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Abstract

Most agri-food sectors are subject to important transport costs and food pro-
cessing industries are likely to display increasing returns to scale. The economic
geography literature highlights that in such frameworks, some external returns to
scale are likely to occur and give rise to multiple equilibria, source of hysteresis in a
system. However, classical trade models are unable to describe such characteristics
and therefore fail to represent the irreversibility that can arise from hysteresis. This
paper tackles this issue and proposes a model of a regional agri-food sector that al-
lows the possibility of agglomeration economies and hysteretic behavior of the system.
Built as a recursively dynamic partial equilibrium model, it describes the domestic
agricultural production and a processing industry, as well as potential trade with a
foreign region. It also offers the choice between a monopsonistic or an oligopsonistic
representation of the structure of the local primary agricultural product market.

1 Introduction

Most agri-food sectors bear some characteristics that make them widely differ from their
neo-classical representation in trade models. The productive capital is generally non-
malleable, both in the primary production and at the processor’s level, which generates
some important sunk costs (Chavas, 2001). We observe economies of scale at the factory
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level in processing industries (Ollinger et al., 2005; Marchant, 2007; van den Heuvel et al.,
2011; MacDonald and Ollinger, 2000). Finally, there are some important transport costs, in
particular before processing, for fresh products like animal productions (Cohen and Paul,
2005).

It is well known in the economic geography literature that in presence of economies of
scale and transport costs, some external economies of agglomeration can arise, due to the
market size/market access marshallian externality (Fujita et al., 2001; Cohen and Paul,
2005). They are also known as pecuniary externalities (Fujita and Thisse, 2013). The same
literature show as well that in presence of such externalities, multiple equilibria are pos-
sible, with various patterns of agglomeration, leading up to potential hysteretic behavior
of the system. Such geographical concentrations of agri-food activities are well observed
across the World (Camelia, 2010; Ben Arfa et al., 2009; Bagoulla et al., 2010; Cohen and
Paul, 2005).

This potential for hysteresis and therefore irreversibility could be of crucial importance
for the analysis and conception of policies that affect agri-food sectors. Indeed, hysteresis
affects the resilience of a system as a shock may have permanent consequences (Perrings
and Brock, 2009). In an uncertain environment, the potential benefits observed at a certain
time may fade away in the future. The impossibility to back down after a decision has been
made give rise to option value and information value (Pindyck, 2004). Therefore, it seems
of first importance to account for long run consequences and risk exposure when taking
decision about agri-food sectors. Hysteresis also makes the decisions not independent in
time. If a decision A is taken before a decision B, the consequences may be different than
when B is taken before A. This calls for taking into account the chronology of action when
deciding about agri-food sectors.

Those seem especially true for trade policies. Indeed, trade agreements affect the risk
exposure inherent to agri-food markets. We can also imagine that a trade policy decided
to take advantage of certain market conditions may reveal to be an impediment if the con-
ditions change. Moreover, the change in the production structure involved to fit a trade
partner may not be fit for a different one. It would then appear important to be dynami-
cally strategic in the set-up of the trade agenda. Finally, trade agreements are generally
decided at the national or even supra-national level, whereas agglomeration economies rat-
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her occur at the regional level. This raise the case for potential political economy issues
as interests in a trade agreement may differ and even oppose across the regions of a same
country.

However, applied trade models of simulation used to analyze and support trade policies
are unable to account for such agglomeration economies and hysteresis in agri-food sectors
(Fujita and Thisse, 2013). This comes from the multiple modeling challenges that their
representation would imply. First, internal economies of scale are susceptible to generate
concentration and market power to the incumbent firms, in contradiction with the pure
and perfect competition hypothesis. Second, most models are solely detailed at the country
level, making impossible the representation of the regional effects occurring with agglome-
ration economies. Third, multiple-equilibria systems imply to be able to categorize each
equilibrium and further specify the dynamic leading to one or another (Fujita et al., 2001).
Fourth, sunk-cost cannot be accounted in a static equilibrium framework. They require
making further assumption about the agents’ intertemporal decisions and their anticipati-
ons.

Most models in the economic geography literature focus on the market size/market
access effect on the demand side for firms that produce under increasing returns, leading
to backward and forward linkage with labor availability and consumption (Fujita et al.,
2001; Fujita and Thisse, 2013). In the case of agri-food sectors, as the transport cost are
higher for the input processed (i.e. the primary product), the agglomeration economies
are rather on the supply side. They arise from the proximity between farms producing a
primary product used as an input in processing industry operating under increasing re-
turns. Therefore, agglomeration economies affect both the primary production and the
processers’ localization. As far as we know, no model has been developed to explicitly
represent such agglomeration dynamic across a value chain (Miron, 2010).

This paper fills into these gaps by proposing a model of agri-food sector that enable
to represent agglomeration economies and therefore hysteretic behaviors. It is built as a
recursively dynamic partial equilibrium model. It represents a region’s agri-food sector
composed of farms and processing factories. Farms can produce alternatively two homo-
geneous agricultural products. One of the agricultural outputs is a primary input and is
processed by the factories into a final product. This primary product can also be traded
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with a foreign region, with import and export transport costs. It is also finally consumed
inside and outside the domestic region. The final processed product and the other agricul-
tural output are sold at a fixed price.

In the short run, corresponding to a one-year period, agricultural production and the
number of factories are inelastic. Therefore, everything operates under constant or de-
creasing returns. We enable the representation of the market power of the processing
industry with a monopsonistic or oligopsonistic structure of the primary product market.
The short-run static partial equilibrium remains then fairly classical. In the long run, the
model is recursively dynamic. We incorporate sunk costs for the set-up of processing fac-
tories. Those generate long-run economies of scale at the factory level and subsequently
agglomeration economies in the agri-food sector. Factories have a definite durability and
become obsolete after a certain number of periods. Farms can switch from one production
to another following a long-run cost considerations, to represent for yearly land-use decisi-
ons. Intertemporal decisions in farms and in the processing sector are made under myopic
assumptions, in a Cobbweb-like fashion.

This model is programmed under the software GAMS to be numerically resolved and
enable simulation. We build reaction matrices of the dynamic system that prove the poten-
tial existence of multiple stable dynamic equilibria for this system. Those matrices enable
us to analyze the stability and the characteristics of each equilibrium, depending on the
parameters of the system. We also make dynamic simulations that display the potentially
hysteretic behavior of the model. We show that an exogenous shock can make the system
switch from one dynamic equilibrium to another. We also highlight the cyclical behavior
that can arise in the system due to capital durability and imperfect coordination in the
agents’ anticipations.

This paper and the model it presents have been developed as a building block for the
better representation of agri-food sectors in applied trade models, in particular recursi-
vely dynamic equilibrium models. This attempt at the representation of agglomeration
externalities and hysteretic behavior enable to show the potential importance of such phe-
nomena for trade policy analysis and offer a first path for their integration in applied model.

The following section will present the short run static partial equilibrium model. Some
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elements of analysis of the short-run equilibrium will be given. The long-run dynamic model
will be presented in section 3. Finally, numerical resolutions will be presented to prove the
existence of multiple equilibria and the possibility of hysteretic and cyclical behavior of the
model, with the computation of the systems’ reaction matrices and dynamic simulations.

2 Short run static model of an agri-food sector

The global model is built as a recursively dynamic partial equilibrium model. It represents
a domestic region with local and external agents: agricultural primary producers, proces-
sing industries and final consumers. The short-run evolution of the system, equivalent to a
one year period, is given by a static partial equilibrium model. The long-run dynamic evo-
lution of the system will be built around the recursive resolution of this partial equilibrium
for each year t. This section presents the structure of the short-run partial equilibrium
model.

In the following presentation of the short-run model, all the variables and parameters
will be presented without time indices for the sake of simplicity. However, keep in mind
that they all describe the state of the system for a given year t. They will be likely to evolve
across time in the dynamic long-run model in which further time dynamic specification will
be added.

2.1 Local agricultural production

Farmers in the domestic region can produce alternatively two agricultural products. The
first one is a primary product that can be traded, processed or finally consumed. Its do-
mestic price Pdom is determined endogenously in the model. The total quantity produced
in the region for the one year period studied is noted Qp. The other agricultural product,
considered as an alternative production can be sold at an exogenously fixed price Palt. Its
total quantity produced in the region at time t is noted Qalt.

In the short-run, we assume that the local agricultural productions are inelastic. This
represents the fact that farmers harvest and sell a production that has been planned previ-
ously. Therefore, the output quantities, Qp and Qalt are fixed exogenously in the short-run
model. As the alternative agricultural production has exogenous price and quantity dyna-
mics that are independent of the rest of the short-run model, it will be largely omitted in
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the rest of this description.

2.2 Local final demand for primary product

We model a local final demand for the primary agricultural product as issued from a
Constant Elasticity of Substitution (CES) demand:

Ddom = adom ·
(
Pdom

P ref
dom

)σdom
(1)

With adom > 0 a share parameter, σdom < 0 an elasticity parameter and P ref
dom > 0 an

exogenous price index.

2.3 Foreign market and trade

We add in this model a foreign region with an external supply and demand for the primary
agricultural product. Trade with the domestic region is possible, under specified export and
import costs. This gives rise to a "free-on-board" (FOB) price as regards to the domestic
market price. No geographic scale is specified for this foreign region. It can represent the
rest of the national market outside the domestic region studied, or the World market, or a
different region inside or outside the same country.

2.3.1 Foreign supply in primary product

We model a primary agricultural product supply in the foreign region. In the same way as
in the domestic region, it is inelastic in the short-run. The quantity produced for a year
is exogenously fixed at Q0. It is sold on the foreign market at an endogenous price Pext,
which represents the FOB price for the domestic market.

2.3.2 Foreign final demand in primary product

A demand for final consumption of primary agricultural product is also represented on the
foreign market. It takes the same CES form as in the domestic region:

Dext = aext ·
(
Pext

P ref
ext

)σext
(2)
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With aext > 0 a share parameter, σext < 0 an elasticity parameter and P ref
ext > 0 an

exogenous price index.

2.3.3 Trade and trade costs between the domestic and foreign region

When no trade occur between the foreign and the domestic region, we have an autarky
equilibrium on the foreign market where the final demand equals the supply: Dext = Q0.
The price of autarkic equilibrium is then:

P aut
ext = P ref

ext ·
(
Q0

aext

) 1
σext

(3)

We let the possibility for trade to occur between the domestic and foreign region. Ho-
wever, we represent transport costs under the form of an iceberg cost, at a rate τM for
imports from the foreign region to the domestic region and a rate τX for exports from the
domestic region to the foreign region.

The primary product is considered homogeneous. Therefore, we will observe imports
to the domestic region only if the domestic price Pdom is greater than the foreign autarky
market price plus the imports costs. In that case, the law-of-one-price will make the
domestic price and the foreign price equals at the difference of the import costs. We will
have:

Pdom − τM = Pext > P aut
ext (4)

Symmetrically, we will observe exports only if the domestic price Pdom is smaller than
the foreign autarky market price minus the exports costs and we will have:

Pdom + τX = Pext < P aut
ext (5)

We notice that there can’t be positive exports and imports simultaneously. Noting DX

the quantity of primary product demanded by the foreign region to be exported from the
domestic region and QM the supply for imports to the domestic region, at all time we will
have the following foreign market closure:

Q0 +DX = QM +Dext (6)
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We can then infer the supply function for imports from the foreign to the domestic region:

QM =


Q0 − aext ·

(
Pdom−τM
P refext

)σext
if Pdom > P aut

ext + τM

0 if Pdom ≤ P aut
ext + τM

= max

(
0;Q0 − aext ·

(
Pdom − τM

P ref
ext

)σext) (7)

For numerical modeling purposes and to ensure the derivability at every point, we use the
approximation:

QM ≈
1
2 ·

Q0 − aext ·
(
Pdom − τM

P ref
ext

)σext
+

√√√√(−Q0 + aext ·
(
Pdom − τM

P ref
ext

)σext)2

+ ∆2


(8)

With ∆ close to 0.
Symmetrically, we have the export demand function:

DX =


−Q0 + aext ·

(
Pdom+τX
P refext

)σext
if Pdom < P aut

ext − τX

0 if Pdom ≥ P aut
ext − τX

= max

(
0;−Q0 + aext ·

(
Pdom + τX

P ref
ext

)σext)

≈ 1
2 ·

−Q0 + aext ·
(
Pdom + τX

P ref
ext

)σext
+

√√√√(Q0 − aext ·
(
Pdom + τX

P ref
ext

)σext)2

+ ∆2


(9)

Figure 1 displays the shape of import supply and export demand on the domestic
primary product market.

2.4 Processing industry

We model a local industry which processes the primary agricultural product into a final
product. We assume that this local industry is composed of n identical factories. Each
factory is composed of a fixed indivisible amount of capital K. The number of factories
is exogenously determined in the short run. Each factory has a CES production function
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Figure 1: Import supply and export demand on the primary product domestic market

using capital and primary product in the following way:

QF = α

(
βKθ + (1− β) ·

(
DF

n

)θ) 1
θ

(10)

With QF the quantity of final product produced by factory and DF the quantity of primary
product consumed by the whole processing industry, so DF

n
is the quantity of primary

product consumed by factory. α > 0 is a scale parameter, β ∈]0; 1[ a share parameter and
θ < 1 an elasticity of substitution parameter.

2.5 Market closure

On the foreign market for the primary product, we recall the following closure:

Q0 +DX = Dext +QM (11)

On the domestic market of the primary product we have:

Qp +QM = DF +Ddom +DX (12)
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Finally, the alternative agricultural product and the final product are both sold at exoge-
nously fixed prices.

2.6 Market structures options and demand from the processing
firms

We assume that there is a multiplicity of farmers producing locally the primary product
and that they are therefore price takers on this market. However, we propose two options
to represent the market power of the processing industry on the primary product market.
The first option corresponds to a monopsonistic structure, where all the local processing
factories are owned by an unique company. It then maximizes its profit on the total
quantity of primary product consumed DF , considering the effect of its demand on the
price Pdom. The second option describes an oligopsonistic structure where each factory is
owned by a different company. Therefore, each factory/company optimize its profit on the
quantity of primary product it consumed

(
DF
n

)
, considering the effect of its demand and

the other factories’ demand on the price Pdom.

2.6.1 Option 1: Monopsonistic structure of the processing sector

The monopsonistic processing company optimizes its profit πmono over its demand for
primary product for all its factories DF , taking into account the effect of this demand on
the domestic price Pdom. To do so, it infers the input supply function from the primary
product market closure, taking into account the demand and supply of the other agents in
the market. The optimization program of the monopsonistic company is then:

Maximize πmono = n · PF ·QF (DF )−DF · Pdom

= n · PF · α
(
βKθ + (1− β) ·

(
DF

n

)θ) 1
θ

−DF · Pdom
(13)

Under the constraint:

Qp +QM(Pdom) = DF +Ddom(Pdom) +DX(Pdom) (14)

The Lagrangian of this system is:
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L = n · PF · α
(
βKθ + (1− β) ·

(
DF

n

)θ) 1−θ
θ

−DF · Pdom

−λ (DF +Ddom(Pdom) +DX(Pdom)−Qp −QM(Pdom))
(15)

First order conditions :
The first orther conditions are:

∂L
∂DF

= PF · α · (1− β) ·
(
DF

n

)θ−1
·
(
βKθ + (1− β) ·

(
DF

n

)θ) 1−θ
θ

− Pdom − λ = 0 (16)

And
∂L

∂Pdom
= −DF − λ

(
∂Ddom

∂Pdom
+ ∂DX

∂Pdom
− ∂QM

∂Pdom

)
= 0 (17)

So, identifying λ in 16 and 17, we have:

PF ·α ·(1−β) ·
(
DF

n

)θ−1
·
(
βKθ + (1− β) ·

(
DF

n

)θ) 1−θ
θ

−Pdom = −DF(
∂Ddom
∂Pdom

+ ∂DX
∂Pdom

− ∂QM
∂Pdom

)
(18)

Finally, the demand for primary product by the monopsonistic processing company is
given by:

PF · αθ · (1− β) ·
(
DF

n

)θ−1
· (QF )1−θ − Pdom = −DF

∂Ddom
∂Pdom

+ ∂DX
∂Pdom

− ∂QM
∂Pdom

+PF · α · (1− β)2 ·
(
DF

n

)θ−1
·
(
βKθ + (1− β) ·

(
DF

n

)θ) 1−θ
θ

(19)

With by derivating equations 1, 8 and 9:

∂Ddom

∂Pdom
= adom · σdom

(P ref
dom)σdom

· (Pdom)σdom−1 < 0 (20)
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∂DX

∂Pdom
=


aext · σext

(P refext )σext
· (Pdom + τX)σext−1 < 0 if Pdom < P aut

ext − τX

0 if Pdom ≥ P aut
ext − τX

≈ 1
2 ·

aext · σext ·
(
Pdom+τX
P refext

)σext
Pdom + τX

·


−Q0 + aext ·

(
Pdom+τX
P refext

)σext
√(
−Q0 + aext ·

(
Pdom+τX
P refext

)σext)2
+ ∆2

+ 1


(21)

∂QM

∂Pdom
=


−aext · σext

(P refext )σext
· (Pdom − τM)σext−1 > 0 if Pdom > P aut

ext + τM

0 if Pdom ≤ P aut
ext + τM

≈ −1
2 ·

aext · σext ·
(
Pdom−τM
P refext

)σext
Pdom − τM

·


Q0 − aext ·

(
Pdom−τM
P refext

)σext
√(

Q0 − aext ·
(
Pdom−τM
P refext

)σext)2
+ ∆2

+ 1


(22)

Second-order conditions :
We have:

∂2L
∂D2

F

= PF · n ·
∂2QF (DF

n
)

∂D2
F

(23)

QF is a Constant Elasticity of Substitution function and θ < 1, therefore QF is concave
and ∂2QF (DF

n
)

∂D2
F

< 0. So: ∂2L
∂D2

F
< 0.

On the other hand, we have:

∂2L
∂P 2

dom

= −λ
(
∂2Ddom

∂P 2
dom

+ ∂2DX

∂P 2
dom

− ∂2QM

∂P 2
dom

)
(24)

With:
λ = −DF

∂Ddom
∂Pdom

+ ∂DX
∂Pdom

− ∂QM
∂Pdom

> 0 (25)
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∂2Ddom

∂P 2
dom

> 0 (26)

∂2DX

∂P 2
dom

 > 0 if Pdom < P aut
ext − τX

= 0 if Pdom ≥ P aut
ext − τX

(27)

∂2QM

∂P 2
dom

 < 0 if Pdom > P aut
ext + τM

= 0 if Pdom ≤ P aut
ext + τM

(28)

Therefore, ∂2L
∂P 2

dom
< 0 and ∂L

∂Pdom
is decreasing on ]−∞;P aut

ext −τX [, [P aut
ext −τX ;P aut

ext +τM ]
and ]P aut

ext + τM ; +∞[. So the profit Πmono has a local maximum on each of those intervals.

We have reduced to three the number of potential solutions of the system. In order to
see if we can reduce it further, we look at the points where the Lagrangian is not derivable
without approximation. First, in P aut

ext − τX :

lim
Pdom→(Pautext −τX)−

∂L
∂Pdom

= −DF−λ
(
adom · σdom
(P ref

dom)σdom
· (Pext − τX)σdom−1 + aext · σext

(P ref
ext )σext

· (P aut
ext )σext−1

)
(29)

lim
Pdom→(Pautext −τX)+

∂L
∂Pdom

= −DF − λ
(
adom · σdom

(P ref
dom)σdom

· (Pext − τX)σdom−1
)

(30)

Therefore,
lim

Pdom→(Pautext −τX)−

∂L
∂Pdom

> lim
Pdom→(Pautext −τX)+

∂L
∂Pdom

(31)

So, ∂L
∂Pdom

is decreasing around P aut
ext −τX , therefore it is decreasing on ]−∞;P aut

ext +τM [. We
ensure the continuity and derivability of ∂L

∂Pdom
on ]−∞;P aut

ext +τM [ using the approximation
presented in 21. So the profit πmono has a unique local maximum on the whole interval
]−∞;P aut

ext + τM [.

Looking now at the point P aut
ext + τM , we have:

lim
Pdom→(Pautext +τM )−

∂L
∂Pdom

= −DF − λ
(
adom · σdom

(P ref
dom)σdom

· (P aut
ext + τM)σdom−1

)
(32)

lim
Pdom→(Pautext +τM )+

∂L
∂Pdom

= −DF−λ
(
adom · σdom
(P ref

dom)σdom
· (P aut

ext + τM)σdom−1 + aext · σext
(P ref

ext )σext
· (P aut

ext )σext−1
)

(33)
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Therefore,
lim

Pdom→(Pautext −τX)−

∂L
∂Pdom

< lim
Pdom→(Pautext −τX)+

∂L
∂Pdom

(34)

So, ∂L
∂Pdom

is increasing around P aut
ext − τX . Therefore, we can only tell that ∂L

∂Pdom
is decrea-

sing respectively on ] −∞;P aut
ext + τM ] and ]P aut

ext + τM ; +∞[. We conclude that πmono has
a unique local maximum on each of those segments. Our short-run model therefore could
still have two potential solutions.

The local maximum on ] − ∞;P aut
ext + τM ] corresponds to the case when the monop-

sonistic company consumes less primary product than what is locally available, therefore
paying a smaller price. The local maximum on ]P aut

ext + τM ; +∞[ corresponds to the case
when the company chooses to process more primary product and therefore has to import
and pay a higher price.

So in order to find the global maximum, we solve the complete model on each of these
price intervals and the equilibrium is the solution that ensures the greatest profit to the
monopsonistic processing company.

2.6.2 Option 2: Oligopsonistic structure of the processing sector

Under the oligopsonistic option, each company/factory optimizes its own profit πoli on its
own demand for primary product DF

n
. It takes into account the effect of its demand on price

in the same way as in the monopsonistic case, by inferring the inverse demand function
from the market closure. However, this time it has to account for the demand from the
other factories. As all the firms are identical, we note this remaining demand Drem

F and
we have: Drem

F = (n−1)·DF
n

. We can see this framework as the oligopsonistic symmetric of
a Cournot oligopoly framework. The optimization program of an oligopsonistic factory is
then:

Maximize πoli = PF · α
(
βKθ + (1− β) ·

(
DF

n

)θ) 1
θ

− DF

n
· Pdom (35)

Under the constraint:

Qp +QM(Pdom) = DF

n
+Drem

F +Ddom(Pdom) +DX(Pdom) (36)
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The Lagrangian of this system is:

L = PF · α
(
βKθ + (1− β) ·

(
DF

n

)θ) 1
θ

− DF

n
· Pdom

−λ
(
DF

n
+Drem

F +Ddom(Pdom) +DX(Pdom)−Qp −QM(Pdom)
) (37)

First-order conditions :
The first order conditions are:

∂L
∂DF

= PF · α ·
1− β
nθ
· (DF )θ−1 ·

(
βKθ + (1− β) ·

(
DF

n

)θ) 1−θ
θ

− Pdom
n
− λ

n
= 0 (38)

And
∂L

∂Pdom
= −DF

n
− λ

(
∂Ddom

∂Pdom
+ ∂DX

∂Pdom
− ∂QM

∂Pdom

)
= 0 (39)

So, identifying λ in 38 and 39, we have:

PF ·α·(1−β)·
(
DF

n

)θ−1
·
(
βKθ + (1− β) ·

(
DF

n

)θ) 1−θ
θ

−Pdom = −DF

n ·
(
∂Ddom
∂Pdom

+ ∂DX
∂Pdom

− ∂QM
∂Pdom

)
(40)

Subsequently, the demand for primary product by the processing industry in the oligopso-
nistic case is given by:

PF · αθ · (1− β) ·
(
DF

n

)θ−1
· (QF )1−θ − Pdom = −DF

n ·
(
∂Ddom
∂Pdom

+ ∂DX
∂Pdom

− ∂QM
∂Pdom

) (41)

We notice that when n = 1, we find back the result of the monopsonistic case. When the
number of factories increase and n 7→ ∞, we find back the result that we would get in a
perfectly competitive framework1.

Second-order conditions :
The second-order conditions are similar to the ones in the monopsonistic case (sub-

section 2.6.2), therefore leading to a unique local maximum on each of the intervals
] − ∞;P aut

ext + τM ] and ]P aut
ext + τM ; +∞[. However, contrary to the monopsonistic case,

1The perfectly competitive framework is solved in Appendix A
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in the oligopsonistic case the quantity of primary product demanded by a processing com-
pany depends on the expected demand of the other companies

(
Drem
F = (n−1)·DF

n

)
.

The solution of the system on ]−∞;P aut
ext + τM ] would correspond to a situation when

all the firms would choose to consume only part of the local primary production, therefore
at a reduced price. The solution on ]P aut

ext + τM ; +∞[ would correspond to the case when
all the firms would demand more, therefore importing primary product and pay a higher
price. In each case, it would likely not be profitable for a single firm to deviate alone .
Therefore, each of the local maximum could correspond to an acceptable Nash-equilibrium.

We solve this issue of potential multiplicity of equilibria in the short-term by assuming
that local processing firms manage to coordinate sufficiently to choose the pay-off dominant
equilibrium. So in the same way as in the monopsonistic case, we find the short-run
equilibrium of the system for a given year by solving the complete model on each of the price
intervals and we choose the solution that ensures the greatest profit to the monopsonistic
processing companies.

2.7 Analysis of the short-run partial equilibrium model

Figures 2, 3, 4 and 5 present the short-run equilibrium under various configurations of the
model, with or without domestic agricultural production, domestic processing industry,
transport costs or under the monopsonistic or oligopsonistic option.

We can see on Figure 2 that when there are transport costs with the foreign region and
a domestic agricultural production but no local processing industry, the domestic price of
the primary product will necessarily be under the limit export price. Indeed, the farmers
will quickly saturate the domestic final demand and will have to export the rest of their
production.

Conversely, we can see on Figure 3 that when a domestic industry is present but there
are no farmers producing domestically the primary product, final consumers and the pro-
cessing industry will have to import it. The domestic price of the primary product will
consequently be above the limit import price. We can notice that the short-run equilibrium
price and quantities consumed will be very close under the monopsonistic and oligopsonis-
tic structures. Indeed, as the import supply is very elastic, even a monopsonistic company
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Figure 2: Short-run equilibrium with no local processing industry

will have a much reduced market power when it will have to import.

Figure 4 gives a proof for the possibility of agglomeration economies across the local
agri-food value chain in this model. We can see that when there are both primary produ-
cers and a processing industry in the domestic region, the domestic price can be higher for
the farmers that won’t have to export and suffer the export cost. At the same time, the
processing industry will also benefit of a price lower than the import price. This highlig-
hts the local synergy that can exist between the agricultural primary production and the
processing sector.

We notice that if the quantities purchased will be quite similar under the monopsonis-
tic and the oligopsonistic option, the equilibrium price will be much different. Indeed, in
both case the industry can purchase most of the domestic production. However, as in the
oligopsonistic framework, the more companies there will be, the closer the equilibrium price
will be to the marginal profit they gain from another unit of input and thus of the result
in a competitive structure. On the contrary, as long as a monopsonistic will be satisfied
with the quantity of input locally supplied, it won’t pay much more than the export price.
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Figure 3: Short-run equilibrium with no local agricultural production

Indeed, as the domestic supply is inelastic and the local final demand reduced, the market
power of a monopsonistic firm will be very big until the price is as low as the limit export
price, in the absence of other competitive agents.

Finally, we can highlight the role of transport costs in the existence of local agglome-
ration economies. Indeed, when there are no transport costs the domestic and the foreign
will form one unique market with one unique price. However, this big market will be much
more elastic. We can then see on 5 that in the absence of transport costs, the price will be
stabilized around the foreign autarky equilibrium price. There will be little difference whet-
her there is a domestic agricultural production or not or if there is a domestic processing
sector or not. The price will be very similar under the monopsonistic or the oligopsonistic
framework as in any case; the market power of the processing industry will be reduced.
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Figure 4: Short-run equilibrium with local agricultural production and processing industry

Figure 5: Short-run equilibrium with no transport costs
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3 Long run recursively dynamic model of an agri-food
sector

The long-run model enables to represent the long-run evolution of the local agricultural
production and the number of processing factories in the agri-food sector. It is constructed
as the recursive resolution of the static short-run partial equilibrium model, which describes
the state of the system for each one-year period t. Between each period, the long-run model
describes the reaction of the farmers and the processing industry to the previous equilibria
in terms of production choices and investments for the future periods, according to their
anticipations and long-run cost considerations.

3.1 Further description of the local agricultural sector and long-
run production dynamic

We consider that the local agricultural sector is composed of a fixed number of farms
nF = card(F ), with F = {1, ..., f..., nF} the set of all local farms.

In order to produce the primary product, a farm has to make a fixed capital invest-
ment, for a cost KM · PK. KM the quantity of capital necessary and PK the price of
capital are exogenous to the model. This sunk cost can be seen as the required indivisible
investment in capital to produce a certain product. For example, in dairy production this
could be a milking parlor. It then enables the farms f that has made this investment
to produce an homogeneous quantity Qfarm

P of primary product for Tfarm years. During
those Tfarm years, those farms are stuck in this production, they can’t stop production,
switch to another or make further investments. After the Tfarm years, the production unit
is considered obsolete and the farm can choose to build a new one or not.

We consider that farms that have not made such investments are engaged in the alter-
native agricultural production. We can imagine this alternative production to be cereal
production or any other that requires little specific capital. Farms engaged in the alterna-
tive production will produce each year a fixed quantity Qfarm

alt (f). However, as no specific
capital investments are made, we assume that those farms can each year choose to switch
and invest in the primary production or to remain in the alternative production. In order
to represent an heterogeneous productivity of land across the farms of the domestic region,
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we consider that the farm production Qfarm
alt (f) is heterogeneous and that it follows a linear

distribution so that:

Qalt
farm(f) = f

nF
· ¯Qalt

farm (42)

Before each year t, farms that are not stuck in the primary production can choose
to invest to produce the primary product or to stay in the alternative production which
doesn’t require further investments. To take this decision, they compute their anticipated
net present value for both productions on the period of the longest investment durability
(Tfarm). We assume they do so under the myopic anticipations that the prices of both
products remains stable at Pdom,t−1 and Palt,t−1, in a Cobbweb like fashion (Gouel, 2012).

Each farm f then have for year t:

NPVP,t = −KM · PK +
t+Tfarm−1∑

t1=t

Qfarm
P · Pdom,t−1

(1 + r)t1 (43)

NPValt,f,t =
t+Tfarm−1∑

t1=t

Qalt
farm(f) · Palt,t−1

(1 + r)t1 (44)

With r, the discount rate. A farm f that can switch production before year t will then
choose to produce the primary product for the next Tfarm if: NPVP,t > NPValt,f,t.

We note FP,t the set of farms engaged in the primary production at year t and Falt,t the
set of farms engaged in the alternative production at year t. The total domestic agricultural
productions of the primary product for year t is then :

QP,t =
∑

f∈FP,t
Qfarm
P (45)

And for the alternative product:

Qalt,t =
∑

f∈Falt,t
Qalt
farm(f) (46)

Therefore, the long-run domestic primary product supply will have the shape presented
on Figure 6. When the domestic price of the primary product will be too low, no farms
will invest in this production and the regional production will become null. Conversely,
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past a certain price, all the local farms turn to this production and the regional production
reach a plateau.

Figure 6: Long-run domestic supply of the primary product

3.2 Long run evolution of the number of processing factories

The long-run model describes the dynamic of the number of domestic processing factories
nt. Each year t, this number reacts to the state of the system in the previous years
equilibria, following anticipations on the future state of the system and long-run cost
considerations. The set-up of a new factory correspond to an investments in an indivisible
amount K of capital units. For the owner, this represents a sunk costs K ·PK. Processing
factories are productive for a number TF of one year periods once they are set-up. After
this time, they are considered obsolete and disappear. The next two sub-sections presents
the process following which this number of factories evolve, under the monopsonistic and
oligopsonistic
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3.2.1 Investment decisions of the local monopsonistic processing company in
new factories (Option 1)

In the monopsonistic case, the company that owns all the local processing factories take
before every year t the decision to invest or not in new processing factories. Therefore,
the monopsonistic firm seek the number of new processing unit newDt to set up at time
t to maximize its anticipated net present value NPVF,mono,t. The effect on the price of
the primary product through the additional demand generated by new factories are not
independent across time, as they are not additive if TF > 1. The monopsonistic company
therefore maximize each year t its net present value over an infinite period for all t1 ≥
t, by scheduling all its future investments newDant

t1 and primary product demand Dant
F,t1,

considering the anticipated reaction of the primary product market to this demand 2.
We assume that this optimization is made under the myopic anticipation that the primary
production in the region remains stable at the level QP,t−1 and the price of the final product
remains at PF,t−1. The optimization program is then:

maximize
(newDantt1 ,DantF,t1)

∀t1≥t

NPVF,mono,t =

∞∑
t1=t

nantt1 ·Qant
F,t1(nantt1 , Dant

F,t1) · PF,t−1 −Dant
F,t1 · P ant

dom,t1(Dant
F,t1)− newDant

t1 ·KF · PK
(1 + r)t1−t (47)

Under the constraints:

nantt1 = nantt1−1 + newDant
t1 − newDant

t1−TProc (48)

Qp,t−1 +QM,t−1(P ant
dom,t1) = Dant

F,t1 +Ddom,t−1(P ant
dom,t1) +DX,t−1(P ant

dom,t1) (49)

All the variables with an "ant" exponents correspond to anticipated variables.

Once this system is solved, the number of new factories is determined as newDt =
newDant

t . The number of processing factories is then fixed for year t as:

nt = nt−1 + newDt1 − newDt1−TF (50)
2For computation purposes in the numerical model, we approximate this infinite period by defining a

large time horizon, so that the optimization program is solved on a finite period. We consider that the
time discount make negligible the future anticipated profits and investments past this horizon.
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And the new equilibrium for year t can then be computed.

3.2.2 Company entry/factory set-up under Zero-Profit Condition in an oligop-
sonistic processing sector (Option 2)

In the oligopsonistic case, each processing factory corresponds to a different company.
Therefore, the set-up of new factories corresponds to the entry of new companies on the
market. We assume that new companies will enter every year t until the anticipated net
present value of a new factory NPVF,oli is equal to 0. Contrary to the monopsonistic case,
as the net present value is computed for a unique factory/company, with a definite time
of existence TF , it is computed on a horizon equal to the firm durability DF . The com-
putation of the anticipated net present value for a new factory is made by anticipating
the future demand for primary product by factory as it is made in the short-run model.
This is made under the myopic anticipations that the number of active factories besides
the potential new entrants remains stable at its previous level excluding the factories that
just get out at this period, so it is at nDt−1 − newDt−TF for all the investment period TF .
The local primary production is also assumed to remain at QP,t−1 and the price of the final
product at PF,t−1.

Therefore, to determine the number of new factories set-up or companies entering the
market at time t, we increase this number newDt ∈ N until the net present value of a new
entrant, with one more factory, becomes negative. So that:

NPVF,oli,t(newDt + 1) < 0

⇐⇒ −KF ·PK+
t+Tproc−1∑

t1=t
Qant
F,t1

(
Dant
F,t1

nantt1

)
· PF,t−1 −

Dant
F,t1

nantt1
· Pdomant

t1 (Dant
F,t1)(1 + r)t1−t < 0

(51)

With:
nantt1 = nt−1 − newDt−TF + newDt + 1 (52)

Qp,t−1 +QM,t−1(P ant
dom,t1) =

Dant
F,t1

nantt1
+Drem,ant

F,t1 +Ddom,t−1(P ant
dom,t1) +DX,t−1(P ant

dom,t1) (53)
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The number of active processing units is then fixed for year t at:

nt = nt−1 + newDt1 − newDt1−TF (54)

3.3 Analysis of the long-run dynamic system

In the long-run model, the processing industry takes an investment decision by comparing
the input price and the quantity available that would result from the short-run equilibrium
following this investment, to its long-run average profit function. Figure 7 display the
average profit function for the set-up of one factory. We can see that with the antici-
pated primary agricultural production Qp, the input price that would result both under
monopsonistic and oligopsonistic structure would be around the limit export price. For
the quantity that would be consumed, the resulting input price is below the average profit
function so this investment would be profitable. At least one factory would be built for
this level of anticipated input production, whether under oligopsonistic or monopsonistic
structure. We can notice on this Figure that because of the integration of sunk costs in
the long-run average profit function, it is not monotonous and display increasing returns
to scale for small quantities of input processed.

Figure 8 displays average profit curves for several numbers of factories (1, 10 and 20) in
the processing industry and the subsequent equilibria for each situation. The input quan-
tity available without importing (which enables a monopsonistic to pay the limit export
price) is limited by the anticipated domestic production. We can see that building too few
(one factory) doesn’t enable the company to take advantage of all the available input. On
the contrary, building too many (twenty factories here) would be inefficient. Therefore, the
monopsonistic will choose to set up the number of factories that maximizes its anticipated
surplus. Among the three possibilities offered here, it would choose to build ten factories.

Figure 9 present the same curves but under the competitive option that we will as-
sociate to the oligopsonistic case. We notice that the anticipated input prices for the
subsequent equilibria are higher than in the monopsonistic situation as the market power
is reduced. Here, some factories will be built, some companies will enter the market until
the anticipated profits are exhausted. Therefore, the positive surplus anticipated for one
factory means that more factories will be set-up. The surplus becomes null for ten facto-
ries. This will then be number of factories set-up under this structure for this anticipated
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Figure 7: Investment decision in the processing industry

Figure 8: Number of factory decision under the monopsonistic structure
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agricultural production. If more factories are built, as in the twenty factories’ case, the
surplus becomes negative so the number of factories will decrease.

Figure 9: Number of factory decision under the oligopsonistic structure

In order to get a steady state dynamic equilibrium, the short-run equilibrium should
coincide with the long-run equilibrium, in other words, the long-run and short-run demand
and supply function should cross at the same point. Figure 10 shows such a situation in
the competitive situation. However, we notice that the same example would not provide a
dynamic equilibrium under the monopsonistic structure. Indeed, the resulting price would
be too low to sustain the primary agricultural production at this level.

We can see on Figure 11 that with the same calibration, another long-run dynamic
equilibrium is possible. Indeed, when the domestic primary product price is at the limit
export price, the domestic agricultural production is very low. For such a level of domes-
tically available input, increasing returns to scale make the set-up of a processing factory
unprofitable, whether the industry is under a monopsonistic or oligopsonistic structure.
Therefore, there exists a stable state of the system with a reduced agricultural production
and no processing industry.
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Figure 10: Long-run equilibrium and disequilibrium

This proves the existence of multiple dynamic equilibria in the model that could result
in hysteresis. In the dynamic equilibrium that we observe, an important production in
the primary agricultural product goes in pair an important production in the processed
product. This highlights the existence of agglomeration economies in this model.

4 Computation of reaction matrices and analysis of
the dynamic system

In order to analyze the behavior of the model, we compute numerically the short-run par-
tial equilibrium for a whole set of domestic primary agricultural production quantities and
number of factories in the processing industry for an hypothetical case. This enables us
to get the resulting state of the system for each of those combinations. Subsequently,
we compute the next period long-run dynamic reaction of those variables to each state.
This enables us to construct dynamic reaction matrices of the number of factories and of
the quantity of local agricultural production for the next period following every possible
state of the system. Tables 1a and 1b presents an example of those results under the
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Figure 11: Unproductive long-run equilibrium

oligopsonistic option, Tables 2a and 2b presents the results with a similar calibration but
under the monopsonistic option. The parameters used for those numerical computations
are displayed in appendix B.

Matrices 1a and 2a give us the reaction of the primary agricultural production QP,t

for year t following the anticipations that the farmers make based on the resulting state
of the system at year t − 1 for all the set of couple of values (QP,t−1, nt−1). It enables
us in particular to see around which states this production remains at a steady dynamic
equilibrium, when QP,t = QP,t−1. Those steady production states are highlighted by the
red-line on Tables 1a and 2a.

We notice as could have been suspected that the higher the number of factories and
the smaller the primary agricultural production are at t − 1, the bigger this production
will be at time t. This can be understood as the price Pdom,t−1 of the primary product
at time t − 1, on which the farmers base their anticipations to invest or not in the pri-
mary product, will be higher with less local supply and more demand from the processing
factories. We can also notice that under the monopsonistic option, the steady primary
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Table 1: Reaction matrices of the primary agricultural production QP,t and the number of
new factories set-up newDt to a set of possible previous state of the system (QP,t−1, nt−1)
under the oligopsonistic option

(a) Reaction of the primary agricultural pro-
duction QP,t

The red line correspond to the states where the pri-
mary agricultural production remains steady: QP,t =
QP,t−1

(b) Reaction of the number of new factories set-
up newDt

The squares highlighted in green correspond to the
states of the system where the number of factory re-
mains steady, even if some factories arrive at their
obsolescence limit: newD(QP,t−1, nt−1 = 0)t = nt−1.

production line is at a lower level than in the oligopsonistic case for a given number of fac-
tories in the domestic processing industry. This is consequent to the price of the primary
product being brought down more by the bigger market power of a monopsonistic industry.

Similarly, matrices 1b and 2b give us the number of processing factories newDt to be
set up at a given year t, following the anticipations that the processing industry make
based on the resulting state of the system at year t − 1, for all the set of couple of va-
lues (QP,t−1, nt−1). We can use this information to see when the number of factories will
remain steady, even if some factories arrive at their obsolescence limit. Those situations
correspond in particular to the states when: newD(QP,t−1, nt−1 = 0)t = nt−1. They are
highlighted in green on Tables 1b and 2b.

We can notice that the steady number of factories in the processing industry is as ex-
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Table 2: Reaction matrices of the primary agricultural production QP,t and the number of
new factories set-up newDt to a set of possible previous state of the system (QP,t−1, nt−1)
under the monopsonistic option

(a) Reaction of the primary agricultural pro-
duction QP,t

The red line correspond to the states where the pri-
mary agricultural production remains steady: QP,t =
QP,t−1

(b) Reaction of the number of new factories set-
up newDt

The squares highlighted in green correspond to the
states of the system where the number of factory re-
mains steady, even if some factories arrive at their
obsolescence limit: newD(QP,t−1, nt−1 = 0)t = nt−1.

pected higher when the domestic primary production in primary product at time t− 1 is
bigger, corresponding to a bigger anticipation of the future supply on the primary product
market. More interestingly, we notice that both in the monopsonistic and the oligopsonis-
tic cases, the steady number of factories can be null if the domestic primary agricultural
production is too small. This can be explained by the indivisibility of the capital in the
processing industry. If there is not enough input to supply at a reasonable price, no factory
can take advantage of increasing returns to scale to be profitable enough. We notice also
that in the monopsonistic case, the dynamic equilibrium number of factories for a given
domestic input supply is smaller than in the oligopsonistic case. This can be explained by
the zero-profit-condition which operate under the oligopsonistic option. Contrary to the
monopsonistic case, factories will keep being build, so new companies will keep entering
until the anticipated profits are exhausted.
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Finally, we can combine those information on the reaction of the primary agricultural
production and the number of factories to analyze the direction of the system at every
state resulting from the set of couple (QP,t−1, nt−1). This is what is made on Figure 12
by constructing diagrams of the direction of the reaction of the system under the oligop-
sonistic option and the monopsonistic option. Those enable to highlight the steady states
equilibrium of the system, when both the primary agricultural production and the number
of factories remain steady.
We notice that both under the monopsonistic and the oligopsonistic options, there exists

Figure 12: Diagrams of the long-run dynamic reaction of the moder under oligopsonistic
and monopsonistic option

multiple dynamic steady state equilibria where the number of factories in the processing
industry and the domestic primary product supply stay constant. This proves the existence
of possible hysteresis in this dynamic model of an agri-food sector. We can imagine that
initial conditions or exogenous shocks can put the system at one equilibrium or another.

Among the several equilibria, a higher domestic primary agricultural production coin-
cides always with a bigger number of factories in the domestic processing industry. This
proves the existence of aggregation economies, with the synergy between farmers that gat-

32



her and produce the same primary product in a region to supply enough for a domestic
processing industry to flourish.

5 Dynamic simulations

In this section, we present some examples of results of dynamic simulations made with
this model, calibrated on some hypothetical cases. Those simulations have been made
under the oligopsonistic option of the model, however some similar results can be observed
under the monopsonistic option. The parameters of the system for those simulations are
presented in Appendix B

5.1 Hysteretic behavior

Figures 13 and 14 present the results for the domestic primary production QP,t, the do-
mestic price of the primary product Pdom,t, the number of factories nt, the total regional
production of final processed product Qregion

F,t = QF,t · nt and its price PF,t. In both simu-
lation, the system is first at a steady state for the first 30 years so all variables are stable
from t = 2020 to t = 2030. We then shock the exogeneous price of the final processed
product PF,t for ten years from 2031 to 2041 with a down-shock for the first simulation on
Figure 13 and an up-shock on the second on Figure 14.

We can notice on Figure 13 that on the first two years of the shock, the number nt of
factories remains constant. This is because the durability of the factories does not give
incentives to the industry to abandon factories before they reach obsolescence, as they have
already been paid for. We notice that in these first two years of the shock, the price of
the primary product first decrease in 2031 by transmission of the down-shock on the final
product price, however this price spike again in 2032. This is because in 2032, the domestic
primary production has reduced following the decrease of the price in 2031. However, the
demand remains high in the short-run because some factories are still in place. So this
imperfect adjustment in time gives temporarily an erratic movement to prices and supply.

In 2033, the number of factories starts to decrease to reach 0 in 2034. Then, all the
endogenous variables of the model are brought down, in particular the price of the primary
product and subsequently the domestic primary production. We observe that after the
down-shock on the price of the final product is over in 2041, no factories are set-up again,
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the price of the primary product and the domestic production remain low. This is then an
example of hysteretical behavior. The system has reached and remain in a low production
steady-state equilibrium. As a consequence of agglomeration economies, no company has
incentives to enter the market as the domestic production of input appear too low and
reciprocally, the price of the primary product is too low to make more farms switch to the
production of primary product again.

Figure 13: Dynamic evolution of the local agri-food system in the case of a down-shock on
the final product price

On Figure 14, where we simulate a symmetrical up-shock on the price of the final
processed product, the results are quite different. The number of factories increases dra-
matically as well as the price of the input and the production of final product as soon
as 2042, the year following the shock. This is because the processing industry build new
factories to take advantage of this high price as soon as it have perceived it. However,
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the domestic production of primary product remains stable as it has reached its maximum
regional production. Therefore, the processing industry imports most of its input. Once,
the shock is over, the number of factories remains high for 5 years as some have been built
in the last year of the shock. This keeps the demand for primary product high in the
short-run and therefore its price. However, once these factories reach their obsolescence,
the number of factories gets back to its pre-shock level and the system reach back to its
original steady stade equilibrium. Therefore, the hysteresis in this case is limited in time.

Figure 14: Dynamic evolution of the local agri-food system in the case of a up-shock on
the final product price

5.2 Cyclical behavior

The simulation presented on Figure 15 is rather similar to the one on Figure 14. The sy-
stem is at the origin at a productive steady state equilibrium and we impose an up-shock
on the price of the final processed product, here for 5 years from 2036 to 2041. However,
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in this case the steady state does not correspond to the maximum regional production of
primary product.

We then observe similar results as in the simulation on Figure 14, however this time,
the system does not transition back to its original steady state equilibrium. Imperfect
adjustment in time due to coordination problems among the agents and the lag between
long-run investment decision and the short-run market consequences will make the system
enter a cyclical behavior. Never the local production of primary product and the number
of factories will reach simultaneously there steady-state level, therefore making the system
impossible to stabilize.

Figure 15: Dynamic evolution of the local agri-food system in the case of a up-shock on
the final product price

This is a consequence of the durability of capital in the model and lags between inves-
tment decisions and production. They create those cycles due to imperfect coordination
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leading to over- and under-investment periods. This feature is particularly interesting as
we can find such business cycles in real agri-food sectors (Rieu, 1998; Aadland, 2004; Gouel,
2012). However, on a modeling perspective, this makes the model potentially unstable with
an erratic behavior due to the intersection of multi-equilibria and cyclical behavior. If this
feature can be representative of a reality, it makes the results complicated to analyze and
very dependent to the original calibration.

6 Conclusion

The model presented in this paper is a first attempt at representing the agglomeration
economies that can arise in agri-food sectors. We show that the specification of indivisible
sunk-costs in the processing industry and transport costs for trade between a domestic re-
gion and another can generate agglomeration economies across the value-chains. We show
that such external economies of scale can generate multiple steady-state dynamic equilibria
and therefore be the source of an hysteretic behavior of the local agri-food system.

Krugman (1991) has shown the importance of the expectation specification to determine
the equilibrium toward which an economy with multiple potential equilibria will evolve.
We therefore underline the importance of the agents’myopic anticipations assumption in
our model to generate the hysteresic behavior of the system. Indeed, we can imagin that
a better coordination among the farmers as well as with processing industry would enable
the model to always reach the most productive equilibrium. This could be the object of a
future option to describe an integrated structure of the local agri-food sector.

This model has been build as a first step toward the integration of aggregation eco-
nomies and hysteresis in applied model. The duality of the model specification between
a short-run partial equilibrium model and a recursive long-run dynamic could enable the
model to be plugged to a bigger general-equilibrium model in the future. This could allow
the description of the hysteretic consequences of trade shocks transmission from a global
system to one region’s agri-food sector.

However, numerous modeling challenges remain before reaching this goal. In particu-
lar, the description of the processing industry’s market power would generate substantial
complications to keep integrating the anticipation of the rest of the whole market’s reaction
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to its input demand in its short-run optimization program. Some further assumption on
short-run anticipations could enable to tackle this issue. Applying the model to empirical
cases would also represent a major calibration challenges. It could be particularly difficult
to get relevant informations regarding the capital’s durability and state of obsolescence.
One would also have to consider the consequences of the heterogeneities across farms and
factories : their consequences for the model and which data would enable their description.
We may also want to represent the rest of the domestic region’s economy as some potential
linkages with labor and land markets may be relevant.

Finally, if the potentially cyclical behavior of the model is an interesting feature, giving
a representation of the imperfect coordination of the agents investments across time. It
could lead to an erratic behavior of the model, at the intersection of cyclical and multi-
equilibria behaviors. This makes the results potentially very dependent to initial situation
and calibration and overall complexify their analysis. However, this highlights the role of
capital durability and imperfect anticipations, leading to business cycles. Looking at the
resilience of the system, this also show the potential role of the obsolescence of the capital
as we can imagine that the system will not have the same resilience at different points of
business cycles.
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Appendices

A Computation of the demand for primary product
by the processing industry under perfect competi-
tion

Under perfect competition, the processing industry optimize its profit π on its demand for
primary product, considering it is price taker on this market, so that Pdom is exogenous.
It then maximize:

π = PF ·QF (DF )−DF · Pdom

= PF · α
(
βKθ + (1− β) ·

(
DF

n

)θ) 1
θ

− DF

n
· Pdom

(55)

Over DF . The first order condition is then:

∂π

∂
= 0 (56)
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It leads to:

PF · α · (1− β) · (DF )θ−1

nθ
·
(
βKθ + (1− β) ·

(
DF

n

)θ) 1−θ
θ

− Pdom
n

= 0

⇔ Pdom = PF · αθ · (1− β) ·
(
DF

n

)θ−1
·QF 1−θ

⇔ Pdom = PF · α · (1− β) ·
(
DF

n

)θ−1
·
(
βKθ + (1− β) ·

(
DF

n

)θ) 1−θ
θ

⇔ (Pdom)
θ

1−θ ·
(
DF

n

)θ
= (PF · α · (1− β))

θ
1−θ ·

(
βKθ + (1− β) ·

(
DF

n

)θ)

⇔
(
DF

n

)θ
·
[
(Pdom)

θ
1−θ − (1− β) · (PF · α · (1− β))

θ
1−θ

]
= (PF · α · (1− β))

θ
1−θ · βKθ

⇔ DF = n ·

 (PF · α · (1− β))
θ

1−θ · βKθ

(Pdom)
θ

1−θ − (1− β) · (PF · α · (1− β))
θ

1−θ


1
θ

(57)

B Parameters of the system in the numerical compu-
tations presented

Table 3: Parameters of the system for computation in sections 4 and 5.1

adom 1 δ 0.1
P ref
dom 100 KM 30
σdom -2 PK 45
aext 15 000 Tfarm 1
P ref
ext 150 Qfarm

P 20
σext -1.6 nF 1000
Q0 15 000 ¯Qalt

farm 20
τM 45 r 0.05
τX 50 KF 0.04325
α 1 TF 5
β 0.5 PF 105
K 40 Palt 12
θ -0.2

b /
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Table 4: Parameters of the system for computation in section 5.2

adom 1 δ 0.1
P ref
dom 100 KM 30
σdom -2 PK 45
aext 15 000 Tfarm 1
P ref
ext 150 Qfarm

P 40
σext -1.6 nF 1000
Q0 15 000 ¯Qalt

farm 20
τM 45 r 0.05
τX 50 KF 0.087
α 1 TF 5
β 0.5 PF 105
K 40 Palt 75
θ -0.2
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