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Estimating the spatially heterogeneous elasticities of land supply to U.S. crop agriculture

Shourish Chakravarty?, Nelson B. Villoria?

Introduction

The biggest issue that US agriculture is currently facing is its long term sustainability given the increased
stress on land and water resources resulting from increasing agricultural production. For example,
intensification of production has led to large amounts of nitrogen being discharged into surface and
groundwater (Goolsby et al., 2001; Turner and Rabalias, 1991). Elevated nitrogen levels in waterways are
detrimental to plant and animal life, agriculture and human health as well. Along with water quality, water
guantity poses a threat to agricultural sustainability. In addition to water resources, expanding croplands
have put pressure on land with conversion of environmentally sensitive and erosive lands to agriculture
being the biggest concern (Lark et al., 2015). Moreover, the effectiveness of Conservation Reserve
Program in achieving its objective of keeping erosive land out of agriculture has been restricted by
commodity prices and land returns (Hellerstein and Malcolm, 2010). While various models have been used
to assess long run sustainability of US agriculture, an important limitation of the existing research is the
limited spatial resolution of the global to national scale modelling. This restricts their usage in
understanding local environmental impacts and sustainability stresses since land supply responses vary
by locality due to agro-ecological, economic and institutional factors. The key indicator of land supply
response is the land supply elasticity which is the percentage change in cropland due to a percentage
change in land rents accruing to agriculture. The primary objective of this paper is to estimate
geographically explicit land supply elasticities to changes in agricultural cash rents, at a resolution of 5 arc
minutes or between 5500 and 7600 hectares depending on the latitude, for the contiguous US using panel
data on land use and controlling for land quality attributes.

Land supply elasticities determine the acreage of natural lands that get converted into croplands
when agricultural productivity increases. Thus, models that predict environmental indicators related to
land conversion, like greenhouse gas emissions, biodiversity loss, or changes in water usage, could
condition on spatially explicit land supply elasticities to more precisely estimate the location of the
changes in the indicators (Villoria and Liu, 2018). Villoria and Liu (2018) estimated the spatial pattern of
land supply elasticities with respect to changes in market access for North and South America using cross
sectional data. The limitation of those estimates is that they need to be scaled to a known elasticity, which
are unobserved for most of the countries in the study. However, the spatially heterogeneous elasticities
that the authors estimate, reasonably predict the regions where cropland conversions primarily took place
as evidenced by estimates found by Lark et al. (2015) and Graesser et al. (2015). In this paper we estimate
more accurate land supply elasticities for the US by using time series data on county level cash rents from
the USDA National Agricultural Statistical Service (NASS) and patterns of land cover change from NASS’
Cropland Data Layer (CDL). In addition to estimating high resolution land supply elasticities, our research
will also contribute to improving the ability of economic models to assess impacts of agricultural policies.
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The gridcell level elasticities will also be used in a SIMPLE-G framework, which is a multi-region, partial
equilibrium model of gridded cropland use, crop production, consumption and trade (Baldos and Hertel,
2013), to assess policies aimed at improving agricultural sustainability.

Conceptual framework

We assume that there are two land uses — cropland and non-cropland. For a landowner, the utility from
converting a piece of land i from its natural state to cropland at time t, U;; can be represented by a probit
model of binary choice,

Prob(I = 1) = ®(U;). (1)

The indicator I is equal to 1 when parcel i is a cropland and 0 otherwise, and ® denotes the standard
normal cumulative distribution function (CDF). U;; can be specified as a function of county level land rents
accruing to agriculture R, where c is a county index, grid cell level access index A; (Verburg et al, 2011),
and grid cell level soil quality index @;, ranging from 0 to 1, as represented by the National Commodity
Crop Productivity Index (NCCPI) which is derived from the Soil Survey Geographic (gSSURGO, 2017)
database maintained by USDA.

Uit = Bo + B1Rct + B2A; + B30Q; + €i¢ (2)
The parameters from the utility function above are estimated using the regression model of the form:
Zict = P(Bo + B1Rce + BoA; + B3Q; + &) (3)

where Z;.; is the fraction of each grid cell under cropland. Z;.; is obtained from the Cropland Data Layer
(CDL) data from USDA which classifies land parcels at 30m resolution into over 120 different land use
types. We reclassify the land use types into five broad land use categories — cropland, forest, grassland
and pasture, shrubland, and urban. Next, we aggregate the small 30m-by-30m pixels of land use to 5 arc
minute level grid cells and calculate the proportions of each of the five broad land use classification type
per grid cell. Given the fractional nature of Z;.;, we estimate the above specification using a fractional
probit model for panel data as outlined by Papke and Wooldridge (2008). The main advantage of using a
fractional probit instead of a logistic model in our study is that the conditional logit MLE is not consistent
unless the dependent variable is binary in nature (Papke and Wooldridge, 2008). Another important issue
in the estimation of the fractional probit model is the spatial autocorrelation of &;;. We plan to follow
Villoria and Liu’s (2018) four pronged strategy to control for spatial autocorrelation. The strategy includes
(i) using a spatial bootstrap resampling algorithm proposed by Zhu and Morgan (2004) to obtain empirical
variance estimators robust to spatial autocorrelation; (ii) including spatial lags of the independent
variables; (iii) estimate the model using random samples of approximately 10% of the data using a
sampling scheme that preserves the gridded structure of the original data; and (iv) capture the uncertainty
from sampling by using the resampling techniques proposed by Kleiner et al. (2014).

After estimating the model, we estimate the grid cell specific elasticities of the change in cropland
to change in land rents by
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where ¢ is the standard normal density function and Z are fitted cropland shares computed using
parameter estimates from the fractional probit model. The partial effects, S_RL are specific to each grid

c
cell.
Data
In this paper we have used a variety of geo-spatial datasets of varying resolutions which have been
aggregated or resampled to have a uniform resolution of 5 arcminutes. Table 1 lists the variables used,

their original resolution, and the sources from where the relevant datasets and in turn the variables are
obtained.

Table 1: Data Sources

Variables Units [resolution/admin level]  Source Years
Cropland Data Layer (CDL) Type (30 m) USDA-NASS 2009 - 2017
Cropland area County Agricultural Census, USDA 2007, 2012, 2017

Market Access Index (5 arcminute) Verburg, Ellis, and Letourneau 2011

(2011)
Soil Quality Index (10 m) gSSURGO - USDA Jan 2019 release
Cash Rents County USDA-NASS 2009-14, 2016-17
CRP Payments County USDA-NASS 2009-17
Farm Resource Regions Aggregated county USDA-ERS NA
Level lll Eco-regions 85 eco-regions EPA NA
Irrigation 250 m USGS (MODIS MIrAD-US) 2007, 2012, 2017
Precipitation mm year (county/5 arcmin) PRISM 2009 - 2017
Growing Degree Days degreedays (county/5 arcmin)  PRISM 2009 - 2017
Cooling Degree Days degreedays (county/5 arcmin)  PRISM 2009 - 2017
Bio-diesel and ethanol plants  # plants National Biorefineries Database =~ 2009
Population (yearly) County Census 2009 - 2017

The unit of analysis in this paper is a 5 arcminute gridcell for contiguous US. The 5 arcminute gridcells are
inclusive of the gridcells that are used in the SIMPLE-G partial equilibrium model developed by Baldos and
Hertel (2012). Since the gridcells are measured in arcminutes, we use a uniform geographic coordinate
system (GCS) WGS-1984 for all the geospatial datasets used in our analysis. The gridcells from the SIMPLE-
G framework serve as the reference to which the gridcells from aggregated and resampled datasets like
the Cropland Data Layer are aligned. We use Cropland Data Layer (CDL) for creating a time series (yearly)
data of proportion of area classified as cropland in each of the 5 arcminute gridcells for the years 2009
through 2017. The CDL data are obtained from USDA’s National Agricultural Statistics Service (NASS) and
are in the form of raster files with Albers equal-area conic projection system and a resolution of 30m. The
CDL classifies crops and vegetation into more than 130 categories including over 100 crop categories.
These categories are created by NASS using supervised classification of pixels from Landsat satellite
images.

We reclassify all crop categories and fallow or idle cropland into a single cropland classification and create
a new raster data (Lark et al., 2017). Next, we change the projection of the reclassified cropland raster to
GCS WGS-1984. We aggregate the reprojected rasters to the closest integer value of the ratio of the
gridcell size of the 5 arc min reference raster to that of the reprojected cropland rasters. The ratio is
239.810, and therefore we use 240 as the cell size. The aggregated reprojected cropland rasters are next



resampled to have the same sized gridcells as the reference raster. However, in order to have the gridcells
of the cropland rasters aligned to those in the reference rasters, in the Resample tool of ArcGlIS, the
Processing Extent option in the Environment Settings is selected, and the Extent and the Snap Raster are
changed to be the same as the reference 5 arcminute raster. This ensures that the centroids and thus the
corners of the gridcells for both the cropland and the reference rasters coincide. After completing the
procedures in ArcGIS, for each of the new aggregated 5 arcminute resolution cropland raster, the raster
is converted to XYZ (or XY coordinate and Z data) points in R and saved as csv. The coordinates of the
centroids of the gridcells match to those of the reference raster, and we follow the same procedure for
obtaining 5 arcminute gridcell level data for area classified as non-cropland. The four primary non-
cropland land use/cover types in our analysis are forests, grassland and pastures, shrubland, and urban
builtup. Unlike the extensive cropland classification, CDL does not have numerous classifications for
forests or other primary land use/cover types.

The gridcell level data for cropland and other land cover types do not have information on which counties
and states they belong to. In order to find the exact counties for the gridcells, we use the Identity tool in
ArcGIS. The Identity tool “Computes a geometric intersection of the input features and identity features.
The input features or portions thereof that overlap identity features will get the attributes of those
identity features” (ESRI). We use contiguous US county shapefile as the file with identity features, and one
of the 5 arcminute cropland rasters as the file with input features and use to tool to find corresponding
counties for each of the gridcells. Post matching the gridcells with counties, we create a unique ID for each
of the gridcell and create a data key with information on gridcells, the corresponding coordinates of the
centroids, state and counties, and their IDs. This key is then used to match grdicells from all the 5
arcminute rasters to the respective counties. Representative maps for four primary land use/cover
classification types from 2016 CDL are given in figure 1. The blue/green regions correspond to each land
use/cover type

Cropland ; Forests

Shrubland

Figure 1: Primary land use/cover types from CDL 2016

In this paper, we consider cropland data from 2009 to 2017. This is primarily because, as will be discussed
later, county level cash rent data from USDA-NASS are missing for most of the counties in 2008. Table 2
gives brief descriptive statistics for the five primary land use/cover types for all the years together. The



mean refers to the proportion of contiguous US that is classified as a particular land use/cover type.
Forests are the most common land cover type, followed by shrublands, grassland and pasture, and
cropland. The maps in figure 1 show the distinct pattern of land use/cover type in the US.

Table 2: Descriptive Statistics - Primary land classification types

#gridcells
Classification per year Mean Median s.d. Min Max
Cropland 119,756 0.163 0.012 0.256 0 1
Forest 119,756 0.268 0.122 0.304 0 1
Grassland & Pasture 119,756 0.206 0.1 0.252 0 1
Shrubland 119,756 0.221 0.032 0.328 0 1
Urban 119,756 0.057 0.032 0.112 0 1

Between 2009 and 2017, cropland area has increased in the US. There is significant geographic
heterogeneity in terms of where changes have taken place. For example, between 2008 and 2012
conversion to agriculture has primarily taken place in the plains states (Lark et al., 2015). Thus, grassland
to cropland conversion was more common than conversion from other land cover types to cropland. In
order to control for the effects of non-cropland dominant land use/cover type for gridcells on land supply
elasticity, we create dummies for non-cropland dominant land use/cover type. Forest is the dominant
non-cropland land use/cover type, followed by grassland and shrubland. For any gridcell, the dominant
land cover type could be marginally more than the next most dominant land cover type. In order to control
for this, we compare land covers of gridcells such that if a land cover proportion falls within a +-10% range
of the next highest land cover proportion, the two land cover proportions are considered to be the same.
Thus, in addition to forest, grassland and shrubland land cover types, we also have FG (forest and
grassland), FS (forest and shrubland), SG (shrubland and grassland), and FGS (forest, grassland, and
shrubland) and the dominant non-cropland land cover types. However, the number of cells in the latter
categories is not high. Since a very small proportion of gridcells have dominant urban land cover type, we
do not consider them in figure 2.

Distribution of cells by non-cropland land cover type (within 10% overlap)
urban share not considered (n = 119756)
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F:Forest G: Grassland & Pasture S: Shrubland

Figure 2: Number of gridcells by dominant non-cropland land cover type



We compare regions which saw land conversion as calculated from CDL to those estimated by Lark et al.,
(2015). Level Il eco-regions of the US are used to recognize the regions where cropland expansion took
place. Eco-regions refer to regions where ecosystems are similar. There are 85 eco-regions for contiguous
US. Eco-region shapefiles are obtained from EPA and then merged to the gridcell key to match gridcells to
their respective eco-regions. We take the average of cropland proportion for the years 2008, 2009 and
2010 and compare then to the average of cropland proportion for the years 2012, 2013 and 2014. The
difference in average cropland proportion by eco-region is given in figure 3. Similar to Lark et al. (2015)
we find that the Northern Great Plains and the High Plains regions had amongst the highest proportions
of land converted to agricultural land. Moreover, eco-regions that had higher proportion of land classified
as cropland at the baseline had higher expansion in cropland. The trends are similar for period between
2016-18 and 2008-10.

Difference in average proportion cropland between 2012-14 and 2008-10

Difference

[ -0.0367 - -0.0237
[ -0.0236 - -0.00891
-0.00890 - -0.00525
-0.00524 - -0.00262
-0.00261 - -0.000850
1-0.000849 - 0.00103
[ 0.00104 - 0.00307

Data Source: Level lll Eco-region: EPA; CDL and Cash Rents: USDA Irrigation: MODIS-MIrAD-US [ 0.00308 - 0.00542
Note: Numbers on the map are Eco-region codes [ 0.00543 - 0.00928
I 0.00929 - 0.0430

Figure 3: Cropland expansion by eco-region

CDL uses Landsat imagery to classify vegetation and crops. CDL data are generated by supervised
classification of images which involves first manually recognizing pixels from images associated with
particular crop or vegetation type, and then using the recognized sites (training sites) to analyze all other
pixels in the images of the crops (USGS). Thus, CDL differs from data based on surveys like the Agricultural
Census. Lark et al. (2017) outlines challenges using CDL data and recommends practices to improve
accuracy of the data used. The key challenges of using CDL data and how we have addressed them in this
paper are as follows:

1. Using data for specific crops could lead to inaccurate estimation of acreage under those crops.
We follow Lark et al. (2017)’s recommendation of combining all crop classes to create a single
combined cropland category.

2. Using CDL data for only specific years could lead to incorporating any misclassification that
could have occurred for a particular year. Instead we utilize most of the temporal data in our
panel data analysis. We also take 3 year averages of cropland data when we estimate



elasticities using long differences estimation. For example, we take the average of cropland
proportion for 2008-10 as an approximate for the year 2009.

3. Verifying with independent data improves accuracy of estimates. We compare our cropland
estimates to those from Agricultural Census. For most of the states, total cropland from
Agricultural Census is consistently 15% to 20% more than that from CDL. There are exceptions
like New Hampshire, Vermont and West Virginia which have lower proportion of land
classified as cropland. Figure 4 shows a state-wise comparison of CDL and Agricultural Census

data.
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Figure 4: Comparison of cropland area — CDL and Agricultural Census

We also compare cropland estimations for USDA’s Farm Resource Regions (FRR). There are 9 FRRs
classified on the basis of agricultural intensity, types of crops produced, size of farms and other factors.
Figure 5 shows a map of FRRs and table 3 compares cropland estimations from CDL and Agricultural
Census for the FRRs.
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Figure 5: Farm Resource Regions (USDA)

As seen in table 3, CDL underestimates cropland area in the Appalachia. However, the differences are
lower in the primarily agricultural areas like the Heartland and the Fruitful Rim.



Table 3: Ratio of cropland area from Agricultural Census to CDL for FRR’s

FRR code  Farm Resource Region census07/cdl0B censusl?fcdl12 censusl?fcd| 17

1 Heartland 12104 1.1754 1.1505
2 Morthern Crescent 12776 1.2484 1.2260
3 Northern Great Plains 1.4398 1.3835 1.2979
4 Prairie Gateway 1.3568 1.2501 1.2558
G Eastern Uplands 5.6154 3.8630 3.71%6
& Southern Seaboard 13172 1.3146 13104
7 Fruitful Rim 11421 1.1314 1.06831
& Basin and Range 15591 1.5060 1.3650
9 Mississippi Portal 1.102%9 1.0614 1.0253

In addition to gridcell level total cropland acreage and proportion, we also include in our analyses, acreage
and proportion of major crops like corn, soybean, wheat and cotton among others. Crop parcels of same
quality could have spatially different land rents due to accessibility of markets. In this paper we use
Verburg et al. (2011)’s market accessibility index in order to control for such heterogeneity. The time
invariant market accessibility index is generated by combining travel times to major cities, ports, and other
towns and ranges from 0 to 1 with 1 being closest to the market. The extracted market accessibility index
data are in 5 arcminute resolution and are aligned to our reference 5 arcminute gridcell raster. Figure 6
shows the map of market accessibility index with the bluer regions indicating higher indices. Table 4 gives
summary statistics for the index and also the soil quality index.

Figure 5: Market Accessibility Index — 0 (yellow) to 1(blue)

Cropland change with respect to cash rents depend also on the quality of soil. We use the National
Commodity Crop Productivity Index (NCCPI) obtained from the USDA-NRCS Gridded Soil Survey
Geographic (gSSURGO) Database product at 10m resolution. This index divides soil quality on the basis of
numerous attributes like weather, soil carbon content, moisture, and crop type, and has a classification
system with unique combinations of the attributes. These classifications are called MUKEY or map unit
key and there are more than 306,000 soil classification categories for the US. The number of classification
types (MUKEY) however is not equal to the number of unique values of the NCCPI soil index which ranges
from 0 to 1. For example, while Kansas has 5793 MUKEY values, it has 723 unique values of the NCCPI soil
index. In order to extract the NCCPI data, we have reclassified the MUKEY to the unique NCCPI values
using a Remap table in ArcGIS (which we created from the attribute table of the NCCPI raster). Since a
raster value can only be reclassified to integer values, we next multiplied the NCCPI index values by 1000



(since it had upto three decimal places), aggregated them to 30 m cells, and finally used the raster
calculator to divide the values by 1000. Next we use Raster Calculator to multiply each of the 30m NCCPI
gridcells to that of the corresponding 30m CDL gridcells. Post multiplication, we reproject the raster to
the same projection as the reference 5 arcminute gridcell raster (GCS WGS 1984). The reprojected raster
is then aggregated using mean of each of the 30m cells and resampled to get 5 arcminute gridcell level
cropland weighted NCCPI soil index raster. Figure 6 shows the original map of NCCPI in its native Albers
Conical projection system to the left, and the reprojected 5 arcminute cropland weighted NCCPI to the
right.

Figure 6: Soil Quality (NCCPI): 30m resolution (left) cropland weighted 5 arcminute NCCPI (right) (bluer
regions indicate higher soil fertility)

For all the gridcells, the soil quality index ranges from 0 to 0.835 (most fertile) with a mean of 0.081 units
(table 4).

Table 4: NCCPI and Market Accessibility Index

#igridcells  Mean Median  s.d. Min Max
NCCPI 119,753 0.081 0.004 0.149 0 0.835
Access Index 116,790 0.236 0.116 0.273 0 0.999

We obtain county specific cash rents from NASS-USDA. As mandated by the Farm Bill of 2008, NASS
collects cash rental rates for counties that have at least 20,000 acres of land that is classified as cropland
or pasture. Since there is a minimum acreage of cropland or pastureland required to be included in the
survey of cash rents, several counties are not surveyed especially in 2008. Between 2009 and 2017, 70%
of the counties had only non-irrigated cash rents, 25% had both irrigated and non-irrigated cash rents,
and 4.5% had only irrigated cash rents available. We focus our study on the years 2009 through 2017 since
cash rent surveys were not conducted in the years 2015 and 2018. A balanced panel dataset that includes
either irrigated or non-irrigated cash rents along with other variables has 61,763 5 arcminute gridcells.
Cash rents are at the county level. Thus, the gridcells belonging to a county have the same value for cash
rents. Moreover, few counties and consequently gridcells have irrigated cash rents and thus estimating
separate land supply elasticities with respect to the change in the two types of cash rents would not
capture the true variations in elasticities at the gridcell level. In order to obtain gridcell level estimates of



cash rents, we utilize both irrigated and non-irrigated cash rents and combine them with gridcell level
irrigation data.

We calculate gridcell level irrigation data from Moderate Resolution Imaging Spectroradiometer
(MODIS)’s Irrigated Agriculture Datasets for the Conterminous United States (MIrAD-US) which is
produced by USGS. The MIrAD-US data gives geospatial information on irrigated areas of the US. These
geospatial datasets use three primary data inputs to produce and map the spatial distribution of irrigated
land across contiguous US. The three primary data inputs are: (a) USDA’s county-level irrigated area
statistics for 2002, (b) annual peak eMODIS Normalized Difference Vegetation Index (NDVI), and (c) USGS
derived land cover mask for agricultural lands from the National Land Cover Database (NLCD). The data
are available every 5 years from 2002 to 2017, and we use the 250m resolution data in order to calculate
the proportion of area irrigated for the 5 arcminute gridcells used in our study. The MIrAD-US datasets
are first reprojected to the GCS-WGS-1984 projection system, then aggregated and resampled to 5
arcminute resolution, and finally merged to the gridcell level dataset. Since the irrigation data is available
every 5 years, for the years 2008 through 2011, we assign irrigation data from 2007, for the years 2012
through 2016, irrigation data from 2012 is used, and for the year 2017 irrigation data from 2017 is used.
Figure 7 shows the irrigated areas in the US in 2017. The Mississippi Alluvial Plains, the Central Valley, and
parts of Central Great Plains and High Plains are some of the Eco-regions that are highly irrigated.

Irrigated agricultural areas in the US (2017)

Proportion of area irrigated for 5 arc minute gridcells

Proportion of area irrigated . -
0-00352 :
00353-0125
I 0 126-0258
I 0259 - 0434
I 0350646 =
I 057099 Source. MODIS krigated Agriculture Datasets for e Conterminous United States (MIrAD-US)

Figure 7: Irrigated areas of the US, 2017 (MIrAD-US)

We calculate gridcell level irrigation weighted cash rents by taking a mean of irrigated and non-irrigated
cash rent weighted by proportion of area that is irrigated. The cash rents over the major agricultural Eco-
regions Land rents increased between 2009 and 2013, especially in the Mid-West, but fell substantially
between 2013 and 2017. Figure 8 shows the trends in irrigation weighted cash rents by primarily
agricultural Eco-regions.



Figure 8: Cash rents by Eco-region

Decision to convert a parcel of land into cropland depends also on the amount of environmental benefits
that a farmer could receive by conserving the land instead. One such program, the Conservation Reserve
Program (CRP) is one of the largest voluntary land conservation programs in the US. The prevalent average
CRP payments that a farmer could receive by enrolling their land into the program could determine how
much land would be devoted to agriculture. We obtain county level average CRP payments per year from
USDA’s Farm Service Agency. Since there are several counties without information on CRP payments, the
balanced panel dataset has 46,797 gridcells per year that are primarily located in the Mid-Western and
other agricultural regions. Cash rents and average CRP payments per acre are at constant 2011 prices.
Table 5 gives descriptive statistics of cash rents and CRP payments. The number of gridcells represents
the total number of cells in the 8 year (2009-2017, excluding 2015) dataset. Although fewer gridcells have
irrigated cash rents, on average irrigated cash rents are substantially larger than non-irrigated cash rents.

Table 5: Descriptive statistics of cash rents and CRP payments

#gridcells Mean Median s.d. Min Max
Irrigated cash rent 138,380 130.53 116.67 79.49 19.17 904.23
Non-irrigated cash rent 341,569 73.15 53.94 57.04 7.67 350.66
Irrigated area weighted cash rent 374,376 69.94 51.04 58.53 0 496.74
CRP average per acre 374,376 65.81 51.53 43.42 13.8 443.54
Rent to CRP ratio 374,376 1.032 1.035 0.64 0 19.53

Impacts of climate change on crop yields is a well-documented phenomenon. With rising temperature
extremes and average temperatures, the suitable temperature window for growing crops is getting
reduced which in turn could decrease yields significantly in the long run (Schlenker and Roberts, 2009).
The suitable temperature window conducive for growing crops vary by crops with the range being
between 8°C and 32°C (Ritchie and NeSmith, 1991). Studies use the concept of degree days in order to
capture how hot or cold a particular area is. A degree day compares mean temperatures at a given location
to any standard temperature. In our study, we consider the suitable temperature window for crops to be
between 10°C and 30°C and growing degree days (GDD) are calculated as “sum of truncated degrees
between two bounds” as defined by Schlenker and Roberts (2009). We use Stata codes and PRISM Climate



Group?® datasets shared publicly by Wolfram Schlenker in his website® to estimate relevant degree days.
The PRISM datasets give state-wise daily temperatures for 2.5 arcminute gridcells. While Schlenker’s
codes map these gridcells to counties and find average GDD for each county, we locate each of these 2.5
arcminute gridcells with reference to our 5 arcminute gridcells and find the average GDD for each of the
5 arcminute gridcells. In order to find the exact location of the 2.5 arcminute gidcells, we first create a
buffer (circular) of 2.5 arcminute radius around each of the centroids of our reference 5 arcminute
gridcells. Next, using the “Feature Envelope To Polygon” tool in ArcGIS, square polygons of 5 arcminute
side for each of the centroids. Finally, we use the “Identity” tool to map the 2.5 arcminute PRISM gridcells
to our 5 arcminute gridcells. There are 471,161 PRISM cells which are mapped to 121,280 5 arcminute
reference gridcells. Figure 9 shows the process described above for a set of counties in Louisiana.

Figure 9: Mapping PRISM 2.5 arcminute cells to 5 arcminute reference gridcells
(Left and center: circular buffers and square polygons around centroids of 5 arcminute reference gridcells,
Right: 2.5 arcminute PRISM cells mapped to 5 arcminute square polygons. Red lines indicate county boundaries)

Schlenker’s codes also take into account the cropland proportion for each of the 2.5 arcminute PRISM
cells. We assign uniform weights to all the PRISM cells since proportion of area under cropland is our
dependent variable. The degree days are calculated for the temperature bounds 0°C, 10°C and 30°C. GDD,
or total degree days between 10°C and 30°C, is calculated as follows using modified Schlenker’s codes. If
the average temperature for a day at a particular gridcell is 11°C, then the GDD for that day is 1 degree
day. However, if the mean temperature is less than 10°C the degree days is 0. Thus, with 10°C as base,
GDD can be a maximum of 20 degree days which corresponds to a mean temperature of 30°C. The degree
days for the 2.5 arcminute PRISM cells are averaged by the 5 arcminute reference gridcells and the date
for which each PRISM cell degree day is calculated for the temperature bounds. The degree days are then
summed across 5 arcminute gridcells for each year. The GDD thus generated varies by gridcells and years.
Very high temperatures have detrimental effects on yields (Asseng et al., 2015; Schlenker and Roberts,
2009). Therefore, the number of degree days for a threshold temperature that is above the suitable
growing window of 10°C and 30°C, would indicate how much hot the temperature of a given location is
such that it would negatively impact crop development. In this paper, we call this indicator the high-heat
degree days (HHDD) which counts the number of degree days for mean temperatures above 30°C. The
concept of HHDD is comparable to that of cooling degree days (CDD) used for calculating energy required
for space cooling during higher temperatures. We also calculate gridcell level total yearly precipitation in
millimeters using modified Schlenker’s codes. Table 6 gives the mean (5 arcminute gridcell level) GDD,
HHDD, and precipitation for the US for years 2009 through 2017. There is significant heterogeneity in all
three indicators across states and counties.

3 http://www.prism.oregonstate.edu/
4 http://www.wolfram-schlenker.com/dailyData.html
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Table 6: Mean GDD, HHDD and precipitation for the US

2009 2010 2011 2012 2013 2014 2015 2016 2017
GDD (10<=c<=30) 1620.5 1720.8 17024 1789.7 1691.3 1660.8 1738.1 1743.0 1705.7
642.7 692.2 6883 623.5 597.8 6304 6278 6379 620.0
HHDD (>30c) 45.8 56.2 76.5 68.9 48.0 41.6 49.0 54.1 48.6
84.1 78.8 108.1 85.8 78.2 74.3 76.1 79.5 814

Precipitation
(mm/year) 452.1 466.6 457.8 3744 4725 4578 4735 4534 4714
269.9 2394 2775 238.6 263.2 236.1 252.4  256.5 2935

There is evidence that cropland (especially corn) area has increased in response to bio-fuel boom during
the late 2000’s (Motamed et al., 2016). Moreover, location of bio-fuel plants had a higher impact on crop
expansion in regions where previous cropland areas were low. Thus, location of bio-fuel plants could be a
determinant of land supply elasticities. In this paper, we use data on biofuels plants, specifically ethanol
and bio-diesel plants, and use the location, vis-a-vis the 5 arcminute reference gridcells, and operational
status of the plants as independent variables. We obtain the location and operational status data from
the National Bio-refineries Database® which has cross-sectional data for the year 2009. We verify the exact
coordinates of the bio-fuel plants using their addresses and combine the various operational status types
into 5 categories — Construction, Idle, Operational, Shutdown/bankrupt, and Unknown. Table 7 gives the
distribution of bio-fuel plants by operational status. There were more number of bio-diesel plants in the
US in 2009. However, the proportion of operational plants was lower than that of ethanol plants.

Table 7: Bio-fuel plants by operational status

Status Bio-diesel Ethanol

Construction 30 8
Idle 10 9
Operational 174 144
Shutdown/bankrupt 12 4
Unknown 113 32
Total 339 197

Figure 10 shows the distribution of ethanol and bio-diesel plants across the US irrespective of operational
status. While most the ethanol plants are concentrated in the heartland region, the distribution of bio-

diesel plants is more uniform.

Figure 10: Left: Ethanol plants; Right: Bio-diesel plants

5 https://openei.org/datasets/dataset/national-biorefineries-database
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Preliminary results

We estimate land supply elasticities from the panel specification in equation 3 and using the formula in
equation 4. Additionally, we also estimate elasticities using a long difference estimator. An estimator for
two time periods separated by 4 years takes the following form:

log Zit44 —l0gZiy = o + B1(10g Rt 44 — l0g Ry;) (5)

The estimated coefficient ﬁl is the land supply elasticity or percentage change in cropland proportion for
a 1% increase in land rent between the years t and t+4. Z;; refers to cropland proportion, and R;; refers
to irrigation weighted cash rent for gridcell i in time t. We compare the years 2009 to 2013, 2013 to 2017,
and 2009 to 2017. Proximity of gridcells to one another could have impacts on land supply elasticities.
Therefore, in order to avoid spatial autocorrelation, we take a stratified (by Eco-region) 25% sample of
gridcells, and estimate land supply elasticities. Table 8 summarizes US and Farm Resource Region level
elasticities estimated using both panel and long difference estimations. For panel estimations, for the
period 2009-17, the land supply elasticity was 0.0107. While there is heterogeneity in results in terms of
both Farm Resource Region and time periods used in estimation, out results are preliminary and the
specifications use access index, soil quality and prevalent non-cropland land use type as the only
independent variables in addition to irrigation weighted cash rents. The results are expected to change
significantly when we include time variant gridcell level variables like growing degree days and
precipitation among others.

Table 8: Preliminary results using a stratified (by Eco-region) 25% sample of gridcells

FRR Farm Resource Panel Estimation Elasticities Long Difference Elasticities
Code Region 2009-13 n 2013-17 n 2009-17 n 2009-13 2013-17 2009-17 n 2 period n
! Heartland -0.228*** 11,835  0.184*** 9,468  -0.00717 18,936  -0.0322 -0.0265 -0.240%** 2,620 0.0278 5,240
2 Northern Crescent -0.0416*** 7,885  0.317*** 6,308  0.0449*** 12,616  0.0958*** 0.0147 0.291%** 1,845  0.0269** 3,690
3 Northern Great Plains ~ 0.0467*** 8,740  0.0406* 6,992  0.0533*** 13,984  0.0670*** -0.0318 0.0253 2,227 0.0214 4,454
4 Prairie Gateway 0.0627*** 9,920  -0.0686*** 7,936 0.0133*** 15,872 0.0393* -0.0591%*=* 0.0275 2,455  -0.0165 4,910
5 Eastern Uplands 0.170*** 3,515  -0.0323 2,812 0.212%** 5,624  0.450*** -0.528*** 0.235** 1,053  -0.0254 2,106
6 Southern Seaboard -0.133*** 5455  0.246*** 4364 -0.014 8,728  0.200*** 0.0953*** 0.115** 1,324 0.174*** 2,648
7 Fruitful Rim -0.131%** 5,670  0.197*** 4536  -0.00735 9,072 0.0224 -0.036 0.0371 1,768  -0.0138 3,536
8 Basin and Range -0.0812* 5195 0.0983 4,156 0.00237 8312 -0.014 -0.0116 0.0155 1472  -0.0183 2,944
9 Mississippi Portal 0.0693 2,655  -0.103** 2,124  -0.0112 4,248  0.0954 0.0165 0.0114 681 0.0649 1,362
USA -0.0643*** 60,870  0.0752*** 48,696  0.0107*** 97,392 0.0458*** -0.026*** 0.0619*** 15,445 0.00127 30,890

Figure 11 shows maps for land supply elasticities at the level of eco-regions using full sample long
differences estimator. Significant heterogeneities are observed by eco-region as well as time periods.
While the regions around the Northern Great Plains have consistently high land supply elasticites, eco-
regions in the Hearland region like the Western Corn Belt in lowa have inconsistent elasticities. We also
find that the traditionally highly irrigated eco-regions like the Mississippi Alluvial Plain, the Central Valley
in California, and the Snake River Plain in Idaho have low land supply elasticities.
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Figure 11: Land supply elasticities by eco-regions estimated using long differences estimator

One of the primary objectives of our study is to check the predictability power of the estimated land supply
elasticities. In order to test the predictive power of our land supply elasticities, we compute correlations
between predicted and original proportion of area under cropland. Estimates from the long difference
models using 25% sample are used to predict cropland proportion of another 25% sample of the data.
Although both Spearman and Pearson correlation coefficients are less than 0.3, they are significant and
out-of-sample predictive power are relatively higher for the 2009-13 and 2009-17 models (table 9). For
the Northern Crescent and the Northern Great Plains, the predictability power is relatively higher. In terms
of Eco-regions, predictive power is higher for Great Plains and Glaciated Plains, but lower for Western and
Central Corn Belt Plains.

Table 9: Out of sample predictions (using 25% stratified by Eco-region sample)

Spearman rank correlation coefficient Pearson correlation coefficient
FRR Code  FarmResource Region = 2009-13 2013-17 2009-17 n 2009-13 2013-17 2009-17 n

1 Heartland 0.0502*  -0.2123*  -0.0445* 2588 0.1216*  0.0024* 0.19* 2,588
2 Northern Crescent 0.1429* 0.1305* 0.1695* 1829 0.0921* 0.0371* 0.1623* 1,829
3 Northern Great Plains 0.2655* 0.1339* 0.2175* 2285 0.0418* 0.0531* 0.0726* 2,285
4 Prairie Gateway 0.1733* 0.033* 0.1543* 2405 0.0233*  0.0158* = 0.0783* 2,405
5 Eastern Uplands 0.1452* 0.1349* 0.1289* 1073 0.1004* 0.1444* 0.0182* 1,073
6 Southern Seaboard 0.1575* 0.0442* 0.1322* 1343 0.0741* 0.0494* 0.083* 1,343
7 Fruitful Rim -0.0099 0.0303*  0.0296* 1765 0.0235*  0.0808* 0.0124 1,765
8 Basin and Range 0.007 0.0643* 0.0337* 1505 0.019* 0.0182* 0.0081 1,505
9 Mississippi Portal 0.1876* = 0.0315* 0.107* 647 0.1385*  0.0242* 0.0537 647

USA 0.2701*  0.1509* = 0.2385* 15,440 0.2268*  0.1171* = 0.2051* 15,440

We plan to test the predictive power of the remaining models (including both long difference and panel
models), and also incorporate additional time varying covariates like precipitation and temperature that
could impact cropland change.
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