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Introduction

The paper continues efforts on developing Bayesian method of updating 10 tables,
presented by the authors on the 16th Annual Conference on Global Economic Analysis, and
extends the methodology and results in several ways. In the current paper, we test our
methodology on the “long” survey based IRIOS tables. We compare two point estimates of the
Bayesian method of “unknown” IO table: posterior mode and posterior mean with estimates,
which come from alternative methods popular in the literature. Than we discuss how to construct
an appropriate creditable set for 10 coefficients. We also upgrade and extend estimates of SUT
tables for Russia.

This publication further provides a method for generating an arbitrarily large sample of
10 tables, satisfying the constraints, and a priori information from the normal distribution of the
multivariate normal distribution, which gives additional advantages compared with exact
estimation of the most probable or sample matrices, as it allows the user to select the desired

accuracy for analysis. The development of this approach is the rapid assessment of the
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covariance matrix of the coefficients, and density parameters. However, a disadvantage of this
method is poor characteristics for obtaining sample matrices with a large number of sectors.

The use of conjugate vectors to Hessian matrix of priori distribution, has greatly
improved the parameters MCMC algorithm used to generate the sample most probable 10 tables,
and get rid of the problem of optimal choice of proposal density and poor convergence MCMC
chains, at least for the case of normal prior distribution. In case of Beta prior distribution for
calculation of the relevant parameters MCMC algorithm may be used their approximation by
normal distribution.

The work consists of three parts. The first part is the core of the current paper, where we
present our conceptual frameworks for updating, disaggregation, and balancing 10 tables.

In the second part of the current paper, we test our methodology on the “long” survey
based IRIOS tables (van der Linden and Oosterhaven, 1995). We treat the last table for each
country as unknown and estimate it with the Bayesian method using all previously available
matrixes for constructing prior distribution. When specifying prior distribution we argue that
Beta distribution for 10 coefficients is more appropriate than Normal distribution and fit it for
the each coefficient on previously available matrixes. We consider two point estimates of
“unknown” IO table: posterior mode and posterior mean. To find posterior mode we use
nonlinear optimization techniques, to explore posterior distribution we use modern MCMC
methods. Posterior mode robustly outperforms competitive methods, popular in the literature,
according to different closeness statistics. Posterior mean perform slightly worse than posterior
mode. We conclude that point estimate of Bayesian method at least is compatible with the other
methods on real data examples.

But the main contribution of our method is that it provide probabilistic estimate of 10
coefficients consistent with all available data constraints. This property is very useful for
analyzing uncertainty about 10 coefficients and results of the models that calibrated to 10 tables.
After comparing point estimates of the Bayesian method of “unknown” IO table with alternative
methods, we concentrate on the constructing creditable set for 10 coefficients. We provide
arguments that standard symmetric creditable interval for input-output coefficient is
inappropriate and induce significant bias. We argue for using higher posterior credible set for
characterization of the uncertainty. We construct credible sets for estimates of IRIOS tables and
for the results of some simple 10 models. We also perform Monte Carlo experiments were we
show that posterior higher posterior credible set have better coverage properties.

In the third part of the paper, we upgrade and extend estimates of SUT tables for Russia.
Russian statistical system is under transition for almost two decades from Soviet type Material

Product System to the System (MPS) of National Accounts (SNA). The main transitional break
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in methodology took place in 2003-2004 when Russian statistical agency “Rosstat” started
reporting based on the new definition of economic sectors consistent with NACE, and stopped
reporting using definition of activities inherited from the Soviet statistical system. This
methodological break splits all industry level statistics into two periods with little consistency
between each other. As a result, Rosstat stopped updating input-output tables (IOT) in 2003,
based on the only benchmark survey conducted in 1995. The next survey is scheduled for 2011
with expected publication of results in 2015 or later. Official backward estimation is not
expected. Therefore Russian statistics will miss 10T at least from 2004 to 2010. Also quality of
officially updated IOT from 1996 to 2003 based on 1995 benchmark is questionable.

We apply Monte Carlo Markov Chains (MCMC) methods to disaggregate available in
NACE classification SUTs (2006, 15 products by 15 activities) into larger 69 by 69 format.
Since the 15x15 SUTs are published by Rosstat as preliminary estimates, they are not fully
consistent with other available national accounts data, such as output and value added by
industries. To take into account the data uncertainty, we introduce a measurement error for the
aggregated io-coefficients. As result, we estimate posterior distribution of input-output
coefficients for aggregated and disaggregated matrices, which are consistent with yearly national
accounts information. Than we update the estimated 15x15 matrices for 2007-2012 period, using

proposed sampling methods, and compare results with alternative approaches.



1. Conceptual framework

In this section we discuss an application of Bayesian framework and Monte Carlo
Markov Chains method for updating, disaggregation, and balancing IOT.

1.1. Updating IOT with Bayesian methods

The basic problem of updating an 10 matrix or more generally a SAM can be defined as
finding of an unknown 10 matrix with known sums of rows and columns, and known 10 matrix
for a previous year(s). Mathematically speaking, we need to find a matrix A with following
restrictions:

Y = AX,

D>.a,=4a, a;20

where Y, X are known vectors and &; are known sums of columns. Since there is no unique

1)

solution with the set of constrains on sum of rows and columns only, a known matrix A° (f.i.

from previous year) is used as a starting point. The solution is usually reduced to finding such
matrix A, which minimize some distance function from known matrix A° under a set of
constrains (1).

The problem (1) can be also solved with Bayesian methods, which provide a natural and
flexible way to incorporate any kind and amount of information either as a prior distribution or
observable data. Moreover, Bayesian methods provide full density profile on estimated
parameters with covariates. The information can be very valuable in evaluating quality of the
estimates, magnitude with which each particular io-cell’s estimate affects all others, the level of
uncertainties and how they affect results of an analysis based on the estimated tables.

In Bayesian econometrics some prior information or beliefs about estimated parameter &
could be summarized by prior density function p(#) according to Bayes theorem:

o0 = 10)p(0)
[L(v 16)p(o)de

where p(@|Y) is the posterior density and L(Y | &) is the likelihood.

o L(Y | 8) p(0) (2)

Bayesian inference is easy since the posterior density contain all the information one may
need. The researcher could be interested in point estimate, credible set and correlation of
parameters and construct it from posterior distribution. In Bayesian framework point parameter
estimate is chosen to minimize expected loss function with expectation taken with respect to the

posterior distribution. The most common loss function used for Bayesian estimation is the mean



square error and the corresponding point parameter estimate is simply the mean of the posterior
distribution.

Despite the attractiveness of this method, in the past, Bayesian inference was not so
popular due to numerical integration needed in equation (2). In some cases when the prior on &
Is conjugate with posterior on @ the posterior density can be obtained analytically. But in more
general setup we know posterior density up to normalizing constant. Recently developed
computer-intensive sampling methods such as Monte Carlo Markov Chain (MCMC) methods
have revolutionized the application of Bayesian approach. MCMC methods are iterative

sampling methods that allow sampling from posterior distribution p(@]Y).

Heckelei et al. (2008) shortly discuss IOT update with Bayesian method and give an
example on artificial data. Authors present a Bayesian alternative to the cross-entropy method
for deriving solutions to econometric models represented by undetermined system of equation. In

the context of balancing an 10 matrix they formulate posterior distribution in the following way:
p(z|data) < 1, (z) p(2) ©)
z =vec(A) 4)
Equation (4) means vectorization of matrix A. In equation (3) p(z) is some prior
distribution, p(z|data) is the posterior distribution and 1, (z) is the indicator function that

assigns weights of 1 if z satisfies the constraints (1) and O otherwise. Authors interpret the
indicator function as the likelihood function. As estimate of z Heckelei et al. (2008) consider
mode of posterior distribution which could be found with some optimization routine. And they
illustrate proposed method balancing small 4x4 matrix with independent normal prior taking A°
as prior mean.

However the proposed by Heckelei et al. (2008) method actually reduced to minimization

yet another distance function from known matrix A°. In this paper we concentrate on finding full
density profile of posterior distribution with MCMC techniques and applying it to real data.

For convenience we consider equality and inequality constraints of the system of
restriction (1) separately. Inequality constrains could be simply introduced in prior distribution
by assigning O value of density in inadmissible domain. For example one could specify
independent truncated normal distribution between 0 and 1 for each parameter of the matrix A.
On the other hand if we have certain beliefs about some parameters we could introduce it as
additional linear equality constraints. For example it is convenient to assign O values for
elements of unknown matrix A if corresponding elements in the matrix A° are zeros.

At the next step let us consider linear equality constraints and rewrite it in the following

form:



Bz=T (5)
where B is the known matrix, T is the known vector and z =vec(A) is the unknown vector of

estimated parameters. System (5) represents undetermined linear system of equations. And from

linear algebra it is known that any solution of linear system (5) could be written in the form:
7=7+FO0 (6)
where 7 is the particular solution of the system (5) and F® is the fundamental matrix of
solutions of homogeneous system Bz =0. And any vector £® solves system (5). The particular
solution and the fundamental matrix could be obtained by Gaussian elimination algorithm.
Columns of the fundamental matrix F® =[®,.., f®] represent basis of the Euclidean
subspace. At the next step we could find the basis of the orthogonal complement of this subspace

F® =[1?,.., f@]. Let us consider linear transformation of the original space:

1o Ik
&Y e, 5
L(Z) =[FOF®] (-7 (7)
In the new system of coordinates prior density has the following form:
p; (&) =det| FY F® |p, (2+FW&® + F@&®) (8)

If we specify posterior distribution in the form (3) than posterior distribution will be the

conditional distribution of random vector &% given the zero value of the random vector £@
P (& |data) = p§<1)|§<2) (g(l) | 5(2) =0) (9)
If prior distribution is multivariate normal distribution, posterior distribution of vector

£ is also multivariate normal and we could compute posterior mean and covariance matrix

analytically. But it doesn’t guarantee nonnegative values of estimated matrix A. In general setup
we use truncated prior distribution and know posterior density up to normalizing constant. To
conduct inference about parameters we approximate posterior distribution (9) applying MCMC
sampling methods. After generating the sample of vectors &% we could move to initial space

using formula (6) and obtain the sample of vectors z, which represents elements of unknown
matrix A.

To obtain sample from posterior distribution for examples in this paper we perform the
Metropolis sampling algorithm, which is a special case of a broader class of Metropolis-Hasting
algorithms, and apply a standard single-site updating scheme. As a proposal density for
generating candidate parameter values we use normal distribution for each parameter of vector

£W . Standard deviations of the proposal density are iteratively selected during adaptive phase to

guarantee acceptance rate for each parameter to be between 35 and 45 percent.
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1.2. Computer implementation

As mention above, system (5) represents undetermined linear system of equations, with

solution
z7=54+F® 'E(l)

where Z is the particular solution of the system (5) and F(V is the fundamental matrix,
which consists of a system of linearly independent vectors form a basis in the subspace of
solutions of (5).

The choice of the fundamental matrix for optimal MCMC is a nontrivial task. Let us look
at a simple example. Suppose that the first two rows and first two columns fundamental matrix

consist of zeros except for the first 2x2 elements, which are equal:

i

Assume that the density of the a priori distribution of the first two elements is
(N(O.l, 0.1),N(0.1,0.01)). Obviously, with this configuration, you will need much more
iterations on MCMC algorithm to obtain a qualitative assessment of the posterior distribution
than in the case reconfigure the fundamental matrix with the first 2x2 elements:

2 o

Use of the second embodiment reduces the number of required iterations and thus the
time to more than a hundred times. If the vector prior distribution is
(N(0.1,0.1), N(0.1,0.001)), then the more than 10 thousand times.

Solutions for this simple case is obvious, but in a more complex case, not all may be so

simple. The problem is that the effect change & on the density of the prior distribution is not

obvious. To solve this problem, we transform the log prior density distribution using (6):

2 0 2
logp(z) ~ — Z%+ const = —Z ( 4 l};l;fl ,u]) + const
j J j '

]
Disclosure using parentheses and grouping can reduce the equation to the form
logp(z)~é'-H-&+W-&+Q + const
where H, W, Q known matrix. In particular, matrix H is equal
H=FU .y.r®
where X is diagonal matrix with elements equal —ﬁ. Then, according to analytic

geometry, there exists a coordinate system in the subspace §(, and the corresponding transition



matrix D, the matrix H can be reduced to the diagonal form. Arranging suitable §(1)0 can cause

log prior distribution to the form:

_BY
p(B)~ — Z(BJZ—:ZJ)+ const

j %
where pp u off are known parameter from matrix D, W, Q and B is replace &(1) by
equation:
W =p.p4 W0
and the corresponding fundamental matrix in the new coordinate system has the form:
FO) = F®.p

In this form, vector B have a clear interpretation — vector of independent multivariate
normal distribution. In this case, we clearly understand the a priori distribution of 8, and we can
choose as a proposal density in the normal distribution with zero mean and o equal to of.

In this approach, there is a clear geometrical interpretation. Isolines prior distribution are
n2 — dimensional ellipsoid, centered at p, and semiaxes proportional c. The set of points
satisfying the constraints in the form of equations are the hyperplane of dimension (n2 — p),
where p — the number of linearly independent constraints. Projections of isolines on the

hyperplane will be ellipsoids, with dimension equal to the dimension of the hyperplane, with

center pp and semiaxes proportional of. Basis vectors, column matrix F@), parallel to the axes
of the ellipsoids.

In this formulation the prior distribution, it is possible directly sample matrix, and check
the final matrix in inequality constraints. Advantage of this method MCMC, compare with
previous one is the outstanding performance of the resulting Markov chains, and disadvantage of
this method is increasing share dropped matrices, and consequently time, together with the
increasing dimension estimated matrix. As a result of this estimation econometrician can publish
vector y, ¢, and the matrix D, from which the user can generate an arbitrarily large number of
matrices required for its purposes.

Prior knowledge of the distribution density of p allows us to calculate the covariance
matrix of the variables z, excluding inequality constraints. By definition covariance is:

covi; = [ [ (z; — w)(z; — uy)dzdz

by use equation

z=7+F1).p

with distribution p equal:



B ~N(uP,of)

then covariance is equal

covyy = | J (Zﬁ-k-ﬁk —z)(Zf,-k B —z~,>dzl-dz,-
k k
Considering that, the covariance of two random independent variables is zero, then
covj = | Zfik “fik - B dzy = Z fixfix O
K K
or in the matrix form

cov = F(®) . g8 p(1)
1
208%

where sigma diagonal matrix with coefficients equal — As shown by experiments on

real data R2 regression coefficients between the covariance obtained from the equation above,
and covariance obtained from MCMC over .97, with a constant equal zero and interception in the
range 0.9 — 1.1. In figure 8 shown comparison MCMC chains. Some cpouts in the base
version of the algorithm, on the right hand, do not converge. Further increasing the number of
iterations by several orders not improve the situation.

Figure 9 shows the distribution coefficients of the covariance between cells 10 tables in
1998-2003, in the format OKONH, and 2004-2006 in the format of NACE. As can be seen most
of the points located on the bisector and the regression coefficient, constructed between the

coefficients close to unity, with the constant zero. R2 for a regression of more than 0.975.

1.3. Bayesian disaggregation of 10 tables

The described above method of updating 10 tables can be generalized and used for other

purposes, including disaggregation. Let’s consider the inverse problem to the disaggregation —
the aggregation of an 10 matrix A of N industries into A" of dimension n, where N > n.
Therefore matrix A" consist of rows and columns which are sums of rows and columns of matrix
A. Let’s matrix S with dimension nxN is responsible for the transformation. For example, if

two first industries of A should be aggregated into one industry of A", than the first row of S

will have units in the first two elements, and zeros in others. In more general case:

S;j =1, i € sectorj
S= { g . (10)
Sij = 0,0 & sector j
Therefore, aggregation problem can be written:
A =SAS' (11)



To come back to disaggregation one should find elements of unknown matrix A,

consistent with (*). The equation () can be rewritten:
kron(S, S)*vec(,&) = vec(A*) (12)
where kron(o) denotes Kronecker product of the matrices, vec(e) denotes a matrix’

vectorization. Let’s also assume that intermediate demand for an industry output does not exceed
an output of the industry:

Xjaij* X < X (13)

The constrain can be presented similarly to (5):

Dxz<X (14)

where X is the final output.

1.4. Measurement errors in observed data

National accounts usually have several cycles of publication. First estimates are made on
partially available data and usually considered as preliminary. As new data comes, the estimates
are updating. Therefore the information for the same economic indicators published in various
years may differ.

We faced the problem working on the disaggregation exercise on the real data. The
aggregated version of “Use” matrix for 2006 was published earlier than the disaggregated
production information for the same year. The data on output, value added, and intermediate
consumption from the matrix is not consistent with the same but more detailed statistics. It is
likely the information on production was updated, but the Use table was not.

To address the problem we introduce measurement errors to the observed data. We
assume that the aggregated matrix, which was published earlier, is measured with an normally

distributed error:
{kron(S,S)*vec(A)-vec(A*)} ~N(0,%) (15)

where

¥ — diagonal matrix with elements proportional to the square of vec(A*). Later we assume that
standard deviation of the measurement error for each cell is equal to 10% of the value of the cell.
Therefore for the density function of posterior distribution will be:

p(a|data) «c p(a)L(data)l (a|data) (16)
where

p(a)— prior distribution density function,
10



L(data) — likelihood function for the specified in (15) measurement error,
I (a] data) — an indicator function which shows that all the io-coefficients satisfy the set of

constrains.

1.5. Computer implementation

The MCMC sampling methodology is computationally intensive. Moreover, quality of
results directly depends on number and length of chains. Initially developed algorithm with all
the sequence of required operations of multiplications, summation, and comparison took 20
minutes to sample just one matrix. The time is not appropriate for large-scale calculations. For
instance, to sample 15 million matrices (an experimentally found suggested minimum size of
sample), the algorithm would require 5000 years. However, this straightforward algorithm has a
lot of potential for time-efficiency.

First, the matrices are quite sparse. Standard procedures can be applied to improve the
time performance. As result, number of elementary operation for 4761 elements decreased from
20 million to 370, with improved time to 0.1 seconds per matrix.

Second, the 370 operations can be paralleled. After reformulating the problem for
standard graphical processor supporting CUDA technology, the time was improved to 0.006

seconds per one matrix. See table 1 for more details.

Tablel. Time-performance of various sampling algorithms.

Ti f Number of elementary

ime of one :
Ne Algorithm Software matrix (69x69) operation of Comparison

0 i w ix (69x i
& , summation and operations

sampling .
multiplication

MCMC R > 20 min (4761-N)*+69°>2e7 4830
Optimized MCMC R ~0.1 sec 70+N < 364 70+N < 364
Optimized MCMC CUDA ~ 0.006 sec 70+N < 364 70+N <364

Note: N is a number of linearly independent constrains.

2. Experimental updating of IRIOS tables

Here we apply our methodology on the “long” survey based IRIOS tables (van der
Linden and Oosterhaven, 1995). We treat 10 tables for 1985 for 5 countries: France,
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Netherlands, Italy, Belgium and Germany as unknown and try to estimate it with different
methods and compare results. In the Bayesian framework we assume independent truncated
normal distributions for each 10 coefficient and use coefficients of 1980 10 table as prior mode.
Below we will also try beta prior distribution. To specify standard deviations in prior distribution
we estimate standard deviation for each coefficient on the all previously available tables. To
compute posterior mean of coefficients we apply Markov chain Monte Carlo (MCMC) method
with two chains and sampled length of 1 500 000 simulation. To compute posterior mode of
coefficients we use nonlinear programming techniques.

We consider following alternative methods for updating input-output tables: RAS method
and Cross-Entropy (CE), Least Squares (LS), Normalized Least Squares (NLS), Weighted Least
Squares (WLS) distance minimization methods from previously available matrix. For detailed
overview of different updating methods see (Temurshoev et al., 2010). Results of updating 10
tables for considered countries are presented in tables 1-5.

As follows from the tables posterior mode robustly outperforms competitive methods,
popular in the literature, according to different closeness statistics. Posterior mean perform
slightly worse than posterior mode. For some cases (Belgium and Germany) performance of
posterior mean is relatively bad. Bayesian method at least is compatible with the other methods
on real data examples, but it is more appropriate to use posterior mode as a point estimate of
unknown 10 tables. Thus standard symmetric creditable interval for input-output coefficient is
inappropriate and induce significant bias. Using higher posterior credible set for characterization
of the uncertainty could potentially improve coverage properties. Results of experiments on
constructing credible sets and experiments with beta prior distribution will be presented at the
conference.

Table 1. Results of Updating 10 tables for France

Mean Mode CE LS NLS WLS RAS
RMSE 0,018 0,009 0,012 0,013 0,012 0,015 0,012
MAE 0,007 0,004 0,005 0,006 0,005 0,007 0,005
MAPE 0,884 0,722 0,602 5,982 0,571 13,723 0,692
WAPE 34,913 21,414 25,099 28,955 25,481 35,357 24,321
SWAD 0,194 0,104 0,133 0,144 0,137 0,157 0,122
Psi 0,333 0,204 0,242 0,264 0,246 0,303 0,235
RSQ 0,888 0,969 0,948 0,935 0,948 0,919 0,949

Table 2. Results of Updating 10 tables for Netherlands

Mean Mode CE LS NLS WLS RAS
RMSE 0,028 0,021 0,064 0,024 0,027 0,036 0,022
MAE 0,011 0,008 0,023 0,010 0,010 0,011 0,009
MAPE 1,682 1,545 0,939 3,107 1,627 4,844 1,397
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WAPE 47,432 35,642 100,522 42,944 42,154 49,284 37,354

SWAD 0,292 0,164 1,000 0,238 0,228 0,255 0,194
Psi 0,435 0,323 0,379 0,388 0,382 0,404 0,341
RSQ 0,777 0,876 0,764 0,832 0,808 0,728 0,865

Table 3. Results of Updating 10 tables for Italy

Mean Mode CE LS NLS WLS RAS
RMSE 0,022 0,007 0,008 0,009 0,008 0,010 0,007
MAE 0,007 0,003 0,004 0,005 0,004 0,006 0,004
MAPE 0,932 0,749 0,792 0,931 0,789 1,485 0,739
WAPE 33,282 15,447 17,594 20,899 17,579 25,704 16,657
SWAD 0,175 0,063 0,065 0,092 0,065 0,104 0,069
Psi 0,316 0,152 0,173 0,196 0,173 0,224 0,164
RSQ 0,858 0,986 0,982 0,977 0,982 0,968 0,985

Table 4. Results of Updating 10 tables for Belgium

Mean  Mode CE LS NLS WLS RAS
RMSE 0,043 0,005 0,005 0,008 0,006 0,010 0,005
MAE 0,015 0,002 0,002 0,003 0,002 0,004 0,001
MAPE 0,907 0,155 0,124 4,814 0,132 20,212 0,082
WAPE 67,714 9,452 8,454 14,484 8,754 18,979 6,800
SWAD 0,393 0,050 0,051 0,084 0,054 0,091 0,051
Psi 0,597 0,093 0,084 0,138 0,087 0,169 0,068
RSQ 0,627 0,993 0,992 0,984 0,991 0,972 0,994

Table 5. Results of Updating 10 tables for Germany

Mean Mode CE LS NLS WLS RAS
RMSE 0,033 0,008 0,008 0,010 0,009 0,012 0,010
MAE 0,012 0,004 0,004 0,005 0,004 0,006 0,005
MAPE 0,868 0,562 0,574 1,008 0,587 1,410 0,602
WAPE 53,596 16,119 17,282 21,895 18,479 25,963 20,973
SWAD 0,332 0,072 0,082 0,109 0,089 0,116 0,105
Psi 0,491 0,158 0,171 0,211 0,182 0,236 0,206
RSQ 0,710 0,982 0,979 0,967 0,976 0,953 0,968

3. Disaggregation of 15 to 69 industries (OKVED) for Russia for
2006

Here we apply the developed MCMC procedure to disaggregate symmetric 15x15 Use
table in the OKVED classification into 69x69 matrix, using data for output and intermediate
consumption for the 69 industries. We had to add measurement error to the observed 15x15
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matrix. The data on 69 industries was published in the later years and is not fully consistent with
the 15x15 matrix. The parameters of the experiment with the main results are summarized in the
Table .

As follows from the table, the quality of the estimates is notable lower. Some MCMC
chains are experiencing convergence problem which shows Geweke statistics and high
autocorrelation of the chains even with very large interval between saved samples (thin = 5000).
Around 10% of the autocorrelation coefficients are higher than 0.43. Geweke statistics also
reports success in convergence for around 87% of all cells, and more than 99.6% of cells have at
least one converged MCMC chain.

The reason of the lower quality of estimates might be caused by the introduced
measurement error to the each cell of the aggregated matrix to fit the data of larger dimension.
The error increases possible ranges for each cell, as well as correlation between them, and may
affect the convergence. It is likely that longer sampling and/or taking into account potential
autocorrelation between the sampling values will improve convergence of MCMC chains,
increase quality of the estimates. The problem will be addressed on the further steps of the
research.

The resulting samples for the disaggregated cells were aggregated and their distributions
are compared with priors on the Figure 1 in the appendix. As follows from the picture, posterior
distributions (green and red lines on the figure) often displaced from initial priors, which are
normally distributed mean value of observed 15x15 Use table for 2006, and standard deviation
equal to 10% of the cell values. The main reason of displacement of the posterior distribution is
likely the inconsistency of the newly observed disaggregated data and the initial aggregated
table. The inconsistency results in the matrix rebalancing, which we observe as displacement of
the posterior distribution from their priors.

It should be noted, that the estimates might be also improved if other data is taken into
account. For example, certain estimate of intermediate demand can be recovered based on
import, export, public spending and final consumption. Also more meaningful prior information
can be assigned to some industries or cells in the matrix, based on the economic knowledge of

the sectors.

Updating of “Use” table (OKVED) from 2006 to 2012

In this section we update the Use-2006 table to each following year up to 2012. The
methodology is similar to the applied above disaggregation. The base year table is the observed

Use2006 matrix, which is the same for the all years, presumably measured with errors. Similarly
14



we use output and intermediate consumption data for 69 industries to update the table and
disaggregate it for particular year.

As and earlier, there are two levels of priors in the model — for disaggregation and
measurement errors. Uniform distribution (uninformative) priors were assigned for the
disaggregation. Normal distribution priors were assigned to the measurement errors for each cell,
with mean values equal to the base year matrix, and standard deviations equal to 10% of the cells
value.

For sampling we applied Random Walk Metropolis Hasting algorithm, optimized for the
particular task and parallelized for calculation on CUDA-enabled graphical processors. For each
year we run two Markov chains with length of 15 million iterations, burning first 2/3 of the
iterations and saving every 5000™ observation. The overall process for one year took around 40
hours on a pretty standard computer with i7-2600K Intel processor and NVIDIA-560 graphical
card. The resulting 69x69 matrices are too large for publishing (available on request). In the
appendix we present aggregated version of the tables for 2007-2012 in comparison with prior
information for each cell.

The results are pretty similar to the disaggregated 2006 table, with shift of some
estimated parameters in comparison to the prior information. As and earlier, we assume that the
main reason of the shifts caused by preliminary character of the published aggregated 10 table
for 2006. The later data disaggregated data is not consistent with the table, but the later was not
updated by Rosstat. Also, changes in production structure could induce changes in the USE table
as well. We will continue the detailed analysis of the estimated tables on industries level on the

further step of research.

4. Concluding remarks

The presented methodology proposes sampling methods for updating, disaggregating, and
balancing 10Ts, and more largely national accounts. The main benefits of the methods is in
natural incorporation of uncertainties into estimation process, flexibility in accommodation any
kinds of data and information into estimation process, and full density profile for each of
unknown parameters instead of point estimates.

In the paper we test our method on the “long” survey based IRIOS tables. Results of the
experiments are in favor that point estimates from proposed Bayesian method are compatible
with alternative methods for updating 10 tables. We also provide framework to construct an

appropriate creditable set for 10 coefficients which has good coverage properties.
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The experimental updating, balancing and disaggregation of Russian 10 table
demonstrates a feasibility of application of sampling techniques for the large-scale problems
with acceptable results. With developed algorithms, sampling of 15 million matrices of the
69x69 dimension can be performed in 40 hours on a modern consumer-class computer. Even
with the achieved speed of calculation the methodology can be appropriately used. However, it is
clear that the limit of performance is not reached yet. Further improvements of algorithms and
involvement of professional computer clusters might improve the performance in hundreds and

thousands of times.
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Appendix

Table 1. Parameters and results of MCMC for 2006 year.

Parameter Value
Number of iterations 4eb
Thin (step between saved observations) 5000
Burn (number of first dropped iterations) le5
success Geweke, % 87.8%
max ACF 0.996
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