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Abstract

This study provides statistical emulators of global by gridded crop models included in the Inter-Sectoral
Impact Model Intercomparison Project Fast Track project to estimate irrigated crop yields and associated
irrigation water withdrawals simulated at the grid cell level. An ensemble of crop model simulations is used
to build a panel of monthly summer weather variables and corresponding annual yields and irrigation water
withdrawals from five gridded crop models. This dataset is then used to estimate crop-specific response
functions for each crop model. The average normalized root mean square errors for the response functions
range from 3% to 6% for irrigated yields and 2% to 8% for irrigated water withdrawal. Further in- and out-
of-sample validation exercises confirm that the statistical emulators are able to replicate the crop models’
spatial patterns of irrigated crop yields and irrigation water withdrawals reasonably well, both in levels and
in terms of changes overtime, although accuracy varies by model and by region. The emulators estimated
in this study therefore provides a reliable and computationally efficient alternative to global gridded crop

yield models.

Key words: crop yields; irrigation; crop model; statistical model; water withdrawals; climate change
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1. Introduction

The impact of climate change on crops can be assessed using process-based crop models (Boote et al. 2013;
Deryng et al. 2014; Parry et al. 1999; Rosenzweig and Parry 1994a, 1994b; White et al. 2011), statistical
models (Auffhammer and Schlenker 2014; Blanc and Strobl 2013; Haim, Shechter, and Berliner 2007;
Hsiang 2016; Lobell and Field 2007; Schlenker and Roberts 2009) or a combination of both (i.e. a process
model with parameters statistically estimated using historical observations) (Roberts et al. 2017). These
models can then be included in Integrated assessment models (IAMS) to represent the agricultural sector by
considering socio-economic and natural response mechanisms. Calvin and Fisher-Vanden (2017) find that
combining statistical or process-based models within IAMs helps predict climate change impacts on crop
yields more accurately than on their own. Alternatively, the implementation of statistical emulators—
statistical models trained on the outputs of a process-based model to capture the response functions from
complex, computationally demanding and sometimes proprietary process-based crop models—in IAMSs can
help account for feedback loops from the agricultural sector (Ruane et al. 2017) and can help account for

modeling uncertainty (Monier et al. 2018).
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Statistical emulators have been used by Holzk&mper, Calanca, and Fuhrer (2012) and Lobell and Burke
(2010) to assess the capacity of statistical models to predict out-of-sample crop yields. Other studies have
used emulated response functions to compare statistical and process based models for ‘diagnostic purposes’
(Lobell and Asseng 2017; Schauberger et al. 2017; Moore, Baldos, and Hertel 2017). Crop yield emulators
have also been developed to provide climate change impact assessment tools. Oyebamiji et al. (2015)
provides crop yield emulators at the global level for five different crops but only considers one process-
based crop model. Blanc and Sultan (2015) consider only maize but for five climate models. The scope of
these emulators was expanded to three other crops (Blanc, 2017) and to both climate and crop models
(Ostberg et al., 2018). While Oyebamiji et al. (2015) and Ostberg et al. (2018) estimate emulators for
irrigated crop yields, they don’t consider water requirements for irrigation. However, as water availability
may pose serious constraints to irrigation (Blanc et al. 2017; Elliott et al. 2014), water necessary to irrigate
those crop is a concern when estimating climate change impact on agriculture. This study proposes to fill
this gap by developing statistical emulators of global gridded crop models for irrigated crops yields as well

as the associated irrigation water withdrawals.

Building on Blanc and Sultan (2015) and Blanc (2017), the statistical emulators developed in this study are
estimated based upon an ensemble of global gridded crop models (GGCM) simulations from the Inter-
Sectoral Impact Model Intercomparison Project (ISI-MIP) Fast Track experiment (Rosenzweig et al. 2013;
Warszawski et al. 2014). This project was designed to compare GGCMs simulations, all driven by the same
bias-corrected climate change projections obtained from the Coupled Model Intercomparison Project, phase
5 (CMIP5) simulations ensemble (Hempel et al. 2013; Taylor, Stouffer, and Meehl 2012). In this study, the
statistical emulators focus on irrigated crops and are estimated for maize, rice, soybean and wheat and five
different GGCMs to provide an accessible tool for assessing the impact of climate change on irrigated crop
yields and irrigation water withdrawals, while accounting for crop modeling uncertainty. In combination

with the statistical emulators of rainfed crop yields developed in Blanc (2017), these emulators enhance
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integrated assessment modeling by facilitating the estimation of the impact of climate change on, separately,

rainfed and irrigated crops.

The remainder of this paper presents the data and methods used to statistically estimate the emulators in
Section 2 and the results are presented and discussed in Section 3. Validation of the emulators, both in- and

out-of-sample are presented in Section 4. Section 5 concludes.

2. Material and methods

2.1. Data
In this analysis, data are sourced from the ISI-MIP Fast Track experiment, an inter-model comparison
exercise where different GGCMs were used to simulate annual crop yields and irrigation water withdrawals
under the same set of weather and CO, concentration inputs taken from the CMIP5 climate simulations.®
Using these data, a panel dataset of GGCM outputs and atmospheric conditions is constructed for the period

1975-2099.

2.1.1.Weather and CO:
Weather data at a 0.5x0.5-degree resolution (about 50km?) used as input into each GGCM are obtained
from the CMIP5 climate data simulations. A subset of climate simulations is selected to be representative
of the broadest plausible range of future climate change. Three General Circulation Models (GCMs),
HadGEMZ2-ES, NorESM1-M, and GFDL-ESM2M, are selected to be representative of respectively, high,
medium and low levels of global warming (Warszawski et al. 2014). Daily bias-corrected weather data
generated by these GCMs are provided for the ‘historical’ period of 1975 to 2005 and the ‘future’ period
of 2006 to 2099. For the ‘future’ period, only one greenhouse gas Representative Concentration Pathway
is considered, RCP 8.5, which is consistent with the highest level of global warming amongst the different

RCPs.

1 The data are available for download at https://www.pik-potsdam.de/research/climate-impacts-and-
vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/data-archive/fast-track-data-archive
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Based on the daily precipitation, and daily minimum (Tmin) and maximum (Tmax) temperatures, monthly
averages of precipitation (Pr) and mean temperature (Tmean = (Tmin + Tmax)/2) are calculated for each
summer month. For ease of reference, weather variables for each summer month are denoted by numbers
suffixessothat _1, 2,and 3 refer to, respectively, June, July and August in the Northern Hemisphere and
December, January and February in the Southern Hemisphere. For each climate scenario considered, the

corresponding CO, concentrations data are extracted from Riahi, Griibler, and Nakicenovic (2007).?

2.1.2.1rrigated crop yields
Simulated annual irrigated crop yields (YIR) in metric tons per hectare (t/ha) at a 0.5%0.5-degree resolution
are obtained from the ISI-MIP Fast Track experiment for five GGCMs: (1) the Geographic Information
System (GIS)-based Environmental Policy Integrated Climate (GEPIC) model (Liu et al. 2007; Williams
and Singh 1995); (2) the Lund Potsdam-Jena managed Land (LPJmL) dynamic global vegetation and water
balance model (Bondeau et al. 2007; Waha et al. 2012); (3) the Lund-Potsdam-Jena General Ecosystem
Simulator (LPJ-GUESS) with managed land model (Bondeau et al. 2007; Linzdeskog et al. 2013; Smith,
Prentice, and Sykes 2001); (4) the parallel Decision Support System for Agro-technology Transfer
(pDSSAT) model (Elliott et al. 2013; Jones et al. 2003); and (5) the Predicting Ecosystem Goods And
Services Using Scenarios (PEGASUS) model (Deryng et al. 2011). Although these GGCMs differ in their
representation of crop phenology, leaf area development, root expansion, nutrient assimilation, and yield
formation, they all account for the effect of water, heat stress and CO- fertilization, and assume no
technological change.® However, the LPJ-GUESS model simulates potential yields (yield not limited by
nutrient or management constraints) whereas the other crop models simulate actual yields. Other differences

and GGCM-specific periodic patterns of yield projections are discussed in Blanc and Sultan (2015).

2 The data are available at http://tntcat.iiasa.ac.at/RcpDb/dsd? Action=htmlIpage&page=welcome.

3 See Rosenzweig et al. (2014) for more details regarding each model’s processes. Caveats are discussed at
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-
mip/data-archive/fast-track-data-archive/data-caveats.
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2.1.3.Irrigation water withdrawals
Associated with irrigated crop yields projections, GGCMs report irrigation water demand, or potential
irrigation water withdrawal (PIRRWW), in mm per year at a 0.5x0.5-degree resolution. As the crop models
make different assumptions about the efficiency of irrigation, the reported PIRRWW is harmonized across
all models to obtain estimates of water directly available to the crop assuming no losses during conveyance
and application. To impose this harmonization assumption, PIRRWW data provided by pDSSAT are
multiplied by 0.75 for maize, soy and wheat, and PIRRWW data provided by LPJmL are multiplied by grid
specific project efficiencies applicable to all crops. * All other models assume an irrigation use efficiency

of 100%.

2.1.4.Soil orders
To account for soil conditions, soil orders are extracted from the FAO-UNESCO (2005) Soil Map of the
World at the 0.5x0.5-degree resolution. It uses the USDA soil taxonomy (Soil Survey Staff 1999)°
classifying soils on the basis of physical and chemical properties observed in situ (e.g. soil horizons,
structure, texture, color) and inferred from environmental conditions (e.g., soil temperature and moisture
regimes). Soils are grouped into 12 main soil orders (Gelisols, Histosols, Spodosols, Andisols, Oxisols,

Vertisols, Aridisols, Ultisols, Mollisols, ,Inceptisols, and Entisols) as described in Blanc (2017).

2.1.5.Summary statistics
Globally, the sample for each crop-GGCM combination is composed of, on average, 15 million records
covering about 44,000 grid cells (see Table 1).° Simulations from the PEGASUS and pDSSAT models for
rice and pDSSAT model for soybean are not available. For wheat, simulations by the pDSSAT model are

only available for the HadGEM2 GCM.

4 The spatial file containing project efficiencies is  available  for  download at
https://www.isimip.org/documents/213/irrigation_project efficiencies.nc.

5 Soil order data are available for download at
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2 054013

8 In the final sample, grid cells for which there are less than 10 output records after data cleaning are omitted.
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Table 1. GGCMs summary information

Crop Model Records Grid Cells
GEPIC 16,176,798 44,902
LPJ-GUESS 15,958,849 43,824
Maize LPJmL 16,696,167 45,597
PEGASUS 11,427,653 43,301
pDSSAT 13,221,217 42 877
GEPIC 16,277,183 45,312
Rice LPJ-GUESS 15,252,499 43,789
LPImL 16,721,941 45,236
GEPIC 16,197,571 457211
LPJ-GUESS 15,538,632 43,422
Soybean LPImL 16,650,813 45,558
PEGASUS 8,314,743 39,642
GEPIC 16,468,355 45,326
LPJ-GUESS 14,960,416 41,820
Wheat LPImL 16,859,028 45,724
PEGASUS 11,839,747 43,387
pDSSAT 13,484,362 43,073

Summary statistics for irrigated crop yields and irrigation demand are detailed by GGCM and GCM in
Table Al in Appendix A. The global average of irrigated crop yields differs amongst crops with yields
ranging from 1.8t/Ha for soybean to 3.5t/ha for maize. Across GGCMs, the largest variation is observed
for wheat, which ranges from 1.73t/ha for the PEGASUS model to 4.4t/ha for the LPJ-GUESS model.
Regarding irrigation, soybean requires the least water on average (92.5mm/year) and rice the most
(114mmlyear). Across GCMs, average irrigation water withdrawals are the largest under the NorESM1_M
scenario and the lowest under the GFDL_ESM2M scenario. Irrigation requirements vary greatly across
models, with the PEGASUS model simulating average irrigation water withdrawals below 40mm/year for
all crops, whereas estimates for all other GGCMs (except GEPIC for soybean and LPJ-GUESS for rice)

exceed 100mm/year.
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Atmospheric CO> concentrations, which are the same for all GCM-GGCM combinations, range from 331
to 927 parts per million (ppm) between 1975 and the end of the century. Summary statistics of Tmean and
Pr, and CO2 averaged over all GGCMs are presented in Table 2. On average, temperatures are the highest
in the second month of summer and precipitation is the lowest in the first month of summer. Across GCMs,
temperatures are the greatest under the HadGEM2-ES model and the lowest under the GFDL-ESM2M
GCM, but no clear pattern of precipitation emerges amongst GCMs. Weather summary statistics at the soil-
order level indicate that mid-summer temperatures range between 18°C in the Spodosols regions (acidic
soils developing under coniferous vegetation) to 30°C in the Vertisols regions (clay-rich soils in climates
with distinct dry seasons). Precipitation ranges from less than 1mm/day in the Aridisols regions (prone to
salinization and typical to arid regions) to more than 7mm/day in the Oxisols regions (mineral soils found
in tropical and subtropical latitudes). More details regarding the weather variables statistics are available in

Blanc (2017).

Table 2. Mean values of summer temperature and precipitation by GCM at the global level

Variable Unit GFDL_ESM2M HadGEM2_ES NorESM1_M
Tmean_1 °C 214 22.8 22.0
Tmean_2 °C 231 245 23.9
Tmean_3 °C 22.4 23.8 22.9
Pr 1 mm/day 3.2 3.0 3.0
Pr_2 mm/day 3.5 3.5 35
Pr_3 mm/day 3.5 35 35

Note: suffixes _1, 2, 3 denote, respectively, June, July and August in the Northern Hemisphere and December
January and February in the Southern Hemisphere.

2.2. Methods
The methodology extends the work of Blanc and Sultan (2015) and Blanc (2017). In these studies, rainfed
yields (YRF) are estimated for each crop, GGCM and soil type using a parsimonious specification that only
includes average summer precipitation and temperature weather variables, CO, concentrations, and

interactions among these variables. For irrigated crops, the five GGCMs considered in this study assume
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that irrigation is applied to compensate for the lack of precipitation. Therefore, the preferred specification
assumes that precipitation has no impact on crop growth, and yields for each crop and model are specified

as a function of temperature and CO,, and corresponding interaction terms:

_ 3
YIR gt 1ongemy = @ + Xizq 6;Tmean; ,, 1,n gemy +9C02gem,y +

3 .
Zi:l YiTmean—llat,lon,gcm,y * Cozgcm,y + 6lat,lon + plat,lon,gcm,y (1)

where for each year, y, YIR corresponds to irrigated crop yields simulated by process-based crop models
for each grid cell (defined by its longitude, lon, and latitude, lat) under each climate model, gcm; Pr and
Tmean variables correspond to mean precipitation and temperature variables for each summer month i. CO2
is the annual midyear CO; concentration level in the atmosphere; ¢ is a grid cell fixed effect; and p an error
term. Following Blanc and Sultan (2015), adjustments to the specification are made to account for soil

fertility erosion and CO; concentration for the pDSSAT and GEPIC models respectively.

Associated with each crop yield, GGCMS also provide annual irrigation water requirements (PIRRWW).
Consistent with the methodology used to estimate crop yields, water demand for irrigation for each crop

and GGCM is estimated as a function of monthly temperature and precipitation and CO; concentrations:

— 3 3
PIRRWVVlafJO":gch’ =a+ Zi:l Biprilat,lon,gcm,y + Zi:l HiTmeanilat,lon,gcm,y +
3 3
19C029C7"'y + Zi:l yiprilat,lon,gcm,y * Tmeanilat,lon,gcm,y + Zi:l yiprilat,lon,gcm,y *
Cozgcm,y + Zi3=1 ViTmean—ilat,lon,gcm,y * Cozgcm,y + 5lat,lon + plat,lon,gcm,y (2)
Following Blanc (2017), a fractional polynomial specification is preferred to model non-linearities as it
relaxes the symmetry constraint imposed by quadratic terms but allows non-parametric flexibility from

multinomial transformations. Additionally, the response functions are estimated separately for each soil

order’ as the effect of weather on crops differs across soil types. This specification is labeled S1fpintsoil.

"In this analysis, response functions for the Gelisols soil order are not estimated, as this soil order represents soils
permanently frozen.
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To consider the effect of alternative specifications on the emulators’ performance, additional specifications

are considered and comparisons of goodness of fit measures are provided in Appendix A.

3. Results

Based on the methodology presented Section 2, multiple specifications are estimated for both irrigated
yields and irrigation demand. Results for irrigated crop yields and irrigation water requirements are
presented in Section 3.1 and 3.2 respectively. The power terms used for the fractional polynomial
specifications are reported in Appendix B and the regression results are presented in Appendix C. The

corresponding estimated values for ¢ (the grid cell fixed effect) are provided in Appendix D.

3.1. Regression results for irrigated yields
For each crop and GGCM, the Slfpintsoil regression results show that summer temperatures have a
significant impact on irrigated yields from all GGCMs and crops. Figure 1 provides an illustration of the
average effect of temperature during the second month of summer for each soil sample, while holding
covariates at their mean values. The figure shows that fractional polynomial transformation captures the
non-linear effect of mid-summer temperature on irrigated crop yields, with in some cases, a negative
skewness of the curve representative of a sharp decrease in yields associated with high temperature. Similar
to the results in (Blanc 2017a), the average effect of temperature on crop yields differs depending on the
soil order sample considered. As for rainfed yields, the yield response to temperature are generally high in
fertile Andisols and Mollisols. Additionally, the temperature effect is also very large in Aridisols
subsamples for irrigated crops, which are not water-limited. The confidence intervals are relatively small,
except in a few cases (e.g. Tmean_2 of maize with LPJmL in the Aridisols subsample) for which the

emulator are likely to be less accurate.

10
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Figure 1. Effect of Tmean_2 on YIR by crop and GGCM for the S1fpintsoil specification

Maize, GEPIC Maize, LPJ-GUESS Maize, LPJmL Maize, PEGASUS Maize, pDSSAT
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Note: covariates are held at their mean values. The response functions represent the fit across the soil type for which
it was estimated.

3.2. Regression results for irrigation water withdrawal
As for irrigated crop yields, the regression results for the S1fpintsoil specification indicate that summer
weather have a significant impact on irrigation water withdrawals from all GGCMs and crops. Illustrations
of the average effect of temperature and precipitation during the second month of summer while holding
covariates at their mean values detailed for each soil sample are provided in Figure 2 and Figure 3. The
figures indicate that the average effect of weather on irrigation water withdrawals varies by soil type. For
instance, the effect of mid-summer temperature on irrigation water withdrawals presented in Figure 2 is the
largest in Aridisols regions, which are characteristic of arid regions. In most cases, temperature increases
(with other co-variates held at their mean value) entail an increase in irrigation water withdrawals, which

is consistent with an increase in evaporation associated with higher temperatures.

11
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Figure 2. Effect of Tmean_2 on PIRRWW by crop and GGCM for the S1fpintsoil specification

Maize, GEPIC Maize, LPJ-GUESS Maize, LFJmL Maize, PEGASUS Maize, pDSSAT
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Note: covariates are held at their mean values.

Figure 3 indicates that in most cases, at low level of precipitation, an increase in rainfall is associated with
a sharp decline in irrigation water withdrawals, especially in Vertisols subsamples. Alternatively, the effect
of precipitation is almost flat for samples such as Aridisols. For most soil regions, however, the effect levels
off and is almost null in most cases when precipitation rates exceed 2mm/day. The shape of the response
functions is mostly similar across GGCMs for a given crop, although the level of irrigation withdrawal

differs greatly.
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239 Figure 3. Effect of Pr_2 on PIRWW by crop and GGCM for the S1fpintsoil specification
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243 4. Validation

244  To evaluate the accuracy of the statistical models at reproducing irrigated crop yields and associated
245  irrigation water withdrawals simulated by GGCMs, the emulators’ within- and out-of-sample projections
246  are compared with those from GCCMs. Both validation exercises are lead using the preferred specification,

247  Slfpintsoil.

248 4.1. In-sample validation

249 4.1.1. Irrigated crop yields
250  The within-sample validation exercise is performed on the full sample of irrigated yields estimates for each

251  crop, grid cell, year, and climate model. Considering a simple deviance measure, the normalized root mean
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square error (NRMSE), is calculated by dividing the RMSE by the difference between maximum and
minimum yields within each soil sample. Global NRMSE weighted-average values® for each, crop and
model for YIR are presented in Figure 4. The graphs indicate that the average error between predicted and
‘actual’ irrigated yields range from around 4% to 6% for maize and rice yields, 3% to 6% for soybean yields
and 2% to 5% of wheat yields. Across GGCMs, the graph shows that lowest NRMSE are found for the
LPJml and LPJ-GUESS models, while GEPIC has the highest NRMSEs for all crops except maize. NRMSE
values for YIR compared to YRF indicate that irrigated rice, soybean and wheat yields are generally slightly

harder to emulate than their rainfed counterparts.

Figure 4. Goodness of fit of the yield statistical emulators by crop and independent variable (S1fpintsoil specification)

Maize Rice Soybean Wheat

NRMSE
4

YRF  YIR PIRRWW YRF  YIR PIRRWW YRF  YIR PIRRWW YRF  YIR PIRRWW

[ Joeerc [ Jtrpecuess [ | tpamb [ | PEGAsus | | pDSSAT

Note: NRMSE values for YRF are source from Blanc (2017).

8 Global NRMSE averages are weighted by soil sub-sample size.
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To evaluate the emulators’ prediction accuracy overtime, time series of average irrigated crop yields from
GGCMs and statistical emulators are presented in Figure 5. The left-hand graphs present annual irrigated
yields for each crop averaged over the three climate models and all grid cells for the whole globe. Similar
global averages but weighted by crop-specific irrigated harvested area (sourced from the MIRCA2000
dataset; Portmann, Siebert, and Do6ll 2010) are presented in the right-hand graphs. The light colored lines
represent the GGCMs’ projections and the dark colored lines characterize simulations from the emulator
(using the S1fpintsoil specification). The graphs show that, while global average yields projections driven
by the same climate data differ between GGCMs, predictions from the statistical emulators follow, on
average, the same trend as projections from GGCMs, although inter-annual variability is captured with less
accuracy. Similar observations apply when considering yields weighted by irrigated areas, except for
irrigated yields for maize simulated with the pDSSAT model, rice with the LPJ-GUESS model, and soybean
with the PEGASUS model, where greater inter-annual bias between the emulators and the GGCMs are

observed at the beginning and at the end of the sample.
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Figure 5. Average irrigated crop yields from GGCMs and statistical emulators (S1fpintsoil specification)
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To assess the degree of spatial agreement between the emulator and the GGCMs, maps presenting climate
change impact projections estimated by those models over the 2090s period are provided for each crop at
the global level in Appendix G. The maps show that the emulators reproduce the spatial patterns of irrigated
crop yields with reasonable accuracy and that the largest differences between model and emulator outputs
are largely observed in regions where yields are low. However, as reported in Table 3, wheat yields tend to
be overestimated by the emulators for all models, especially LPJ-GUESS, while maize yields errors are

more balanced across models.

Table 3. Percentage of global grid cells for which the emulator overestimates YIR and PIRRWW averaged over 2090-2099
compared to the GGCMs

Crop Model YIR PIRRWW
GEPIC 44% 45%
LPJ-GUESS 50% 60%
Maize LPJmL 51% 40%
PEGASUS 48% 42%
pDSSAT 51% 50%
GEPIC 51% 45%
Rice LPJ-GUESS 48% 65%
LPJmL 56% 45%
GEPIC 48% 47%
Soybean LPJ-GUESS 46% 66%
LPJmL 53% 47%
PEGASUS 61% 56%
GEPIC 63% 53%
LPJ-GUESS 79% 65%
Wheat LPJmL 66% 50%
PEGASUS 56% 50%
pDSSAT 63% 54%

To assess the accuracy of the emulators over important areas, similar maps are reproduced focusing on the
main growing regions for each crops. Figure 6 to Figure 9 present results for the ‘easiest’ and ‘hardest’
models to emulate, based on NRMSE values for each region, for each crop. Yield projections from both the
GGCMs and the emulators averaged over the period 2090-2099 are presented, as well as the simple

difference between the two. In addition, to assess the magnitude of emulator prediction errors relative to
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spread of estimates by different GGCMs, these figures include maps of the error compared to the ‘ensemble
spread’.” Figure 6 show that the pDDSAT emulator tends to overestimate maize yields over the central part
of the Corn Belt in the US. The bottom map shows that this overestimation is mostly located in an area
where the error is larger than the ensemble spread is small (represented in purple). By contrast, the emulator
for the easiest to emulate model in this region for maize, LPJ-GUESS, underestimate irrigated yields and

the errors are consistently lower than the ensemble spread.

% The ensemble spread is calculated as the standard deviation of YIR across GGCMs over the period 2090-2099. See
Appendices H and G for maps of the ensemble error over each producing region and at the global level.
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302 Figure 6. Irrigated maize yields averaged over 2090-2099 for the LPJ-GUESS and pDSSAT models and S1fpintsoil

303 specification over US cornbelt
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305  Forrice, the emulator for the hardest to emulate model, LPJ-GUESS, overestimates irrigated yields in the

=

»
Error/Ensemble spread

304

306  north of the South East Asia region, but this area is characterized by a relatively large ensemble spread, and
307  therefore the error introduced by the emulator is smaller than differences in predictions across models. For
308  the GEPIC model, similar conclusions can be drawn, albeit with smaller errors relative to the level of yields

309  projected by the GGCMs.
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310 Figure 7. Irrigated rice yields averaged over 2090-2099 for the GEPIC and LPJ-GUESS and models and S1fpintsoil
311 specification over South East Asia
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313  Soybean yields emulated for the GEPIC model are overestimated in the western part of this region, which

312

314  is characterized by low yields and large ensemble spreads. Alternatively, emulated yields for the LPIJmL
315  model are underestimated in this same region, albeit to a relatively smaller degree. Reassuringly, the errors

316  are smaller than the ensemble spread for both models in most grid cells.

317
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318 Figure 8. Irrigated soybean yields averaged over 2090-2099 for the LPIJmL and GEPIC models and S1fpintsoil
319 specification over Brazil
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320

321  For wheat, the emulator for both LPJmL and PEGASUS models, on average, overestimate yields in France
322 where productivity is relatively high and ensemble spreads are relatively low. However, the errors are

323  relatively smaller for the LPIJmL model.
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324 Figure 9. Irrigated wheat yields averaged over 2090-2099 for the LPJmL and PEGASUS models and S1fpintsoil
325 specification over Europe
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326

327  Similar spatial assessment maps considering the change in irrigated crop yields from 2000s to 2090s are
328  provided in Appendix G. Overall, the maps show that GGCMs project increases in irrigated crop yields
329  poleward for most crops by the end of the century. For other regions, the effects depend on the crop and
330  model considered. However, the maps show that, overall, the emulators reproduce reasonably well the

331  spatial patterns of climate change impacts on irrigated crop yields simulated by the GGCMs.
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4.1.2. Irrigation water withdrawals
The same within-sample validation exercise as for irrigated crop yields is performed on irrigation water
withdrawal estimates for each crop, grid cell, year, and climate model. The NRMSE values for PIRRWW
presented in Figure 4 indicate that errors for wheat with GEPIC reach almost 8% whiles with pDSSAT they
are closer to 2%. NRMSE values for PIRRWW are in most cases slightly higher than those for irrigated

yields, and indicate that this process is harder to emulate.

Time series of irrigation water withdrawals averaged at the global level and weighted by crop-specific
irrigated harvested area are reported in Figure 10. The graphs show that projections from the emulator (in
dark colors) follow the same trend as projections from GGCMs (in light colors). As for irrigated crop yields,
inter-annual variability is emulated with less precision than the long-run trend. However, divergences are
only observed for rice simulated by the LPJ-GUESS model when considering average irrigation water

withdrawals weighted by irrigated areas.
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Figure 10. Average irrigation water withdrawals from GGCMs and statistical emulators (S1fpintsoil specification)
Global average

Global average weighted by irrigated area
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To assess the spatial agreement in irrigation water withdrawals estimated by the GGCMs and the statistical
emulators for each crop, maps presenting climate change impact projections over the 2090s period are
presented in Appendix H for the globe at the grid cell level. These maps show that the emulators are able
to reproduce the spatial patterns of irrigation demand over the globe, which differ greatly across models.
Table 3 show that the emulators for the LPJ-GUESS model, on average, overestimates irrigation

requirements for all crops.

Maps representing major production regions for each crop are presented in Figure 11 for each of the hardest
and easiest models to emulate GGCMs, again defined using NRMSE values. The emulator for the LPIJmL
model underestimates requirements in most regions, but the largest of those errors occur in regions with
relatively low water requirements. Reassuringly, the errors are generally lower than the ensemble spread,
indicating that the emulator’s performance does not exceed the uncertainty across models. For the
PEGASUS model, the emulator overestimates irrigation requirements in the western part of the cornbelt

where the level is high, but the errors are lower than the ensemble spread in all grid cells in the region.
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359 Figure 11. Irrigation water withdrawals for maize averaged over 2090-2099 for the LPIJmL and PEGASUS models and

360 S1fpintsoil specification over the US cornbelt
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361

362

363  Forrice, the emulator for the hardest to emulate model, LPJ-GUESS, overestimates requirements over India
364  on average, but the ratio of error over the ensemble spread is low in all grid cells. Similar conclusions can
365  be drawn for the emulator for the GEPIC model, although there is more agreement among models in this

366  region (i.e., lower ensemble spreads).
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Figure 12. Irrigation water withdrawals for wheat averaged over 2090-2099 for the GEPIC and LPJ-GUESS models and
Sifpintsoil specification over South East Asia
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For Soybean in Brazil, emulators for both the GEPIC and LPJmL models underestimates irrigation
requirements in the north east where irrigation requirements are high. However, for this region, the emulator

prediction errors are low relative to the ensemble spreads for both models.
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Figure 13. Irrigation water withdrawals for soybean averaged over 2090-2099 for the GEPIC and LPJ-GUESS models
and S1fpintsoil specification over Brazil
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In Europe, the emulator for the PEGASUS model overestimates wheat irrigation requirements in most grid
cells in this region. Over the northern part of France and Germany, errors are larger than the ensemble
spread. For the LPJ-GUESS model, the emulator underestimates irrigation water withdrawals over France
and northern Spain, but the prediction errors are smaller than the ensemble spread. For both models,

predictions from the emulators are reasonably accurate in areas where little irrigation is required.
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Figure 14. Irrigation water withdrawals for wheat averaged over 2090-2099 for the LPJ-GUESS and PEGASUS models
and S1fpintsoil specification over Europe
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Maps representing spatial agreement in terms of changes from 2000s to 2090s for major production regions
are presented in Appendix H. The maps show that large decreases in irrigation demand are expected by
most GGCMs. Estimated changes from the 2000s to the 2090sare reproduced reasonably well by most

emulators.

4.2. Out-of-sample validation
The out-of-sample validation exercise consists of comparing predictions from emulators that are re-
estimated using (sub-) sample that excludes weather variables from one climate model, to outputs from
GGCMs under the excluded climate model sub-sample. This exercise is performed for both irrigated yields

and irrigation water withdrawal.
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4.2.1. Irrigated crop yields
For irrigated crop yields, the NRMSE statistics calculated for each sub-sample are reported in Table 4 and
compared to the NRMSEs from the full sample estimation presented in Section 3. Unsurprisingly, the
prediction errors from the out-of-sample exercise are larger than those from the in-sample estimations. The
differences between the NRMSEs averaged over all leave-one-out samples and the in-sample NRMSEs are
however relatively small, with differences ranging between 0.002 and 0.009. The errors are generally the

smallest for the estimates with the NorESM1-M climate model excluded from the estimation sample.

Table 4. NRMSE statistics for the leave-one-GCM-out validation (S1fpintsoil specification) compared to the full sample

Crop Model Climate model predictions excluded from the sub-sample overall Full
GFDL-ESM2M HadGEM2-ES NorESM1-M sample

GEPIC 0.051 0.057 0.048 0.052 0.045
LPJ-GUESS 0.049 0.045 0.042 0.045 0.037

Maize LPImL 0.045 0.040 0.040 0.042 0.035
pDSSAT 0.076 0.071 0.074 0.074 0.065
PEGASUS 0.057 0.061 0.055 0.058 0.056

GEPIC 0.065 0.068 0.059 0.064 0.056

Rice LPJ-GUESS 0.044 0.038 0.038 0.040 0.033
LPImL 0.043 0.042 0.037 0.041 0.037

GEPIC 0.066 0.066 0.054 0.062 0.054

Soybean LPJ-GUESS 0.049 0.046 0.041 0.045 0.037
LPImL 0.035 0.034 0.031 0.033 0.030
PEGASUS 0.048 0.052 0.043 0.048 0.042

GEPIC 0.054 0.057 0.052 0.055 0.049
LPJ-GUESS 0.039 0.037 0.036 0.038 0.029

Wheat  LPJmL 0.033 0.032 0.029 0.032 0.026
pDSSAT 0.643 0.669 0.570 0.627 0.572
PEGASUS 0.033 0.037 0.031 0.034 0.030

Time series of irrigated crops yields weighted by irrigated area harvested for each crop, GGCM and leave-
one-GCM-out combination are presented in Figure 15. The graphs show that, as for the in-sample
validation, the emulators are able to reproduce the out-of-sample trend in crop yields of most GGCMs.
However, in some cases, the emulator and GGCM outputs differ depending on the climate sample excluded.
For instance, for maize yields with the GEPIC model, the graphs indicate that, in the case where data from

the HadGEM2-ES model is excluded from the training dataset, the emulated irrigated maize crop yields are
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408  overestimated while they are underestimated in the case where the NorESM1-M model is excluded. In such
409  cases, the use of the largest sample of plausible climate change is essential to estimate the response

410 functions.

411
412 Figure 15. Average irrigated crop yield projections from GGCMs and statistical models (S1fpintsoil specification)
413 weighted by irrigated area harvested in the leave-one-GCM-out validation exercise
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414
415 4.2.2. Irrigation water withdrawals

416  As for irrigated crop yields, the NRMSE statistics calculated for irrigation water withdrawal for each
417  excluded sample (see Table 5) show that the prediction errors from the out-of-sample exercise are slightly
418 larger than those from the in-sample estimations. As for irrigated yields, the errors are generally the smallest

419 under the excluded NorESM1-M climate model.
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420 Table 5. NRMSE statistics for the leave-one-GCM-out validation (S1fpintsoil specification) compared to the full sample

Climate model predictions excluded from the sub-sample

Full

Crop Model DL HadcemzEs  Noresmim O™ sample
GEPIC 0.070 0.081 0.078 0.076 0.061
LPJ-GUESS 0059 0.058 0.052 0.056 0.048
Maize ~ LPImL 0.049 0.045 0.042 0.045 0.039
PDSSAT 0.084 0.074 0.074 0.077 0.067
PEGASUS 0.044 0.047 0.040 0044 0040
GEPIC 0.061 0.071 0.063 0.065 0.054
Rice ~ LPJ-GUESS  0.048 0.049 0.043 0.047 0.038
LPImL 0.054 0.048 0.045 0.049 0.041
GEPIC 0.068 0.075 0.068 0.070 0.060
LPJ-GUESS 0055 0.061 0.051 0.056 0.045

Soybean

LPImL 0.055 0.049 0.048 0.051 0.043
PEGASUS 0.056 0.057 0.049 0054 0049
GEPIC 0.096 0.103 0.094 0.098 0.078
LPJ-GUESS 0060 0.059 0.052 0.057 0.048
Wheat  LPImL 0.053 0.053 0.050 0.052 0.042
PDSSAT 0.055 0.045 0.050 0.050 0.030
PEGASUS 0.043 0.043 0.036 0.041 0.035

421

422  Time series of average irrigation water withdrawals weighted by irrigated area harvested are presented in
423  Figure 16 for each crop, GGCM and leave-one-GCM-out combination. The graphs show that out-of-sample
424 irrigation water withdrawals are generally overestimated by the emulators in cases where projections from

425  GGCMs are the smallest and underestimated where projections are the largest.
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Figure 16. Average irrigation water withdrawal projections from GGCMs and statistical models (S1fpintsoil
specification) weighted by irrigated area harvested in the leave-one-GCM-out validation exercise
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5. Conclusion

Based on the methodology developed in Blanc and Sultan (2015) and Blanc (2017), this analysis develops
statistical emulators of global gridded crop models for irrigated crops yields and associated water
withdrawals. The emulators for maize, rice, soybean and wheat are estimated using data from an ensemble
of simulations from five GGCMs as part of the ISI-MIP Fast Track intercomparison exercise. Crop-specific
response functions for each GGCM are estimated at the grid-cell level for both irrigated crop yields and

irrigation water withdrawals.

To evaluate the statistical emulators’ ability to reproduce irrigated crop yields and associated irrigation

water withdrawals estimated by crop models, both in-and out-of-sample validation exercises are conducted.

33



438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

These exercises show that, in most cases, outputs from the statistical emulators follow the same trend as
projections from GGCMs. Inter-annual yield variability is captured with less accuracy but spatial analyses
reveal that, overall, the emulators tend to capture the spatial patterns of climate change impacts on irrigated
crop yields and irrigation water withdrawals reasonably accurately. Similar spatial agreements are observed
when considering the changes in outputs between the beginning and end of the 21* century, despite some
disagreements regarding the strength of the impacts in different regions depending on the GGCM
considered. When using the emulators for regional assessments of climate change impacts, caution should
therefore be exercised when selecting an ensemble of emulators that best capture the impact projected by

the underlying GGCMs.

Out-of-sample validation exercises also show a general agreement between the estimates from the
emulators and the GGCMs. However, as expected, prediction accuracy is lowered when excluding output
responses to weather variables outside the range of values found in the estimation sample. Estimating the
statistical emulator using the largest sample available, which is designed to encompass the largest range of

plausible changes in climate over the century, is essential.

The statistical emulators estimated in this study offer an accessible and reliable tool to estimate climate
change impacts on irrigated crop yields and associated irrigation water withdrawals under alternative
plausible user-defined scenarios. However, as previously noted in Blanc (2017), the emulator is better suited
to assess long-term climate change impacts rather than inter-annual yield and irrigation withdrawal
variations. It is also important to note that, as no GGCMS is considered more accurate than another at
projecting future crop yields, predictions from multiple models should be considered. In this regard, the
emulators developed in this study provide a computationally efficient way to consider modeling uncertainty

in climate change impact assessments for several crops.

The emulators estimated in this study are easily applicable using user-defined scenarios using the variable

transformation and regression coefficients provided in Appendices B, C and D. For the emulators for rainfed
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465

crop yields developed by Blanc (2017), a tool was developed in Blanc (2017b) to increase the accessibility
of the emulators.. Employing the tool, users could access estimated changes in rainfed crop yields at the
grid-cell level by entering user-defined climate variables in an easy-to-use interface. A similar tool will be

developed for the irrigated crop yield and irrigation water withdrawal emulators developed this study.
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618  Appendix A. MATERIAL AND METHODS

619
620 Table Al. Modeling group information
Model Institution Modelers’ names
GEPIC EAWAG (Switzerland) Christian Folberth
Institutionen for naturgeografi och ekosystemvetenskap .
LPJ-GUESS (INES), Lunds Universitet (Sweden) Thomas Pugh, Stephan Olin
LPImL PIK (Germany) Christoph Muller
PEGASUS Tyndall Centre, University of East Anglia (UK) Delphine Deryng
pDSSAT University of Chicago (USA) Joshua Elliott
621
622 Figure Al. Global soil regions based on the FAO-UNESCO Soil Map of the World using the USDA soil taxonomy
Soil Orders
1 Ocean |:| 4 lcelGlacier - 7 Histosols I:l 10 Oxisols |:| 13 Ultisols I:l 16 Inceptisols
[ ] 2 shifting sand B 5 Spodosols [l 11 Vertisols [ | 14 Moliisols [l 17 Entisols
623 I 2Rockyland | |6 Gelisols [ 9 Andisols [T 12 Aridisols [l 15 Alfisols
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624

Table Al. Summary statistics by GGCM and GCM

Irrigated crop yields (t/Ha), YIR

Irrigation water withdrawals (mm), PIRRWW

Crop GGCM GFDL_ESM2M HadGEM2_ES NorESM1_M GFDL_ESM2M HadGEM2_ES NorESM1_M

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max

GEPIC 3.22 0.00 14.74 3.07 0.00 13.01 3.27 0.00 13.24 106.38 0.00 1068.00 109.37 0.00 935.10 90.65 0.00 914.30

LPJ-GUESS 3.71 0.00 15.27 3.95 0.00 12.30 3.91 0.00 1291 129.90 0.00 762.05 136.42 0.00 766.58 125.11 0.00 752.18

Maize LPJmL 3.17 0.00 26.81 3.38 0.00 30.40 3.30 0.00 26.66 156.16 0.00 1114.07 152.64 0.00 1119.02 150.24 0.00 1125.14

PEGASUS 3.00 0.00 35.00 3.24 0.00 35.00 3.29 0.00 34.99 26.31 0.00 800.67 29.53 0.00 829.34 23.07 0.00 792.11

pDSSAT 3.81 0.00 24.09 439 0.00 2410 4.17 0.00 2411 138,51 0.00 1000.50 150.69 0.00 1018.50 125.62 0.00 1055.25

GEPIC 274 0.00 1325 2.60 0.00 12.06 2.81 0.00 12.16 143.09 0.00 1734.60 144.94 0.00 1630.20 122.79 0.00 1582.60

Rice LPJ-GUESS 2.13 0.00 20.69 2.19 0.00 22.84 2.29 0.00 20.83 85.43 0.00 1129.64 85.64 0.00 1059.34 81.13 0.00 1046.81

LPImL 2.63 0.00 23.08 2.68 0.00 23.36 2.69 0.00 23.74 150.54 0.00 962.42 149.43 0.00 993.82 145.71 0.00 970.27

GEPIC 138 000 589 133 0.00 6.06 141 0.00 6.30 84.63 0.00 996.90 83.99 0.00 889.00 71.35 0.00 910.40

Soybean LPJ-GUESS 1.75 0.00 12.14 1.82 0.00 11.66 1.89 0.00 12.25 121.51 0.00 968.59 126.60 0.00 1335.53 119.44 0.00 1306.70

LPIJmL 199 0.00 1947 2.06 0.00 19.66 2.08 0.00 20.73 112.38 0.00 779.93 111.59 0.00 763.87 108.79 0.00 786.50

PEGASUS 198 0.00 22.21 2.17 0.00 23.74 221 0.00 2252 39.40 0.00 713.44 44.12 0.00 801.95 35.06 0.00 707.18

GEPIC 218 0.00 10.06 2.18 0.00 9.60 224 0.00 9.73 117.64 0.00 721.80 107.13 0.00 639.50 103.61 0.00 612.10

Wheat LPJ-GUESS 4.36 0.00 24.12 4.35 0.00 22.69 453 0.00 22.28 155.47 0.00 1059.80 159.79 0.00 1048.93 151.65 0.00 1052.28

LPImL 247 0.00 16.63 2.39 0.00 16.14 248 0.00 15.15 105.25 0.00 1047.35 99.09 0.00 979.18 103.79 0.00 951.06

PEGASUS 172 0.00 34.76 1.67 0.00 34.79 1.80 0.00 34.98 20.87 0.00 712.25 23.93 0.00 72245 18.89 0.00 718.73

pDSSAT 3.01 0.00 32.72 3.09 0.00 34.83 3.13 0.00 3454 138.40 0.00 2693.25 149.91 0.00 2797.50 141.12 0.00 2823.00
625
626
627
628
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Alternative specifications

For irrigated crops, the five GGCMs considered in this study assume that irrigation is applied to compensate
for the lack of precipitation. More specifically, for the GEPIC model, “full irrigation was set as a complete
elimination of water stress of crops”’ (Rosenzweig et al. 2014). In the four other models, however, irrigation
is triggered when soil moisture is insufficient. More specifically, For the LPJ-GUESS and LPJmL models,
“additional water is provided as soon as the water content of the upper soil layer is insufficient” (Bondeau
et al. 2007). The PEGASUS model ensures “that soil is sufficiently moist to avoid water stress in irrigated
land” (Deryng et al. 2011). The pDSSAT model, “Determines daily irrigation, based on read-in values or
automatic applications based on soil water depletion” (Jones et al. 2003). For these models, water stress

may not necessarily be completely eliminated by full irrigation (Rosenzweig et al. 2014).

To assess the effect of precipitation that may not have been completely eliminated by irrigation, a second
specification (S2fpintsoil) including precipitation is specified as:
YIRiat 10n,gemy = @ + lezlﬁiprilat,lon,gcm,y + Zi3:1 HiTmeanilat'lon’gcm'y +9C024cm y +
3 3
Zi=1 yiPrilat,lon,gcm,y * Tmeanilat,lon,gcm,y + Zi=1 giPrilat,lon,gcm,y * COzgch’ +
Z?zl KiTmean—ilat,lon,gcm,y * COzgcm,y + 6lat,lon + plat,lon,gcm,y (3)
For annual irrigation water requirements (PIRRWW), a second specification (S2fpintsoil) considers

evapotranspiration (ETo) instead of temperature to account for the effect of summer weather on irrigation

requirements:

PIRRWW at 1on.gemy = @ + X1 Bi + 271 0ET0; 10 10m, gemy T 9C02gemy +

Prilat,lon,gcm,y
3 3
Yi=1 Yiprilat,lon,gcm,y * ETOilat,lon,gcm,y + Xz yiprilat,lon,gcm,y * COchm’y +

3 .
Zi:1 ViTmean—llat,lon,gcm,y * COchm,y + 6lat,lon + plat,lon,gcm,y (5)

The specifications used to estimate YIR and PIRRWW are summarized in Table A2.
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651 Table A2. Specification description

Dependent variable Specification Variables and non-linear transformations
YIR Slfpintsoil Tmean_pl, Tmean_p2, CO2_pl, CO2_p2
S2fpintsoil Pr_p1, Pr_p2, Tmean_p1, Tmean_p2, CO2 pl, CO2 p2
PIRRWW Slfpintsoil Pr, Tmean_p1, Tmean_p2, CO2_pl, CO2_p2
S2fpintsoil Pr, ETo _pl1, ETo _p2, CO2_pl1, CO2 p2

652 Note: the suffixes _p1 and _p2 denote the fractional polynomial power terms; All specifications include interaction
653  terms between Tmean, Pr and CO2 and are estimated at the soil order level.
654

655  For each crop and GGCM, regressions for irrigated yields are estimated for each specification S1 and S2
656  considering the fractional polynomial transformations at the soil order subsample level (S1fpintsoil and
657  S2fpintsoil). As presented in Figure A2, the normalized root mean square error (NRMSE), which is
658 calculated by dividing the RMSE by the difference between maximum and minimum yields, indicates that
659  only slightly lower NRMSEs are found for the S2 specification compared to S1 across most crops and
660 GGCMs. To favor simplicity, the most parsimonious S1 specification assuming that irrigation eliminates

661  water stress (i.e. excluding the effect of precipitation) is thereafter preferred.

662 Figure A2. Goodness of fit of the irrigated yield statistical emulators by crop and GGCM (S1fpintsoil and S2fpintsoil
663  specifications)
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665  As for crop yields, regressions for irrigation water withdrawal are estimated for each crop and GGCM at
666  the soil order subsample level considering both specifications S1 and S2 with fractional polynomial
667  transformations (S1fpintsoil and S2fpintsoil). The NRMSE presented in Figure A3, shows that across all
668  crops and models, the NRMSE for the S1 specification is found to be slightly lower or equal to the S2

669  specification. The S1 specification is thereafter preferred.

670

671 Figure A3. Goodness of fit of the irrigation water withdrawal statistical emulators by crop and GGCM (S1fpintsoil and
672 S2fpintsoil specifications)
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676

677

678
679

680

Appendix B.  FRACTIONAL POLYNOMIAL TRANSFORMATION

See Excel file Appendix_B_Variable_transformations.xslx attached composed of the following table:

Table B1. Variable formulas for fractional polynomial transformation used in specification S1fpintsoil for YIR

Table B2. Variable formulas for fractional polynomial transformation used in specification S1fpintsoil for PIRWW
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682

683
684
685
686

Appendix C.  REGRESSION RESULTS FOR YIR (SIFPINTSOIL SPECIFICATION)

See Excel file Appendix_C_regression_results_YIR.xls attached composed of the following tables:

Table C1. Regression results for maize YIR at the soil order level (specification S1fpintsoil)
Table C2. Regression results for rice YIR at the soil order level (specification S1fpintsoil)
Table C3. Regression results for soybean YIR at the soil order level (specification S1fpintsoil)

Table C4. Regression results for wheat YIR at the soil order level (specification S1fpintsoil)
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688

689
690
691
692

693

Appendix D.  REGRESSION RESULTS FOR PIRRWW (S1FPINTSOIL SPECIFICATION)

See Excel file Appendix_D_regression_results PIRRWW.xIs attached composed of the following tables:

Table D1. Regression results for maize PIRRWW at the soil order level (specification S1fpintsoil)
Table D2. Regression results for rice PIRRWW at the soil order level (specification S1fpintsoil)
Table D3. Regression results for soybean PIRRWW at the soil order level (specification S1fpintsoil)

Table D4. Regression results for wheat PIRRWW at the soil order level (specification S1fpintsoil)

48



694

695
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697
698
699

Appendix E.  FIXED EFFECTS (4) FOR YIR (S1IFPINTSOIL SPECIFICATION)

See Excel file Appendix_E_Grid_cells_FE_yir.xls attached composed of the following tables:

Table E1. Grid cell fixed effect (6) by GGCM for maize
Table E2. Grid cell fixed effect (6) by GGCM for rice
Table E3. Grid cell fixed effect (6) by GGCM for soybean

Table E4. Grid cell fixed effect (6) by GGCM for wheat
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706

Appendix F.  FIXED EFFECTS (4) FOR PIRRWW (S1FPINTSOIL SPECIFICATION)

See Excel file Appendix_F_Grid_cells_FE_pirrww.xls attached composed of the following tables:

Table F1. Grid cell fixed effect (§) by GGCM for maize
Table F2. Grid cell fixed effect (6) by GGCM for rice
Table F3. Grid cell fixed effect (6) by GGCM for soybean

Table F4. Grid cell fixed effect (6) by GGCM for wheat
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707  Appendix G. IN-SAMPLE VALIDATION FOR YIR (S1IFPINTSOIL SPECIFICATION)

708 Figure G1. Irrigated maize yields averaged over 2090-2099 for the GEPIC model and S1fpintsoil specification
709

_GEPIC Maize YIR (t/ha)

710
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711

712

713

Figure G2. Irrigated maize yields averaged over 2090-2099 for the LPJ-GUESS model and S1fpintsoil specification

ize YIR (tha)

S1fpintsoil Maize YIR (t/ha

gl - T o ey,

Difference (t/ha)
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714 Figure G3. Irrigated maize yields averaged over 2090-2099 for the LPIJmL model and S1fpintsoil specification

LPJmL Maize YIR (t/ha)
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716

717
718

719
720
721
722

Figure G4. Irrigated maize yields averaged over 2090-2099 for the pDSSAT model and S1fpintsoil specification

pDSSAT Maize YIR (tha)
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723 Figure G5. Irrigated maize yields averaged over 2090-2099 for the PEGASUS model and S1fpintsoil specification

PEGASUS Maize YIR (/ha)
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730 Figure G6. Irrigated rice yields averaged over 2090-2099 for the GEPIC model and S1fpintsoil specification

GEPIC Rice YIR (tha)
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737 Figure G7. Irrigated rice yields averaged over 2090-2099 for the LPJ-GUESS model and S1fpintsoil specification

LPJ-GUESS Rice YIR (t/ha)

-

e YIR (tha

i <, e

738
739

740
741
742
743

57



744 Figure G8. Irrigated rice yields averaged over 2090-2099 for the LPIJmL model and S1fpintsoil specification

LPJmL Rice YIR (tha)
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747
748

749
750

751
752
753

Figure G9. Irrigated soybean yields averaged over 2090-2099 for the GEPIC model and S1fpintsoil specification

GEPIC Soybean YIR (t/ha)
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754 Figure G10. Irrigated soybean yields averaged over 2090-2099 for the LPJ-GUESS model and S1fpintsoil specification

LPJ- GUESS Soybean YIR (t/ha)
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757 Figure G11. Irrigated soybean yields averaged over 2090-2099 for the LPImL model and S1fpintsoil specification

LPJmL Soybean YIR (t/ha)
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764

765 Figure G12. Irrigated soybean yields averaged over 2090-2099 for the PEGASUS model and S1fpintsoil specification

PEGASUS Soybean YIR (t/ha)
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768 Figure G13. Irrigated wheat yields averaged over 2090-2099 for the GEPIC model and S1fpintsoil specification

GEPIC Wheat YIR (t/ha)
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770 Figure G14. Irrigated wheat yields averaged over 2090-2099 for the LPJ-GUESS model and S1fpintsoil specification

LPJ-GUESS Wheat YIR (t/ha)
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772 Figure G15. Irrigated wheat yields averaged over 2090-2099 for the LPImL model and S1fpintsoil specification

LPJmL Wheat YIR (t/ha)
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774 Figure G16. Irrigated wheat yields averaged over 2090-2099 for the pDSSAT model and S1fpintsoil specification

pDSSAT Wheat YIR (t/ha)
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776 Figure G17. Irrigated wheat yields averaged over 2090-2099 for the PEGASUS model and S1fpintsoil specification

PEGASUS Wheat YIR (t/ha)
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778 Figure G18. Irrigated crop yields ensemble error averaged over 2090-2099 across GGCMs for the major growing regions
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Maize

Figure G18. Irrigated crop yields ensemble error averaged over 2090-2099 across GGCMs at the global level
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785 Figure G19. Changes in irrigated maize yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil
786 specification) and GGCMs

S1fpintsoil

GEPIC

PEGASUS LPJmL LPJ-GUESS

pDSSAT

787

% Change

788 -1OFO-ZS -0 -5 +5 +10 +25 +50-+100>

789 Notes: Grid cells where yields projections from crop models are on average less than 1t/ha over the whole study period
790  are masked in white. Grid cells for which the sign of the impact projected with the emulator is contrary to the sign of
791  the impact projected by the GGCM are masked in black.
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793 Figure G20. Changes in irrigated rice yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil
794 specification) and GGCMs

GEPIC

795

LPJ-GUESS

796

LPJmL

797

% Change

——
798 -100 50 -25 -10 -5 +5 +10 +25 +50 +100>
799  Note: See note of Figure G19.
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802 Figure G21. Changes in irrigated soybean yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil
803 specification) and GGCMs
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807  Note: See note of Figure G19.
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809 Figure G22. Changes in irrigated wheat yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil
810 specification) and GGCMs
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814  Note: See note of Figure G19.
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816  Appendix H.  IN-SAMPLE VALIDATION FOR PIRRWW (S1FPINTSOIL SPECIFICATION)

817

818 Figure H1. Irrigation water withdrawal for maize averaged over 2090-2099 for the GEPIC model and S1fpintsoil
819 specification
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821
822

823 Figure H2. Irrigation water withdrawal for maize averaged over 2090-2099 for the LPJ-GUESS model and S1fpintsoil
824 specification
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827 Figure H3. Irrigation water withdrawal for maize averaged over 2090-2099 for the LPIJmL model and S1fpintsoil
828 specification

LPJmL Malze PIRRWW (mm)
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831 Figure H4. Irrigation water withdrawal for maize averaged over 2090-2099 for the pDSSAT model and S1fpintsoil
832 specification
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835 Figure H5. Irrigation water withdrawal for maize averaged over 2090-2099 for the PEGASUS model and S1fpintsoil
836 specification
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838 Figure H6. Irrigation water withdrawal for rice averaged over 2090-2099 for the GEPIC model and S1fpintsoil
839 specification
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842 Figure H7. Irrigation water withdrawal for rice averaged over 2090-2099 for the LPJ-GUESS model and S1fpintsoil
843 specification

LPJ-GUESS Rice PIRRWW (mm)
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847 Figure H8. Irrigation water withdrawal for rice averaged over 2090-2099 for the LPIJmL model and S1fpintsoil
848 specification
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851 Figure H9. Irrigation water withdrawal for soybean averaged over 2090-2099 for the GEPIC model and S1fpintsoil
852 specification
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856 Figure H10. Irrigation water withdrawal for soybean averaged over 2090-2099 for the LPJ-GUESS model and S1fpintsoil
857 specification
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861 Figure H11. Irrigation water withdrawal for soybean averaged over 2090-2099 for the LPIJmL model and S1fpintsoil
862 specification
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866 Figure H12. Irrigation water withdrawal for soybean averaged over 2090-2099 for the PEGASUS model and S1fpintsoil
867 specification
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870 Figure H13. Irrigation water withdrawal for wheat averaged over 2090-2099 for the GEPIC model and S1fpintsoil
871 specification
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874 Figure H14. Irrigation water withdrawal for wheat averaged over 2090-2099 for the LPJ-GUESS model and S1fpintsoil
875 specification
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878 Figure H14. Irrigation water withdrawal for wheat averaged over 2090-2099 for the LPImL model and S1fpintsoil
879 specification
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882 Figure H15. Irrigation water withdrawal for wheat averaged over 2090-2099 for the pDSSAT model and S1fpintsoil
883 specification
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885 Figure H16. Irrigation water withdrawal for wheat averaged over 2090-2099 for the PEGASUS model and S1fpintsoil
886 specification
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mm

188 - 444
144 - 188
109 - 144
79-109

55-79
35-55
19-35
7-19
0-7

mm

188 - 444
144 - 188
109 - 144
79-109

55-79
35-55
19-35
7-19
0-7

887
888

889
890
891

90



892 Figure H17. Irrigation water withdrawal ensemble error by crop averaged over 2090-2099 for each major growing region
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895 Figure H18. Irrigation water withdrawal ensemble error by crop averaged over 2090-2099 at the global level
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897 Figure H19. Changes in irrigation water withdrawals for maize from 2000s to 2090s estimated by the statistical emulators
898 (S1fpintsoil specification) and GGCMs
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902 Notes: Grid cells where yields projections from crop models are on average less than 1t/ha over the whole study period
903  are masked in white. Grid cells for which the sign of the impact projected with the emulator is contrary to the sign of
904  the impact projected by the GGCM are masked in black.
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906 Figure H20. Changes in irrigation water withdrawals for rice from 2000s to 2090s estimated by the statistical emulators
907 (S1fpintsoil specification) and GGCMs
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913  Note: See note of Figure H19.
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915 Figure H21. Changes in irrigation water withdrawals for soybean from 2000s to 2090s estimated by the statistical
916 emulators (S1fpintsoil specification) and GGCMs
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920  Note: See note of Figure H19.
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922 Figure H22. Changes in irrigation water withdrawals for wheat from 2000s to 2090s estimated by the statistical emulators
923 (S1fpintsoil specification) and GGCMs

Q
o
w
U]
w -
4
o
>
Q.
o
-
E
%
o
3
%
=y
Q.
T
o .
-
<
3
4
[
o .
924
% Change
925 4100 50 -26 -10 5 +5 +10 +26 +50 +100>
926
927  Note: See note of Figure H19.
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