In addition to gridcell level total cropland acreage and proportion, we also include in our analyses, acreage 

and proportion of major crops like corn, soybean, wheat and cotton among others. Crop parcels of same 

quality could have spatially different land rents due to accessibility of markets. In this paper we use 

Verburg et al. (2011)’s market accessibility index in order to control for such heterogeneity. The time 

invariant market accessibility index is generated by combining travel times to major cities, ports, and other 

towns and ranges from 0 to 1 with 1 being closest to the market. The extracted market accessibility index 

data are in 5 arcminute resolution and are aligned to our reference 5 arcminute gridcell raster. Figure 6 

shows the map of market accessibility index with the bluer regions indicating higher indices. Table 4 gives 

summary statistics for the index and also the soil quality index. 

 

Figure 5: Market Accessibility Index – 0 (yellow) to 1(blue) 

 

Cropland change with respect to cash rents depend also on the quality of soil. We use the National 

Commodity Crop Productivity Index (NCCPI) obtained from the USDA-NRCS Gridded Soil Survey 

Geographic (gSSURGO) Database product at 10m resolution. This index divides soil quality on the basis of 

numerous attributes like weather, soil carbon content, moisture, and crop type, and has a classification 

system with unique combinations of the attributes. These classifications are called MUKEY or map unit 

key and there are more than 306,000 soil classification categories for the US. The number of classification 

types (MUKEY) however is not equal to the number of unique values of the NCCPI soil index which ranges 

from 0 to 1. For example, while Kansas has 5793 MUKEY values, it has 723 unique values of the NCCPI soil 

index. In order to extract the NCCPI data, we have reclassified the MUKEY to the unique NCCPI values 

using a Remap table in ArcGIS (which we created from the attribute table of the NCCPI raster). Since a 

raster value can only be reclassified to integer values, we next multiplied the NCCPI index values by 1000 



(since it had upto three decimal places), aggregated them to 30 m cells, and finally used the raster 

calculator to divide the values by 1000. Next we use Raster Calculator to multiply each of the 30m NCCPI 

gridcells to that of the corresponding 30m CDL gridcells. Post multiplication, we reproject the raster to 

the same projection as the reference 5 arcminute gridcell raster (GCS WGS 1984). The reprojected raster 

is then aggregated using mean of each of the 30m cells and resampled to get 5 arcminute gridcell level 

cropland weighted NCCPI soil index raster. Figure 6 shows the original map of NCCPI in its native Albers 

Conical projection system to the left, and the reprojected 5 arcminute cropland weighted NCCPI to the 

right. 

 

Figure 6: Soil Quality (NCCPI): 30m resolution (left) cropland weighted 5 arcminute NCCPI (right) (bluer 

regions indicate higher soil fertility) 

For all the gridcells, the soil quality index ranges from 0 to 0.835 (most fertile) with a mean of 0.081 units 

(table 4). 

Table 4: NCCPI and Market Accessibility Index 

  #gridcells Mean Median s.d. Min Max 

       
NCCPI 119,753 0.081 0.004 0.149 0 0.835 

Access Index 116,790 0.236 0.116 0.273 0 0.999 

 

We obtain county specific cash rents from NASS-USDA. As mandated by the Farm Bill of 2008, NASS 

collects cash rental rates for counties that have at least 20,000 acres of land that is classified as cropland 

or pasture. Since there is a minimum acreage of cropland or pastureland required to be included in the 

survey of cash rents, several counties are not surveyed especially in 2008. Between 2009 and 2017, 70% 

of the counties had only non-irrigated cash rents, 25% had both irrigated and non-irrigated cash rents, 

and 4.5% had only irrigated cash rents available. We focus our study on the years 2009 through 2017 since 

cash rent surveys were not conducted in the years 2015 and 2018. A balanced panel dataset that includes 

either irrigated or non-irrigated cash rents along with other variables has 61,763 5 arcminute gridcells. 

Cash rents are at the county level. Thus, the gridcells belonging to a county have the same value for cash 

rents. Moreover, few counties and consequently gridcells have irrigated cash rents and thus estimating 

separate land supply elasticities with respect to the change in the two types of cash rents would not 

capture the true variations in elasticities at the gridcell level. In order to obtain gridcell level estimates of 



cash rents, we utilize both irrigated and non-irrigated cash rents and combine them with gridcell level 

irrigation data.  

We calculate gridcell level irrigation data from Moderate Resolution Imaging Spectroradiometer 

(MODIS)’s Irrigated Agriculture Datasets for the Conterminous United States (MIrAD-US) which is 

produced by USGS. The MIrAD-US data gives geospatial information on irrigated areas of the US. These 

geospatial datasets use three primary data inputs to produce and map the spatial distribution of irrigated 

land across contiguous US. The three primary data inputs are: (a) USDA’s county-level irrigated area 

statistics for 2002, (b) annual peak eMODIS Normalized Difference Vegetation Index (NDVI), and (c) USGS 

derived land cover mask for agricultural lands from the National Land Cover Database (NLCD). The data 

are available every 5 years from 2002 to 2017, and we use the 250m resolution data in order to calculate 

the proportion of area irrigated for the 5 arcminute gridcells used in our study. The MIrAD-US datasets 

are first reprojected to the GCS-WGS-1984 projection system, then aggregated and resampled to 5 

arcminute resolution, and finally merged to the gridcell level dataset. Since the irrigation data is available 

every 5 years, for the years 2008 through 2011, we assign irrigation data from 2007, for the years 2012 

through 2016, irrigation data from 2012 is used, and for the year 2017 irrigation data from 2017 is used. 

Figure 7 shows the irrigated areas in the US in 2017. The Mississippi Alluvial Plains, the Central Valley, and 

parts of Central Great Plains and High Plains are some of the Eco-regions that are highly irrigated. 

 

Figure 7: Irrigated areas of the US, 2017 (MIrAD-US) 

We calculate gridcell level irrigation weighted cash rents by taking a mean of irrigated and non-irrigated 

cash rent weighted by proportion of area that is irrigated. The cash rents over the major agricultural Eco-

regions Land rents increased between 2009 and 2013, especially in the Mid-West, but fell substantially 

between 2013 and 2017. Figure 8 shows the trends in irrigation weighted cash rents by primarily 

agricultural Eco-regions. 



 

Figure 8: Cash rents by Eco-region 

Decision to convert a parcel of land into cropland depends also on the amount of environmental benefits 

that a farmer could receive by conserving the land instead. One such program, the Conservation Reserve 

Program (CRP) is one of the largest voluntary land conservation programs in the US. The prevalent average 

CRP payments that a farmer could receive by enrolling their land into the program could determine how 

much land would be devoted to agriculture. We obtain county level average CRP payments per year from 

USDA’s Farm Service Agency. Since there are several counties without information on CRP payments, the 

balanced panel dataset has 46,797 gridcells per year that are primarily located in the Mid-Western and 

other agricultural regions. Cash rents and average CRP payments per acre are at constant 2011 prices. 

Table 5 gives descriptive statistics of cash rents and CRP payments. The number of gridcells represents 

the total number of cells in the 8 year (2009-2017, excluding 2015) dataset. Although fewer gridcells have 

irrigated cash rents, on average irrigated cash rents are substantially larger than non-irrigated cash rents.  

Table 5: Descriptive statistics of cash rents and CRP payments 

  #gridcells Mean Median s.d. Min Max 

       
Irrigated cash rent 138,380 130.53 116.67 79.49 19.17 904.23 

Non-irrigated cash rent 341,569 73.15 53.94 57.04 7.67 350.66 
Irrigated area weighted cash rent 374,376 69.94 51.04 58.53 0 496.74 
CRP average per acre 374,376 65.81 51.53 43.42 13.8 443.54 

Rent to CRP ratio 374,376 1.032 1.035 0.64 0 19.53 

 

Impacts of climate change on crop yields is a well-documented phenomenon. With rising temperature 

extremes and average temperatures, the suitable temperature window for growing crops is getting 

reduced which in turn could decrease yields significantly in the long run (Schlenker and Roberts, 2009). 

The suitable temperature window conducive for growing crops vary by crops with the range being 

between 8°C and 32°C (Ritchie and NeSmith, 1991). Studies use the concept of degree days in order to 

capture how hot or cold a particular area is. A degree day compares mean temperatures at a given location 

to any standard temperature. In our study, we consider the suitable temperature window for crops to be 

between 10°C and 30°C and growing degree days (GDD) are calculated as “sum of truncated degrees 

between two bounds” as defined by Schlenker and Roberts (2009). We use Stata codes and PRISM Climate 



Group3 datasets shared publicly by Wolfram Schlenker in his website4 to estimate relevant degree days. 

The PRISM datasets give state-wise daily temperatures for 2.5 arcminute gridcells. While Schlenker’s 

codes map these gridcells to counties and find average GDD for each county, we locate each of these 2.5 

arcminute gridcells with reference to our 5 arcminute gridcells and find the average GDD for each of the 

5 arcminute gridcells. In order to find the exact location of the 2.5 arcminute gidcells, we first create a 

buffer (circular) of 2.5 arcminute radius around each of the centroids of our reference 5 arcminute 

gridcells. Next, using the “Feature Envelope To Polygon” tool in ArcGIS, square polygons of 5 arcminute 

side for each of the centroids. Finally, we use the “Identity” tool to map the 2.5 arcminute PRISM gridcells 

to our 5 arcminute gridcells. There are 471,161 PRISM cells which are mapped to 121,280 5 arcminute 

reference gridcells. Figure 9 shows the process described above for a set of counties in Louisiana.  

 

Figure 9: Mapping PRISM 2.5 arcminute cells to 5 arcminute reference gridcells  
(Left and center: circular buffers and square polygons around centroids of 5 arcminute reference gridcells,  

Right: 2.5 arcminute PRISM cells mapped to 5 arcminute square polygons. Red lines indicate county boundaries) 
 

Schlenker’s codes also take into account the cropland proportion for each of the 2.5 arcminute PRISM 
cells. We assign uniform weights to all the PRISM cells since proportion of area under cropland is our 
dependent variable. The degree days are calculated for the temperature bounds 0°C, 10°C and 30°C. GDD, 
or total degree days between 10°C and 30°C, is calculated as follows using modified Schlenker’s codes. If 
the average temperature for a day at a particular gridcell is 11°C, then the GDD for that day is 1 degree 
day. However, if the mean temperature is less than 10°C the degree days is 0. Thus, with 10°C as base, 
GDD can be a maximum of 20 degree days which corresponds to a mean temperature of 30°C. The degree 
days for the 2.5 arcminute PRISM cells are averaged by the 5 arcminute reference gridcells and the date 
for which each PRISM cell degree day is calculated for the temperature bounds. The degree days are then 
summed across 5 arcminute gridcells for each year. The GDD thus generated varies by gridcells and years. 
Very high temperatures have detrimental effects on yields (Asseng et al., 2015; Schlenker and Roberts, 
2009). Therefore, the number of degree days for a threshold temperature that is above the suitable 
growing window of 10°C and 30°C, would indicate how much hot the temperature of a given location is 
such that it would negatively impact crop development. In this paper, we call this indicator the high-heat 
degree days (HHDD) which counts the number of degree days for mean temperatures above 30°C. The 
concept of HHDD is comparable to that of cooling degree days (CDD) used for calculating energy required 
for space cooling during higher temperatures. We also calculate gridcell level total yearly precipitation in 
millimeters using modified Schlenker’s codes. Table 6 gives the mean (5 arcminute gridcell level) GDD, 
HHDD, and precipitation for the US for years 2009 through 2017. There is significant heterogeneity in all 
three indicators across states and counties.   
 
 

                                                           
3 http://www.prism.oregonstate.edu/ 
4 http://www.wolfram-schlenker.com/dailyData.html 

http://www.prism.oregonstate.edu/
http://www.wolfram-schlenker.com/dailyData.html


Table 6: Mean GDD, HHDD and precipitation for the US 

  2009 2010 2011 2012 2013 2014 2015 2016 2017 

GDD (10<=c<=30) 1620.5 1720.8 1702.4 1789.7 1691.3 1660.8 1738.1 1743.0 1705.7 

 642.7 692.2 688.3 623.5 597.8 630.4 627.8 637.9 620.0 

HHDD (>30c) 45.8 56.2 76.5 68.9 48.0 41.6 49.0 54.1 48.6 

 84.1 78.8 108.1 85.8 78.2 74.3 76.1 79.5 81.4 
Precipitation 
(mm/year) 452.1 466.6 457.8 374.4 472.5 457.8 473.5 453.4 471.4 

  269.9 239.4 277.5 238.6 263.2 236.1 252.4 256.5 293.5 

 

There is evidence that cropland (especially corn) area has increased in response to bio-fuel boom during 

the late 2000’s (Motamed et al., 2016). Moreover, location of bio-fuel plants had a higher impact on crop 

expansion in regions where previous cropland areas were low. Thus, location of bio-fuel plants could be a 

determinant of land supply elasticities. In this paper, we use data on biofuels plants, specifically ethanol 

and bio-diesel plants, and use the location, vis-à-vis the 5 arcminute reference gridcells, and operational 

status of the plants as independent variables. We obtain the location and operational status data from 

the National Bio-refineries Database5 which has cross-sectional data for the year 2009. We verify the exact 

coordinates of the bio-fuel plants using their addresses and combine the various operational status types 

into 5 categories – Construction, Idle, Operational, Shutdown/bankrupt, and Unknown. Table 7 gives the 

distribution of bio-fuel plants by operational status. There were more number of bio-diesel plants in the 

US in 2009. However, the proportion of operational plants was lower than that of ethanol plants.  

Table 7: Bio-fuel plants by operational status 
Status Bio-diesel Ethanol 

Construction 30 8 
Idle 10 9 
Operational 174 144 
Shutdown/bankrupt 12 4 
Unknown 113 32 
Total 339 197 

Figure 10 shows the distribution of ethanol and bio-diesel plants across the US irrespective of operational 

status. While most the ethanol plants are concentrated in the heartland region, the distribution of bio-

diesel plants is more uniform.  

 

Figure 10: Left: Ethanol plants; Right: Bio-diesel plants 

                                                           
5 https://openei.org/datasets/dataset/national-biorefineries-database 

https://openei.org/datasets/dataset/national-biorefineries-database


Preliminary results 

 

We estimate land supply elasticities from the panel specification in equation 3 and using the formula in 

equation 4. Additionally, we also estimate elasticities using a long difference estimator. An estimator for 

two time periods separated by 4 years takes the following form:  

log 𝑍𝑖𝑡+4 − log 𝑍𝑖𝑡 = 𝛽0 + 𝛽1(log 𝑅𝑖𝑡+4 − log 𝑅𝑖𝑡)            (5) 

The estimated coefficient 𝛽̂1 is the land supply elasticity or percentage change in cropland proportion for 

a 1% increase in land rent between the years t and t+4. 𝑍𝑖𝑡  refers to cropland proportion, and 𝑅𝑖𝑡 refers 

to irrigation weighted cash rent for gridcell i in time t. We compare the years 2009 to 2013, 2013 to 2017, 

and 2009 to 2017. Proximity of gridcells to one another could have impacts on land supply elasticities. 

Therefore, in order to avoid spatial autocorrelation, we take a stratified (by Eco-region) 25% sample of 

gridcells, and estimate land supply elasticities. Table 8 summarizes US and Farm Resource Region level 

elasticities estimated using both panel and long difference estimations. For panel estimations, for the 

period 2009-17, the land supply elasticity was 0.0107. While there is heterogeneity in results in terms of 

both Farm Resource Region and time periods used in estimation, out results are preliminary and the 

specifications use access index, soil quality and prevalent non-cropland land use type as the only 

independent variables in addition to irrigation weighted cash rents. The results are expected to change 

significantly when we include time variant gridcell level variables like growing degree days and 

precipitation among others.  

Table 8: Preliminary results using a stratified (by Eco-region) 25% sample of gridcells 

 

Figure 11 shows maps for land supply elasticities at the level of eco-regions using full sample long 

differences estimator. Significant heterogeneities are observed by eco-region as well as time periods. 

While the regions around the Northern Great Plains have consistently high land supply elasticites, eco-

regions in the Hearland region like the Western Corn Belt in Iowa have inconsistent elasticities. We also 

find that the traditionally highly irrigated eco-regions like the Mississippi Alluvial Plain, the Central Valley 

in California, and the Snake River Plain in Idaho have low land supply elasticities. 

 

FRR 

Code 

Farm Resource 

Region 

Panel Estimation Elasticities Long Difference Elasticities 

2009-13 n 2013-17 n 2009-17 n 2009-13 2013-17 2009-17 n 2 period n 

1 
Heartland -0.228*** 11,835 0.184*** 9,468 -0.00717 18,936 -0.0322 -0.0265 -0.240*** 2,620 0.0278 5,240 

2 
Northern Crescent -0.0416*** 7,885 0.317*** 6,308 0.0449*** 12,616 0.0958*** 0.0147 0.291*** 1,845 0.0269** 3,690 

3 
Northern Great Plains 0.0467*** 8,740 0.0406* 6,992 0.0533*** 13,984 0.0670*** -0.0318 0.0253 2,227 0.0214 4,454 

4 
Prairie Gateway 0.0627*** 9,920 -0.0686*** 7,936 0.0133*** 15,872 0.0393* -0.0591*** 0.0275 2,455 -0.0165 4,910 

5 
Eastern Uplands 0.170*** 3,515 -0.0323 2,812 0.212*** 5,624 0.450*** -0.528*** 0.235** 1,053 -0.0254 2,106 

6 
Southern Seaboard -0.133*** 5,455 0.246*** 4,364 -0.014 8,728 0.200*** 0.0953*** 0.115** 1,324 0.174*** 2,648 

7 
Fruitful Rim -0.131*** 5,670 0.197*** 4,536 -0.00735 9,072 0.0224 -0.036 0.0371 1,768 -0.0138 3,536 

8 
Basin and Range -0.0812* 5,195 0.0983 4,156 0.00237 8,312 -0.014 -0.0116 0.0155 1,472 -0.0183 2,944 

9 
Mississippi Portal 0.0693 2,655 -0.103** 2,124 -0.0112 4,248 0.0954 0.0165 0.0114 681 0.0649 1,362 

  USA -0.0643*** 60,870 0.0752*** 48,696 0.0107*** 97,392 0.0458*** -0.026*** 0.0619*** 15,445 0.00127 30,890 

 



 

Figure 11: Land supply elasticities by eco-regions estimated using long differences estimator 

One of the primary objectives of our study is to check the predictability power of the estimated land supply 

elasticities. In order to test the predictive power of our land supply elasticities, we compute correlations 

between predicted and original proportion of area under cropland. Estimates from the long difference 

models using 25% sample are used to predict cropland proportion of another 25% sample of the data. 

Although both Spearman and Pearson correlation coefficients are less than 0.3, they are significant and 

out-of-sample predictive power are relatively higher for the 2009-13 and 2009-17 models (table 9). For 

the Northern Crescent and the Northern Great Plains, the predictability power is relatively higher. In terms 

of Eco-regions, predictive power is higher for Great Plains and Glaciated Plains, but lower for Western and 

Central Corn Belt Plains.  

Table 9: Out of sample predictions (using 25% stratified by Eco-region sample) 

 

We plan to test the predictive power of the remaining models (including both long difference and panel 

models), and also incorporate additional time varying covariates like precipitation and temperature that 

could impact cropland change. 

  

2009-13 2013-17 2009-17 n 2009-13 2013-17 2009-17 n

1 Heartland 0.0502* -0.2123* -0.0445* 2588 0.1216* 0.0024* 0.19* 2,588

2 Northern Crescent 0.1429* 0.1305* 0.1695* 1829 0.0921* 0.0371* 0.1623* 1,829

3 Northern Great Plains 0.2655* 0.1339* 0.2175* 2285 0.0418* 0.0531* 0.0726* 2,285

4 Prairie Gateway 0.1733* 0.033* 0.1543* 2405 0.0233* 0.0158* 0.0783* 2,405

5 Eastern Uplands 0.1452* 0.1349* 0.1289* 1073 0.1004* 0.1444* 0.0182* 1,073

6 Southern Seaboard 0.1575* 0.0442* 0.1322* 1343 0.0741* 0.0494* 0.083* 1,343

7 Fruitful Rim -0.0099 0.0303* 0.0296* 1765 0.0235* 0.0808* 0.0124 1,765

8 Basin and Range 0.007 0.0643* 0.0337* 1505 0.019* 0.0182* 0.0081 1,505

9 Mississippi Portal 0.1876* 0.0315* 0.107* 647 0.1385* 0.0242* 0.0537 647

USA 0.2701* 0.1509* 0.2385* 15,440 0.2268* 0.1171* 0.2051* 15,440

Spearman rank correlation coefficient Pearson correlation coefficient

FRR Code Farm Resource Region
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