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ABSTRACT 

Simulation models are powerful tools that help us understand, analyze, and explain dynamic, complex 

systems. They provide empirical methodologies to explore how systems and agents behave and consider 

how they may change when responding to shocks and stresses. The power of these tools, however, 

depends on the quality of the data on which they are built. Many complex systems studied in the social 

sciences, including economic systems, are characterized by sparseness of available data on behavioral 

characteristics and system outcomes. Generally, there is no single data source that can provide all the 

necessary information and detail for building a complex, structural, simulation model. Even where good 

data are available, few datasets are “model ready” without a lot of processing and cleaning. To populate 

models with data requires significant effort to stitch together a complete, coherent, and model-

consistent dataset from a multitude of sources that vary in scope, time-scale, completeness, and quality. 

Due to information scarcity and variable quality, this challenge is well-suited to a Bayesian approach to 

efficiently use all available data. To this end, we present a data management system where we apply 

information theoretic, cross-entropy estimation methods to various FAO agricultural datasets to 

generate a complete global database of agricultural production, demand, and trade for use in IFPRI’s 

IMPACT model, a global agricultural partial equilibrium multi-market model. We will describe the 

information theory that serves as the foundation of this methodology, as well as the practical 

implementation for use in IMPACT.  

This data estimation methodology was developed for a partial equilibrium modeling framework, but the 

principals presented, are applicable to other data processing problems, where there is sparse and poor-

quality data (e.g., data for computable general equilibrium models). 

 

Key words: Cross-entropy estimation, Model data management system, Economic Modeling, 

Agricultural Economics 
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1 INTRODUCTION 1 

Models are potentially powerful tools to help understand, analyze, and explain dynamic systems. They 2 

provide systematic methodologies to test how these systems behave and how they may change over time 3 

when responding to shocks and stresses. IMPACT is such a tool. It is a partial equilibrium multi-market 4 

economic model focusing on global agriculture and food security. It has been used to analyze a variety of 5 

questions about potential future challenges to the agriculture and food system including climate change, 6 

resource scarcity, technology development, population growth, and economic growth and development. 7 

For further details on IMPACT, model design, types of analysis it has been used in, and history and 8 

development of the model please see Robinson et al. (2015). 9 

To analyze such complex questions, IMPACT has been greatly disaggregated to provide many coupling 10 

points to incorporate data and knowledge from a variety of disciplines (i.e. agronomy, economics, climate 11 

science, crop modeling, etc.) to better simulate the complex dynamics of the global agriculture sector. 12 

This, however, presents unique data challenges. Data sources vary in scope, time scale, completeness, 13 

and quality. Thus, significant effort is required to manage this data to ensure consistency within the model 14 

across all these data sources. Due to the scale of IMPACT (158 countries, 62 commodity markets, and 15 

long-term time horizons) and the need to update the model on a regular basis to ensure policy relevance, 16 

it was critical to develop a systematic and efficient methodology to manage the IMPACT database.  17 

We will explain an efficient data management system that has been applied for IMPACT. In so doing, 18 

we will first summarize the theoretical underpinnings of information science upon which our approach is 19 

based. We will then describe the data problem and data requirements of IMPACT, and then describe the 20 

process used to combine and synthesize all of the disparate data sources for building IMPACT’s base year 21 

dataset. The data estimation problem we present will be focused on IMPACT, a partial equilibrium model. 22 

Nevertheless, the challenges of building consistent and harmonized datasets is a general modeling 23 
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challenge, and similar methodologies can and have been applied in other modeling environments 24 

(Robinson et al., 2001; Arndt et al., 2002; Go et al., 2016).   25 

2 METHODS AND DATA 26 

2.1 REVIEW OF THEORY AND LITERATURE 27 

The IMPACT data management system follows a Bayesian work plan, where new information can be 28 

efficiently added by adjusting appropriate priors and error estimates (Figure 1). Ultimately the goal of this 29 

process is to recover parameters and data that we have observed imperfectly. This process has a goal of 30 

estimating parameters, as opposed to predicting them, in contrast to the standard statistical approach 31 

where there is more data available. It is a powerful methodology that systematically identifies incomplete 32 

or unlikely priors, by testing them with all available information while making few assumptions on 33 

information we do not have. When this information suggests our initial priors are incorrect, we adjust 34 

them based on this information. It can also highlight where additional information is likely needed when 35 

certain priors become more unlikely.  36 

Figure 1 Illustrating the Bayesian Work Plan 37 

 

“Information”a changes rational beliefsb

 

Notes: a “Information” is whatever leads to a change in “beliefs”.  38 
b “Rational” means agents rely on “information” or “evidence” in making decisions. 39 

Source: Adapted from a presentation given by Ariel Caticha (2010) 40 
 41 

Priors on values and 
estimation errors of 

production, demand, 
and trade

Estimation by 
Cross-Entropy 

Method

Check results 
against priors and 
identify potential 

data problems

New information to 
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This methodology is based on information theory and is powerful in large part because it is flexible, 42 

allowing us to use different types of information (extremely valuable when working in a data sparse 43 

environment). However, to do this it requires us to consider how we measure the content of any new 44 

piece of information. The informational content in information theory is determined by how much new 45 

information is added to our understanding of the data. If we have high confidence in a prior, and new 46 

information confirms our prior, then the added content is relatively low. In contrast, if the information 47 

forces us to reexamine our prior, then the content of this additional information is high, as it is changing 48 

our current understanding of the data. Claude Shannon (1948), while working at AT&T, developed this 49 

measure of “information content”, which can be summarized by the following equations, where h is the 50 

content of information, and p is the probability that our prior is correct. If the prior is certain (p=1) then 51 

the content of any additional information is 0, and if the prior is certain to be wrong (p=0), the content of 52 

this new information is infinite. 53 

ℎ(𝑝) = log(1 𝑝⁄ ) 54 
𝐼𝐹 𝑝 = 1, 𝑡ℎ𝑒𝑛 ℎ(𝑝) = 0 55 
𝐼𝐹 𝑝 = 0, 𝑡ℎ𝑒𝑛 ℎ(𝑝) = ∞ 56 

This can be further developed into an entropy measure, which allows us to estimate the expected 57 

information content for a series of information events (k), before they arrive in the following way. 58 

𝐻(𝑝) = ∑ 𝑝𝑘 ∙ ℎ(𝑝𝑘)

𝑛

𝑘=1

= ∑ 𝑝𝑘 ∙ log(𝑝𝑘)

𝑛

𝑘=1

, 𝑎𝑛𝑑  59 

∑ 𝑝𝑘

𝑘

= 1 60 

Following E.T. Jaynes (1957, 1982, 2003), this entropy measure was applied in the maximum entropy 61 

approach, where the idea of estimating probabilities or frequencies was first attempted. Maximum 62 

entropy (ME) estimation is achieved by finding the solution from all of the probability distributions, 63 

consistent with the estimation constraints, which maximizes Shannon’s entropy metric (maximum 64 

uncertainty). We then apply Kullback-Leibler’s cross entropy (CE) approach, where the estimation 65 
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problem was redefined as estimating “divergence”1 of estimated probabilities, which satisfy various 66 

constraints or conditions, from the original prior. 67 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 68 

 ∑(𝑝𝑘 ∙ log(𝑝𝑘 �̅�𝑘⁄ )) = ∑ 𝑝𝑘 ∙ (log(𝑝𝑘) − log(�̅�𝑘))

𝑘𝑘

, 69 

 𝑤ℎ𝑒𝑟𝑒 �̅� 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  70 

Both ME and CE are similar approaches, and in fact, when the prior is specified as a uniform distribution, 71 

the CE estimate is equivalent to the ME estimate. This is a particularly useful relationship when working 72 

in a sparse data setting, where often the most appropriate assumption is the uniform distribution, which 73 

essentially asserts that all “events” are equally unlikely to occur. 74 

To estimate using cross entropy it is necessary to define the type of information that can be directly 75 

used. Two types of information are needed: (1) prior distributions of the probabilities of events, and (2) 76 

moments within these distributions. The second type of information can include a wide variety of data 77 

types, and can be specified as inequalities, data points with errors, or summary statistics like means, 78 

medians, or quantiles. Once this information is collected, the CE estimation is done in the following way: 79 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑝𝑘: 80 

∑ (𝑝𝑘 ∙ ln (
𝑝𝑘

�̅�𝑘
⁄ ))

𝐾

𝑘=1

 81 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 𝑎𝑏𝑜𝑢𝑡 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 82 

∑(𝑝𝑘 ∙ 𝑥𝑡,𝑘)

𝐾

𝑘=1

= 𝑦𝑡 83 

𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑑𝑑𝑖𝑛𝑔 𝑢𝑝 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑓𝑖𝑛𝑖𝑡𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 84 

∑(𝑝𝑘)

𝐾

𝑘=1

= 1 85 

To estimate the point of maximum entropy in our relationship we need to use Lagrange multipliers (L), 86 

which we calculate with the following equation. 87 

                                                           
1 Divergence is not a measure of distance., and is not symmetric and thus does not satisfy the triangle 
inequality 
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𝐿 = ∑ (𝑝𝑘 ∙ ln (
𝑝𝑘

�̅�𝑘
⁄ ))

𝐾

𝑘=1

+ ∑ (𝜆𝑡 ∙ (𝑦𝑡 − ∑(𝑝𝑘 ∙ 𝑥𝑡,𝑘)

𝐾

𝑘=1

))

𝑇

𝑡=1

+ 𝜇 (1 − ∑(𝑝𝑘)

𝐾

𝑘=1

) 88 

The first order conditions of the CE estimation are therefore: 89 

0 = ln 𝑝𝑘 − ln �̅�𝑘 + 1 − ∑(𝜆𝑡 ∙ xt,k)

𝑇

𝑡=1

− 𝜇 90 

0 = 𝑦𝑡 − ∑(𝑝𝑘 ∙ 𝑥𝑡,𝑘)

𝐾

𝑘=1

 91 

0 = 1 − ∑(𝑝𝑘)

𝐾

𝑘=1

 92 

This leads to the following equation, which can be thought of a non-parametric Bayesian estimator, 93 

transforming the prior and sample information into posterior estimates of probabilities.  is called a 94 

“partition function” and normalizes the estimated probabilities so that they sum to one. If all the 95 

constraints are nonbinding, the lambdas will equal zero, and the estimated posterior (�̃�𝑘) are equal to the 96 

prior (𝑝𝑘̅̅ ̅). When this happens then the estimation procedure has added no additional information. If 97 

however, the constraints are binding, then the estimated weights will depend on the prior, the value of 98 

the lambdas, and the values of the data (X). 99 

�̃�𝑘 =
�̅�𝑘

Ω(𝜆1, 𝜆2, … , 𝜆𝑇)
∙ 𝑒∑ (�̃�𝑡∙𝑥𝑡,𝑘)𝑇

𝑡=1  100 

𝑤ℎ𝑒𝑟𝑒 101 

Ω(�̃�) = ∑ (�̅�𝑘 ∙ 𝑒∑ (�̃�𝑡∙𝑥𝑡,𝑘)𝑇
𝑡=1 )

𝐾

𝑘=1

 102 

This gives us a method to estimate probabilities from information; however, in economics, and 103 

specifically for IMPACT, we want to estimate parameters to build a balanced and consistent data set. To 104 

move from estimating probabilities to estimating parameter values we must adjust how the errors are 105 

specified and convert our problem of estimating errors to one of estimating probabilities. First, we need 106 

to specify the information we have available, such as parameters (e.g. areas, production, demand, trade, 107 

etc.), technology coefficients (e.g. yields, input-output coefficients, etc.), and a prior distribution of the 108 
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measurement error the means, standard errors, and whether we can assume an informative or 109 

uninformative prior distribution. We generate our initial prior as a best estimate of all available data be it 110 

values or technology coefficients, using a combination of historical statistics and expert knowledge. Next 111 

we need to define the error in our estimation. The error can be assigned to either the technology 112 

coefficients or the values, depending on what data is available. The errors can be specified as either 113 

additive or multiplicative. For IMPACT’s data estimation, we specified additive errors, which allows the 114 

error to be positive or negative, which can potentially change the sign of the estimated value, a useful 115 

characteristic in the data we are currently using where numbers can change from positive to negative (e.g. 116 

net trade). The following set of equations explain the generic error specification of an additive error, 117 

where x is the estimated value, �̅� is the prior, e is the error, �̅� is the error support set, and W are the 118 

probabilities that will be estimated. 119 

𝑥𝑖 = �̅�𝑖 + 𝑒𝑖  120 

𝑒𝑖 = ∑(𝑊𝑖,𝑘 ∙ �̅�𝑖,𝑘)

𝑘

, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑊𝑖,𝑘 ≤ 1 𝑎𝑛𝑑 ∑ 𝑊𝑖,𝑘

𝑘

= 1 121 

The support set (�̅�) gives us the technique to move from estimating values in natural units (i.e. hectares, 122 

tones, etc.) to the information approach where the parameters are estimated as probabilities. The support 123 

set is defined based on the available knowledge of the prior distribution, and can range from 124 

uninformative to varying levels of informative priors (depending on knowledge of the error distribution). 125 

Table 1 summarizes what information is needed and how to specify the support set and priors.  126 
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Table 1 Specifying the Support Set 127 

Information Needed Priors Support Set 

Uninformative Prior 

Approximate the uniform 
distribution applying 
bounds on the error at 
(±3sa) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎𝑖
2 = ∑(�̅�𝑖,𝑘 ∙ �̅�𝑖,𝑘

2 )

𝑘

, 𝑤ℎ𝑒𝑟𝑒 �̅�𝑘 =
1

7
 

 

𝜎𝑖
2 =

𝑠2

7
∙ (0 + 4 + 1 + 1 + 4 + 9) = 4𝑠2 

�̅�𝑖,1 = −3𝑠 

�̅�𝑖,2 = −2𝑠 

�̅�𝑖,3 = −𝑠 

�̅�𝑖,4 = 0 

�̅�𝑖,5 = +𝑠 

�̅�𝑖,6 = +2𝑠 

�̅�𝑖,7 = +3𝑠 

Informative Priors 

Knowledge of the mean 
and the variance of the 
error distribution  

(2 parameters) 

 

𝑀𝑒𝑎𝑛: ∑(𝑊𝑖,𝑘 ∙ �̅�𝑖,𝑘)

𝑘

= 0 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒: ∑(𝑊𝑖,𝑘 ∙ �̅�𝑖,𝑘
2 )

𝑘

= 𝜎𝑖
2 

 

𝜎𝑖
2 = (�̅�𝑖,1 ∙ 9𝜎𝑖

2) + (�̅�𝑖,2 ∙ 0) + (�̅�𝑖,3 ∙ 9𝜎𝑖
2),

𝑤ℎ𝑒𝑟𝑒 �̅�𝑖,1 = �̅�𝑖,3 =
1

18
 ;  �̅�𝑖,2 =

16

18
 

 

�̅�𝑖,1 = −3𝜎𝑖  

�̅�𝑖,2 = 0 

�̅�𝑖,3 = +3𝜎𝑖  

Knowledge of the mean, 
variance, skewness, and 
kurtosis  

(4 parameters) 

 

𝑀𝑒𝑎𝑛 𝑎𝑛𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑎𝑏𝑜𝑣𝑒 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠: ∑(𝑊𝑖,𝑘 ∙ �̅�𝑖,𝑘
3 )

𝑘

= 0 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠: ∑(𝑊𝑖,𝑘 ∙ �̅�𝑖,𝑘
4 )

𝑘

= 3𝜎𝑖
4 

 

𝜎𝑖
2 = (�̅�𝑖,1 ∙ 9𝜎𝑖

2) + (�̅�𝑖,2 ∙
9

4
𝜎𝑖

2) + (�̅�𝑖,3 ∙ 0) + (�̅�𝑖,4 ∙
9

4
𝜎𝑖

2)

+ (�̅�𝑖,5 ∙ 9𝜎𝑖
2) 

3𝜎𝑖
4 = (�̅�𝑖,1 ∙ 81𝜎𝑖

4) + (�̅�𝑖,2 ∙
81

16
𝜎𝑖

4) + (�̅�𝑖,3 ∙ 0) + (�̅�𝑖,4 ∙
81

16
𝜎𝑖

4)

+ (�̅�𝑖,5 ∙ 81𝜎𝑖
4), 𝑤ℎ𝑒𝑟𝑒 

         �̅�𝑖,1 = �̅�𝑖,5 =
1

162
; �̅�𝑖,2 = �̅�𝑖,4 =

16

81
;  𝑎𝑛𝑑 �̅�𝑖,3 =

48

81
 

 

�̅�𝑖,1 = −3𝜎𝑖  

�̅�𝑖,2

= −1.5𝜎𝑖  
�̅�𝑖,3 = 0 

�̅�𝑖,4 =

+1.5𝜎𝑖  
�̅�𝑖,5 = +3𝜎𝑖  

Notes: a s is a constant and is used to approximate the uniform distribution 128 
 129 

2.2 DATA 130 

IMPACT is a large and highly disaggregated global economic model simulating more than 60 commodity 131 

markets in 158 countries. Additionally, this economic model is coupled with water models to estimate the 132 

effects of water availability on agricultural productivity. This coupling requires further disaggregating 133 

production by irrigated and rainfed production systems, as well as disaggregating production into 320 134 
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sub-national geographical units, called Food Production Units (FPUs), which are defined as the 135 

intersection of country boundaries and watersheds (Robinson et al., 2015). Table 2 summarizes IMPACT’s 136 

initial data requirements. 137 

Table 2 IMPACT data requirements in the model base year 138 

Data Source Geographic 
Scope 

IMPACT Parameter Commodity 
Requirement 

Unit 

OECD-AMADa Global World Prices All commodities USD/metric tonnes (mt) 

WDIb and  

CIA World 
Factbookc 

National Population 

GDP 

- 

- 

Million 

Billion USD, PPP 

FAOSTATd 
Commodity 
Balances 

National Total Supply 

- Animal Numbers 

- Harvest Area 

- Yield 

 

Total Demand 

- Food Demand 

- Feed Demand 

- Intermediate Demand 

- Other Demand 

 

Stock Change 

Net Trade 

All commodities 

Livestock only 

Crops only 

Crops & livestock 

 

All commodities 

All commodities 

All commodities 

All commodities 

All commodities 

 

All commodities 

All commodities 

000 mt 

000 producing animals 

000 hectares (ha) 

mt/ha 

 

000 mt 

000 mt 

000 mt 

000 mt 

000 mt 

 

000 mt 

000 mt 

FAOSTAT 

Food Supply 

National Calorie Availability 

Food Supply Quantity 

Food Supply 

- 

Food 
commodities 

Food 
commodities 

kcal/person/day 

kg/capita/yr 

kcal/commodity/person/day 

FAO AquaState 

and OECDf 

National Total Irrigated Area 

Irrigated Crop Area 

 

Crops only 

000 ha 

000 ha 

IFPRI SPAMg FPU 
(aggregated 
from pixels) 

By production system 
(irr/rfd): 

- Harvest Area 

- Yield 

- Production 

 

 

Crops only 

Crops only 

Crops only 

 

 

000 ha 

mt/ha 

000 mt 

Notes: a OECD’s Agricultural Market Access Database (OECD, 2010) 139 
b World Bank’s World Development Indicators (World Bank, 2014)  140 
c U.S. CIA World Factbook used when data missing from WB (US CIA, 2014)  141 

 d FAO’s FAOSTAT Database (FAO, 2015a) 142 
 e FAO’s AquaStat Database (FAO, 2015b)  143 

f OECD Agriculture Statistics (OECD 2014)  144 
 g IFPRI’s Spatial Production Allocation Model (You et al., 2014) 145 
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The challenge of merging all this data is significant. Each dataset has its own metadata, with varying 146 

geographic and commodity focus and definitions. This requires developing protocols to stitch together all 147 

this data to the regional and commodities used in IMPACT. Additionally, IMPACT provides a logical 148 

framework, which serves as additional data estimation constraints, as the product of this data processing 149 

exercise should be the base year solution of the model. The following rules of IMPACT’s equilibrium 150 

solution are applied as data estimation constraints: 151 

1. There is an equilibrium for every commodity market, which is defined in IMPACT as:  152 

a. ∑ 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑 = ∑ 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦𝑐𝑡𝑦𝑐𝑡𝑦 , and  153 

b. ∑ 𝑁𝑒𝑡𝑇𝑟𝑎𝑑𝑒𝑐𝑡𝑦 = 0 154 

2. Nationally, there must be a perfect accounting of production, demand and trade: 155 

a. 𝑁𝑒𝑡𝑇𝑟𝑎𝑑𝑒 = 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦 − 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑 156 

3. Production is defined by 2 general accounting rules 157 

a. For crops and livestock: 𝑆𝑢𝑝𝑝𝑙𝑦 = 𝐴𝑟𝑒𝑎 (𝑜𝑟 𝑎𝑛𝑖𝑚𝑎𝑙𝑠) × 𝑌𝑖𝑒𝑙𝑑 158 

b. For processed commodities, the mass of inputs must be equal to or greater than the 159 
mass of outputs (including waste): 160 
 ∑ 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑛𝑝𝑢𝑡 ≥ ∑ 𝑆𝑢𝑝𝑝𝑙𝑦𝑜𝑢𝑡𝑝𝑢𝑡  161 

4. Total demand is the sum of all demand types 162 

a. 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐹𝑜𝑜𝑑 + 𝐹𝑒𝑒𝑑 + 𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 + 𝑂𝑡ℎ𝑒𝑟 163 

However, many of these conditions are not likely to be found in the dataset. Additionally, the various 164 

geographic and commodity definitions across data sets poses a major challenge in fitting the data to 165 

IMPACT’s logical framework, as does the poor quality and completeness of the data available. IMPACT 166 

works at a more spatially disaggregated level than at the country-level at which most of the statistics used 167 

in IMPACT are reported. This requires then not only balancing the national statistics using the above rules, 168 

but also then disaggregating production and demand. The data that is used to disaggregate the national 169 

numbers, come from different datasets (FAO’s AquaStat, and IFPRI’s SPAM), which are not assured to 170 

match up with our national statistics (FAOSTAT). To work around this problem the data from AquaStat 171 
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and SPAM are treated as shares, which are then used to calculate disaggregated numbers, such that the 172 

following is true: 173 

5.  𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑆𝑢𝑝𝑝𝑙𝑦 = ∑ (∑ (𝑆𝑢𝑝𝑝𝑙𝑦)𝑓𝑝𝑢 )𝑙𝑎𝑛𝑑𝑡𝑦𝑝𝑒 .  174 

In a smaller model, one could imagine doing all this balancing and cleaning process carefully by hand 175 

or given sufficient time in an iterative adjustment process that slowly converges to a solution. 176 

Nevertheless, due to the size and complexity of the database needed for a global economic model like 177 

IMPACT and the desire to be able to semi-regularly update the database, it was necessary to implement 178 

an information efficient data management system, which we will describe in the following section. 179 

2.3 ESTIMATING A CONSISTENT BASE YEAR DATASET FOR IMPACT 180 

In the previous sections, we summarized the information theory upon which our data estimation is based, 181 

as well as the range of data inputs that are currently being used. This section will focus on explaining the 182 

practical steps that are required to implement the theory in an estimation program written in GAMS. The 183 

IMPACT data management applies the cross-entropy approach in 3 stages that progressively harmonizes 184 

country-level data and subsequently disaggregates it sub-nationally to incorporate data on crop 185 

production systems (irrigation and rainfed) and watersheds. In this process the results of the solution of 186 

previous stages of estimation serve as priors and constraints to subsequent stages of estimation (Figure 187 

2). Breaking up the overall estimation process into 3 smaller estimation problems has the benefit of 188 

allowing each problem to be designed modularly, which allows each step to be run in isolation, or 189 

combined if desired. For example, if one wanted to run a partial equilibrium model without IMPACT’s sub-190 

national units it would be possible to run the 1st stage of estimation, without running the 2nd and 3rd stages.   191 
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Figure 2 The 3 stages of estimating a complete IMPACT ready data set 192 

 193 
 194 

The first stage, where we reconcile various country-level data sources into an IMPACT consistent 195 

dataset, is the largest of the 3 estimation problems, requiring most of the data collection and data 196 

cleaning, and for this reason, in this paper we will focus on this stage of the data estimation. Figure 3 197 

summarizes the different steps involved in the first stage of estimation, which involves significant data 198 

cleaning, setting priors, and finally the cross-entropy estimation.  199 

Figure 3 First data estimation problem: Balancing FAOSTAT 200 

 201 

1. Estimate IMPACT country-level database

Data Input

•FAOSTAT, and other Country 
Statistics

•Assumptions on data quality and 
errors

Data Output

•Balanced country-level database 
satisfying IMPACT equilibrium 
requirements

2. Disaggregate production by production systems

Data Input

•Balanced country-level database

•AquaStat and SPAM - estimates 
on share of areas and 
production by production 
system

Data Output

•Country-level dataset with 
disaggregated production that is 
consistent with dataset in step 1

3. Disaggregate production to FPU

Data Input

•Disaggregated country-level 
data set that is disaggregated by 
production system

•SPAM - estimates on share of 
areas and production by FPU

Data Output

•FPU-level production that adds 
up to the country-level data sets 
estimated in steps 1 and 2

IMPACT 3 FAOSTAT Database

Data Estimation with Cross Entropy

Nationally: Trade = Supply - Demand Nationally: Area X Yield = Supply Globally: Supply = Demand

Data Cleaning and Setting Priors

Crop Production Livestock Production Demand and Trade Processed Commodities

Data Collection

FAO Commodity Balance Sheets FAO Production Tables
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Most of the data used to set our initial priors is drawn from various FAO datasets (i.e. FAOSTAT’s 202 

ProdStat and Commodity Balance Sheets). The data for the years 2004-2006 was downloaded and loaded 203 

in GAMS and mapped from FAO to IMPACT regions and commodities. We did this to allow us to better 204 

identify outliers in the dataset, and to capture data that might have been unreported in any year. Once 205 

mapped, we calculate a 3-year average centered on 2005, IMPACT’s base year, and using a suite of 206 

diagnostics statistics we started the process of recapturing missing data. For example, if we had a value 207 

for area and production, but the value for yield was missing, we estimated the yield by dividing the 208 

production by the area. Where the challenge of recapturing missing or replacing erroneous data was more 209 

difficult, we used alternative data sources (e.g. national statistics) or estimated priors based on global or 210 

regional averages or medians. For example, we replaced extreme low values for crop yields by estimating 211 

a minimum yield floor that is drawn from the global distribution of yields. This preliminary stage of data 212 

cleaning is essential, in that we are incorporating as much information as possible in our initial priors. The 213 

better the priors the better our data estimation will be. Poorly informed priors, on the other hand, may 214 

lead to an infeasible estimation problem, where it is not possible to find a solution that satisfies all the 215 

constraints. From our experience, it is almost impossible to get a solution on the first attempt when 216 

working with large data sets. Nevertheless, the infeasible solution outputs from GAMS solvers2 combined 217 

with good diagnostic code can point to which priors are especially problematic and need to be reviewed 218 

(Bayesian Workplan). 219 

After we cleaned the data inputs, and established priors on parameter values, we needed to 220 

determine if there is any information on parameter error distributions. To do this we decided on a applied 221 

a tiered hierarchy of data quality for the data inputs used. This hierarchy describes, the quality of the data, 222 

                                                           
2 We used various solvers including CONOPT, IPOTH, KINITRO, and MOSEK while testing the estimation 
model. Ultimately we preferred using CONOPT, and MOSEK with respect to speed and the usefulness of 
solver error outputs. 
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and in which parameter values we have higher confidence. This hierarchy was developed through 223 

extensive conversation with commodity experts, and with the statistics division at FAO. The tiers are as 224 

follows: high confidence (areas3, and supply), medium confidence (food demand, livestock feed demand, 225 

and intermediate demand), and low confidence (other demand, stock change, exports, and imports). For 226 

the high and medium confidence tiers we applied a 5 support element set, with the difference between 227 

the high and medium based on the allowable size of the error. The low confidence tiers were allowed 228 

even larger errors and were assumed to have uninformative error distributions. Table 3 summarizes the 229 

estimated parameters, along with assumptions on the error distribution. Using the σ specified below for 230 

each parameter we calculate �̅� (prior on error probabilities), and �̅� (support set for error) for each 231 

parameter following the equations explained in Table 1. 232 

Table 3 Specifying cross-entropy error estimation 233 

 Parameter Assumption on  

Error Distribution 

Element  

Support 
Set 

Prior on σ  

Area (ARA)   0 ∙ 𝐴𝑅𝐴𝑗,𝑐𝑡𝑦  

Supply (QS) Informative 5a ±0.1 ∙ 𝑄𝑆𝑗,𝑐𝑡𝑦
b  

Food Demand (QF) Informative 5 ±0.5 ∙ 𝑄𝐹𝑗,𝑐𝑡𝑦  

Livestock Feed Demand (QL) Informative 5 ±0.5 ∙ 𝑄𝐿𝑗,𝑐𝑡𝑦  

Intermediate Demand (QINT) Informative 5 ±0.5 ∙ 𝑄𝐼𝑁𝑇𝑗,𝑐𝑡𝑦  

Other Demand (QOTH) Uninformative 7 ±0.5 ∙ 𝑄𝑂𝑇𝐻𝑗,𝑐𝑡𝑦  

Stock Change (QST) Uninformative 7c ± max[0.05 ∙ (𝑄𝑆𝑗,𝑐𝑡𝑦

+ 𝑄𝐷𝑗,𝑐𝑡𝑦), |𝑄𝑆𝑇𝑗,𝑐𝑡𝑦|] 

 

Imports (QM) Uninformative 7d ± max[0.5 ∙ (𝑄𝑀𝑗,𝑐𝑡𝑦), 0.5 ∙ (𝑄𝐷𝑗,𝑐𝑡𝑦)]  

Exports (QE) Uninformative 7 ± max[0.5 ∙ (𝑄𝐸𝑗,𝑐𝑡𝑦), 0.5 ∙ (𝑄𝑆𝑗,𝑐𝑡𝑦)]  

Notes: j stands for crop, and cty stands for country  234 
a All of the informative priors use the 2 parameter informative prior  235 
b Palm Oil Fruit is the lone exception with an allowable deviation of 0.15 236 
c Stock changes have a large potential deviation as this data type has very low data quality 237 
d Imports and exports need a larger deviation and are based on either the base trade flows or demand (or 238 
supply) 239 

                                                           
3 Currently, we assume FAO harvest area as a binding constraint, and don’t include this parameter in the 
cross-entropy estimation. 
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Once the priors and error distributions have been specified all that remains is to run the cross-entropy 240 

estimation model, which is defined in Box 1. The model can be broken up into 3 main pieces: 241 

1. We define the equations focused on the error terms.  242 

2. We define the equations that estimate parameter values in natural units (i.e. tons) 243 

3. We define equations which specify the estimation constraints 244 

 245 

Box 1 Country-level estimation model equations 246 

Solve Minimizing CNTRPY 

 

Entropy Equation 

𝐶𝑁𝑇𝑅𝑃𝑌 == ∑[𝑊𝑗,𝑐𝑡𝑦,𝑘 ∙ (log(𝑊𝑗,𝑐𝑡𝑦,𝑘 + ∆) − log(�̅�𝑗,𝑐𝑡𝑦,𝑘 + ∆))] , 𝑤ℎ𝑒𝑟𝑒 ∆= 1𝑒−6 

 

Sum of Errors by crop (j) and country (cty) 

∑ 𝑊𝑗,𝑐𝑡𝑦,𝑘

𝑘

== 1 

 

Error Equation 

𝐸𝑅𝑅𝑗,𝑐𝑡𝑦 == ∑(𝑊𝑗,𝑐𝑡𝑦,𝑘 ∙ �̅�𝑗,𝑐𝑡𝑦,𝑘)  

 

Supply Equation 

𝑄𝑆𝑗,𝑐𝑡𝑦 == 𝑞𝑠̅̅ ̅𝑗,𝑐𝑡𝑦 + 𝐸𝑅𝑅𝑗,𝑐𝑡𝑦 

 

Demand Equations 

𝑄𝐹𝑗,𝑐𝑡𝑦 == 𝑞𝑓̅̅
�̅�,𝑐𝑡𝑦 + 𝐸𝑅𝑅𝑗,𝑐𝑡𝑦  

𝑄𝐿𝑗,𝑐𝑡𝑦 == 𝑞�̅�𝑗,𝑐𝑡𝑦 + 𝐸𝑅𝑅𝑗,𝑐𝑡𝑦  

𝑄𝐼𝑁𝑇𝑗,𝑐𝑡𝑦 == 𝑞𝑖𝑛𝑡̅̅ ̅̅ ̅̅ 𝑗,𝑐𝑡𝑦 + 𝐸𝑅𝑅𝑗,𝑐𝑡𝑦 

𝑄𝑂𝑇𝐻𝑗,𝑐𝑡𝑦 == 𝑞𝑜𝑡ℎ̅̅ ̅̅ ̅̅
𝑗,𝑐𝑡𝑦 + 𝐸𝑅𝑅𝑗,𝑐𝑡𝑦 

𝑄𝐷𝑗,𝑐𝑡𝑦 == 𝑄𝐹𝑗,𝑐𝑡𝑦 + 𝑄𝐿𝑗,𝑐𝑡𝑦 + 𝑄𝐼𝑁𝑇𝑗,𝑐𝑡𝑦 + 𝑄𝑂𝑇𝐻𝑗,𝑐𝑡𝑦 

 

Trade Equations 
𝑄𝑆𝑇𝑗,𝑐𝑡𝑦 == 𝑞𝑠𝑡̅̅ ̅̅ + 𝐸𝑅𝑅𝑗,𝑐𝑡𝑦 

𝑄𝐸𝑗,𝑐𝑡𝑦 == 𝑞𝑚̅̅ ̅̅ + 𝐸𝑅𝑅𝑗,𝑐𝑡𝑦 

𝑄𝑀𝑗,𝑐𝑡𝑦 == 𝑞𝑒̅̅ ̅ + 𝐸𝑅𝑅𝑗,𝑐𝑡𝑦𝑁𝑒𝑡 𝑇𝑟𝑎𝑑𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 

𝑄𝑁𝑗,𝑐𝑡𝑦 == 𝑄𝐸𝑗,𝑐𝑡𝑦 − 𝑄𝑀𝑗,𝑐𝑡𝑦 

 

Country Supply Demand Balance 

𝑄𝑆𝑗,𝑐𝑡𝑦 == 𝑄𝑁𝑗,𝑐𝑡𝑦 + 𝑄𝐷𝑗,𝑐𝑡𝑦 + 𝑄𝑆𝑇𝑗,𝑐𝑡𝑦 

 
Constrain Exports 

𝑄𝑆𝑗,𝑐𝑡𝑦 ≥ 𝑄𝐸𝑗,𝑐𝑡𝑦 
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Global Net Trade Balance 

𝑊𝑜𝑟𝑙𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑚𝑢𝑠𝑡 𝑒𝑞𝑢𝑎𝑙 𝑊𝑜𝑟𝑙𝑑 𝐷𝑒𝑚𝑎𝑛𝑑: 

∑ 𝑄𝑁𝑗,𝑐𝑡𝑦

𝑐𝑡𝑦

= 0 

 

Yield Equation 

𝑌𝑙𝑑𝑗,𝑐𝑡𝑦 =
𝑄𝑆𝑗,𝑐𝑡𝑦

𝐴𝑅𝐴𝑗,𝑐𝑡𝑦

, 𝑤ℎ𝑒𝑟𝑒 𝑌𝑙𝑑𝑗,𝑐𝑡𝑦 ≥ 𝑌𝑖𝑒𝑙𝑑 𝐹𝑙𝑜𝑜𝑟 

 

 247 

It is possible to run all commodities simultaneously. However, as each commodity is defined as an 248 

independent estimation problem (i.e. the adding up constraints are crop specific, maize production is not 249 

a function of vegetable production). This allows each commodity to be solved independently, which allows 250 

for easier data checking and error spotting. 251 

3 RESULTS 252 

The cross-entropy estimation of a model consistent dataset is not the final step of our Bayesian Workplan. 253 

It produces a proto-database, but before we use it in IMPACT we need to review the results and determine 254 

if the results of the estimation deviate from our priors in an understandable and acceptable fashion. Did 255 

the estimation confirm our assumptions of the data we worked with, or did they raise new questions that 256 

required us to find and introduce new information to improve our priors and thereby the proto-database 257 

produced by the next iteration of cross-entropy estimation. In this section we will review examples where 258 

the estimation process provided low information, meaning the results did not diverge radically from the 259 

priors, as well as when it provided high information along with subsequent iterations after having applied 260 

additional information to our priors. 261 

Figure 4 summarizes the deviations from the prior for commodity supply after one round of data 262 

estimation, which we will call R1 to distinguish it from subsequent solutions. We should note that R1 was 263 

not the first iteration of our Bayesian Workplan. It is one of the later iterations selected because it allowed 264 

us to easily isolate a single data issue to illustrate how the estimation program helped to identify and 265 
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resolve data errors. In general in R1, the estimation process did a good job, with most of the estimations 266 

in aggregate not adding a lot of additional information, with most results deviating by less than 10 percent 267 

from our priors. A reasonably successful estimation given that we were solving for 5,388 different supply 268 

estimates across all commodities and countries. The mean deviation across all commodity groups was 269 

close to 0, with the largest observed standard deviation for oilseeds at ±5.35.  270 

Figure 4 Commodity supply percent deviation from Prior by commodity group 271 

 272 
Note: Blue dots represent country supply for commodities within each commodity group (e.g. U.S. wheat in cereals) 273 

Grey boxes represent area within ± σ² 274 
 275 

The relatively small deviation for supply observed in Figure 4 is in some part by design (see Table 3), 276 

in that we had a fairly tight constraint on the allowable error around commodity supply, suggesting that 277 

we must also review the results of deviations to other parameters to assess the quality of the proto-278 

dataset from R1. Figure 5 summarizes the percent deviation for commodity demand for R1. The size of 279 

deviations for demand are unsurprisingly higher given our assumptions on the allowable error. In some 280 

cases, the increase in error is quite large. For example, the grey box representing the range between ±1 281 
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standard deviation for oilseeds in Figure 5 is larger than the range of all deviations for oilseeds supply seen 282 

in Figure 4, suggesting that the priors for the oilseed commodities need to be revised. 283 

Figure 5 Commodity demand percent deviation from Prior by commodity group 284 

 285 
Note: Blue dots represent country demand for commodities within each commodity group (e.g. U.S. wheat in cereals) 286 

Grey boxes represent area within ± σ² 287 
 288 

However, for many commodity groups (e.g. animal products, and cereals) the deviation from the 289 

priors for demand are generally small, and comparable to those observed for commodity supply. Figure 6 290 

summarizes the deviations for supply and demand for cereals. While deviations from the initial priors for 291 

commodity demand are on average larger than those for supply, the deviation across most of the cereal 292 

commodities is ±5 from the prior, suggesting that the initial priors are fairly informative, and that the 293 

estimation process has added limited additional information. Larger deviations within the cereal grouping 294 

can be observed for jocerl (other cereals). Given that this is an aggregate commodity, which encompasses 295 

a fairly heterogenous mix of more minor cereals (e.g. oats, rye, and triticale) and pseudocereals (e.g. 296 

amaranth, buckwheat, and quinoa), it isn’t surprising that the initial prior isn’t as good as it is for highly 297 

commercial grains like maize, where the initial priors on supply and demand appear to be well informed. 298 
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Figure 6 Comparing percent deviation for commodity supply and demand for cereals 299 

 300 
Note: Blue dots represent country supply for commodities within each commodity group (e.g. U.S. wheat in cereals) 301 

Grey boxes represent area within ± σ² 302 
jbarl = barley; jmaiz = maize; jmill = millet; jocerl= other cereals; jrice = rice; jsorg = sorghum; jwhea = wheat 303 
 304 

While the deviations are fairly small within the cereal commodities compared to other commodities 305 

like oilseeds, we can still find individual priors within each of the commodities which are not a great fit. 306 

When we drill down and explore these outliers we find generally they are countries that are small 307 

producers and consumers, such that while the deviation is large in percentage terms it is fairly small in 308 

physical units. For example, the largest deviation for cereals (excluding jocerl) in Figure 6 is for rice 309 

demand in Saudi Arabia where we see a deviation of about 9.5 percent from our prior. This deviation is 310 

larger than would be ideal, but at the global scale that IMPACT operates such a deviation is relatively 311 

small, given that Saudi Arabia consumes less than 0.2 percent of global rice demand. Undoubtedly, 312 

additional information could be applied to rice markets that would allow for greater fit but given some of 313 

the larger deviations in other commodity groups we decided that rice markets were a lower priority in 314 

subsequent iterations of our Bayesian Workplan. 315 
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Returning to Figure 4 and Figure 5 the commodity group with the largest deviation, suggesting that 316 

for this commodity group the cross-entropy estimation solution has high information content, suggesting 317 

that we should review and revise our priors. Figure 7 replicates for oilseeds the view comparing supply 318 

and demand for cereals in Figure 6. As for cereals we see that the deviations from the prior for demand 319 

are larger than for supply. However, unlike for cereals the deviations even for supply in Figure 5 are large 320 

compared to all of the other commodity groups. As we drill down within the oilseed category in Figure 7 321 

we can see that much of this can be pinned to three commodities (jgrnd, jpalm, and jtols).  322 

Figure 7 Comparing percent deviation for commodity supply and demand for oilseeds 323 

 324 
Note: Blue dots represent country supply or demand for commodities within each commodity group 325 

Grey boxes represent area within ± σ² 326 
jgrnd = groundnut; jpalm = palm; jrpsd = rapeseed; jsnfl= sunflower; jsoyb = soybean; jtols = other oilseeds 327 

Two of these three can be explained in similar ways as we did for observed deviations in the cereals 328 

commodities. Palm fruit production (jpalm) is treated as a non-traded good, where all production is 329 

demanded by domestic palm processors (palm oil is traded in IMPACT), which explains why the deviation 330 

for demand is identical to that of supply. Additionally, as palm fruit production is dominated by a small 331 
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number of countries (Indonesia and Malaysia account for nearly 75 percent of global production), then it 332 

can be difficult to make adjustments among many smaller producers without the deviations being large 333 

in percent terms. In the case of jpalm the largest outliers are mostly found among West African producing 334 

countries like Guinea and Cote d’Ivoire, which account for less than 2 percent of global production. Other 335 

oilseed production (jtols) is similar to jocerl, in that it is a heterogeneous mix of different commodities 336 

(e.g. coconuts and olives), which when combined unsurprisingly leads to less informative priors. The fact 337 

that the deviations for jtols is significantly larger than for jocerl, suggests that even though it is a 338 

heterogenous mix there would be value in either improving the priors for this aggregation, perhaps 339 

through further disaggregation of the commodity group. 340 

Of the three oilseed commodities, one cannot be discarded with these explanations. Groundnut 341 

production (jgrnd) is also the commodity group with the largest deviation. Unlike jtols, jgrnd is a mostly 342 

homogenous commodity, and unlike jpalm it is not anywhere near as concentrated with the largest 343 

producer (China) accounting for a little more than a third of global production. Additionally, the range of 344 

deviations for demand showed that all countries’ priors were too low and for the most part too high for 345 

supply. This suggested that there was a mismatch between the supply and demand datasets, and when 346 

we returned to the original data we found that this was exactly the case. The data for groundnut supply 347 

was designated “in shell”, whereas the data for demand was “shelled, equivalent”. In R1, then the cross-348 

entropy estimation was able to find a solution the satisfied all of the data constraints while simultaneously 349 

spreading the error in groundnut data matching globally, essentially translating all demand data from 350 

shelled to “in shell” in a brute force manner. Obviously this solution was far from ideal, and upon 351 

discovering our mistake we adjusted our priors for supply to be in shelled equivalent to match the demand 352 

data, and ran the cross-entropy estimation a second time (R2). 353 

Figure 8 shows the results for groundnuts for supply and demand after we corrected the data 354 

mismatch between the two datasets. In R2, we see the priors for groundnuts are well informed, with very 355 
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small deviations (the largest being of 2.3 percent for China), much more in line with what we would expect 356 

for a highly commercialized and traded cash crop like groundnuts.  357 

Figure 8 Comparing results for R1 and R2 for supply and demand of groundnuts 358 

 359 
Note: Blue dots represent country supply for commodities within each commodity group (e.g. U.S. wheat in cereals) 360 

Grey boxes represent area within ± σ² 361 
 362 

The correction of this data mismatch not only cleared up the deviations for groundnuts, but went a 363 

long way to explaining much of the deviations for the oilseeds categories observed in Figure 4 and Figure 364 

5, reducing the range of deviations for the oilseeds category by more than half. 365 

4 DISCUSSION 366 

Our hope with preparing this paper was to demonstrate an efficient data management system that can 367 

take various datasets and merge them for use in a large scale global economic model. We believe that it 368 

presents a framework to approach the data cleaning and estimation process, necessary for all complex 369 

models, that is powerful and solidly based on information theory. It approaches a data estimation problem 370 
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where there is sparse data, and issues with data quality that challenge the stitching together of datasets 371 

with different regional and commodity definitions, in a systematic fashion, that allowed us to iteratively 372 

identify, prioritize, and then drill down on and correct questionable priors.  373 

In this paper we showed an example where we were able to identify and prioritize which priors were 374 

more questionable than others. We determined that while priors for cereals were not perfect, they were 375 

acceptable in the face of the much bigger problem within oilseeds. Drilling down on oilseed commodities 376 

we could explain deviations for palm fruit (heavy concentration of production) and other oilseeds (very 377 

heterogenous aggregation) such that these were determined to be of lesser importance, while quickly 378 

recognizing that groundnuts needed to be the first priority given that the deviations were so large, and 379 

for a crop that should have relatively decent global data. In the end, this error was found to be a relatively 380 

simple case of a mismatch between definitions of groundnuts between FAO’s production tables and the 381 

commodity balance sheets that provided data for demand. Nevertheless, it highlighted how our data 382 

management system can quickly point out questionable data, and how approaching the data problem in 383 

the manner presented in this paper we can improve the data used, with each new iteration of the Bayesian 384 

Workplan identifying progressively smaller data errors.385 
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