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Abstract 11 

This study provides statistical emulators of global by gridded crop models included in the Inter-Sectoral 12 

Impact Model Intercomparison Project Fast Track project to estimate irrigated crop yields and associated 13 

irrigation water withdrawals simulated at the grid cell level. An ensemble of crop model simulations is used 14 

to build a panel of monthly summer weather variables and corresponding annual yields and irrigation water 15 

withdrawals from five gridded crop models. This dataset is then used to estimate crop-specific response 16 

functions for each crop model. The average normalized root mean square errors for the response functions 17 

range from 3% to 6% for irrigated yields and 2% to 8% for irrigated water withdrawal. Further in- and out-18 

of-sample validation exercises confirm that the statistical emulators are able to replicate the crop models’ 19 

spatial patterns of irrigated crop yields and irrigation water withdrawals reasonably well, both in levels and 20 

in terms of changes overtime, although accuracy varies by model and by region. The emulators estimated 21 

in this study therefore provides a reliable and computationally efficient alternative to global gridded crop 22 

yield models. 23 
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 34 

1. Introduction 35 

The impact of climate change on crops can be assessed using process-based crop models (Boote et al. 2013; 36 

Deryng et al. 2014; Parry et al. 1999; Rosenzweig and Parry 1994a, 1994b; White et al. 2011), statistical 37 

models (Auffhammer and Schlenker 2014; Blanc and Strobl 2013; Haim, Shechter, and Berliner 2007; 38 

Hsiang 2016; Lobell and Field 2007; Schlenker and Roberts 2009) or a combination of both  (i.e. a process 39 

model with parameters statistically estimated using historical observations) (Roberts et al. 2017). These 40 

models can then be included in Integrated assessment models (IAMs) to represent the agricultural sector by 41 

considering socio-economic and natural response mechanisms. Calvin and Fisher-Vanden (2017) find that 42 

combining statistical or process-based models within IAMs helps predict climate change impacts on crop 43 

yields more accurately than on their own. Alternatively, the implementation of statistical emulators—44 

statistical models trained on the outputs of a process-based model to capture the response functions from 45 

complex, computationally demanding and sometimes proprietary process-based crop models—in IAMs can 46 

help account for feedback loops from the agricultural sector (Ruane et al. 2017) and can help account for 47 

modeling uncertainty (Monier et al. 2018). 48 

http://globalchange.mit.edu/sponsors/all
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Statistical emulators have been used by Holzkämper, Calanca, and Fuhrer (2012) and Lobell and Burke 49 

(2010) to assess the capacity of statistical models to predict out-of-sample crop yields. Other studies have 50 

used emulated response functions to compare statistical and process based models for ‘diagnostic purposes’ 51 

(Lobell and Asseng 2017; Schauberger et al. 2017; Moore, Baldos, and Hertel 2017). Crop yield emulators 52 

have also been developed to provide climate change impact assessment tools. Oyebamiji et al. (2015) 53 

provides crop yield emulators at the global level for five different crops but only considers one process-54 

based crop model. Blanc and Sultan (2015) consider only maize but for five climate models. The scope of 55 

these emulators was expanded to three other crops (Blanc, 2017) and to both climate and crop models 56 

(Ostberg et al., 2018). While Oyebamiji et al. (2015) and Ostberg et al. (2018) estimate emulators for 57 

irrigated crop yields, they don’t consider water requirements for irrigation. However, as water availability 58 

may pose serious constraints to irrigation (Blanc et al. 2017; Elliott et al. 2014), water necessary to irrigate 59 

those crop is a concern when estimating climate change impact on agriculture. This study proposes to fill 60 

this gap by developing statistical emulators of global gridded crop models for irrigated crops yields as well 61 

as the associated irrigation water withdrawals. 62 

Building on Blanc and Sultan (2015) and Blanc (2017), the statistical emulators developed in this study are 63 

estimated based upon an ensemble of global gridded crop models (GGCM) simulations from the Inter-64 

Sectoral Impact Model Intercomparison Project (ISI-MIP) Fast Track experiment (Rosenzweig et al. 2013; 65 

Warszawski et al. 2014). This project was designed to compare GGCMs simulations, all driven by the same 66 

bias-corrected climate change projections obtained from the Coupled Model Intercomparison Project, phase 67 

5 (CMIP5) simulations ensemble (Hempel et al. 2013; Taylor, Stouffer, and Meehl 2012). In this study, the 68 

statistical emulators focus on irrigated crops and are estimated for maize, rice, soybean and wheat and five 69 

different GGCMs to provide an accessible tool for assessing the impact of climate change on irrigated crop 70 

yields and irrigation water withdrawals, while accounting for crop modeling uncertainty. In combination 71 

with the statistical emulators of rainfed crop yields developed in Blanc (2017), these emulators enhance 72 
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integrated assessment modeling by facilitating the estimation of the impact of climate change on, separately, 73 

rainfed and irrigated crops. 74 

The remainder of this paper presents the data and methods used to statistically estimate the emulators in 75 

Section 2 and the results are presented and discussed in Section 3. Validation of the emulators, both in- and 76 

out-of-sample are presented in Section 4. Section 5 concludes. 77 

2. Material and methods 78 

2.1. Data 79 

In this analysis, data are sourced from the ISI-MIP Fast Track experiment, an inter-model comparison 80 

exercise where different GGCMs were used to simulate annual crop yields and irrigation water withdrawals 81 

under the same set of weather and CO2 concentration inputs taken from the CMIP5 climate simulations.1 82 

Using these data, a panel dataset of GGCM outputs and atmospheric conditions is constructed for the period 83 

1975-2099.  84 

 Weather and CO2 85 

Weather data at a 0.5×0.5-degree resolution (about 50km2) used as input into each GGCM are obtained 86 

from the CMIP5 climate data simulations. A subset of climate simulations is selected to be representative 87 

of the broadest plausible range of future climate change. Three General Circulation Models (GCMs), 88 

HadGEM2-ES, NorESM1-M, and GFDL-ESM2M, are selected to be representative of respectively, high, 89 

medium and low levels of global warming (Warszawski et al. 2014). Daily bias-corrected weather data 90 

generated by these GCMs are provided for the ‘historical’ period of 1975 to 2005 and the ‘future’ period 91 

of 2006 to 2099. For the ‘future’ period, only one greenhouse gas Representative Concentration Pathway 92 

is considered, RCP 8.5, which is consistent with the highest level of global warming amongst the different 93 

RCPs.  94 

                                                      
1 The data are available for download at https://www.pik-potsdam.de/research/climate-impacts-and-

vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/data-archive/fast-track-data-archive  

https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/data-archive/fast-track-data-archive
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/data-archive/fast-track-data-archive
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Based on the daily precipitation, and daily minimum (Tmin) and maximum (Tmax) temperatures, monthly 95 

averages of precipitation (Pr) and mean temperature (Tmean = (Tmin + Tmax)/2) are calculated for each 96 

summer month. For ease of reference, weather variables for each summer month are denoted by numbers 97 

suffixes so that _1, _2, and _3 refer to, respectively, June, July and August in the Northern Hemisphere and 98 

December, January and February in the Southern Hemisphere. For each climate scenario considered, the 99 

corresponding CO2 concentrations data are extracted from Riahi, Grübler, and Nakicenovic (2007).2  100 

 Irrigated crop yields 101 

Simulated annual irrigated crop yields (YIR) in metric tons per hectare (t/ha) at a 0.5×0.5-degree resolution 102 

are obtained from the ISI-MIP Fast Track experiment for five GGCMs: (1) the Geographic Information 103 

System (GIS)-based Environmental Policy Integrated Climate (GEPIC) model (Liu et al. 2007; Williams 104 

and Singh 1995); (2) the Lund Potsdam-Jena managed Land (LPJmL) dynamic global vegetation and water 105 

balance model (Bondeau et al. 2007; Waha et al. 2012); (3) the Lund-Potsdam-Jena General Ecosystem 106 

Simulator (LPJ-GUESS) with managed land model (Bondeau et al. 2007; Linzdeskog et al. 2013; Smith, 107 

Prentice, and Sykes 2001); (4) the parallel Decision Support System for Agro-technology Transfer 108 

(pDSSAT) model (Elliott et al. 2013; Jones et al. 2003); and (5) the Predicting Ecosystem Goods And 109 

Services Using Scenarios (PEGASUS) model (Deryng et al. 2011). Although these GGCMs differ in their 110 

representation of crop phenology, leaf area development, root expansion, nutrient assimilation, and yield 111 

formation, they all account for the effect of water, heat stress and CO2 fertilization, and assume no 112 

technological change.3 However, the LPJ-GUESS model simulates potential yields (yield not limited by 113 

nutrient or management constraints) whereas the other crop models simulate actual yields. Other differences 114 

and GGCM-specific periodic patterns of yield projections are discussed in Blanc and Sultan (2015). 115 

                                                      
2 The data are available at http://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=welcome. 
3 See Rosenzweig et al. (2014) for more details regarding each model’s processes. Caveats are discussed at 

https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-

mip/data-archive/fast-track-data-archive/data-caveats. 

http://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=welcome
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/data-archive/fast-track-data-archive/data-caveats
https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/data-archive/fast-track-data-archive/data-caveats
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 Irrigation water withdrawals 116 

Associated with irrigated crop yields projections, GGCMs report irrigation water demand, or potential 117 

irrigation water withdrawal (PIRRWW), in mm per year at a 0.5×0.5-degree resolution. As the crop models 118 

make different assumptions about the efficiency of irrigation, the reported PIRRWW is harmonized across 119 

all models to obtain estimates of water directly available to the crop assuming no losses during conveyance 120 

and application. To impose this harmonization assumption, PIRRWW data provided by pDSSAT are 121 

multiplied by 0.75 for maize, soy and wheat, and PIRRWW data provided by LPJmL are multiplied by grid 122 

specific project efficiencies applicable to all crops. 4 All other models assume an irrigation use efficiency 123 

of 100%. 124 

 Soil orders 125 

To account for soil conditions, soil orders are extracted from the FAO-UNESCO (2005) Soil Map of the 126 

World at the 0.5×0.5-degree resolution. It uses the USDA soil taxonomy (Soil Survey Staff 1999)5 127 

classifying soils on the basis of physical and chemical properties observed in situ (e.g. soil horizons, 128 

structure, texture, color) and inferred from environmental conditions (e.g., soil temperature and moisture 129 

regimes). Soils are grouped into 12 main soil orders (Gelisols, Histosols, Spodosols, Andisols, Oxisols, 130 

Vertisols, Aridisols, Ultisols, Mollisols, ,Inceptisols, and Entisols) as described in Blanc (2017). 131 

 Summary statistics 132 

Globally, the sample for each crop-GGCM combination is composed of, on average, 15 million records 133 

covering about 44,000 grid cells (see Table 1).6 Simulations from the PEGASUS and pDSSAT models for 134 

rice and pDSSAT model for soybean are not available. For wheat, simulations by the pDSSAT model are 135 

only available for the HadGEM2 GCM. 136 

                                                      
4 The spatial file containing project efficiencies is available for download at 

https://www.isimip.org/documents/213/irrigation_project_efficiencies.nc. 
5 Soil order data are available for download at 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013  
6 In the final sample, grid cells for which there are less than 10 output records after data cleaning are omitted. 

https://www.isimip.org/documents/213/irrigation_project_efficiencies.nc
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013
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Table 1. GGCMs summary information 137 

Crop Model Records Grid Cells 

Maize 

GEPIC  16,176,798   44,902  

LPJ-GUESS  15,958,849   43,824  

LPJmL  16,696,167   45,597  

PEGASUS   11,427,653   43,301  

pDSSAT  13,221,217   42,877  

Rice 

GEPIC  16,277,183   45,312  

LPJ-GUESS  15,252,499   43,789  

LPJmL  16,721,941   45,236  

Soybean 

GEPIC  16,197,571   45,211  

LPJ-GUESS  15,538,632   43,422  

LPJmL  16,650,813   45,558  

PEGASUS   8,314,743   39,642  

Wheat 

GEPIC  16,468,355   45,326  

LPJ-GUESS  14,960,416   41,820  

LPJmL  16,859,028   45,724  

PEGASUS   11,839,747   43,387  

pDSSAT  13,484,362   43,073  

 138 

Summary statistics for irrigated crop yields and irrigation demand are detailed by GGCM and GCM in 139 

Table A1 in Appendix A. The global average of irrigated crop yields differs amongst crops with yields 140 

ranging from 1.8t/Ha for soybean to 3.5t/ha for maize. Across GGCMs, the largest variation is observed 141 

for wheat, which ranges from 1.73t/ha for the PEGASUS model to 4.4t/ha for the LPJ-GUESS model. 142 

Regarding irrigation, soybean requires the least water on average (92.5mm/year) and rice the most 143 

(114mm/year). Across GCMs, average irrigation water withdrawals are the largest under the NorESM1_M 144 

scenario and the lowest under the GFDL_ESM2M scenario. Irrigation requirements vary greatly across 145 

models, with the PEGASUS model simulating average irrigation water withdrawals below 40mm/year for 146 

all crops, whereas estimates for all other GGCMs (except GEPIC for soybean and LPJ-GUESS for rice) 147 

exceed 100mm/year.148 

149 
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Atmospheric CO2 concentrations, which are the same for all GCM-GGCM combinations, range from 331 150 

to 927 parts per million (ppm) between 1975 and the end of the century. Summary statistics of Tmean and 151 

Pr, and CO2 averaged over all GGCMs are presented in Table 2. On average, temperatures are the highest 152 

in the second month of summer and precipitation is the lowest in the first month of summer. Across GCMs, 153 

temperatures are the greatest under the HadGEM2-ES model and the lowest under the GFDL-ESM2M 154 

GCM, but no clear pattern of precipitation emerges amongst GCMs. Weather summary statistics at the soil- 155 

order level indicate that mid-summer temperatures range between 18˚C in the Spodosols regions (acidic 156 

soils developing under coniferous vegetation) to 30˚C in the Vertisols regions (clay-rich soils in climates 157 

with distinct dry seasons). Precipitation ranges from less than 1mm/day in the Aridisols regions (prone to 158 

salinization and typical to arid regions) to more than 7mm/day in the Oxisols regions (mineral soils found 159 

in tropical and subtropical latitudes). More details regarding the weather variables statistics are available in 160 

Blanc (2017). 161 

 162 
Table 2. Mean values of summer temperature and precipitation by GCM at the global level 163 

Variable Unit GFDL_ESM2M HadGEM2_ES NorESM1_M 

Tmean_1 ˚C 21.4 22.8 22.0 

Tmean_2 ˚C 23.1 24.5 23.9 

Tmean_3 ˚C 22.4 23.8 22.9 

Pr_1 mm/day 3.2 3.0 3.0 

Pr_2 mm/day 3.5 3.5 3.5 

Pr_3 mm/day 3.5 3.5 3.5 

Note: suffixes _1, _2, _3 denote, respectively, June, July and August in the Northern Hemisphere and December 164 
January and February in the Southern Hemisphere.  165 

 166 

2.2. Methods 167 

The methodology extends the work of Blanc and Sultan (2015) and Blanc (2017). In these studies, rainfed 168 

yields (YRF) are estimated for each crop, GGCM and soil type using a parsimonious specification that only 169 

includes average summer precipitation and temperature weather variables, CO2 concentrations, and 170 

interactions among these variables. For irrigated crops, the five GGCMs considered in this study assume 171 
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that irrigation is applied to compensate for the lack of precipitation. Therefore, the preferred specification 172 

assumes that precipitation has no impact on crop growth, and yields for each crop and model are specified 173 

as a function of temperature and CO2, and corresponding interaction terms:  174 

𝑌𝐼𝑅𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦 = 𝛼 + ∑ 𝜃𝑖𝑇𝑚𝑒𝑎𝑛𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦
3
𝑖=1 + 𝜗𝐶𝑂2𝑔𝑐𝑚,𝑦 +175 

∑ 𝛾𝑖𝑇𝑚𝑒𝑎𝑛_𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦 ∗ 𝐶𝑂2𝑔𝑐𝑚,𝑦
3
𝑖=1 + 𝛿𝑙𝑎𝑡,𝑙𝑜𝑛 + 𝜌𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦    (1) 176 

where for each year, y, YIR corresponds to irrigated crop yields simulated by process-based crop models 177 

for each grid cell (defined by its longitude, lon, and latitude, lat) under each climate model, gcm; Pr and 178 

Tmean variables correspond to mean precipitation and temperature variables for each summer month i. CO2 179 

is the annual midyear CO2 concentration level in the atmosphere; δ is a grid cell fixed effect; and ρ an error 180 

term. Following Blanc and Sultan (2015), adjustments to the specification are made to account for soil 181 

fertility erosion and CO2 concentration for the pDSSAT and GEPIC models respectively. 182 

Associated with each crop yield, GGCMS also provide annual irrigation water requirements (PIRRWW). 183 

Consistent with the methodology used to estimate crop yields, water demand for irrigation for each crop 184 

and GGCM is estimated as a function of monthly temperature and precipitation and CO2 concentrations: 185 

𝑃𝐼𝑅𝑅𝑊𝑊𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦 = 𝛼 + ∑ 𝛽𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦
3
𝑖=1 + ∑ 𝜃𝑖𝑇𝑚𝑒𝑎𝑛𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

3
𝑖=1 +186 

𝜗𝐶𝑂2𝑔𝑐𝑚,𝑦 + ∑ 𝛾𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦
∗ 𝑇𝑚𝑒𝑎𝑛𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

3
𝑖=1 + ∑ 𝛾𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

∗3
𝑖=1187 

𝐶𝑂2𝑔𝑐𝑚,𝑦 + ∑ 𝛾𝑖𝑇𝑚𝑒𝑎𝑛_𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦 ∗ 𝐶𝑂2𝑔𝑐𝑚,𝑦
3
𝑖=1 + 𝛿𝑙𝑎𝑡,𝑙𝑜𝑛 + 𝜌𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦   (2) 188 

Following Blanc (2017), a fractional polynomial specification is preferred to model non-linearities as it 189 

relaxes the symmetry constraint imposed by quadratic terms but allows non-parametric flexibility from 190 

multinomial transformations. Additionally, the response functions are estimated separately for each soil 191 

order7 as the effect of weather on crops differs across soil types. This specification is labeled S1fpintsoil. 192 

                                                      
7 In this analysis, response functions for the Gelisols soil order are not estimated, as this soil order represents soils 

permanently frozen. 
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To consider the effect of alternative specifications on the emulators’ performance, additional specifications 193 

are considered and comparisons of goodness of fit measures are provided in Appendix A.  194 

3. Results 195 

Based on the methodology presented Section 2, multiple specifications are estimated for both irrigated 196 

yields and irrigation demand. Results for irrigated crop yields and irrigation water requirements are 197 

presented in Section 3.1 and 3.2 respectively. The power terms used for the fractional polynomial 198 

specifications are reported in Appendix B and the regression results are presented in Appendix C. The 199 

corresponding estimated values for δ (the grid cell fixed effect) are provided in Appendix D. 200 

3.1. Regression results for irrigated yields 201 

For each crop and GGCM, the S1fpintsoil regression results show that summer temperatures have a 202 

significant impact on irrigated yields from all GGCMs and crops. Figure 1 provides an illustration of the 203 

average effect of temperature during the second month of summer for each soil sample, while holding 204 

covariates at their mean values. The figure shows that fractional polynomial transformation captures the 205 

non-linear effect of mid-summer temperature on irrigated crop yields, with in some cases, a negative 206 

skewness of the curve representative of a sharp decrease in yields associated with high temperature. Similar 207 

to the results in (Blanc 2017a), the average effect of temperature on crop yields differs depending on the 208 

soil order sample considered. As for rainfed yields, the yield response to temperature are generally high in 209 

fertile Andisols and Mollisols. Additionally, the temperature effect is also very large in Aridisols 210 

subsamples for irrigated crops, which are not water-limited. The confidence intervals are relatively small, 211 

except in a few cases (e.g. Tmean_2 of maize with LPJmL in the Aridisols subsample) for which the 212 

emulator are likely to be less accurate. 213 
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Figure 1. Effect of Tmean_2 on YIR by crop and GGCM for the S1fpintsoil specification 214 

 215 
Note: covariates are held at their mean values. The response functions represent the fit across the soil type for which 216 
it was estimated. 217 
 218 

3.2. Regression results for irrigation water withdrawal 219 

As for irrigated crop yields, the regression results for the S1fpintsoil specification indicate that summer 220 

weather have a significant impact on irrigation water withdrawals from all GGCMs and crops. Illustrations 221 

of the average effect of temperature and precipitation during the second month of summer while holding 222 

covariates at their mean values detailed for each soil sample are provided in Figure 2 and Figure 3. The 223 

figures indicate that the average effect of weather on irrigation water withdrawals varies by soil type. For 224 

instance, the effect of mid-summer temperature on irrigation water withdrawals presented in Figure 2 is the 225 

largest in Aridisols regions, which are characteristic of arid regions. In most cases, temperature increases 226 

(with other co-variates held at their mean value) entail an increase in irrigation water withdrawals, which 227 

is consistent with an increase in evaporation associated with higher temperatures.  228 
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Figure 2. Effect of Tmean_2 on PIRRWW by crop and GGCM for the S1fpintsoil specification 229 

 230 
Note: covariates are held at their mean values. 231 

 232 

Figure 3 indicates that in most cases, at low level of precipitation, an increase in rainfall is associated with 233 

a sharp decline in irrigation water withdrawals, especially in Vertisols subsamples. Alternatively, the effect 234 

of precipitation is almost flat for samples such as Aridisols. For most soil regions, however, the effect levels 235 

off and is almost null in most cases when precipitation rates exceed 2mm/day. The shape of the response 236 

functions is mostly similar across GGCMs for a given crop, although the level of irrigation withdrawal 237 

differs greatly. 238 
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Figure 3. Effect of Pr_2 on PIRWW by crop and GGCM for the S1fpintsoil specification 239 

 240 
Note: covariates are held at their mean values. Graphs truncated for Pr_2>2mm. 241 

 242 

4. Validation  243 

To evaluate the accuracy of the statistical models at reproducing irrigated crop yields and associated 244 

irrigation water withdrawals simulated by GGCMs, the emulators’ within- and out-of-sample projections 245 

are compared with those from GCCMs. Both validation exercises are lead using the preferred specification, 246 

S1fpintsoil.  247 

4.1. In-sample validation  248 

  Irrigated crop yields 249 

The within-sample validation exercise is performed on the full sample of irrigated yields estimates for each 250 

crop, grid cell, year, and climate model. Considering a simple deviance measure, the normalized root mean 251 
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square error (NRMSE), is calculated by dividing the RMSE by the difference between maximum and 252 

minimum yields within each soil sample. Global NRMSE weighted-average values8 for each, crop and 253 

model for YIR are presented in Figure 4. The graphs indicate that the average error between predicted and 254 

‘actual’ irrigated yields range from around 4% to 6% for maize and rice yields, 3% to 6% for soybean yields 255 

and 2% to 5% of wheat yields. Across GGCMs, the graph shows that lowest NRMSE are found for the 256 

LPJml and LPJ-GUESS models, while GEPIC has the highest NRMSEs for all crops except maize. NRMSE 257 

values for YIR compared to YRF indicate that irrigated rice, soybean and wheat yields are generally slightly 258 

harder to emulate than their rainfed counterparts. 259 

Figure 4. Goodness of fit of the yield statistical emulators by crop and independent variable (S1fpintsoil specification) 260 

261 
Note: NRMSE values for YRF are source from Blanc (2017). 262 

 263 

                                                      
8 Global NRMSE averages are weighted by soil sub-sample size. 
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To evaluate the emulators’ prediction accuracy overtime, time series of average irrigated crop yields from 264 

GGCMs and statistical emulators are presented in Figure 5. The left-hand graphs present annual irrigated 265 

yields for each crop averaged over the three climate models and all grid cells for the whole globe. Similar 266 

global averages but weighted by crop-specific irrigated harvested area (sourced from the MIRCA2000 267 

dataset; Portmann, Siebert, and Döll 2010) are presented in the right-hand graphs. The light colored lines 268 

represent the GGCMs’ projections and the dark colored lines characterize simulations from the emulator 269 

(using the S1fpintsoil specification). The graphs show that, while global average yields projections driven 270 

by the same climate data differ between GGCMs, predictions from the statistical emulators follow, on 271 

average, the same trend as projections from GGCMs, although inter-annual variability is captured with less 272 

accuracy. Similar observations apply when considering yields weighted by irrigated areas, except for 273 

irrigated yields for maize simulated with the pDSSAT model, rice with the LPJ-GUESS model, and soybean 274 

with the PEGASUS model, where greater inter-annual bias between the emulators and the GGCMs are 275 

observed at the beginning and at the end of the sample.  276 

 277 
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Figure 5. Average irrigated crop yields from GGCMs and statistical emulators (S1fpintsoil specification) 278 
 Global average Global average weighted by irrigated area  
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Note: Shaded areas represents the ‘historical’ period. 279 

 280 
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To assess the degree of spatial agreement between the emulator and the GGCMs, maps presenting climate 281 

change impact projections estimated by those models over the 2090s period are provided for each crop at 282 

the global level in Appendix G. The maps show that the emulators reproduce the spatial patterns of irrigated 283 

crop yields with reasonable accuracy and that the largest differences between model and emulator outputs 284 

are largely observed in regions where yields are low. However, as reported in Table 3, wheat yields tend to 285 

be overestimated by the emulators for all models, especially LPJ-GUESS, while maize yields errors are 286 

more balanced across models.  287 

Table 3. Percentage of global grid cells for which the emulator overestimates YIR and PIRRWW averaged over 2090–2099 288 
compared to the GGCMs 289 

Crop Model YIR PIRRWW 

Maize 

GEPIC 44% 45% 

LPJ-GUESS 50% 60% 

LPJmL 51% 40% 

PEGASUS 48%  42% 

pDSSAT 51% 50% 

Rice 

GEPIC 51% 45% 

LPJ-GUESS 48% 65% 

LPJmL 56% 45% 

Soybean 

GEPIC 48% 47% 

LPJ-GUESS 46% 66% 

LPJmL 53% 47% 

PEGASUS 61% 56% 

Wheat 

GEPIC 63% 53% 

LPJ-GUESS 79% 65% 

LPJmL 66% 50% 

PEGASUS 56% 50% 

pDSSAT 63% 54% 

 290 

To assess the accuracy of the emulators over important areas, similar maps are reproduced focusing on the 291 

main growing regions for each crops. Figure 6 to Figure 9 present results for the ‘easiest’ and ‘hardest’ 292 

models to emulate, based on NRMSE values for each region, for each crop. Yield projections from both the 293 

GGCMs and the emulators averaged over the period 2090-2099 are presented, as well as the simple 294 

difference between the two. In addition, to assess the magnitude of emulator prediction errors relative to 295 
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spread of estimates by different GGCMs, these figures include maps of the error compared to the ‘ensemble 296 

spread’.9 Figure 6 show that the pDDSAT emulator tends to overestimate maize yields over the central part 297 

of the Corn Belt in the US. The bottom map shows that this overestimation is mostly located in an area 298 

where the error is larger than the ensemble spread is small (represented in purple). By contrast, the emulator 299 

for the easiest to emulate model in this region for maize, LPJ-GUESS, underestimate irrigated yields and 300 

the errors are consistently lower than the ensemble spread.  301 

                                                      
9 The ensemble spread is calculated as the standard deviation of YIR across GGCMs over the period 2090–2099. See 

Appendices H and G for maps of the ensemble error over each producing region and at the global level. 
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Figure 6. Irrigated maize yields averaged over 2090–2099 for the LPJ-GUESS and pDSSAT models and S1fpintsoil 302 
specification over US cornbelt 303 

 304 

For rice, the emulator for the hardest to emulate model, LPJ-GUESS, overestimates irrigated yields in the 305 

north of the South East Asia region, but this area is characterized by a relatively large ensemble spread, and 306 

therefore the error introduced by the emulator is smaller than differences in predictions across models. For 307 

the GEPIC model, similar conclusions can be drawn, albeit with smaller errors relative to the level of yields 308 

projected by the GGCMs. 309 
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Figure 7. Irrigated rice yields averaged over 2090–2099 for the GEPIC and LPJ-GUESS and models and S1fpintsoil 310 
specification over South East Asia 311 

  312 

Soybean yields emulated for the GEPIC model are overestimated in the western part of this region, which 313 

is characterized by low yields and large ensemble spreads. Alternatively, emulated yields for the LPJmL 314 

model are underestimated in this same region, albeit to a relatively smaller degree. Reassuringly, the errors 315 

are smaller than the ensemble spread for both models in most grid cells.  316 

 317 
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Figure 8. Irrigated soybean yields averaged over 2090–2099 for the LPJmL and GEPIC models and S1fpintsoil 318 
specification over Brazil 319 

 320 

For wheat, the emulator for both LPJmL and PEGASUS models, on average, overestimate yields in France 321 

where productivity is relatively high and ensemble spreads are relatively low. However, the errors are 322 

relatively smaller for the LPJmL model. 323 
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Figure 9. Irrigated wheat yields averaged over 2090–2099 for the LPJmL and PEGASUS models and S1fpintsoil 324 
specification over Europe 325 

326 

Similar spatial assessment maps considering the change in irrigated crop yields from 2000s to 2090s are 327 

provided in Appendix G. Overall, the maps show that GGCMs project increases in irrigated crop yields 328 

poleward for most crops by the end of the century. For other regions, the effects depend on the crop and 329 

model considered. However, the maps show that, overall, the emulators reproduce reasonably well the 330 

spatial patterns of climate change impacts on irrigated crop yields simulated by the GGCMs. 331 
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  Irrigation water withdrawals 332 

The same within-sample validation exercise as for irrigated crop yields is performed on irrigation water 333 

withdrawal estimates for each crop, grid cell, year, and climate model. The NRMSE values for PIRRWW 334 

presented in Figure 4 indicate that errors for wheat with GEPIC reach almost 8% whiles with pDSSAT they 335 

are closer to 2%. NRMSE values for PIRRWW are in most cases slightly higher than those for irrigated 336 

yields, and indicate that this process is harder to emulate. 337 

Time series of irrigation water withdrawals averaged at the global level and weighted by crop-specific 338 

irrigated harvested area are reported in Figure 10. The graphs show that projections from the emulator (in 339 

dark colors) follow the same trend as projections from GGCMs (in light colors). As for irrigated crop yields, 340 

inter-annual variability is emulated with less precision than the long-run trend. However, divergences are 341 

only observed for rice simulated by the LPJ-GUESS model when considering average irrigation water 342 

withdrawals weighted by irrigated areas. 343 
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Figure 10. Average irrigation water withdrawals from GGCMs and statistical emulators (S1fpintsoil specification) 344 
 Global average Global average weighted by irrigated area  
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Note: Shaded areas represents the ‘historical’ period. 345 
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To assess the spatial agreement in irrigation water withdrawals estimated by the GGCMs and the statistical 346 

emulators for each crop, maps presenting climate change impact projections over the 2090s period are 347 

presented in Appendix H for the globe at the grid cell level. These maps show that the emulators are able 348 

to reproduce the spatial patterns of irrigation demand over the globe, which differ greatly across models. 349 

Table 3 show that the emulators for the LPJ-GUESS model, on average, overestimates irrigation 350 

requirements for all crops.  351 

Maps representing major production regions for each crop are presented in Figure 11 for each of the hardest 352 

and easiest models to emulate GGCMs, again defined using NRMSE values. The emulator for the LPJmL 353 

model underestimates requirements in most regions, but the largest of those errors occur in regions with 354 

relatively low water requirements. Reassuringly, the errors are generally lower than the ensemble spread, 355 

indicating that the emulator’s performance does not exceed the uncertainty across models. For the 356 

PEGASUS model, the emulator overestimates irrigation requirements in the western part of the cornbelt 357 

where the level is high, but the errors are lower than the ensemble spread in all grid cells in the region. 358 
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Figure 11. Irrigation water withdrawals for maize averaged over 2090–2099 for the LPJmL and PEGASUS models and 359 
S1fpintsoil specification over the US cornbelt 360 

 361 

 362 

For rice, the emulator for the hardest to emulate model, LPJ-GUESS, overestimates requirements over India 363 

on average, but the ratio of error over the ensemble spread is low in all grid cells. Similar conclusions can 364 

be drawn for the emulator for the GEPIC model, although there is more agreement among models in this 365 

region (i.e., lower ensemble spreads). 366 
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Figure 12. Irrigation water withdrawals for wheat averaged over 2090–2099 for the GEPIC and LPJ-GUESS models and 367 
S1fpintsoil specification over South East Asia 368 

 369 

For Soybean in Brazil, emulators for both the GEPIC and LPJmL models underestimates irrigation 370 

requirements in the north east where irrigation requirements are high. However, for this region, the emulator 371 

prediction errors are low relative to the ensemble spreads for both models.  372 
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Figure 13. Irrigation water withdrawals for soybean averaged over 2090–2099 for the GEPIC and LPJ-GUESS models 373 
and S1fpintsoil specification over Brazil 374 

 375 

In Europe, the emulator for the PEGASUS model overestimates wheat irrigation requirements in most grid 376 

cells in this region. Over the northern part of France and Germany, errors are larger than the ensemble 377 

spread. For the LPJ-GUESS model, the emulator underestimates irrigation water withdrawals over France 378 

and northern Spain, but the prediction errors are smaller than the ensemble spread. For both models, 379 

predictions from the emulators are reasonably accurate in areas where little irrigation is required. 380 
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Figure 14. Irrigation water withdrawals for wheat averaged over 2090–2099 for the LPJ-GUESS and PEGASUS models 381 
and S1fpintsoil specification over Europe 382 

 383 

Maps representing spatial agreement in terms of changes from 2000s to 2090s for major production regions 384 

are presented in Appendix H. The maps show that large decreases in irrigation demand are expected by 385 

most GGCMs. Estimated changes from the 2000s to the 2090sare reproduced reasonably well by most 386 

emulators. 387 

4.2. Out-of-sample validation 388 

The out-of-sample validation exercise consists of comparing predictions from emulators that are re-389 

estimated using (sub-) sample that excludes weather variables from one climate model, to outputs from 390 

GGCMs under the excluded climate model sub-sample. This exercise is performed for both irrigated yields 391 

and irrigation water withdrawal. 392 
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  Irrigated crop yields 393 

For irrigated crop yields, the NRMSE statistics calculated for each sub-sample are reported in Table 4 and 394 

compared to the NRMSEs from the full sample estimation presented in Section 3. Unsurprisingly, the 395 

prediction errors from the out-of-sample exercise are larger than those from the in-sample estimations. The 396 

differences between the NRMSEs averaged over all leave-one-out samples and the in-sample NRMSEs are 397 

however relatively small, with differences ranging between 0.002 and 0.009. The errors are generally the 398 

smallest for the estimates with the NorESM1-M climate model excluded from the estimation sample. 399 

Table 4. NRMSE statistics for the leave-one-GCM-out validation (S1fpintsoil specification) compared to the full sample 400 

Crop Model 
Climate model predictions excluded from the sub-sample 

Overall 
Full 

sample GFDL-ESM2M HadGEM2-ES NorESM1-M 

Maize 

GEPIC 0.051 0.057 0.048 0.052 0.045 

LPJ-GUESS 0.049 0.045 0.042 0.045 0.037 

LPJmL 0.045 0.040 0.040 0.042 0.035 

pDSSAT 0.076 0.071 0.074 0.074 0.065 

PEGASUS 0.057 0.061 0.055 0.058 0.056 

Rice 

GEPIC 0.065 0.068 0.059 0.064 0.056 

LPJ-GUESS 0.044 0.038 0.038 0.040 0.033 

LPJmL 0.043 0.042 0.037 0.041 0.037 

Soybean 

GEPIC 0.066 0.066 0.054 0.062 0.054 

LPJ-GUESS 0.049 0.046 0.041 0.045 0.037 

LPJmL 0.035 0.034 0.031 0.033 0.030 

PEGASUS 0.048 0.052 0.043 0.048 0.042 

Wheat 

GEPIC 0.054 0.057 0.052 0.055 0.049 

LPJ-GUESS 0.039 0.037 0.036 0.038 0.029 

LPJmL 0.033 0.032 0.029 0.032 0.026 

pDSSAT 0.643 0.669 0.570 0.627 0.572 

PEGASUS 0.033 0.037 0.031 0.034 0.030 

 401 

Time series of irrigated crops yields weighted by irrigated area harvested for each crop, GGCM and leave-402 

one-GCM-out combination are presented in Figure 15. The graphs show that, as for the in-sample 403 

validation, the emulators are able to reproduce the out-of-sample trend in crop yields of most GGCMs. 404 

However, in some cases, the emulator and GGCM outputs differ depending on the climate sample excluded. 405 

For instance, for maize yields with the GEPIC model, the graphs indicate that, in the case where data from 406 

the HadGEM2-ES model is excluded from the training dataset, the emulated irrigated maize crop yields are 407 
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overestimated while they are underestimated in the case where the NorESM1-M model is excluded. In such 408 

cases, the use of the largest sample of plausible climate change is essential to estimate the response 409 

functions. 410 

 411 

Figure 15. Average irrigated crop yield projections from GGCMs and statistical models (S1fpintsoil specification) 412 
weighted by irrigated area harvested in the leave-one-GCM-out validation exercise  413 
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  Irrigation water withdrawals 415 

As for irrigated crop yields, the NRMSE statistics calculated for irrigation water withdrawal for each 416 

excluded sample (see Table 5) show that the prediction errors from the out-of-sample exercise are slightly 417 

larger than those from the in-sample estimations. As for irrigated yields, the errors are generally the smallest 418 

under the excluded NorESM1-M climate model. 419 
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Table 5. NRMSE statistics for the leave-one-GCM-out validation (S1fpintsoil specification) compared to the full sample 420 

Crop Model 

Climate model predictions excluded from the sub-sample 

Overall 
Full 

sample 
GFDL 

-ESM2M 
HadGEM2-ES NorESM1-M 

Maize 

GEPIC 0.070 0.081 0.078 0.076 0.061 

LPJ-GUESS 0.059 0.058 0.052 0.056 0.048 

LPJmL 0.049 0.045 0.042 0.045 0.039 

pDSSAT 0.084 0.074 0.074 0.077 0.067 

PEGASUS 0.044 0.047 0.040 0.044 0.040 

Rice 

GEPIC 0.061 0.071 0.063 0.065 0.054 

LPJ-GUESS 0.048 0.049 0.043 0.047 0.038 

LPJmL 0.054 0.048 0.045 0.049 0.041 

Soybean 

GEPIC 0.068 0.075 0.068 0.070 0.060 

LPJ-GUESS 0.055 0.061 0.051 0.056 0.045 

LPJmL 0.055 0.049 0.048 0.051 0.043 

PEGASUS 0.056 0.057 0.049 0.054 0.049 

Wheat 

GEPIC 0.096 0.103 0.094 0.098 0.078 

LPJ-GUESS 0.060 0.059 0.052 0.057 0.048 

LPJmL 0.053 0.053 0.050 0.052 0.042 

pDSSAT 0.055 0.045 0.050 0.050 0.030 

PEGASUS 0.043 0.043 0.036 0.041 0.035 

 421 

Time series of average irrigation water withdrawals weighted by irrigated area harvested are presented in 422 

Figure 16 for each crop, GGCM and leave-one-GCM-out combination. The graphs show that out-of-sample 423 

irrigation water withdrawals are generally overestimated by the emulators in cases where projections from 424 

GGCMs are the smallest and underestimated where projections are the largest.  425 
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Figure 16. Average irrigation water withdrawal projections from GGCMs and statistical models (S1fpintsoil 426 
specification) weighted by irrigated area harvested in the leave-one-GCM-out validation exercise  427 
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 428 

5. Conclusion 429 

Based on the methodology developed in Blanc and Sultan (2015) and Blanc (2017), this analysis develops 430 

statistical emulators of global gridded crop models for irrigated crops yields and associated water 431 

withdrawals. The emulators for maize, rice, soybean and wheat are estimated using data from an ensemble 432 

of simulations from five GGCMs as part of the ISI-MIP Fast Track intercomparison exercise. Crop-specific 433 

response functions for each GGCM are estimated at the grid-cell level for both irrigated crop yields and 434 

irrigation water withdrawals. 435 

To evaluate the statistical emulators’ ability to reproduce irrigated crop yields and associated irrigation 436 

water withdrawals estimated by crop models, both in-and out-of-sample validation exercises are conducted. 437 
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These exercises show that, in most cases, outputs from the statistical emulators follow the same trend as 438 

projections from GGCMs. Inter-annual yield variability is captured with less accuracy but spatial analyses 439 

reveal that, overall, the emulators tend to capture the spatial patterns of climate change impacts on irrigated 440 

crop yields and irrigation water withdrawals reasonably accurately. Similar spatial agreements are observed 441 

when considering the changes in outputs between the beginning and end of the 21st century, despite some 442 

disagreements regarding the strength of the impacts in different regions depending on the GGCM 443 

considered. When using the emulators for regional assessments of climate change impacts, caution should 444 

therefore be exercised when selecting an ensemble of emulators that best capture the impact projected by 445 

the underlying GGCMs. 446 

Out-of-sample validation exercises also show a general agreement between the estimates from the 447 

emulators and the GGCMs. However, as expected, prediction accuracy is lowered when excluding output 448 

responses to weather variables outside the range of values found in the estimation sample. Estimating the 449 

statistical emulator using the largest sample available, which is designed to encompass the largest range of 450 

plausible changes in climate over the century, is essential. 451 

The statistical emulators estimated in this study offer an accessible and reliable tool to estimate climate 452 

change impacts on irrigated crop yields and associated irrigation water withdrawals under alternative 453 

plausible user-defined scenarios. However, as previously noted in Blanc (2017), the emulator is better suited 454 

to assess long-term climate change impacts rather than inter-annual yield and irrigation withdrawal 455 

variations. It is also important to note that, as no GGCMS is considered more accurate than another at 456 

projecting future crop yields, predictions from multiple models should be considered. In this regard, the 457 

emulators developed in this study provide a computationally efficient way to consider modeling uncertainty 458 

in climate change impact assessments for several crops.  459 

The emulators estimated in this study are easily applicable using user-defined scenarios using the variable 460 

transformation and regression coefficients provided in Appendices B, C and D. For the emulators for rainfed 461 
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crop yields developed by Blanc (2017), a tool was developed in Blanc (2017b) to increase the accessibility 462 

of the emulators.. Employing the tool, users could access estimated changes in rainfed crop yields at the 463 

grid-cell level by entering user-defined climate variables in an easy-to-use interface. A similar tool will be 464 

developed for the irrigated crop yield and irrigation water withdrawal emulators developed this study.  465 
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 MATERIAL AND METHODS 618 

 619 

Table A1. Modeling group information 620 

Model Institution Modelers’ names 

GEPIC EAWAG (Switzerland) Christian Folberth 

LPJ-GUESS 
Institutionen för naturgeografi och ekosystemvetenskap 

(INES), Lunds Universitet (Sweden) 
Thomas Pugh, Stephan Olin 

LPJmL PIK (Germany) Christoph Muller 

PEGASUS Tyndall Centre, University of East Anglia (UK) Delphine Deryng 

pDSSAT University of Chicago (USA) Joshua Elliott 

 621 

Figure A1. Global soil regions based on the FAO-UNESCO Soil Map of the World using the USDA soil taxonomy 622 

 623 
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Table A1. Summary statistics by GGCM and GCM 624 

Crop GGCM 

Irrigated crop yields (t/Ha), YIR  Irrigation water withdrawals (mm), PIRRWW 

GFDL_ESM2M HadGEM2_ES NorESM1_M  GFDL_ESM2M HadGEM2_ES NorESM1_M 

Mean Min Max Mean Min Max Mean Min Max  Mean Min Max Mean Min Max Mean Min Max 

Maize 

GEPIC 3.22 0.00 14.74 3.07 0.00 13.01 3.27 0.00 13.24  106.38 0.00 1068.00 109.37 0.00 935.10 90.65 0.00 914.30 

LPJ-GUESS 3.71 0.00 15.27 3.95 0.00 12.30 3.91 0.00 12.91  129.90 0.00 762.05 136.42 0.00 766.58 125.11 0.00 752.18 

LPJmL 3.17 0.00 26.81 3.38 0.00 30.40 3.30 0.00 26.66  156.16 0.00 1114.07 152.64 0.00 1119.02 150.24 0.00 1125.14 

PEGASUS 3.00 0.00 35.00 3.24 0.00 35.00 3.29 0.00 34.99  26.31 0.00 800.67 29.53 0.00 829.34 23.07 0.00 792.11 

pDSSAT 3.81 0.00 24.09 4.39 0.00 24.10 4.17 0.00 24.11  138.51 0.00 1000.50 150.69 0.00 1018.50 125.62 0.00 1055.25 

Rice 

GEPIC 2.74 0.00 13.25 2.60 0.00 12.06 2.81 0.00 12.16  143.09 0.00 1734.60 144.94 0.00 1630.20 122.79 0.00 1582.60 

LPJ-GUESS 2.13 0.00 20.69 2.19 0.00 22.84 2.29 0.00 20.83  85.43 0.00 1129.64 85.64 0.00 1059.34 81.13 0.00 1046.81 

LPJmL 2.63 0.00 23.08 2.68 0.00 23.36 2.69 0.00 23.74  150.54 0.00 962.42 149.43 0.00 993.82 145.71 0.00 970.27 

Soybean 

 

GEPIC 1.38 0.00 5.89 1.33 0.00 6.06 1.41 0.00 6.30  84.63 0.00 996.90 83.99 0.00 889.00 71.35 0.00 910.40 

LPJ-GUESS 1.75 0.00 12.14 1.82 0.00 11.66 1.89 0.00 12.25  121.51 0.00 968.59 126.60 0.00 1335.53 119.44 0.00 1306.70 

LPJmL 1.99 0.00 19.47 2.06 0.00 19.66 2.08 0.00 20.73  112.38 0.00 779.93 111.59 0.00 763.87 108.79 0.00 786.50 

PEGASUS 1.98 0.00 22.21 2.17 0.00 23.74 2.21 0.00 22.52  39.40 0.00 713.44 44.12 0.00 801.95 35.06 0.00 707.18 

Wheat 

 

GEPIC 2.18 0.00 10.06 2.18 0.00 9.60 2.24 0.00 9.73  117.64 0.00 721.80 107.13 0.00 639.50 103.61 0.00 612.10 

LPJ-GUESS 4.36 0.00 24.12 4.35 0.00 22.69 4.53 0.00 22.28  155.47 0.00 1059.80 159.79 0.00 1048.93 151.65 0.00 1052.28 

LPJmL 2.47 0.00 16.63 2.39 0.00 16.14 2.48 0.00 15.15  105.25 0.00 1047.35 99.09 0.00 979.18 103.79 0.00 951.06 

PEGASUS 1.72 0.00 34.76 1.67 0.00 34.79 1.80 0.00 34.98  20.87 0.00 712.25 23.93 0.00 722.45 18.89 0.00 718.73 

pDSSAT 3.01 0.00 32.72 3.09 0.00 34.83 3.13 0.00 34.54  138.40 0.00 2693.25 149.91 0.00 2797.50 141.12 0.00 2823.00 

 625 

 626 

 627 

  628 
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Alternative specifications 629 

For irrigated crops, the five GGCMs considered in this study assume that irrigation is applied to compensate 630 

for the lack of precipitation. More specifically, for the GEPIC model, “full irrigation was set as a complete 631 

elimination of water stress of crops” (Rosenzweig et al. 2014). In the four other models, however, irrigation 632 

is triggered when soil moisture is insufficient. More specifically, For the LPJ-GUESS and LPJmL models, 633 

“additional water is provided as soon as the water content of the upper soil layer is insufficient” (Bondeau 634 

et al. 2007). The PEGASUS model ensures “that soil is sufficiently moist to avoid water stress in irrigated 635 

land” (Deryng et al. 2011). The pDSSAT model, “Determines daily irrigation, based on read-in values or 636 

automatic applications based on soil water depletion” (Jones et al. 2003). For these models, water stress 637 

may not necessarily be completely eliminated by full irrigation (Rosenzweig et al. 2014). 638 

To assess the effect of precipitation that may not have been completely eliminated by irrigation, a second 639 

specification (S2fpintsoil) including precipitation is specified as: 640 

𝑌𝐼𝑅𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦 = 𝛼 + ∑ 𝛽𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦
3
𝑖=1 + ∑ 𝜃𝑖𝑇𝑚𝑒𝑎𝑛𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

3
𝑖=1 + 𝜗𝐶𝑂2𝑔𝑐𝑚,𝑦 +641 

∑ 𝛾𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦
∗ 𝑇𝑚𝑒𝑎𝑛𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

3
𝑖=1 + ∑ 𝜀𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

∗ 𝐶𝑂2𝑔𝑐𝑚,𝑦
3
𝑖=1 +642 

∑ 𝜅𝑖𝑇𝑚𝑒𝑎𝑛_𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦 ∗ 𝐶𝑂2𝑔𝑐𝑚,𝑦
3
𝑖=1 + 𝛿𝑙𝑎𝑡,𝑙𝑜𝑛 + 𝜌𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦    (3) 643 

For annual irrigation water requirements (PIRRWW), a second specification (S2fpintsoil) considers 644 

evapotranspiration (ETo) instead of temperature to account for the effect of summer weather on irrigation 645 

requirements: 646 

𝑃𝐼𝑅𝑅𝑊𝑊𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦 = 𝛼 + ∑ 𝛽𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦
3
𝑖=1 + ∑ 𝜃𝑖𝐸𝑇𝑜𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

3
𝑖=1 + 𝜗𝐶𝑂2𝑔𝑐𝑚,𝑦 +647 

∑ 𝛾𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦
∗ 𝐸𝑇𝑜𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

3
𝑖=1 + ∑ 𝛾𝑖𝑃𝑟𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦

∗ 𝐶𝑂2𝑔𝑐𝑚,𝑦
3
𝑖=1 +648 

∑ 𝛾𝑖𝑇𝑚𝑒𝑎𝑛_𝑖𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦 ∗ 𝐶𝑂2𝑔𝑐𝑚,𝑦
3
𝑖=1 + 𝛿𝑙𝑎𝑡,𝑙𝑜𝑛 + 𝜌𝑙𝑎𝑡,𝑙𝑜𝑛,𝑔𝑐𝑚,𝑦    (5) 649 

The specifications used to estimate YIR and PIRRWW are summarized in Table A2.  650 
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Table A2. Specification description 651 

Dependent variable Specification Variables and non-linear transformations 

YIR 
S1fpintsoil Tmean_p1, Tmean_p2, CO2_p1, CO2_p2 

S2fpintsoil Pr_p1, Pr_p2, Tmean_p1, Tmean_p2, CO2_p1, CO2_p2 

PIRRWW 
S1fpintsoil Pr, Tmean_p1, Tmean_p2, CO2_p1, CO2_p2 

S2fpintsoil Pr, ETo _p1, ETo _p2, CO2_p1, CO2_p2 

Note: the suffixes _p1 and _p2 denote the fractional polynomial power terms; All specifications include interaction 652 
terms between Tmean, Pr and CO2 and are estimated at the soil order level. 653 

 654 

For each crop and GGCM, regressions for irrigated yields are estimated for each specification S1 and S2 655 

considering the fractional polynomial transformations at the soil order subsample level (S1fpintsoil and 656 

S2fpintsoil). As presented in Figure A2, the normalized root mean square error (NRMSE), which is 657 

calculated by dividing the RMSE by the difference between maximum and minimum yields, indicates that 658 

only slightly lower NRMSEs are found for the S2 specification compared to S1 across most crops and 659 

GGCMs. To favor simplicity, the most parsimonious S1 specification assuming that irrigation eliminates 660 

water stress (i.e. excluding the effect of precipitation) is thereafter preferred. 661 

Figure A2. Goodness of fit of the irrigated yield statistical emulators by crop and GGCM (S1fpintsoil and S2fpintsoil 662 
specifications) 663 

 664 
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As for crop yields, regressions for irrigation water withdrawal are estimated for each crop and GGCM at 665 

the soil order subsample level considering both specifications S1 and S2 with fractional polynomial 666 

transformations (S1fpintsoil and S2fpintsoil). The NRMSE presented in Figure A3, shows that across all 667 

crops and models, the NRMSE for the S1 specification is found to be slightly lower or equal to the S2 668 

specification. The S1 specification is thereafter preferred. 669 

 670 

Figure A3. Goodness of fit of the irrigation water withdrawal statistical emulators by crop and GGCM (S1fpintsoil and 671 
S2fpintsoil specifications) 672 

 673 

 674 

 675 



46 

 

 FRACTIONAL POLYNOMIAL TRANSFORMATION 676 

See Excel file Appendix_B_Variable_transformations.xslx attached composed of the following table:  677 

Table B1. Variable formulas for fractional polynomial transformation used in specification S1fpintsoil for YIR 678 

Table B2. Variable formulas for fractional polynomial transformation used in specification S1fpintsoil for PIRWW 679 

 680 
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 REGRESSION RESULTS FOR YIR (S1FPINTSOIL SPECIFICATION) 681 

See Excel file Appendix_C_regression_results_YIR.xls attached composed of the following tables: 682 

Table C1. Regression results for maize YIR at the soil order level (specification S1fpintsoil) 683 

Table C2. Regression results for rice YIR at the soil order level (specification S1fpintsoil) 684 

Table C3. Regression results for soybean YIR at the soil order level (specification S1fpintsoil) 685 

Table C4. Regression results for wheat YIR at the soil order level (specification S1fpintsoil) 686 
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 REGRESSION RESULTS FOR PIRRWW (S1FPINTSOIL SPECIFICATION) 687 

See Excel file Appendix_D_regression_results_PIRRWW.xls attached composed of the following tables: 688 

Table D1. Regression results for maize PIRRWW at the soil order level (specification S1fpintsoil) 689 

Table D2. Regression results for rice PIRRWW at the soil order level (specification S1fpintsoil) 690 

Table D3. Regression results for soybean PIRRWW at the soil order level (specification S1fpintsoil) 691 

Table D4. Regression results for wheat PIRRWW at the soil order level (specification S1fpintsoil) 692 

 693 
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 FIXED EFFECTS (Δ) FOR YIR (S1FPINTSOIL SPECIFICATION)  694 

See Excel file Appendix_E_Grid_cells_FE_yir.xls attached composed of the following tables: 695 

Table E1. Grid cell fixed effect (δ) by GGCM for maize 696 

Table E2. Grid cell fixed effect (δ) by GGCM for rice 697 

Table E3. Grid cell fixed effect (δ) by GGCM for soybean 698 

Table E4. Grid cell fixed effect (δ) by GGCM for wheat 699 
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 FIXED EFFECTS (Δ) FOR PIRRWW (S1FPINTSOIL SPECIFICATION)  700 

See Excel file Appendix_F_Grid_cells_FE_pirrww.xls attached composed of the following tables: 701 

Table F1. Grid cell fixed effect (δ) by GGCM for maize 702 

Table F2. Grid cell fixed effect (δ) by GGCM for rice 703 

Table F3. Grid cell fixed effect (δ) by GGCM for soybean 704 

Table F4. Grid cell fixed effect (δ) by GGCM for wheat 705 

 706 
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 IN-SAMPLE VALIDATION FOR YIR (S1FPINTSOIL SPECIFICATION) 707 

Figure G1. Irrigated maize yields averaged over 2090–2099 for the GEPIC model and S1fpintsoil specification 708 

 709 

 710 
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Figure G2. Irrigated maize yields averaged over 2090–2099 for the LPJ-GUESS model and S1fpintsoil specification 711 

 712 

 713 
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Figure G3. Irrigated maize yields averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification 714 

 715 
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Figure G4. Irrigated maize yields averaged over 2090–2099 for the pDSSAT model and S1fpintsoil specification 716 

 717 

 718 

 719 

 720 

 721 

 722 
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Figure G5. Irrigated maize yields averaged over 2090–2099 for the PEGASUS model and S1fpintsoil specification 723 

 724 

 725 

 726 

 727 

 728 

 729 
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Figure G6. Irrigated rice yields averaged over 2090–2099 for the GEPIC model and S1fpintsoil specification 730 

 731 

 732 

 733 

 734 

 735 

 736 
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Figure G7. Irrigated rice yields averaged over 2090–2099 for the LPJ-GUESS model and S1fpintsoil specification 737 

 738 

 739 

 740 

 741 

 742 

 743 
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Figure G8. Irrigated rice yields averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification 744 

 745 

 746 
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 747 

Figure G9. Irrigated soybean yields averaged over 2090–2099 for the GEPIC model and S1fpintsoil specification 748 

 749 

 750 

 751 

 752 

 753 
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Figure G10. Irrigated soybean yields averaged over 2090–2099 for the LPJ-GUESS model and S1fpintsoil specification  754 

 755 

  756 
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Figure G11. Irrigated soybean yields averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification  757 

 758 

 759 

 760 

 761 

 762 

 763 
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 764 

Figure G12. Irrigated soybean yields averaged over 2090–2099 for the PEGASUS model and S1fpintsoil specification  765 

 766 

 767 
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Figure G13. Irrigated wheat yields averaged over 2090–2099 for the GEPIC model and S1fpintsoil specification 768 

 769 
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Figure G14. Irrigated wheat yields averaged over 2090–2099 for the LPJ-GUESS model and S1fpintsoil specification770 

 771 
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Figure G15. Irrigated wheat yields averaged over 2090–2099 for the LPJmL model and S1fpintsoil specification 772 

 773 
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Figure G16. Irrigated wheat yields averaged over 2090–2099 for the pDSSAT model and S1fpintsoil specification 774 

 775 
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Figure G17. Irrigated wheat yields averaged over 2090–2099 for the PEGASUS model and S1fpintsoil specification776 

  777 
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Figure G18. Irrigated crop yields ensemble error averaged over 2090–2099 across GGCMs for the major growing regions778 

 779 
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Figure G18. Irrigated crop yields ensemble error averaged over 2090–2099 across GGCMs at the global level780 

 781 

 782 
 783 

  784 
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Figure G19. Changes in irrigated maize yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil 785 
specification) and GGCMs786 

                 787 

                    788 
Notes: Grid cells where yields projections from crop models are on average less than 1t/ha over the whole study period 789 
are masked in white. Grid cells for which the sign of the impact projected with the emulator is contrary to the sign of 790 
the impact projected by the GGCM are masked in black. 791 

 792 



71 

 

Figure G20. Changes in irrigated rice yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil 793 
specification) and GGCMs 794 

 795 

 796 

 797 

 798 
Note: See note of Figure G19. 799 

 800 

 801 
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Figure G21. Changes in irrigated soybean yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil 802 
specification) and GGCMs 803 

 804 

 805 
 806 

Note: See note of Figure G19. 807 
 808 
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Figure G22. Changes in irrigated wheat yields from 2000s to 2090s estimated by the statistical emulators (S1fpintsoil 809 
specification) and GGCMs 810 

 811 

 812 
 813 

Note: See note of Figure G19. 814 
 815 
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 IN-SAMPLE VALIDATION FOR PIRRWW (S1FPINTSOIL SPECIFICATION) 816 

 817 

Figure H1. Irrigation water withdrawal for maize averaged over 2090–2099 for the GEPIC model and S1fpintsoil 818 
specification 819 

 820 
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 821 

 822 

Figure H2. Irrigation water withdrawal for maize averaged over 2090–2099 for the LPJ-GUESS model and S1fpintsoil 823 
specification  824 

 825 
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Figure H3. Irrigation water withdrawal for maize averaged over 2090–2099 for the LPJmL model and S1fpintsoil 827 
specification  828 
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Figure H4. Irrigation water withdrawal for maize averaged over 2090–2099 for the pDSSAT model and S1fpintsoil 831 
specification  832 
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Figure H5. Irrigation water withdrawal for maize averaged over 2090–2099 for the PEGASUS model and S1fpintsoil 835 
specification  836 
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Figure H6. Irrigation water withdrawal for rice averaged over 2090–2099 for the GEPIC model and S1fpintsoil 838 
specification 839 
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Figure H7. Irrigation water withdrawal for rice averaged over 2090–2099 for the LPJ-GUESS model and S1fpintsoil 842 
specification 843 
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Figure H8. Irrigation water withdrawal for rice averaged over 2090–2099 for the LPJmL model and S1fpintsoil 847 
specification 848 
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Figure H9. Irrigation water withdrawal for soybean averaged over 2090–2099 for the GEPIC model and S1fpintsoil 851 
specification 852 
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Figure H10. Irrigation water withdrawal for soybean averaged over 2090–2099 for the LPJ-GUESS model and S1fpintsoil 856 
specification 857 
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Figure H11. Irrigation water withdrawal for soybean averaged over 2090–2099 for the LPJmL model and S1fpintsoil 861 
specification 862 
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Figure H12. Irrigation water withdrawal for soybean averaged over 2090–2099 for the PEGASUS model and S1fpintsoil 866 
specification 867 
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Figure H13. Irrigation water withdrawal for wheat averaged over 2090–2099 for the GEPIC model and S1fpintsoil 870 
specification 871 
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Figure H14. Irrigation water withdrawal for wheat averaged over 2090–2099 for the LPJ-GUESS model and S1fpintsoil 874 
specification 875 
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Figure H14. Irrigation water withdrawal for wheat averaged over 2090–2099 for the LPJmL model and S1fpintsoil 878 
specification 879 
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Figure H15. Irrigation water withdrawal for wheat averaged over 2090–2099 for the pDSSAT model and S1fpintsoil 882 
specification  883 
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Figure H16. Irrigation water withdrawal for wheat averaged over 2090–2099 for the PEGASUS model and S1fpintsoil 885 
specification 886 

 887 

 888 

 889 

 890 

 891 



91 

 

Figure H17. Irrigation water withdrawal ensemble error by crop averaged over 2090–2099 for each major growing region  892 
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Figure H18. Irrigation water withdrawal ensemble error by crop averaged over 2090–2099 at the global level 895 

 896 



93 

 

Figure H19. Changes in irrigation water withdrawals for maize from 2000s to 2090s estimated by the statistical emulators 897 
(S1fpintsoil specification) and GGCMs898 
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Notes: Grid cells where yields projections from crop models are on average less than 1t/ha over the whole study period 902 
are masked in white. Grid cells for which the sign of the impact projected with the emulator is contrary to the sign of 903 
the impact projected by the GGCM are masked in black. 904 

 905 



94 

 

Figure H20. Changes in irrigation water withdrawals for rice from 2000s to 2090s estimated by the statistical emulators 906 
(S1fpintsoil specification) and GGCMs 907 

908 
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Note: See note of Figure H19. 913 
 914 



95 

 

Figure H21. Changes in irrigation water withdrawals for soybean from 2000s to 2090s estimated by the statistical 915 
emulators (S1fpintsoil specification) and GGCMs916 
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Note: See note of Figure H19. 920 
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Figure H22. Changes in irrigation water withdrawals for wheat from 2000s to 2090s estimated by the statistical emulators 922 
(S1fpintsoil specification) and GGCMs923 
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Note: See note of Figure H19. 927 
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