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Introduction 

The paper continues efforts on developing Bayesian method of updating IO tables, 

presented by the authors on the 16th Annual Conference on Global Economic Analysis, and 

extends the methodology and results in several ways. In the current paper, we test our 

methodology on the “long” survey based IRIOS tables. We compare two point estimates of the 

Bayesian method of “unknown” IO table: posterior mode and posterior mean with estimates, 

which come from alternative methods popular in the literature. Than we discuss how to construct 

an appropriate creditable set for IO coefficients. We also upgrade and extend estimates of SUT 

tables for Russia. 

This publication further provides a method for generating an arbitrarily large sample of 

IO tables, satisfying the constraints, and a priori information from the normal distribution of the 

multivariate normal distribution, which gives additional advantages compared with exact 

estimation of the most probable or sample matrices, as it allows the user to select the desired 

accuracy for analysis. The development of this approach is the rapid assessment of the 
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covariance matrix of the coefficients, and density parameters. However, a disadvantage of this 

method is poor characteristics for obtaining sample matrices with a large number of sectors. 

The use of conjugate vectors to Hessian matrix of priori distribution, has greatly 

improved the parameters MCMC algorithm used to generate the sample most probable IO tables, 

and get rid of the problem of optimal choice of proposal density and poor convergence MCMC 

chains, at least for the case of normal prior distribution. In case of Beta prior distribution for 

calculation of the relevant parameters MCMC algorithm may be used their approximation by 

normal distribution. 

The work consists of three parts. The first part is the core of the current paper, where we 

present our conceptual frameworks for updating, disaggregation, and balancing IO tables. 

In the second part of the current paper, we test our methodology on the “long” survey 

based IRIOS tables (van der Linden and Oosterhaven, 1995). We treat the last table for each 

country as unknown and estimate it with the Bayesian method using all previously available 

matrixes for constructing prior distribution. When specifying prior distribution we argue that 

Beta distribution for IO coefficients is more appropriate than Normal distribution and fit it for 

the each coefficient on previously available matrixes. We consider two point estimates of 

“unknown” IO table: posterior mode and posterior mean. To find posterior mode we use 

nonlinear optimization techniques, to explore posterior distribution we use modern MCMC 

methods. Posterior mode robustly outperforms competitive methods, popular in the literature, 

according to different closeness statistics. Posterior mean perform slightly worse than posterior 

mode. We conclude that point estimate of Bayesian method at least is compatible with the other 

methods on real data examples. 

But the main contribution of our method is that it provide probabilistic estimate of IO 

coefficients consistent with all available data constraints. This property is very useful for 

analyzing uncertainty about IO coefficients and results of the models that calibrated to IO tables. 

After comparing point estimates of the Bayesian method of “unknown” IO table with alternative 

methods, we concentrate on the constructing creditable set for IO coefficients. We provide 

arguments that standard symmetric creditable interval for input-output coefficient is 

inappropriate and induce significant bias. We argue for using higher posterior credible set for 

characterization of the uncertainty. We construct credible sets for estimates of IRIOS tables and 

for the results of some simple IO models. We also perform Monte Carlo experiments were we 

show that posterior higher posterior credible set have better coverage properties. 

In the third part of the paper, we upgrade and extend estimates of SUT tables for Russia. 

Russian statistical system is under transition for almost two decades from Soviet type Material 

Product System to the System (MPS) of National Accounts (SNA). The main transitional break 
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in methodology took place in 2003-2004 when Russian statistical agency “Rosstat” started 

reporting based on the new definition of economic sectors consistent with NACE, and stopped 

reporting using definition of activities inherited from the Soviet statistical system. This 

methodological break splits all industry level statistics into two periods with little consistency 

between each other. As a result, Rosstat stopped updating input-output tables (IOT) in 2003, 

based on the only benchmark survey conducted in 1995. The next survey is scheduled for 2011 

with expected publication of results in 2015 or later. Official backward estimation is not 

expected. Therefore Russian statistics will miss IOT at least from 2004 to 2010. Also quality of 

officially updated IOT from 1996 to 2003 based on 1995 benchmark is questionable. 

We apply Monte Carlo Markov Chains (MCMC) methods to disaggregate available in 

NACE classification SUTs (2006, 15 products by 15 activities) into larger 69 by 69 format. 

Since the 15x15 SUTs are published by Rosstat as preliminary estimates, they are not fully 

consistent with other available national accounts data, such as output and value added by 

industries. To take into account the data uncertainty, we introduce a measurement error for the 

aggregated io-coefficients. As result, we estimate posterior distribution of input-output 

coefficients for aggregated and disaggregated matrices, which are consistent with yearly national 

accounts information. Than we update the estimated 15x15 matrices for 2007-2012 period, using 

proposed sampling methods, and compare results with alternative approaches.  
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1. Conceptual framework 

In this section we discuss an application of Bayesian framework and Monte Carlo 

Markov Chains method for updating, disaggregation, and balancing IOT.  

1.1. Updating IOT with Bayesian methods 

The basic problem of updating an IO matrix or more generally a SAM can be defined as 

finding of an unknown IO matrix with known sums of rows and columns, and known IO matrix 

for a previous year(s). Mathematically speaking, we need to find a matrix A with following 

restrictions: 

, ,

,

, 0i j j i ji

Y AX

a a a



 
 (1) 

where Y, X are known vectors and 
ja  are known sums of columns. Since there is no unique 

solution with the set of constrains on sum of rows and columns only, a known matrix 0A  (f.i. 

from previous year) is used as a starting point. The solution is usually reduced to finding such 

matrix A, which minimize some distance function from known matrix 0A  under a set of 

constrains (1). 

The problem (1) can be also solved with Bayesian methods, which provide a natural and 

flexible way to incorporate any kind and amount of information either as a prior distribution or 

observable data. Moreover, Bayesian methods provide full density profile on estimated 

parameters with covariates. The information can be very valuable in evaluating quality of the 

estimates, magnitude with which each particular io-cell’s estimate affects all others, the level of 

uncertainties and how they affect results of an analysis based on the estimated tables. 

In Bayesian econometrics some prior information or beliefs about estimated parameter   

could be summarized by prior density function ( )p   according to Bayes theorem: 

( | ) ( )
( | ) ( | ) ( )

( | ) ( )

L Y p
p Y L Y p

L Y p d

 
  

  
 


 (2) 

where ( | )p Y  is the posterior density and ( | )L Y   is the likelihood. 

Bayesian inference is easy since the posterior density contain all the information one may 

need. The researcher could be interested in point estimate, credible set and correlation of 

parameters and construct it from posterior distribution. In Bayesian framework point parameter 

estimate is chosen to minimize expected loss function with expectation taken with respect to the 

posterior distribution. The most common loss function used for Bayesian estimation is the mean 
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square error and the corresponding point parameter estimate is simply the mean of the posterior 

distribution. 

Despite the attractiveness of this method, in the past, Bayesian inference was not so 

popular due to numerical integration needed in equation (2). In some cases when the prior on   

is conjugate with posterior on   the posterior density can be obtained analytically. But in more 

general setup we know posterior density up to normalizing constant. Recently developed 

computer-intensive sampling methods such as Monte Carlo Markov Chain (MCMC) methods 

have revolutionized the application of Bayesian approach. MCMC methods are iterative 

sampling methods that allow sampling from posterior distribution ( | )p Y . 

Heckelei et al. (2008) shortly discuss IOT update with Bayesian method and give an 

example on artificial data. Authors present a Bayesian alternative to the cross-entropy method 

for deriving solutions to econometric models represented by undetermined system of equation. In 

the context of balancing an IO matrix they formulate posterior distribution in the following way: 

( | ) ( ) ( )p z data I z p z  (3) 

( )z vec A  (4) 

Equation (4) means vectorization of matrix A. In equation (3) ( )p z  is some prior 

distribution, ( | )p z data  is the posterior distribution and ( )I z  is the indicator function that 

assigns weights of 1 if z satisfies the constraints (1) and 0 otherwise. Authors interpret the 

indicator function as the likelihood function. As estimate of z Heckelei et al. (2008) consider 

mode of posterior distribution which could be found with some optimization routine. And they 

illustrate proposed method balancing small 4x4 matrix with independent normal prior taking 0A  

as prior mean. 

However the proposed by Heckelei et al. (2008) method actually reduced to minimization 

yet another distance function from known matrix 0A . In this paper we concentrate on finding full 

density profile of posterior distribution with MCMC techniques and applying it to real data. 

For convenience we consider equality and inequality constraints of the system of 

restriction (1) separately. Inequality constrains could be simply introduced in prior distribution 

by assigning 0 value of density in inadmissible domain. For example one could specify 

independent truncated normal distribution between 0 and 1 for each parameter of the matrix A. 

On the other hand if we have certain beliefs about some parameters we could introduce it as 

additional linear equality constraints. For example it is convenient to assign 0 values for 

elements of unknown matrix A if corresponding elements in the matrix 0A  are zeros. 

At the next step let us consider linear equality constraints and rewrite it in the following 

form: 



6 

 

Bz T  (5) 

where B is the known matrix, T is the known vector and ( )z vec A  is the unknown vector of 

estimated parameters. System (5) represents undetermined linear system of equations. And from 

linear algebra it is known that any solution of linear system (5) could be written in the form: 

(1) (1)z z F    (6) 

where z  is the particular solution of the system (5) and (1)F  is the fundamental matrix of 

solutions of homogeneous system 0Bz  . And any vector (1)  solves system (5). The particular 

solution and the fundamental matrix could be obtained by Gaussian elimination algorithm.   

Columns of the fundamental matrix (1) (1) (1)

1[ ,.., ]kF f f  represent basis of the Euclidean 

subspace. At the next step we could find the basis of the orthogonal complement of this subspace 

(2) (2) (2)

1[ ,.., ]n kF f f  . Let us consider linear transformation of the original space: 

(1)
1

(1) (2)

(2)
( )F F z z





 
     

 

 (7) 

In the new system of coordinates prior density has the following form: 

(1) (2) (1) (1) (2) (2)( ) det ( )Zp F F p z F F         (8) 

If we specify posterior distribution in the form (3) than posterior distribution will be the 

conditional distribution of random vector (1)  given the zero value of the random vector (2) : 

(1) (2)

(1) (2)

|
( | ) ( | 0)p data p  
     (9) 

If prior distribution is multivariate normal distribution, posterior distribution of vector 

(1)  is also multivariate normal and we could compute posterior mean and covariance matrix 

analytically. But it doesn’t guarantee nonnegative values of estimated matrix A. In general setup 

we use truncated prior distribution and know posterior density up to normalizing constant. To 

conduct inference about parameters we approximate posterior distribution (9) applying MCMC 

sampling methods. After generating the sample of vectors (1)  we could move to initial space 

using formula (6) and obtain the sample of vectors z, which represents elements of unknown 

matrix A. 

To obtain sample from posterior distribution for examples in this paper we perform the 

Metropolis sampling algorithm, which is a special case of a broader class of Metropolis-Hasting 

algorithms, and apply a standard single-site updating scheme. As a proposal density for 

generating candidate parameter values we use normal distribution for each parameter of vector 

(1) . Standard deviations of the proposal density are iteratively selected during adaptive phase to 

guarantee acceptance rate for each parameter to be between 35 and 45 percent. 
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1.2. Computer implementation  

As mention above, system (5) represents undetermined linear system of equations, with 

solution 

   ̃   ( )   ( ) 

where  ̃ is the particular solution of the system (5) and  ( ) is the fundamental matrix, 

which consists of a system of linearly independent vectors form a basis in the subspace of 

solutions of (5).  

The choice of the fundamental matrix for optimal MCMC is a nontrivial task. Let us look 

at a simple example. Suppose that the first two rows and first two columns fundamental matrix 

consist of zeros except for the first 2x2 elements, which are equal: 

|
   
  

|  

Assume that the density of the a priori distribution of the first two elements is 

( (       )  (        )). Obviously, with this configuration, you will need much more 

iterations on MCMC algorithm to obtain a qualitative assessment of the posterior distribution 

than in the case reconfigure the fundamental matrix with the first 2x2 elements: 

|
   
  

|  

Use of the second embodiment reduces the number of required iterations and thus the 

time to more than a hundred times. If the vector prior distribution is 

( (       )  (         )), then the more than 10 thousand times.  

Solutions for this simple case is obvious, but in a more complex case, not all may be so 

simple. The problem is that the effect change ξ on the density of the prior distribution is not 

obvious. To solve this problem, we transform the log prior density distribution using (6): 

    ( )  ∑
(     )

 

   
 

 

        ∑
(  

  ∑           )
 

   
 

 

       

Disclosure using parentheses and grouping can reduce the equation to the form 

    ( )                     

where H, W, Q known matrix. In particular, matrix H is equal 

   ( )     ( ) 

where Σ is diagonal matrix with elements equal  
 

   
. Then, according to analytic 

geometry, there exists a coordinate system in the subspace  ( ), and the corresponding transition 
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matrix D, the matrix H can be reduced to the diagonal form. Arranging suitable ξ(1)0 can cause 

log prior distribution to the form: 

 ( )  ∑
(     

 
)
 

   
 
       

 

 

where μβ и σβ are known parameter from matrix D, W, Q and β is replace ξ(1) by 

equation: 

 ( )       ( )  

and the corresponding fundamental matrix in the new coordinate system has the form: 

 (  )    ( )    

In this form, vector β have a clear interpretation — vector of independent multivariate 

normal distribution. In this case, we clearly understand the a priori distribution of β, and we can 

choose as a proposal density in the normal distribution with zero mean and σ equal to σβ. 

In this approach, there is a clear geometrical interpretation. Isolines prior distribution are 

n2 — dimensional ellipsoid, centered at μ, and semiaxes proportional σ. The set of points 

satisfying the constraints in the form of equations are the hyperplane of dimension (n2 – p), 

where p — the number of linearly independent constraints. Projections of isolines on the 

hyperplane will be ellipsoids, with dimension equal to the dimension of the hyperplane, with 

center μβ and semiaxes proportional σβ. Basis vectors, column matrix  (  ), parallel to the axes 

of the ellipsoids. 

In this formulation the prior distribution, it is possible directly sample matrix, and check 

the final matrix in inequality constraints. Advantage of this method MCMC, compare with 

previous one is the outstanding performance of the resulting Markov chains, and disadvantage of 

this method is increasing share dropped matrices, and consequently time, together with the 

increasing dimension estimated matrix. As a result of this estimation econometrician can publish 

vector μ, σ, and the matrix D, from which the user can generate an arbitrarily large number of 

matrices required for its purposes. 

Prior knowledge of the distribution density of β allows us to calculate the covariance 

matrix of the variables z, excluding inequality constraints. By definition covariance is: 

        (     )(     )       

by use equation 

 

   ̃   (  )    

with distribution β equal: 
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     (     ) 

then covariance is equal 

 

        (∑      

 

   ̃ ) (∑      

 

   ̃ )        

Considering that, the covariance of two random independent variables is zero, then 

       ∑          

 

    ∑        
 

 

 

or in the matrix form 

     (  )
 
     (  ) 

where sigma diagonal matrix with coefficients equal  
 

    . As shown by experiments on 

real data R2 regression coefficients between the covariance obtained from the equation above, 

and covariance obtained from MCMC over .97, with a constant equal zero and interception in the 

range 0.9 — 1.1. In figure 8 shown comparison MCMC chains. Some срфшты in the base 

version of the algorithm, on the right hand, do not converge. Further increasing the number of 

iterations by several orders not improve the situation. 

Figure 9 shows the distribution coefficients of the covariance between cells IO tables in 

1998-2003, in the format OKONH, and 2004-2006 in the format of NACE. As can be seen most 

of the points located on the bisector and the regression coefficient, constructed between the 

coefficients close to unity, with the constant zero. R2 for a regression of more than 0.975. 

1.3. Bayesian disaggregation of IO tables 

The described above method of updating IO tables can be generalized and used for other 

purposes, including disaggregation. Let’s consider the inverse problem to the disaggregation – 

the aggregation of an IO matrix A  of N industries into 
*A  of dimension n, where N > n. 

Therefore matrix 
*A  consist of rows and columns which are sums of rows and columns of matrix

A . Let’s matrix S with dimension n N  is responsible for the transformation. For example, if 

two first industries of A  should be aggregated into one industry of 
*A , than the first row of S 

will have units in the first two elements, and zeros in others. In more general case: 

  {
                 

                 
         (10) 

Therefore, aggregation problem can be written: 

* 'A SAS    (11) 
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To come back to disaggregation one should find elements of unknown matrix A , 

consistent with (*). The equation () can be rewritten: 

     *kron S,S *vec vecA A   (12) 

where  kron   denotes Kronecker product of the matrices, vec( )  denotes a matrix’ 

vectorization. Let’s also assume that intermediate demand for an industry output does not exceed 

an output of the industry: 

∑                     (13) 

The constrain can be presented similarly to (5): 

               (14) 

where   is the final output.  

 

1.4. Measurement errors in observed data 

National accounts usually have several cycles of publication. First estimates are made on 

partially available data and usually considered as preliminary. As new data comes, the estimates 

are updating. Therefore the information for the same economic indicators published in various 

years may differ. 

We faced the problem working on the disaggregation exercise on the real data. The 

aggregated version of “Use” matrix for 2006 was published earlier than the disaggregated 

production information for the same year. The data on output, value added, and intermediate 

consumption from the matrix is not consistent with the same but more detailed statistics. It is 

likely the information on production was updated, but the Use table was not. 

To address the problem we introduce measurement errors to the observed data. We 

assume that the aggregated matrix, which was published earlier, is measured with an normally 

distributed error: 

        *kron S,S *vec -vec ~ 0,A A N             (15) 

where  

— diagonal matrix with elements proportional to the square of  *vec A . Later we assume that 

standard deviation of the measurement error for each cell is equal to 10% of the value of the cell. 

Therefore for the density function of posterior distribution will be: 

( | ) ( ) ( ) ( | )p a data p a L data I a data          (16) 

where 

( )p a — prior distribution density function, 
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( )L data — likelihood function for the specified in (15) measurement error, 

( | )I a data — an indicator function which shows that all the io-coefficients satisfy the set of 

constrains. 

 

1.5. Computer implementation 

The MCMC sampling methodology is computationally intensive. Moreover, quality of 

results directly depends on number and length of chains. Initially developed algorithm with all 

the sequence of required operations of multiplications, summation, and comparison took 20 

minutes to sample just one matrix. The time is not appropriate for large-scale calculations. For 

instance, to sample 15 million matrices (an experimentally found suggested minimum size of 

sample), the algorithm would require 5000 years. However, this straightforward algorithm has a 

lot of potential for time-efficiency.  

First, the matrices are quite sparse. Standard procedures can be applied to improve the 

time performance. As result, number of elementary operation for 4761 elements decreased from 

20 million to 370, with improved time to 0.1 seconds per matrix. 

Second, the 370 operations can be paralleled. After reformulating the problem for 

standard graphical processor supporting CUDA technology, the time was improved to 0.006 

seconds per one matrix. See table 1 for more details. 

 

Table1. Time-performance of various sampling algorithms. 

№ Algorithm Software 

Time of one 

matrix (69x69) 

sampling 

Number of elementary 

operation of 

summation and 

multiplication 

Comparison 

operations 

1 MCMC R > 20 min  (4761-N)2+693>2e7 4830 

2 Optimized MCMC R ~ 0.1 sec 70+N < 364 70+N < 364 

3 Optimized MCMC CUDA ~ 0.006 sec 70+N < 364 70+N < 364 

Note: N is a number of linearly independent constrains. 

 

2. Experimental updating of IRIOS tables 

 

Here we apply our methodology on the “long” survey based IRIOS tables (van der 

Linden and Oosterhaven, 1995). We treat IO tables for 1985 for 5 countries: France, 
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Netherlands, Italy, Belgium and Germany as unknown and try to estimate it with different 

methods and compare results. In the Bayesian framework we assume independent truncated 

normal distributions for each IO coefficient and use coefficients of 1980 IO table as prior mode. 

Below we will also try beta prior distribution. To specify standard deviations in prior distribution 

we estimate standard deviation for each coefficient on the all previously available tables. To 

compute posterior mean of coefficients we apply Markov chain Monte Carlo (MCMC) method 

with two chains and sampled length of 1 500 000 simulation. To compute posterior mode of 

coefficients we use nonlinear programming techniques. 

We consider following alternative methods for updating input-output tables: RAS method 

and Cross-Entropy (CE), Least Squares (LS), Normalized Least Squares (NLS), Weighted Least 

Squares (WLS) distance minimization methods from previously available matrix. For detailed 

overview of different updating methods see (Temurshoev et al., 2010). Results of updating IO 

tables for considered countries are presented in tables 1-5. 

As follows from the tables posterior mode robustly outperforms competitive methods, 

popular in the literature, according to different closeness statistics. Posterior mean perform 

slightly worse than posterior mode. For some cases (Belgium and Germany) performance of 

posterior mean is relatively bad. Bayesian method at least is compatible with the other methods 

on real data examples, but it is more appropriate to use posterior mode as a point estimate of 

unknown IO tables. Thus standard symmetric creditable interval for input-output coefficient is 

inappropriate and induce significant bias. Using higher posterior credible set for characterization 

of the uncertainty could potentially improve coverage properties. Results of experiments on 

constructing credible sets and experiments with beta prior distribution will be presented at the 

conference. 

Table 1. Results of Updating IO tables for France 
     Mean  Mode CE LS NLS WLS RAS 

RMSE 0,018 0,009 0,012 0,013 0,012 0,015 0,012 

MAE 0,007 0,004 0,005 0,006 0,005 0,007 0,005 

MAPE 0,884 0,722 0,602 5,982 0,571 13,723 0,692 

WAPE 34,913 21,414 25,099 28,955 25,481 35,357 24,321 

SWAD 0,194 0,104 0,133 0,144 0,137 0,157 0,122 

Psi 0,333 0,204 0,242 0,264 0,246 0,303 0,235 

RSQ 0,888 0,969 0,948 0,935 0,948 0,919 0,949 

 

Table 2. Results of Updating IO tables for Netherlands 
    Mean  Mode CE LS NLS WLS RAS 

RMSE 0,028 0,021 0,064 0,024 0,027 0,036 0,022 

MAE 0,011 0,008 0,023 0,010 0,010 0,011 0,009 

MAPE 1,682 1,545 0,939 3,107 1,627 4,844 1,397 
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WAPE 47,432 35,642 100,522 42,944 42,154 49,284 37,354 

SWAD 0,292 0,164 1,000 0,238 0,228 0,255 0,194 

Psi 0,435 0,323 0,379 0,388 0,382 0,404 0,341 

RSQ 0,777 0,876 0,764 0,832 0,808 0,728 0,865 

 

Table 3. Results of Updating IO tables for Italy 
     Mean  Mode CE LS NLS WLS RAS 

RMSE 0,022 0,007 0,008 0,009 0,008 0,010 0,007 

MAE 0,007 0,003 0,004 0,005 0,004 0,006 0,004 

MAPE 0,932 0,749 0,792 0,931 0,789 1,485 0,739 

WAPE 33,282 15,447 17,594 20,899 17,579 25,704 16,657 

SWAD 0,175 0,063 0,065 0,092 0,065 0,104 0,069 

Psi 0,316 0,152 0,173 0,196 0,173 0,224 0,164 

RSQ 0,858 0,986 0,982 0,977 0,982 0,968 0,985 

 

Table 4. Results of Updating IO tables for Belgium 
     Mean  Mode CE LS NLS WLS RAS 

RMSE 0,043 0,005 0,005 0,008 0,006 0,010 0,005 

MAE 0,015 0,002 0,002 0,003 0,002 0,004 0,001 

MAPE 0,907 0,155 0,124 4,814 0,132 20,212 0,082 

WAPE 67,714 9,452 8,454 14,484 8,754 18,979 6,800 

SWAD 0,393 0,050 0,051 0,084 0,054 0,091 0,051 

Psi 0,597 0,093 0,084 0,138 0,087 0,169 0,068 

RSQ 0,627 0,993 0,992 0,984 0,991 0,972 0,994 

 
 
Table 5. Results of Updating IO tables for Germany 

     Mean  Mode CE LS NLS WLS RAS 

RMSE 0,033 0,008 0,008 0,010 0,009 0,012 0,010 

MAE 0,012 0,004 0,004 0,005 0,004 0,006 0,005 

MAPE 0,868 0,562 0,574 1,008 0,587 1,410 0,602 

WAPE 53,596 16,119 17,282 21,895 18,479 25,963 20,973 

SWAD 0,332 0,072 0,082 0,109 0,089 0,116 0,105 

Psi 0,491 0,158 0,171 0,211 0,182 0,236 0,206 

RSQ 0,710 0,982 0,979 0,967 0,976 0,953 0,968 

 

 

3. Disaggregation of 15 to 69 industries (OKVED) for Russia for 
2006 

Here we apply the developed MCMC procedure to disaggregate symmetric 15x15 Use 

table in the OKVED classification into 69x69 matrix, using data for output and intermediate 

consumption for the 69 industries. We had to add measurement error to the observed 15x15 
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matrix. The data on 69 industries was published in the later years and is not fully consistent with 

the 15x15 matrix. The parameters of the experiment with the main results are summarized in the 

Table . 

As follows from the table, the quality of the estimates is notable lower. Some MCMC 

chains are experiencing convergence problem which shows Geweke statistics and high 

autocorrelation of the chains even with very large interval between saved samples (thin = 5000). 

Around 10% of the autocorrelation coefficients are higher than 0.43. Geweke statistics also 

reports success in convergence for around 87% of all cells, and more than 99.6% of cells have at 

least one converged MCMC chain. 

The reason of the lower quality of estimates might be caused by the introduced 

measurement error to the each cell of the aggregated matrix to fit the data of larger dimension. 

The error increases possible ranges for each cell, as well as correlation between them, and may 

affect the convergence. It is likely that longer sampling and/or taking into account potential 

autocorrelation between the sampling values will improve convergence of MCMC chains, 

increase quality of the estimates. The problem will be addressed on the further steps of the 

research. 

The resulting samples for the disaggregated cells were aggregated and their distributions 

are compared with priors on the Figure 1 in the appendix. As follows from the picture, posterior 

distributions (green and red lines on the figure) often displaced from initial priors, which are 

normally distributed mean value of observed 15x15 Use table for 2006, and standard deviation 

equal to 10% of the cell values. The main reason of displacement of the posterior distribution is 

likely the inconsistency of the newly observed disaggregated data and the initial aggregated 

table. The inconsistency results in the matrix rebalancing, which we observe as displacement of 

the posterior distribution from their priors. 

It should be noted, that the estimates might be also improved if other data is taken into 

account. For example, certain estimate of intermediate demand can be recovered based on 

import, export, public spending and final consumption. Also more meaningful prior information 

can be assigned to some industries or cells in the matrix, based on the economic knowledge of 

the sectors. 

 

Updating of “Use” table (OKVED) from 2006 to 2012 

In this section we update the Use-2006 table to each following year up to 2012. The 

methodology is similar to the applied above disaggregation. The base year table is the observed 

Use2006 matrix, which is the same for the all years, presumably measured with errors. Similarly 
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we use output and intermediate consumption data for 69 industries to update the table and 

disaggregate it for particular year. 

As and earlier, there are two levels of priors in the model – for disaggregation and 

measurement errors. Uniform distribution (uninformative) priors were assigned for the 

disaggregation. Normal distribution priors were assigned to the measurement errors for each cell, 

with mean values equal to the base year matrix, and standard deviations equal to 10% of the cells 

value. 

For sampling we applied Random Walk Metropolis Hasting algorithm, optimized for the 

particular task and parallelized for calculation on CUDA-enabled graphical processors. For each 

year we run two Markov chains with length of 15 million iterations, burning first 2/3 of the 

iterations and saving every 5000
th

 observation. The overall process for one year took around 40 

hours on a pretty standard computer with i7-2600K Intel processor and NVIDIA-560 graphical 

card. The resulting 69x69 matrices are too large for publishing (available on request). In the 

appendix we present aggregated version of the tables for 2007-2012 in comparison with prior 

information for each cell. 

The results are pretty similar to the disaggregated 2006 table, with shift of some 

estimated parameters in comparison to the prior information. As and earlier, we assume that the 

main reason of the shifts caused by preliminary character of the published aggregated IO table 

for 2006. The later data disaggregated data is not consistent with the table, but the later was not 

updated by Rosstat. Also, changes in production structure could induce changes in the USE table 

as well. We will continue the detailed analysis of the estimated tables on industries level on the 

further step of research. 

 

4. Concluding remarks 

The presented methodology proposes sampling methods for updating, disaggregating, and 

balancing IOTs, and more largely national accounts. The main benefits of the methods is in 

natural incorporation of uncertainties into estimation process, flexibility in accommodation any 

kinds of data and information into estimation process, and full density profile for each of 

unknown parameters instead of point estimates. 

In the paper we test our method on the “long” survey based IRIOS tables. Results of the 

experiments are in favor that point estimates from proposed Bayesian method are compatible 

with alternative methods for updating IO tables. We also provide framework to construct an 

appropriate creditable set for IO coefficients which has good coverage properties.  
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The experimental updating, balancing and disaggregation of Russian IO table 

demonstrates a feasibility of application of sampling techniques for the large-scale problems 

with acceptable results. With developed algorithms, sampling of 15 million matrices of the 

69x69 dimension can be performed in 40 hours on a modern consumer-class computer. Even 

with the achieved speed of calculation the methodology can be appropriately used. However, it is 

clear that the limit of performance is not reached yet. Further improvements of algorithms and 

involvement of professional computer clusters might improve the performance in hundreds and 

thousands of times. 
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Appendix 

 

 

 

 
Table 1. Parameters and results of  MCMC for 2006 year. 

Parameter Value 

Number of iterations 4e6 

Thin (step between saved observations) 5000 

Burn (number of first dropped iterations) 1e5 

success Geweke, % 87.8% 

max ACF 0.996 
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Figure 1. Kernel for aggregate matrix 15x15 from estimation for 69x69 for 2006. 
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Figure 2. Prior and posterior distributions (thread 1 & 2) for estimated 15x15 Use table for 2007. 
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Figure 3. Prior and posterior distributions (thread 1 & 2) for estimated 15x15 Use table for 2008.  
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Figure 4. Prior and posterior distributions (thread 1 & 2) for estimated 15x15 Use table for 2009. 
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Figure 5. Prior and posterior distributions (thread 1 & 2) for estimated 15x15 Use table for 2010. 
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Figure 6. Prior and posterior distributions (thread 1 & 2) for estimated 15x15 Use table for 2011. 
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Figure 7. Prior distributions and MCMC chains (thread 1 & 2) for estimated 15x15 Use table for 2006. 
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Figure 8. Compare MCMC chains: improvement (left), base version (right). 

 

 
Figure 9. The distribution coefficients of the covariance between the cells in the IO table year OKONH 1998-

2003, and 2004-2006 NACE. 
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