%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

T

AP

” .

Global Trade Analysis Project
https://www.gtap.agecon.purdue.edu/

This paper is from the

GTAP Annual Conference on Global Economic Analysis
https://www.gtap.agecon.purdue.edu/events/conferences/default.asp

Improving the Performance of sparse LU

Decomposition in GEMPACK

Florian Schiffmann

March 28, 2019

Abstract

In GEMPACK the computational general equilibrium (CGE) model
is solved in its linearized form. In this form, the solution to the CGE
model is computed by solving a sparse non symmetric linear system of
equations(LSE). In most computer programs, the solution to a LSE is
computed either by using matrix decomposition methods (direct), it-
erative methods or subspace methods. GEMPACK employs a sparse
LU decomposition with iterative refinement to solve the LSE. Un-
til GEMPACK 12 these solvers purely relied on algorithms from the
Harwell Subroutine Library (HSL) with MA48 as the default solver.
While computationally efficient, computing the LU decomposition us-
ing these off-the-shelf routines remained the time limiting step for
many CGE models. In this paper, we will present a new algorithm for
the analysis phase and other improvements to the original HSL rou-
tines which greatly improve the solution time for most CGE problems.

The preparation stage for the analysis phase involves the reorgani-
zation of the matrix into strong components. By replacing the original
modified Hopcroft-Karp algorithm with a tree grafting algorithm to
determine a suitable bipartite matching the relative time spent can
be reduced by a large factor. The most time consuming part in the
analysis phase is the determination of a suitable pivot structure. We
developed series of buffered sorted data structures, lower bound esti-
mates and an on-the-fly partitioning of the matrix into sparse and full
processed parts which efficiently handles this problem. The new algo-
rithm is able to find a suitable pivot structure with lower number of
fill-ins at a significantly reduced cost than the original MA48 solver.
For the most common CGE problems we see reductions in solution
time by a factor 5 to 10.

1 Introduction

Finding the solution to a linear system of equations(LSE) is a problem that
arises in many different fields. While the text book solution required the
computation of the matrix inverse, in pratical applications iterative methods,
or decomposition methods are employed depending on the details of the
problem. In cases where a good precondtioner can easily be constructed,
iterative methods show superior performance over direct method, otherwise
it is more favorable to use direct solvers. With growing problem size N, the
use of dense linear algebra methods quickly becomes prohibitiv as memory
requirements grow with O(N?) and computational complexity with O(N?).
For problems in which a lot of entries in the matrix are 0 or close enough to
0 to be neglected, sparse linear algebra methods are preferable due to their
better scaling. Our focus in this paper will be on sparse direct unsymmetric
solvers as these are required for CGE problems.

The developemnt of improved sparse linear algebra methods to solve LSE
has been an ongoing effort for decades. Thei main application is related
to physics applications such as finite element methods and computational
chemistry. In these pysically motivated problems, we often find a certain
near sightedness. This means that the direct interactions of a specific part of
the problem is short ranged. Taking advandtage of this, the problem can be
expressed in sparse matrix form which furthermore retains a certain degree of
structure imposed by the underlying problem. As these problems present the
majority of cases where sparse LU solvers are employed, a certain bias in the
algorithic development towards certain matrix structures can be expected.
However, the structure and connectivity of CGE matrices is quite different
to these matrices. Therefore, it is expected that applying existing algorithms
to CGE problems can help to expose inefficiencies in existing algorithms and
inspire new ideas to increase the computational efficiency of the algorithm.

In this paper we focus on the algorithm proposed by Duff. This algorithm
divides the LU factorization into three parts: analyse, factorize and solve.
Here, we will mainly focus on improvements to the analyse phase, but several
references to the factorize stage are necessary to understand the overall per-
fermance of the new algorithm. In the first part of this paper we will discuss
the general ideas and data structures employed in the original algorithm.
The next three sections will deal with changes to the algorithms, new data
structures and exploiting bound estimates during the algorithm respectively.
Next, we will discuss the potential of using open MP parellism for additional
time savings. The last part of the paper discusses the handling of numerical
singularities.

2 Overview of MA48 LU

The analyse phase of MA48 starts by transorming performing Dulmage-
Mendelsohn decomposition of the matrix graph. In the MA48 algorithm
this involves a modified form of the Hopecroft-Karp algorithm (cite DUFF
MC21C), to ensure the diagonal of the matrix is fully occupied. The di-
agonally occupied matrix is then decomposed into strong components using
Tarjans algorithm. The result of these transformation is then used to per-
mute the matrix into block triangular from. With this structure, only the
diagonal blocks need to decomposed. The second step of the analysis phase
is the determination of suitable pivots for the factorization of the matrix. In
MAA48, a partial right looking LU decomposition is performed using either
Zlatev or Markowitz strategy for the pivot selection. Naturally, the matrix
densifies during this process, i.e. the pivot selection algorithm becomes slower
the more pivots are chose. MA48, therefore provides the option to switch to
dense matrix processing once the sparsity of the reduced matrix reaches a
user defined threshold. At this point, the analysis of the matrix is aborted
and the remainder of the matrix will be factorized as a dense block. The data
structures employed in the original implementation are vectorized versions
of the CSR format without any constraint on the ordering of the elements
in the sparse rows. Furthermore, the employed data structures are static in
size, which requires seeral reordering steps during the decomposition.

The factorize stage of MA48 is performed on the reordered structure
obtained by the analyse stage. Each diagonal block is decomposed using
the Gilbert-Peierls algorithm using the pivots selected in the analysis stage.
When all sparse pivots are used up, a modified version of the dense LU factor-
ization is called for the reaminer of the matrix. This dense LU factorization
uses level 1,2,3 blas calls and can be linked against optimized blas routines.
The final step in MA48 would be the solution of the linear system. How-
ever, as this step is not performance critical in our applications, we omit the
discussion of the algorithms employed.

3 Pivot Selection

The algorithm for selecting pivots for factorization is a basic right looking LU
algorithm. Algorithm 1 illustrated the basic procedure which is employed.
At every step in the Loop a pivot is chosen and the according column is
eliminated from the matrix. These steps repeat these operations on the
reduced matrix (result from the previous step) until all pivots are chosen.
Generally, it is not efficient to perform the pivot search for all elements as the

reduced matrix becomes dense towards the end of the iterations. Therefore it
is beneficial to terminate the loop early and use dense linear algebra methods
during factorization for the remainder of the matrix.

procedure FINDPIvOTS(Matrix)
redMat < Mat
fori=1;i++;i <N do
PivCol, PivRow < best Pivot(reduced M atrix)
redMat < eliminateColumn(PivCol, PivRow,redMat)
end for
end procedure

Figure 1: Right looking LU analyse

In the next two sections, we will discuss the details of the selection and
elimination algorithm. We will be starting with the elimination part, as
this will explain the data structure for matrix storage, followed by the pivot
selction algorithm.

3.1 Data Structures and algorithm for Elimination

During right looking LU factorization one of the computationally most ex-
pensive operations is the elimination of the pivot column from the reduced
matrix. For dense vectors this is a simple scaled vector addition. In sparse
data structures the problem is more complicated. The involved steps are:

1. Determination of distinct/common elements to both vectors

[\]

. Scaled addup common elements
3. Calculating fill-ins (elements only in pivot vector)
4. Merging fill-ins and common elements into new data structure

Depending on the details of the implementation, some of the steps can
be combined or performed in a different order. It is however useful to keep
the steps seperate to understand the algorithmic complexity of this part of
the algorithms.

Step 1) can be understood as computing the intersection of two lists of
length N. The comlexity of this step is O(N?) for unordered lists, O(Nlog(N))
if a single vector is ordered and O(N+M) if both lists are ordered. It is ob-
vious that ordered data structures would be preferable for this operation.

However, the maintance of common ordered data structures such as sim-
ple vectors or linked lists commonly exceeds the benefits if fill-ins occur.
Therefore, MA48 and most other sparse matrix algorithms use unsorted data
structures.

Here, we propose a sorted double buffered (SDB) data structure to store
the row indicies which partially circumvents the maintanance cost problem.
Initially the data is stored in ordered CSR form. We employ a vector of N
row data pointers and associated values as the basic representation of out
matrix. The row data structure itself contains a base vector and and a buffer
vector. Both, base and buffer, are dynamically allocated vectors ordered row
indices. The buffer is used to store fill ins and can be merged with the base
vector if it grows too large. It is important to note, that deriving the fill ins
from ordered data structures results in an ordered vector itself. Therefore,
the initial assignment to the buffer vector is simply create as a pointer to the
fill in vector. Adding entries to an existing buffer is a merge of two ordered
vectors, which can be performed at a cost of O(L;+Lsy) where L; and Ly are
the length of the first and the second vector respectively. For computational
performance it is important to note that this is a cache friendly operation as
it corresponds to an ordered traversal of two vectors. However, this operation
has to be performed almost every time, a column takes part in the pivoting
and becomes more and more expensive as the size of the buffer grows. It
can easily be seen, that for very sparse metrices and many fill ins, the size
of the buffer vector closely follows the number of non zeros in the respective
column. In such a case, this data structure would not provide any benefits
compared to storing the row indices in a single sorted vector. The solution
to this problem is to occasionally merge the buffer and the base vector. As
we are dealing again with sorted data structures, the cost of this operations
is O(nnz) with nnz being the number of non zeros in the column. In this way
we can limit the cost of the fill in merge operation to a fraction of the total
merge. Chosing a reasonable upper bound for L, the cost of this operation
becomes neglegible in the algorithm and only few base/buffer merges have
to be performed.

3.2 Pivot Selection

For sparse LU factorization the opimal choice of pivots retains a maximal
sparsity but does not impede the numerical stablilty of the factorization.
The optimal solution to this problem is NP hard, therefore approximations
are neccessary. Generally, the stability of a pivot element i in a column J

can be estimated as 7
i

(1)
1]l
An upper bound for the number of fill ins (F) resulting from a pivot choice
of row i and column j can easily be obtained as

C = (NZR(i) — 1) (NZC(j) — 1) (2)

where NZR and NZC indiciate number of non zeros in the row and col-
umn respectively. This equation above simply states the assumptions that
there are no common elements between the pivot column and the columns
it applies to (non zeros in column j). In the original Harwell it is possible
to choose between Zlatev or Markowitz strategy to serach for the optimal
pivot. The Zlatev strategy traverses column in ascending order according to
their number of entries until either the cost cannot be improved any further
or a maximum search length is reached. Markowitz extends this search by
interleaving the Zlatev serach with a search through rows in ascending order
according to their number of entries. For each row, the minimum cost for
all intersecting columns is computed. The advandtage of Markowitz strat-
egy is that the ‘optimal’ pivot is found as soon as all row/columns with less
than C? entries have been screened. It is important to note, that the re-
sults for Markowitz and Zlatev with infinite search depth are identical. Here
we present an improved implementation of the Zlatev strategy allowing for
high search depth. We achieve this by avoiding the recomputations of known
quantities and the use of lower bound estimates to allow for an early escape
within the column size based searches.

One quantity which can be reused is maxabs norm of the column vectors
(||/]|so) in Equation 1. The cost of computing ||.J||~ is proportional to the
number of nonzeros in the respective column. Normally this computation
would have to be performed everytime a column is reviewed as potential
pivot. However, ||J||s can only change if the J is changed. The only time
this happens is, if J takes part in the column elimination process, i.e. J has
a nonzero in pivot row. Therefore only few ||.J|| will have to be updated
each step. We exploit this fact by storing || /||« for each column and update
the required values after elimination.

Another useful quantity to store is the cost of the best pivot (CBP) for
already analysed columns. While columns changed by the elimination in the
previous step have to be fully analysed, for columns unaffected the CBP is a
lower bound for the current cost. The reason for this is that the only elements
ever removed from the matrix are the elements of a pivot row and column.
Columns that share have a nonzero element in the pivot row it partake in

the elimination and its CBP is will be recomputed. All other columns can
only be indirectly affected by fill ins in the elimination columns and thus the
CBP either increases or remains identical.

4 Other Modification to M A48 Analysis

As discussed above MA48 uses a depth first version of the Hopcroft-Karp
algorithm (MC31). In the original paper Duff and Reid discuss the potential
benefit of a cheap heuristic pre assignment of the graph. However, no benefit
has been seen and thus the idea has not been persued in MC31. We find, that
this holds true for many small and medium sized CGE matrices but the time
cost for MC31 can become significant in some badly structured problems or
for large CGE matrices. For this reason we investigated alternative bipartite
matching algorithms and pre matching heuristics. We find that significant
gains can be obtained using a greedy initialization of the problem using the
Karp-Sisper initialization of the problem. In most CGE matrices ;99% of all
matches are found by this strategy. Using this initialization in combination
with MC31 reduces the time to solution in many cases by more than 50%.
While this is a significant speed up, we find that completing the matching
requires very deep search trees for MC31. Replacing MC31 with Azads MS-
BFS graft algorithm overcomes this problem. MS-BFS graft partially reuses
the contructed search trees and therefore is less sensitive to this specific
problem.

For the grafting algorithm to work efficiently a different representation of
the matrix graph is requried. For large matrices this transformation

	GTAPCoverLinksRemoved.pdf
	Slide Number 1

