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Abstract

This paper explores the interplay between the biophysical and economic geographies of climate
change impacts on agriculture. It does so by bridging the extensive literature on climate impacts
on yields and physical productivity in global crop production, with the literature on the economic
geography of climate change impacts. Unlike previous work in this area, instead of using a specific
crop model or set of models, we instead employ a statistical meta-analysis which encompasses all
studies available to the IPCC-ARS5 report. This comprehensive approach to the assessment of the
biophysical impacts of climate change has the added advantage of permitting us to isolate specific
elements of the biophysical geography of climate impacts, such as the role of initial temperature,
and differential patterns of warming across the globe. We combine these climate impact estimates
with the GTAP model of global trade in order to estimate the national welfare changes which are
decomposed into three components: the direct (biophysical impact) contribution to welfare, the
terms of trade effect, and the allocative efficiency effect. We find that the terms of trade interact
in a significant way with the biophysical geography of climate impacts. Specifically, when we
remove the biophysical geography, the terms of trade impacts are greatly diminished. And when
we allow the biophysical impacts to vary across the empirically-estimated uncertainty range, taken
from the meta-analysis, we find that the welfare consequences are highly asymmetric, with much
larger losses at the low end of the yield distribution than gains at the high end. Furthermore, by
drawing on the estimated statistical distribution of trade elasticities, we are also able to explore the
interplay between economic and biophysical uncertainties. Here, we find that regional welfare is
most sensitive to extremely adverse yield outcomes in the presence of uncertainty in trade
elasticities.



1. Motivation and Literature Review

There is now a large literature documenting the effects of climate change on crop
productivity. Scientific approaches to estimating the response of crops to changes in temperature,
rainfall, and CO. concentration range from process-based crop models that simulate the biophysical
processes occurring in plants, to reduced-form empirical approaches, to agronomic in-field or
greenhouse experiments, but give quantitatively and qualitatively similar estimates of the effect of
climate change (Liu et al., 2016; Lobell & Asseng, 2017; Zhao et al., 2017). While historically a
large fraction of studies examined the impacts on a particular crop in a single area, recent efforts
have attempted to consistently estimate impacts to multiple crops around the globe (Lobell,
Schlenker, & Costa-Roberts, 2011; Moore, Baldos, Hertel, & Diaz, 2017; Rosenzweig et al., 2014).
These studies tend to show a consistent picture of the ‘biophysical’ geography of climate impacts on
agricultural productivity. For example, the effects are worse for cold-adapted wheat relative to heat-
tolerant rice and effects are worse in hotter areas than cooler ones (Porter et al., 2014). The
Agricultural Modeling and Intercomparison Project (AgMIP) has organized this community and
they have made considerable progress over the past decade in characterizing the uncertainty
associated with the biophysical impacts of climate change.
Although the yield impacts of climate change have been well-studied, the implications of these
impacts for economic outcomes such as welfare, production, consumption, international trade,
prices and welfare has received less attention, despite the fact that these outcomes are of more direct
interest for both adaptation and mitigation policies. (See Reilly and Hohmann (1994) and
Rosenzweig and Parry (1994) for some notable exceptions.) Examining only the effects of local
productivity changes could be extremely misleading since climate change is expected to have global

impacts and since many agricultural products are heavily traded internationally. Recently an



increasing number of papers have used the biophysical yield results described above as an input to
general- or partial-equilibrium models in order to model the economic consequences of productivity
shocks. Nelson and Shively (2014) provide an overview of a special issue of the journal
Agricultural Economics in which ten global economic models (loosely termed the AgMIP economic
modeling group) are linked to the AgMIP archives of biophysical impacts in order to draw out the
implications for the future agricultural economy of climate change in the context of five different
‘Shared Socioeconomic Pathways’. These models include both partial and general equilibrium
approaches, and the focus is on comparing model results for regional and global prices, production,
consumption and land use change. Relatively little attention is devoted to trade — indeed the models
in this group have very different treatments of international trade — nor do they explore the potential
role for trade to facilitate adaptation to climate change.

In a subsequent paper, also drawing on the AgMIP archive of biophysical climate impacts on
crop yields, Baldos and Hertel (2015) focus explicitly on the role of trade in mitigating the impacts
of climate change on undernutrition. Their partial equilibrium model predicts a dramatic increase in
undernutrition in South Asia under a worst-case climate impacts scenario from the AgMIP archives,
but they also find that fully integrating global crop commodity markets could cut this increase in
half, by giving consumers in the hardest hit regions better access to world markets. However, these
authors do not explore the geography of trade — indeed, in the case of fully integrated markets, they
apply the law of one price which effectively eliminates this geography.

A somewhat separate strand of literature has used simpler, empirically-estimated trade
models that emphasize the importance of geography in determining trade costs and therefore the
welfare-gains from trade. The most notable paper in this tradition is that of Costinot, Donaldson and
Smith (2016). Those authors emphasize the importance of the spatial dispersion of yield changes or,
in the vocabulary of the present paper, the biophysical geography of climate impacts on agriculture.
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Costinot, Donaldson and Smith (2016) note that this opens possibilities for additional gains from
trade by which “a country may stop producing a crop whose yields have fallen and import it in
exchange for another crop whose yields have remained constant at home.” Their paper focuses on
climate-induced changes in comparative advantage, both within and across countries. The most
salient finding from their paper is that the domestic adjustments in production location are more
important than international trade in mitigating potential losses from climate change.

A significant limitation of Costinot, Donaldson and Smith (2016) is their reliance on a single
model, the FAO GAEZ model, to elicit yield impacts of climate change across the world. The
GAEZ model reports potential yields (i.e. yields without any nutrient or moisture constraints), rather
than actual yields (Rosenzweig et al. 2014). For this reason it is difficult to validate model output
(since potential yields are not observed) and also is likely to result in biased estimates of the
productivity impacts of climate change because of the interaction between nutrient and moisture
availability and the effect of CO- fertilization, precipitation change, and temperature change.

Our paper seeks to begin the process of bridging these different literatures, focusing
specifically on the interplay between the biophysical and economic geographies of climate impacts
on agriculture, international trade and economic welfare. In doing so we seek to combine some of
the strongest elements of both literatures: productivity shocks are based on a meta-analysis of the
current yield impacts literature that was used to support findings in the recent IPCC assessment
report (IPCC, 2014), combined with an empirically-based trade model with clear welfare-theoretic
foundations which allows us to decompose the welfare consequences of climate change on
agriculture into constituent drivers.

As noted by Costinot, Donaldson and Smith (2016), if all crops, in all regions, were affected
in the same way by global warming, this would be a relatively simple problem — and there would be
a very limited role for international trade in adapting to climate impacts. Indeed, from a welfare-
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theoretic point of view, a “first cut’ estimate of the (e.g.) welfare loss from lower yields would be
based on the valuation of lost output at market prices. To this, we would need to factor in the impact
of changing prices on regional welfare. Here, one would simply need to know if a given region was
a net seller or net buyer of crops in order to deduce whether a given region would gain or lose from
the terms of trade effects of climate change. However, the world is not that simple. Climate impacts
on crops vary, for example, due to differences in the pattern of global warming across the world, as
well as differences in initial temperatures. The impacts of elevated temperatures and higher CO2
concentrations vary by crop, and crop composition varies widely across the globe. It is for these
reasons that the inter-regional incidence of climate change becomes an interesting problem, worthy
of deeper investigation.

Our first task in this paper will be to understand the biophysical geography of climate-
induced agricultural impacts. We will do so using a newly available meta-analysis of more than
1,000 climate impact estimates submitted as part of the IPCC AR5 review process (Moore, Baldos,
& Hertel, 2017; F. C. Moore et al., 2017). With this meta-function in hand, we can isolate the
impact of different drivers of differences in the biophysical geography of impacts. We start by
examining the full climate impacts, then decompose the contributions of: (a) differences in
temperature increases across the globe (pattern scaling), (b) differences in initial temperature (warm
vs. cold regions), and (c) differences in crop composition. This contributes to an improved
understanding of the biophysical geography of climate impacts — a necessary precursor to analyzing
the economic geography of the interregional incidence.

In order to assess the inter-regional incidence of climate change, we need to introduce a
global economic model. Here, we adopt a quantitative, global general equilibrium approach to this
problem in order to ensure complete measurement of the welfare effects. Even though agriculture

comprises a relatively small share of industrial economies, it remains a critical source of



employment in the world’s poorest economies — many of which are also highly vulnerable to
climate change. Furthermore, agriculture is closely linked to the rest of the economy -- backwards
through input markets and forwards through food processing. When combined, these sectors
represent a significant share of GDP many countries. In addition, the terms of trade effects from
global climate change impacts on these widely traded commodities are ultimately spread across all
merchandise goods and services in the process of achieving balance of payments equilibrium.
Therefore, a general equilibrium approach is appropriate.

In order to avoid the ‘black-box’ critique often leveled at applied general equilibrium
models, we systematically decompose the sources of all regional welfare changes. There are three
components of welfare change in our model: the direct productivity effect (essentially just the local
productivity change multiplied by crop value), the terms-of-trade effect, and the allocative
efficiency effect (caused by interactions with existing market distortions). While the efficiency
effect is found to be relatively modest in most regions, the terms-of-trade (ToT) effect can be quite
important. In a number of cases the ToT effect reverses the sign of the welfare change from the
productivity effect. In other words, a number of regions experience, for instance,yield losses but
welfare gains because the increasing value of exports more than compensates for the productivity
losses. This prompts us to delve more deeply into the terms of trade impacts from climate change
and their interplay with the underlying biophysical geography of climate impacts.

A natural way to explore the interplay between the biophysical and economic geographies of
climate change is to gradually introduce sources of biophysical variation and, at each stage, re-
evaluate the terms of trade effects. Our meta-analysis permits this decomposition, and reveals
biophysical heterogeneity reinforces the importance of economic geography, with the size of the
terms of trade effects growing as we introduce varying climate impacts based on crop composition,

initial temperature and pattern-scaling of temperature changes due to global warming.



Of course, the importance of ToT effects depends on the magnitude of relative price
changes, which, in turn, depend on the productivity shocks. If the effect of climate change is
primarily to redistribute production around the globe rather than to increase or decrease aggregate
production, then ToT effects will be smaller. This interplay takes us into the realm of uncertainties
associated with both the biophysical impacts of climate change and the economic responses to these
shocks, as well as their interactions. In order to understand the role of these uncertainties, we return
to the underlying statistical models used to estimate the climate impacts as well as the
responsiveness of international trade flows and extract confidence intervals for the underlying
economic parameters. This provides the foundation for an experimental design aimed at
understanding these interactions.

2. Theory

Since our focus in this paper is on regional welfare changes, we begin with the analytical
expression (1) for the change in welfare (measured as Equivalent Variation or EV) due to climate
change shocks to agricultural productivity, &, , which represent the % change in Hicks-neutral
productivity of sector i of region s. (See Huff and Hertel (2001) for a complete derivation of this
expression.) It is quite intuitive that, if farmers plant the same crop using the same mix of inputs at

mid-century, but harvest 10% less output, then the direct economic loss is simply equal to 10% of

the value of output (PO,,QO, ). This is summed across all sectors in region s to obtain the direct
welfare effect of climate change. (Note, however, that we will only be perturbing &, for a subset of

sectors in the analysis below.)
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The next two terms in this welfare decomposition capture how these perturbations, when
implemented globally, interact with existing policy distortions, thereby accounting for changes in
allocative efficiency due to the climate shocks.! Consider what happens when the production of a
staple commodity i in region s is disproportionately adversely affected by climate change.
Assuming consumers seek to maintain consumption of this staple good, the country will need to
import more of the product. If production of this staple commodity has been protected by domestic

agricultural policies, then there is likely to be a tariff on its importation ( z,,,, >0), as well as a
subsidy on its production (z;, > 0). Ceteris paribus, importing more of this staple commaodity (
dQMS,,. > 0) and producing less of it (dQO,, <0) will improve allocative efficiency and thereby

raise regional welfare, as they access more of the product from lower cost suppliers overseas. Of
course, the opposite outcome is also possible — and indeed quite likely -- since wealthier countries in
the Northern latitudes tend to protect agriculture as well as potentially standing to benefit from
higher temperatures in the wake of longer growing seasons for their crops.

The final two terms in equation (1) refer to the terms of trade (ToT) effects for region s, due

to the climate change shocks. The ToT effects sum to zero globally and so are pure transfers at that

1 In equation (1) we show only tariffs and output subsidies, which are the predominant types of distortions in
agricultural markets. However, in the computational general equilibrium model, we must consider all distortions in all
sectors of the economy, so this expression has many additional terms.
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level. This offers an avenue for a region heavily affected by climate change, which is also a major
commaodity exporter, to share the burden of climate change with other regions. If region s’s
production is disproportionately hit by higher temperatures, its export-weighted FOB prices are
likely to rise, relative to her import-weighted CIF prices. In this case, her TOT will improve, while
those of her trading partners (importers) are likely to deteriorate. In summary, each region’s welfare
gains can be decomposed into three components: direct effects of climate change, allocative
efficiency effects and the terms of trade component. This decomposition will prove very useful
when it comes to understanding the interregional incidence of climate change impacts on
agriculture.

At this point, the astute reader will note that expression (1) is only locally valid. In order to
operationalize this decomposition tool in a quantitative general equilibrium model, such as that
discussed below, this welfare decomposition must be numerically integrated, allowing the prices
and quantities to change over the course of the model solution. We use version 8 of the GEMPACK
software suite (Harrison and Pearson, 2002) which is ideally suited to this problem, as it solves the
non-linear CGE model using a linearized version of the behavioral equations, coupled with updating

equations that link the change in imports, dQMS, ., for example, with the levels variables, QMS,

Irs ? Irs !
thereby integrating the terms in this decomposition over large changes in the underlying variables.
Standard extrapolation techniques can be used to obtain arbitrarily accurate solutions this well-

posed non-linear problem (W. J. Harrison & Pearson, 1996).2

2 For purposes of this paper, we require that 95% of the variables and levels variables are accurate to six digits. Another
useful check is to compare EVs computed from equation (7) with that computed directly from the utility function.
These match, to machine accuracy.
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3. Estimating climate impacts on agriculture

In order to operationalize this theory, our first task is to estimate the shocks to agricultural

productivity, by commodity and region: 6, . We do so by drawing on the recent meta-analysis of

Moore et al. (2017a, 2017b). The yield-temperature response functions used in this paper are
derived from a database of studies estimating the climate change impact on yield compiled for the
IPCC 5" Assessment Report (Porter et al., 2014), also described in a meta-analysis by Challinor et
al. (2014). For the four crops addressed here, the database contains 1010 observations (344, 238,
336, and 92, for maize, rice, wheat and soybeans respectively) from 56 different studies published
between 1997 and 2012. The database underlying our yield shock estimates is therefore based on a
comprehensive review of the current agronomic literature that supported conclusions in the food
security chapter of the most recent IPCC report.

We merge this database with information on baseline growing season temperature for each
data-point using planting and harvest dates from Sacks et al. (2010) and gridded monthly
temperatures for 1979-2013 from the Climate Research Unit (CRU, 2016). These were averaged to
the country level using year 2000 crop production weights from Monfreda et al.(2008). This allows

us to estimate the response of all four crops using the following:

AYij = ByjATijy * Crop; + Bo ATy x Cropj + PBsjATijy * Crop; * Ty + BajATij” * Crop;
Tt Bsfi(ACO,; 1) * Cs + Bosfo(ACOy; k) * Co + By AP i + BsATyjy * Adaptjy + BoAdapt;jy +
Eijk 2)

Where AY;j is the change in yield from point-estimate i for crop j in country k (in %).

AT;jx, ACO4;jy and AP; . are the changes in temperature (in degrees C), CO2 concentration (in parts
per million (ppm)) and rainfall (in percent) for point-estimate ijk, T is the baseline growing-season

temperature for crop j in country k, C5 and C, are dummy variables indicating whether the crop is
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C; or Cy, and Adapt; j, is a dummy variable indicating whether the point-estimate includes any on-
farm adaptation. Equation 1 is estimated using an ordinary least squares regression. Uncertainty in
the parameters is estimated through 1500 block bootstraps, with blocks defined at the study level,
allowing for possible correlation between point-estimates from the same study.

Equation (2) allows for a non-linear, crop-specific warming response that is allowed to differ
between hot and cold locations. It includes a diminishing marginal effect of CO: fertilization,

allowed to differ between Cs and C4 crops. (Specifically, the function takes the form f (ACOzl- j) =

ACOzﬁ
ACOzi]'+A

where A is a free parameter set at 100ppm for C5 crops and at 50ppm for C, crops based on
a comparison of the R? across models using multiple possible values.) Finally, it allows the effect of
warming to vary depending on whether the study reports including adaptation, but we find the
adaptation effect to be small.

In addition to Equation (2), our preferred specification, we investigate the effects of several
alternate specifications. Specifically we: 1) investigate whether newer studies (publication date of
2005 or later) give a different temperature response compared to the full sample; 2) investigate the
effect of individual agronomic adaptations, specifically changing cultivar and planting date; and 3)
allow the effect of temperature to differ depending on whether the study was a process-based or
empirical study. These robustness checks are documented in Moore et al. (2017b) and do not
significantly alter the estimated crop response to temperature. We also investigate block
bootstrapping at the model rather than the study level and do not find this substantially increases our
standard errors. The latter will be used to characterize uncertainty in climate impacts.

Using the response function estimated in Equation (2), we predict yield shocks on a global

0.5° grid for 2°C of global average warming. Local temperature change at 2°C warming is

calculated based on the pattern scaling of the CMIP5 multi-model ensemble for RCP8.5 (Taylor,
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Stouffer, & Meehl, 2007). (See appendix Figure Al for a map of these scaling factors.) All yield
shocks in this paper also include the estimated benefits of CO; fertilization and the benefits of on-
farm agronomic adaptations. Figure 1 shows these gridded yield shocks at 2 degrees of warming.
Consistent with the large literature on temperature productivity effects on agriculture, we find
negative impacts over much of the world that are only partially offset by the benefits of CO>
fertilization. There are some positive effects particularly for rice and soybeans at higher latitudes.
Negative impacts are larger in continental interiors (where local warming is larger) and in hot places
(where sensitivity to warming is higher).

For a particular crop, the biophysical pattern of climate change for crop yield at 2°C
warming varies depending on 1) initial growing season temperature and 2) the magnitude of local
warming based on the pattern-scaling between local and global temperature change. In order to
isolate the effect of these drivers of the geographic pattern of yield shocks we first standardize the
temperature shock by replacing the temperature change in each location with the area-weighted
average temperature change for each crop. This removes the pattern-scaling. By deducting the direct
effects of climate change on economic welfare under this restricted scenario, with that obtained
under the unrestricted experiment, we can obtain the direct welfare impacts of pattern-scaling.
Secondly we remove the geographic pattern associated with varying sensitivity to warming by
standardizing initial growing-season temperatures at the area-weighted global average value for
each crop. Deducting the resulting welfare change from the previous (no pattern scaling) welfare,
we obtain the effect of initial temperature on direct welfare impacts. In a final experiment, in
addition to removing pattern scaling and setting initial temperatures equal, we equate individual
crop responses (same coefficients for all crops, j, in equation (2) )in order to remove the final
element of biophysical geography. Deducting welfare by region from the prior result gives us the
impact of crop composition on the direct welfare effects of climate change by country.
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4. The quantitative trade model

One of the most widely used quantitative general equilibrium models is the Global Trade
Analysis Project model ( Hertel, 1997). Use of this model has the advantage that it is open-source, is
used by thousands of individuals around the world, and has been successively refined over the
course of the last two decades.® The version used here assumes perfect competition and constant
returns to scale which are generally deemed to be reasonable assumptions for sector level modeling
of agriculture in the presence of free entry and exit (Diewert, 1981). Products are assumed to be
nationally differentiated, but homogeneous within each country. The product differentiation is by
origin using the method of Armington (1969), which, once again, is generally deemed appropriate
for agricultural products — particularly the field crops which are the focal point of this paper.

The GTAP model runs on any desired aggregation of the GTAP data base, which now in its
9" release (Aguiar, Narayanan, & McDougall, 2016)* and which contains the most comprehensive
set of fully integrated, globally exhaustive, information on agricultural production, consumption,
trade, tariffs and domestic agricultural policies. Version 9.1 of the data base, which is used here,
disaggregates the global economy into 140 regions — of which 120 are individual countries for
which primary data have been assembled, reconciled and integrated into the overall data base. Tariff
data come from the International Trade Centre in Geneva, which is responsible for collecting tariff
data for the United Nations, while the domestic agricultural support measures are obtained from the
OECD and the European Commission (Aguiar et al., 2016). Reconciled bilateral merchandise trade

data come are obtained using the methodology outlined in Gehlhar (1996).

3 Refinements and extensions of the standard model are available here:
(https://www.gtap.agecon.purdue.edu/resources/tech_papers.asp )

4 Documentation and downloads of the data is available here:
(https://www.gtap.agecon.purdue.edu/databases/v9/default.asp ),
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As we will see in the results section, parameterization of the model — particularly the trade
elasticities -- is critical to our results. Here, we draw on the work of Hertel, Hummels, Ivanic and
Keeney (2007) which estimates the equation (3) using 5-digit, SITC customs data compiled by
Hummels (1999, p. 199) for six importers in the Americas and New Zealand giving rise to 187,000
observations on both fob and cif values:

InV;,, =a, +a, +a, + f,, In(L+ freight,, +tariff, )+ g, In Dist, + B, ;Lang , + B, Adj,, + &, 3

Irs Irs

where Virs is bilateral trade for commodity i from r to s, in value terms, a, and a, are vectors of
importer-commodity and exporter-commodity intercepts, freight, . andtariff, are the ad valorem

rates for international shipping/insurance and tariffs of commodity i moving from r to s, Dist
measure distance on that route, similarity of language is denoted Lang, and adjacency of the trading

countries is given by the indicator variable Adj. The parameter of interest in this study is

Byi =1-0;, which is identified from bilateral variation in trade costs. The model is estimated

specifically for use with the GTAP model, so that the OLS estimates of f,; are constrained to be

equal for all 5-digit categories within a given GTAP merchandise sector (of which there are 40).
Estimates for the crops sectors of interest in this study (see Table Al) are all significant at the 95%
confidence level and vary within the crops category from 2.6 for cereal grains not elsewhere
classified (a very heterogeneous grouping) to 10.1 for paddy rice. Importantly for this paper, we
obtain not only a point estimate, but also the standard error associated with each estimate. This will
facilitate our subsequent analysis of the sensitivity of model results to parametric uncertainties.
5. Results

In this section, we build up the results in stages in order to better understand the biophysical

and economic determinants of the interregional incidence of agricultural climate impacts.
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Biophysical geography of climate impacts: We begin with the direct effect of climate change

on regional welfare from equation (1): ev,, .. . = (v, i (6,PO,QO, )} . As previously noted, this

)
direct effect can be further decomposed using Equation 2, into three contributing factors, based on
the underlying biophysical determinants of climate impacts. These include: differential rates of
warming, differences in initial temperature, and differences in crop composition. Figure 2 reports
these welfare changes from the direct productivity effect, in the form of global maps. For each

region, the direct effect is normalized by the initial value of output for the four crops in question, i.e.

{24: (PO.QO, )} to correct for the fact that the relative importance of these crops varies greatly

i1
across the world. So the change in welfare is reported here as a percentage of the value of output
under climate impact evaluation.

Panel A in Figure 2 reports the total direct effect on welfare of a two degree global mean
temperature rise. The effects are mixed, with countries in the higher latitudes (and high altitudes —
e.g., along the Andes) sometimes gaining more/losing less, and countries in the tropics and mid-
latitudes hurt more. We can speculate about what is driving, for example, the large losses in Brazil,
or the gains in China, but it is more useful to employ our meta-analysis function to decompose these
losses. Panel B in Figure 2 reports the contribution of initial temperature to these direct welfare
impacts. Here, we see that part of the reason for Brazil’s losses is the high starting temperature in
the grid cells where the four focus crops are grown. On the other hand, part of the reason for
China’s gains is the lower initial temperature in its cropping regions. Figure 2C reports the
contribution of pattern-scaling to direct welfare impacts stemming from climate change. The
northern latitudes are, incrementally, adversely affected by the polar amplification of global

warming. After controlling for varying growing-season temperatures, Canada and Russia, for
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example, are disproportionately hurt by the uneven rate of global warming, whereas Brazil benefits
from a more modest temperature rise due to pattern scaling.

The final panel (D) in Figure 2 shows the contribution of crop composition to the direct
welfare effects. Recall from Figure 1 that the impact of 2 degrees C global warming on soybeans is
much more severe than for rice. This means that, compared to the global average crop impact,
soybeans in Brazil are hit much harder than rice in China. Given the predominance of these crops in
those respective countries, crop composition favors China (blue coloring), while disadvantaging
Brazil (red), as well as the other major soybean producers in Latin America.

With a sharp reduction in soybean output, relative to the no-climate change baseline, we
expect that soybean prices will rise, thereby benefiting these exporting regions. How much of the
pain of climate change can be shared with soybean importers? To answer this question, we must
turn to the trade model and the economic geography of climate impacts.

Economic geography: We break the discussion of economic geography into two parts. We

N R
Z Z (QMSirsdPFOBirs)
first analyze the terms of trade effect: gy —(,, )/ "= *

=1
- i i (QMslrsdPCI I:irs)

i=l r=1

, which tells us how

much of the (e.g.) loss from climate change can be shifted onto those countries buying the affected
goods, in the form of higher prices. Conceptually, answer to this question comes in the form of a
140x140 matrix, describing the impact of a climate affected region (a row in the matrix) on every
other region in the model (a column). (Note that, since the ToT effect will be spread across all
sectors, it is important to evaluate this expression with respect to the full set of merchandise and
services sectors in the model.) However, computing the elements of this matrix poses a challenge.
One approach would be to shock each of the 140 countries, one-at-a-time and record the impacts on

each of the 140 countries’ terms of trade. However, this suffers from an important flaw — the climate
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shocks interact with one another and so the column totals will not reflect the ToT effect of the
combined climate change experiment. Furthermore, the elements in the ToT matrix will no longer
sum to zero, bringing the entire welfare calculation into question. Fortunately, Harrison et al. (2000)
discovered a solution which has been implemented into the GEMPACK software used in this paper
(J. Harrison, Horridge, and Pearson 2000; W. J. Harrison and Pearson 1996). Their subtotal function
utilizes numerical integration techniques to partition the impacts of each individual shock on each
variable in the model. So we are able to obtain a 140x140 matrix of ToT effects exchanged amongst
regions in the wake this climate change experiment.

Figure 3A provides a partial visualization of this matrix. Across the top (Panel A) we see a 2
x 140 matrix, with the cells shaded to reflect gains (blue) and losses (red), evaluated as a percentage
change in the country’s overall ToT. The rows represent two of the world’s largest crop exporters:
Brazil and USA. Below Figure 3A appear two more figures (3B and 3C), which display the
elements of the Brazil and US rows within a map of the world. Consider Figure 3B, which maps the
elements of the Brazilian impact row of the ToT matrix. The adverse climate shocks in Brazil
restrict Brazilian soybean output and raise world soybean prices, thereby benefitting Brazil (as well
as her soybean producing neighbors). The biggest losses come in China and North Africa — both big
importers of Brazilian crops. Note that the US, as a soybean competitor with Brazil, also gains from
the Brazilian climate shocks. Figure 3C shows a similar map, only this time reporting the subtotals
pertaining to the US climate shocks displayed in the USA row of Panel A. As competitors with the
US, Canada, Brazil and Argentina gain, while those importing US agricultural products (Mexico
and China, for example) lose. Similar maps can be constructed based on columns from the ToT
matrix, in which case we can observe (e.g.) the way in which a given country is affected by climate

change in all the countries of the world (see Appendix Figure A2 for an example).
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The third, and final, element of the global geography of climate impacts is the allocative

N R
+ Z Z (TMirsPC”:irsdQMSirs)
efficiency component of equation (1): EV, = (v, =1 r=l . This is mapped,

+i (75isPOdQOy)
=)

for the world, in panel C of Figure 4. It captures the interplay between existing distortions and
changing trade and production flows in the economy. In fact, given the presence of taxes and
subsidies on intermediate inputs and consumption in the GTAP data base, there are many more
terms in the allocative efficiency effect captured in Figure 4C (beyond those shown in equation (1)).
However, the predominant ‘action’ derives from changes in bilateral trade and output of agricultural
products. A particularly interesting case is that of China, where soybean production is heavily
subsidized. As climate change reduces soybean output in the US, Brazil and Argentina, world prices
rise and China is encouraged to produce more soybeans. However, as their heavy subsidies suggest,
this is not a commodity in which China has a comparative advantage. Therefore, this expansion of
soybeans, and the accompanying reduction in imports, result in a loss of efficiency — hence the red
shading for China in Figure 3C.

Interactions between Biophysical and Economic Geographies: How to these biophysical and
economic features of the global geography of climate change interact? We investigate this question
by simulating the global general equilibrium model once again, but this time without the biophysical
differences noted previously. Figure 5 plots the terms of trade effects arising from this simulation
(no biophysical geography = horizontal axis) against those arising from the full geography
simulation (vertical axis) for the 140 regions in our model. From the slope of the underlying trend
line, it is clear that the terms of trade impact is much more pronounced (more than double, on
average) when the full biophysical geography is present. The biophysical and economic impacts of

climate change reinforce one another.
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Interactions between the Biophysical and Economic Uncertainties: Thus far we have been
treating our estimates of climate impacts on crop yields, as well as trade elasticities, as certain, but
both are highly uncertain. In this section of the paper, we explore the consequences of this
uncertainty for the interregional incidence of climate change. For this, we run a series of eight
additional experiments (the ninth, or central experiment, is already reported above). These are the
elements of a 3 x 3 experimental design matrix in which the columns refer to climate impact
uncertainties and the rows refer to economic response uncertainties. In both cases, we choose
estimates from the 2.5, 50 and 97.5 percentiles of the distribution of estimated yield impacts and
trade elasticities, respectively. This permits us to explore the interplay between the biophysical and
economic uncertainties underlying this problem.

Figure 6 reports these welfare impacts (expressed as a percentage of initial expenditure on
all goods and services — and therefore a small number since we are only considering impacts on 4
crops) for all 140 regions — arrayed in the following manner. The red, black and green lines show
the welfare change for each region, evaluated at the low, median and high biophysical yield
estimates based on the meta-analysis in equation (2). Through each of these point estimates runs an
‘error bar’ reporting the welfare change extending from the estimates with low and to high values
drawn from the distribution of estimated trade elasticities. Several points are immediately evident.
First of all, the mean impacts — that is the impacts evaluated at mean yield and mean trade
elasticities — are mostly negative but are modest in size. Secondly, the welfare impacts of
biophysical uncertainty are asymmetric. At high yields, the welfare deviations from the mean
impacts are far smaller than the welfare changes induced by drawing from the low end of the
climate-laden yield distribution. This is partly a result of asymmetric uncertainties in the yield
response function (determined through a non-parametric estimation of the confidence intervals), but
is exacerbated by the disproportionate welfare effects of very adverse productivity shocks. This
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underscores the downside risk associated with climate impacts being worse than expected. In this
case, there could be substantial welfare losses to the most vulnerable economies. The asymmetric
risk stemming from biophysical uncertainties is further compounded by the uncertainty in the trade
elasticities. This too, has an asymmetric impact on welfare. With a few exceptions, the welfare
impact of varying the trade elasticities is larger effects in the presence of low yield realizations.

In order to explore this interplay more fully we refer next to Figure 7 which organizes the
same information in a different way. Each of the panels in this figure refers to a different draw from
the biophysical impacts distribution. The first panel corresponds to the most adverse climate
impacts (2.5 percentile), while the second and third refer to the modal (50" percentile) and high
(97.5 percentile) yield outcomes. Here, it is clear that the mean yield shocks have a limited impact
on regional welfare and are therefore potentially of less interest. Also, it is hardly surprising that,
when the climate outcome is more positive (97.5™ percentile), most regions tend to gain, while the
low draw (2.5 percentile) results in the majority of countries losing from the climate impacts on
these 4 major crops.

The scatterplot in each the panels in Figure 7 plots the welfare change under the modal trade
elasticity (50" percentile), against that obtained from simulating the model with the low (2.5
percentile = red diamonds), medium (black dots) and high (97.5" percentile = black triangles) trade
elasticities. By construction, the black dots lie along the 45 degree line. The interesting question is
how much the diamonds and black triangles deviate from the 45 degree line. Generally speaking,
the deviations are greatest for the red diamonds, suggesting that the welfare effects of climate
changes are most pronounced when the trade elasticities in the model are at the lower end of the
estimated distribution. This makes sense, since smaller trade elasticities require larger price changes

in order to re-equilibrate markets in the wake of a climate change shock. A further observation is
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that this variation in the trade elasticities is most important (i.e., the divergence from the 45 degree

line is largest) when the climate shock is adverse.

6. Conclusions

This paper contributes to the literature on the economic consequences of global climate
change impacts on agriculture by exploring the interplay between the biophysical and economic
geographies of the problem. It does so by bridging the extensive literature on climate impacts on
yields and physical productivity in global crop production, with the less-well developed literature on
the economic geography of climate change impacts. As with the Global Gridded Crop Model
Intercomparison coordinated by AgMIP, as well as the work of Costinot, Donaldson and Smith
(2016), we evaluate the impacts of climate change on a global grid. However, instead of using a
specific crop model or set of models, we instead employ a statistical meta-analysis which
encompasses all studies available to the IPCC-ARS5. Not only is this approach more comprehensive,
it also permits us to isolate specific elements of the biophysical geography of climate impacts, such
as the role of initial temperature, and differential patterns of warming across the globe. This
statistical meta-analysis also allows for a more sophisticated analysis of the uncertainties associated
with climate impacts on agriculture in which we explore the consequences of outcomes at the tails
of the climate-laden yield distribution.

In order to explore the welfare consequences and economic interplay with this biophysical
geography, we use the GTAP model of global trade, coupled with econometrically estimated trade
elasticities. This allows us to decompose the sources of welfare changes into three components: the
direct (biophysical impact) contribution to welfare, the terms of trade effect and the efficiency
effect. We find that the terms of trade interact in a significant way with the biophysical geography
of climate impacts. When we remove the biophysical geography, the terms of trade impacts are
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greatly diminished. And when we allow the biophysical impacts to vary across the estimated
distribution taken from the meta-analysis, we find that the welfare consequences are highly
asymmetric, with much larger losses at the low end of the yield distribution than gains at the high
end. Furthermore, by drawing on the estimated statistical distribution of trade elasticities, we are
also able to explore the interplay between economic and biophysical uncertainties. Here, we find
that regional welfare is most sensitive to low yield outcomes in the presence of low yield
elasticities.

An important limitation of this work is the fact that we have modeled farmer responses to
climate change (both the extensive and intensive margins) at the country level. Yet Costinot,
Donaldson and Smith (2016) argue that the largest economic adjustments are likely to come from
the reallocation of production within countries. Future work should combine the approach used here
with a global, gridded economic modeling approach so that the economic consequences of the

heterogeneous biophysical geography can play out at a sub-national level.
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Figure 1: Global gridded yield shocks for maize, wheat, rice and soybeans at 2°C warming from
Moore et al (2017a, 2017D).
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Figure 2: Decomposition of national welfare changes due to climate impacts on maize, wheat,
rice and soybeans at 2°C warming.

Note: Panel A shows total direct welfare changes given climate driven yield shocks for four
crops. Panels B, C and D decomposes total welfare changes given initial temperature, pattern-
scaling effects and crop composition, respectively. National welfare changes are normalized by
total sectoral output value of the selected crops.
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Figure 3: Regional terms of trade consequences due to climate change yield impacts in Brazil
(top row in A and map B) and in US (bottom row in A and map C) only for four key crops at 2°C

warming

Note: Panel A shows terms of trade changes in 140 regions (x-axis) given climate driven yield
shocks in Brazil and in US only (y-axis). Panels B and C maps the same terms of trade changes
in Panel A (given climate driven yield shocks in Brazil and in US only, respectively).
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Figure 4: Overall impact of climate change on national welfare given yield shocks on maize,
wheat, rice and soybeans at 2°C warming.
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Figure 5. Terms of trade effects (% change) in the absence (x-axis) and presence (y-axis) of
biophysical geographies of climate impacts on 140 world regions
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Figure 6. Regional welfare consequences of climate change impacts on four major crops (in %).

Note: Green, black and red thick horizontal bars represent welfare impacts given the crop yield
shocks at 97.5, 50 and 2.5 percentile, respectively. Green, black and red thin vertical bars
represent error bars in the welfare impacts due to uncertainty in trade elasticities for each
corresponding crop yield shock percentiles.
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Figure 7. Scatterplot of regional welfare consequences for each trade elasticities percentile (in %)
under 2.5% 50.0% and 97.5% climate impacts. Observations which depart significantly from the
45 degree line indicate a significant role for the trade elasticities.
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Appendix.

Table Al. Elasticities of Substitution among Imports from Different Sources

Estimated Standard Num.

Sector Elasticity Deviation Obs.
Paddy rice 10.1* 4.0 26
Wheat 8.9* 4.2 32
Cereal grains nec 2.6* 1.1 131
Vegetables, fruit, nuts 3.7 0.4 1,199
Oil seeds 4.9* 0.8 239
Plant-based fibers 5.0* 2.4 71
Crops nec 6.5* 0.4 1,796
Bovine cattle, sheep and goats, horses 4.0 0.7 156
Animal products nec 2.6* 0.3 813
Wool, silk-worm cocoons 12.9* 2.7 76
Forestry 5.0* 0.7 529
Fishing 2.5 0.6 527
Coal 6.1* 2.4 71
Qil 10.4* 3.8 56
Gas 34.4* 14.3 8
Minerals nec 1.8* 0.3 1,584
Bovine meat products 7.7* 1.9 211
Meat products nec 8.8* 0.9 411
Vegetable oils and fats 6.6* 0.7 717
Dairy products 7.3* 0.8 547
Processed rice 5.2* 2.6 62
Sugar 5.4* 2.0 156
Food products nec 4.0 0.1 6,917
Beverages and tobacco products 2.3* 0.3 998
Textiles 7.5* 0.1 14,375
Wearing apparel 7.4% 0.2 9,090
Leather products 8.1* 0.3 3,457
Wood products 6.8* 0.2 4,120
Paper products, publishing 5.9* 0.2 6,597
Petroleum, coal products 4.2* 1.1 344
Chemical, rubber, plastic products 6.6* 0.1 61,603
Mineral products nec 5.8* 0.2 6,240
Ferrous metals 5.9* 0.3 5,524
Metals nec 8.4* 0.4 3,194
Metal products 7.5% 0.2 9,926
Motor vehicles and parts 5.6* 0.3 2,238
Transport equipment nec 8.6* 0.4 1,843
Electronic equipment 8.8* 0.2 8,916
Machinery and equipment nec 8.1* 0.1 44,386
Manufactures nec 7.5* 0.2 7,586

*Estimate Significant at 95% Confidence Level.
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Figure A2: Pattern-scaling used in this study. This map shows the local change in temperature

(Celsius) for every one degree C change in global mean temperature. It is obtained from the

CMIP5 ensemble mean under RCP8.5.
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Figure A3: Regional terms of trade consequences for China due to climate change in each of the
140 countries/regions only for four key crops at 2°C warming
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