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An introduction to entropy estimation of 
parameters in economic models 

Larry Cook and Philip Harslett* 

The results from quantitative economic modelling are highly dependent on the parameter 
values that are adopted. Where modellers lack the data to make their own reliable 
estimates, which is often the case for elasticities, a common practice is to use elasticity 
values from previous modelling. In some cases assumed or stylised values are used, in 
others the values can be traced back to one or more econometric studies. 

While borrowing elasticities is a sensible starting point in any modelling exercise, users are 
left in doubt as to whether elasticities from other times and places, that use different 
aggregations or are based on longer or shorter periods of adjustment, are applicable for the 
current exercise. It therefore puts the robustness of results in doubt. However, using 
conventional econometric methods to estimate parameters is not an option when data are 
limited, as is often the case with the economic variables required for CGE models. Hence 
the modeller is left with the problem of determining the most suitable parameters. 

Entropy estimation, developed by Golan, Judge and Miller (1996), is an approach that 
allows economic modellers to use data to improve the assumptions they make about 
parameters in economic models. It works by using prior information — a combination of 
past estimates, educated guesses, and theoretical constraints — and limited data to inform 
estimates. Importantly, entropy estimation places more weight on the data (and less on the 
priors) as the number of observations increase. A further attraction is that the resulting 
entropy parameter estimates must satisfy the underlying economic model equations since 
those equations are constraints in the entropy estimation. 

While entropy estimation has the potential to improve the quality of parameters used in 
policy analysis, and thus the confidence in conclusions from economic modelling, its use 
has not been widespread. Most applications have been to single or multi equation demand 
systems, but in a few noteworthy cases elasticity estimates have been made with full 
general equilibrium constraints (Arndt, Robinson and Tarp 2002; Liu, Arndt and Hertel 
2000; Go, Lofgren, Mendez Ramos and Robinson 2014).  

The purpose of this short paper is to provide an introductory guide to entropy estimation 
for economic modellers with a particular emphasis on estimating elasticities from limited 
time series data. The objective is to provide all the information that researchers need (how 
it works, the importance of the assumptions, and when and how it should be used) to be 
able to use the technique confidently.  

* Australian Productivity Commission. The authors are grateful for comments from 
Professor Paul Preckel, Tim Murray and Patrick Jomini on earlier drafts. Any errors or 
omissions remain the authors’ responsibility.  
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An introduction to entropy estimation of 
parameters in economic models 

1 Introduction 

The results from quantitative economic modelling are highly dependent on the parameter 
values that are adopted. Elasticities measuring behavioural responses are particularly 
problematic given that there is generally a high degree of uncertainty surrounding their 
values. A common practice is to use elasticity values from previous modelling, which in 
some cases are simply assumed or stylised values, or can be traced back to econometric 
studies. 

While borrowing elasticities is a sensible starting point in any modelling exercise, users are 
left in doubt as to whether the elasticities from other times and places, that use different 
aggregations or are based on longer or shorter periods of adjustment, are applicable for the 
current exercise. It therefore puts the robustness of results in doubt and, for this reason, it is 
always good modelling practice to do extensive sensitivity testing and provide ranges for 
results based on different elasticities and other parameters. 

While the preferred approach is to estimate parameters using current relevant data, the 
difficulties are often considerable. All too commonly economic data are limited and noisy, 
especially the data needed to estimated parameters in disaggregated computable general 
equilibrium (CGE) models. With problematic piecemeal data, short time series, and 
possible simultaneity issues, parameter estimates based on conventional econometric 
estimation methods may deviate significantly from their true values and may even be 
implausible. 

Entropy econometrics developed by Golan, Judge and Miller (1996) offers a useful 
approach for improving the assumptions made about parameters in economic models. As a 
starting point, it takes prior information — whether from previous studies, theory, or 
educated guesses — in the form of a probability distribution. Entropy econometrics then 
determines how these prior probabilities should be improved in the light of available data 
and constraints. With few observations, the estimated probabilities generally will be close 
to the priors, but as more observations of real-world data become available, the 
probabilities will be more reflective of the additional information in the data and depend 
less on the priors. A feature of entropy estimation as applied to model parameters is that 
the model equations form part of the information base for improving the estimates. This 
has the advantage of ensuring that the model parameters are consistent.  

Although entropy econometrics has been used to estimate elasticities from time series its 
use has not been widespread. Most applications have been to single or multi equation 
demand systems (Fraser 2000; Golan, Perloff and Shen 2001; Balcombe, Rapsomanikis 
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and Klonaris 2004; Nganou 2004; Nunez 2009; Joshi, Hanrahan, Murphy and Kelley 
2010), but in several noteworthy cases elasticity estimates have been made with full 
general equilibrium constraints (Arndt, Robinson and Tarp 2001; Go et al. 2014; Liu, 
Arndt and Hertel 2000). 

A more generally recognised use of entropy techniques has been in constructing the input-
output and social accounting matrices that underlie computable general equilibrium (CGE) 
modelling (McDougall 1999; Golan and Vogel 2000; Golan, Judge and Robinson 2001; 
Robinson, Cattaneo and El-Said 2001; Ahmed and Preckel 2007). Indeed, this is the only 
use of entropy that is referred to in the comprehensive two volume Handbook of 
Computable General Equilibrium Modeling (Dixon and Jorgenson 2012).  

Outside of GCE modelling, entropy techniques have been applied to the calibration of 
environmental and agricultural policy models (Howitt and Msangi 2006; Howitt and 
Reynaud 2003; Howitt 2005; Paris and Howitt 1998).  

The purpose of this paper is to provide an introductory guide to entropy estimation for 
economic modellers with a particular emphasis on estimating elasticities from time series. 
The objective is to provide all the information that modellers need (how it works, the 
importance of the assumptions, and when and how it should be used) to be able to use the 
technique confidently. 

Section 2 starts with the cross entropy function and illustrates how minimising cross 
entropy subject to known constraints can be used to solve undetermined problems where 
there are more unknowns than equations. The classic example first discussed is Jaynes 
(1963) die problem, followed by some simple examples of how the method is used in the 
estimation of accounting matrices and model calibration. 

Section 3 describes how cross entropy is used to estimate elasticities from time series in 
the simplest case of a single equation, and the importance of the underlying assumptions 
when there are few observations. Monte Carlo simulations are undertaken to compare the 
distributions of ordinary least squares and entropy estimators when data are limited. This 
illustrates under what circumstances entropy estimation is likely to be preferable to 
traditional econometric estimators based on the characteristic of the available data and the 
assumptions that have to be made about priors. 

Section 4 explains the application of the technique to estimating elasticities from time 
series data to where the model involves simultaneous equations. Monte Carlo simulations 
are used to test for the consistency of different estimators and their effectiveness with small 
samples. 

Section 5 provides concluding remarks. 

An appendix contains a listing of GAMS computer code that is the basis for the entropy 
elasticity estimates in the examples in this paper. 
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2 Using cross entropy for undetermined problems 

2.1  The cross entropy function 

The Kullback-Liebler measure of cross entropy measures the difference between two 
probability distributions. The discrete form of this function is: 

(2.1)  CE = ∑𝜋𝜋𝑗𝑗 ∙ 𝑙𝑙𝑙𝑙�𝜋𝜋𝑗𝑗 𝜋𝜋𝑗𝑗′⁄ � 

where 𝜋𝜋𝑗𝑗 is the probability of the jth outcome occurring for the first probability distribution 
and 𝜋𝜋𝑗𝑗′ is the probability of the jth outcome occurring for the second probability 
distribution. The cross entropy function is equal to zero when 𝜋𝜋𝑗𝑗 is equal to 𝜋𝜋𝑗𝑗′ for all 
values of j. The greater the value of the cross entropy function, the larger is the difference 
between the two probability distributions. As pointed out by Preckel (2001) cross entropy 
can be interpreted as a penalty function over deviations between two distributions. This is 
most easily seen by noting that (Golan, Judge and Miller 1996, p. 31). 

(2.2)  CE ≈ ∑ 1
𝜋𝜋𝑗𝑗
∙ �𝜋𝜋𝑗𝑗 − 𝜋𝜋𝑗𝑗′�

2
 

An illustrative example of the cross entropy measure between a uniform probability 
distribution 𝜋𝜋𝑗𝑗′ and several other probability distributions 𝜋𝜋𝑗𝑗𝑘𝑘 is given in table 2.1.  

 
Table 2.1 Kullback Liebler measure of cross entropy 

Outcome (j) 

Probabilities 
(𝜋𝜋𝑗𝑗′) 

Probabilities (𝜋𝜋𝑗𝑗) 

𝜋𝜋𝑗𝑗1 𝜋𝜋𝑗𝑗2 𝜋𝜋𝑗𝑗3 𝜋𝜋𝑗𝑗4 

1 0.167 0.16 0 0.1 0.054 
2 0.167 0.16 0 0.1 0.079 
3 0.167 0.16 0 0.1 0.114 
4 0.167 0.16 0.5 0.1 0.165 
5 0.167 0.18 0.5 0.1 0.240 
6 0.167 0.18 0 0.5 0.347 
Sum 1.0 1.0 1.0 1.0 1.0 
𝐶𝐶𝐶𝐶 =
∑𝜋𝜋𝑗𝑗 ∙ 𝑙𝑙𝑙𝑙�𝜋𝜋𝑗𝑗 𝜋𝜋𝑗𝑗′⁄ �  - 0.002 1.098 0.294 0.177 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁:  
∑ 𝜋𝜋𝑗𝑗  𝑗𝑗𝑗𝑗   3.5 3.6 4.5 4.5 4.5 

  
 

Notice that all distributions in this table satisfy the condition that the probabilities sum to 
unity, but that the distributions that are ‘closest’ to 𝜋𝜋𝑗𝑗′ (such as 𝜋𝜋𝑗𝑗1) have smaller CE values 
and those that are more different (such as 𝜋𝜋𝑗𝑗2) have larger CE values. 
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2.2 Estimation of a probability distribution subject to constraints: 

Jaynes’ die problem 

(Jaynes 1963, pp. 183-187) posed the following problem: 
‘A die has been tossed a very large number N of times, and we are told that the average number 
of spots per toss was not 3.5, as we might expect from an honest die, but 4.5. Translate this 
information into a probability assignment 𝜋𝜋𝑗𝑗, j = 1, 2,…, 6, for the j-th face to come up on the 
next toss.’ [notation changed]  

As Jaynes pointed out, a possible solution would be 𝜋𝜋4 = 𝜋𝜋5 = 0.5 and all other 𝜋𝜋𝑗𝑗 = 0 
(the 𝜋𝜋𝑗𝑗2 distribution in table 2.1) but that does not seem a reasonable assignment since 
nothing in the data tells us that events other than 4 and 5 are impossible. Rather,  

‘A reasonable assignment 𝜋𝜋𝑗𝑗 must not only agree with the data and must not ignore any 
possibility - but it must also not give undue emphasis to any possibility.’ 

(for example the 𝜋𝜋𝑗𝑗3 distribution in table 2.1 gives undue emphasis to 6). Jaynes concluded 
that,  

‘The probability assignment πj which most honestly describes what we know is the one that is 
as smooth and “spread out” as possible subject to the data. It is the most conservative 
assignment in the sense that it does not permit one to draw any conclusions not warranted by 
the data.’ 

and, 

‘we need a measure of the “spread” of a probability distribution which we can maximize, 
subject to constraints which represent the available information.’  

As Jaynes went on to point out, the correct measure of the spread is Shannon's (1948) 
entropy measure. And since in this case the prior probability distribution is uniform, then 
maximising Shannon’s entropy is equivalent to minimising the cross entropy between the 
prior and estimated probabilities.1 

Thus Jaynes’ solution to the die problem with given prior probabilities 𝜋𝜋1′ = ⋯ = 𝜋𝜋6′ = 
0.167, can be determined by choosing 𝜋𝜋1 …𝜋𝜋6 to minimise: 

(2.3)  𝐶𝐶𝐶𝐶 = ∑𝜋𝜋𝑗𝑗 ∙ 𝑙𝑙𝑙𝑙�𝜋𝜋𝑗𝑗 𝜋𝜋𝑗𝑗′⁄ � 

1 A special case of (2.1) is when one of the distributions is uniform, e.g. when 𝜋𝜋𝑗𝑗′=1/n for all j=1,…, n. In 
this case: 

CE = ∑𝜋𝜋𝑗𝑗 ∙ 𝑙𝑙𝑙𝑙 �𝜋𝜋𝑗𝑗
1
n
⁄ �, 

= 𝑙𝑙𝑙𝑙(n) —∑𝜋𝜋𝑗𝑗 ∙ 𝑙𝑙𝑙𝑙�𝜋𝜋𝑗𝑗� 

= 𝑙𝑙𝑙𝑙(n) − 𝐶𝐶 
where E is Shannon’s measure of entropy. Thus in this case maximising E is a special case of minimising 
CE. 
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subject to the probabilities summing to unity, 

(2.4)  ∑ 𝜋𝜋𝑗𝑗 = 1𝑗𝑗  

and subject to the constraint of the available information (i.e. that the average number of 
spots per toss is 4.5). 

(2.5)  ∑ 𝜋𝜋𝑗𝑗 𝑗𝑗 = 4.5𝑗𝑗  

Returning to the example distributions in table 2.1, all of the distributions 𝜋𝜋𝑗𝑗1 … 𝜋𝜋𝑗𝑗4 satisfy 
the constraint that the probabilities sum to unity but with distribution 𝜋𝜋𝑗𝑗1 the average 
number of spots per toss would be 3.6. Thus it would not satisfy the constraints of Jaynes’ 
die problem even though it does have the lowest CE value. Amongst the example 𝜋𝜋𝑗𝑗2 … 𝜋𝜋𝑗𝑗4 
distributions that satisfy both constraints, 𝜋𝜋𝑗𝑗4 is the least different from the prior distribution 
𝜋𝜋𝑗𝑗′  and thus has the lowest CE of the four.  

The 𝜋𝜋𝑗𝑗4 distribution is also the solution to Jaynes’ die problem. Amongst the infinite 
number of distributions that satisfy both constraints, it is the one that minimises CE (and 
maximises Shannon’s entropy). 

2.3 Estimation of an accounting matrix subject to constraints 

Cross entropy methods provide a useful tool for estimating input-output tables and social 
accounting matrices (see for example, Robinson, Cattaneo and El-Said 2001). Often, such 
tables require updating, often with partial information, whilst maintaining important 
properties such as balance and known values for particular cells. Disaggregation of some 
or all variables, such as splitting and industry into sub-industries, is also common. 

A simple example is to update the cost shares of an old input-output table (table 2.2). Table 
2.2 provides a set of priors, but the process of updating this table to estimate table 2.3 also 
draws on new information that is available (table 2.4).  

 
Table 2.2 Old input-output table cost shares π’  

 Industry 1 Industry 2 Final demand 

Industry 1 0.500 0.167 0.333 
Industry 2 0.250 0.500 0.667 
Value-added 0.250 0.333 0.000 
Total cost 1.000 1.000 1.000 
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Table 2.3 Unknown new input-output table cost shares π 

 Industry 1 Industry 2 Final demand 

Industry 1  π11  π12  π1F 
Industry 2  π21  π22  π2F 
Value-added  πV1  πV2  πVF 
Total cost 1.000 1.000 1.000 

  
 

Table 2.4 shows the known and unknown values in the new input-output table. Total costs 
in the column totals 𝑧𝑧𝑗𝑗 (j = 1, 2, F) and total sales in the new row totals 𝑦𝑦𝑖𝑖 (i = 1, 2, V) are 
known. Sales from i to j are unknown, but they must equal the cost share of i in j times the 
total sales of j, 

(2.5)  𝑥𝑥𝑖𝑖𝑗𝑗 =  𝜋𝜋𝑖𝑖𝑗𝑗𝑧𝑧𝑗𝑗. 

Note that there are nine unknowns and only six equations (2.7 and 2.8 below) and thus the 
problem is underdetermined. 

 
Table 2.4 Unknown new input-output table ($) 

 Industry 1 Industry 2 Final demand Total sales 

Industry 1 x11 x12 x1F y1 = 9 
Industry 2 x21 x22 x2F y2 = 11 
Value-added xV1 xV2 xVF yV = 7 
Total cost z1 = 9 z2 = 11 zF = 7  

  
 

The CE solution is to choose the new cost shares that are closest to the cost shares in the 
old input-output table, subject to the new row and column totals. That is, the new cost 
shares are determined by minimising: 

(2.6)  𝐶𝐶𝐶𝐶 =  ∑ �∑ 𝜋𝜋𝑖𝑖𝑗𝑗 ∙ 𝑙𝑙𝑙𝑙�𝜋𝜋𝑖𝑖𝑗𝑗 𝜋𝜋𝑖𝑖𝑗𝑗′⁄ �𝑖𝑖 �𝑗𝑗 , 

subject to the cost shares in each column equalling unity, 

(2.7)  ∑ 𝜋𝜋𝑖𝑖𝑗𝑗 = 1𝑖𝑖 , 

and subject to total costs equalling total sales, 

(2.8)  ∑ 𝜋𝜋𝑖𝑖𝑗𝑗𝑧𝑧𝑗𝑗 = 𝑦𝑦𝑖𝑖𝑗𝑗 , 

where in these equations 𝑖𝑖 = 1, 2,𝑉𝑉,   𝑗𝑗 = 1, 2,𝐹𝐹,   𝑖𝑖, 𝑗𝑗 ≠ 𝑉𝑉,𝐹𝐹. 

The estimated cost shares are presented in table 2.5 while table 2.6 provides the estimated 
new input-output table. 
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Table 2.5 Estimated new input-output table cost shares π 

 Industry 1 Industry 2 Final demand 

Industry 1 0.504 0.174 0.364 
Industry 2 0.212 0.422 0.636 
Value-added 0.284 0.404 0.000 
Total cost 1.000 1.000 1.000 

  
 

 
Table 2.6 Estimated new input-output table ($) 

 Industry 1 Industry 2 Final demand Total sales 

Industry 1 4.54 1.92 2.55 9.00 
Industry 2 1.91 4.64 4.45 11.00 
Value-added 2.56 4.44 0.00 7.00 
Total cost 9.00 11.00 7.00  

  
 

2.4 Model calibration 

A system of equations is underdetermined if there are fewer equations than unknowns. 
This problem applies to econometric estimators when there are too few observations to 
estimate the parameters. In such cases, assumptions are usually made about some 
parameter values so that the problem becomes exactly determined. Typically these 
assumptions will set a parameter to a certain value or define it as a function of other 
parameters.  

Entropy estimation provides a way of solving underdetermined problems without needing 
to make ‘hard’ assumptions about parameter values (box 2.1). This is because entropy 
estimation uses prior information about the values of each unknown parameter in addition 
to the data. 
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Box 2.1 Entropy estimation of the parameters of a cost function 
Consider the following example from Howitt (2005) of estimating two parameters of a simple 
quadratic cost function 

(1) 𝑇𝑇𝐶𝐶 = 𝑎𝑎𝑥𝑥 + 1
2
𝑏𝑏𝑥𝑥2 

The only available observation indicates that the marginal cost is 60 when output x is equal to 
10. Thus the data relationship that needs to be satisfied is  

(2) 60 = 𝑎𝑎 + 10𝑏𝑏 

and there are an infinite number of parameter values for 𝑎𝑎 and 𝑏𝑏 that satisfy this.  

The entropy approach is to start with: (i) possible values (the ‘support values’) for 𝑎𝑎 and 𝑏𝑏 such 
as 𝑧𝑧𝑎𝑎 = [0, 8, 16, 32, 40] and 𝑧𝑧𝑏𝑏 = [0, 1, 2, 3, 4], and (ii) the associated prior probabilities such as 
𝜋𝜋′𝑎𝑎 = 𝜋𝜋′𝑏𝑏 = [0.2, 0.2, 0.2, 0.2, 0.2]. These prior values imply that the researcher thinks that the 
value of 𝑎𝑎 falls between 0 and 40, the value of 𝑏𝑏 falls between 0 and 4 and each of the values in 
these ranges are equally likely.  

The minimum cross entropy solution provides the probabilities 𝜋𝜋𝑎𝑎 and 𝜋𝜋𝑏𝑏 that minimise the sum 
of the cross entropy for a and for 𝑏𝑏, subject to: (i) the probabilities summing to unity; (ii), the 
parameters equalling the sum of the supports weighted by the estimated probabilities; and (iii) 
the parameters satisfying equation (2).  

In this example the entropy estimates of 𝑎𝑎 and 𝑏𝑏 are 30.21 and 2.98 respectively. 
 
 

Although the entropy estimator is determined, if there is significant noise in the available 
data then the entropy estimates are unlikely to be close to the ‘true’ value. The more actual 
data that is available, the closer the entropy estimate is likely to be to the ‘true’ value. That 
said, entropy estimation provides a means for using what data is available, however limited 
it may be, to improve the estimate.  
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3 Using cross entropy to estimate elasticities from 
time series: Part I single equation 

To demonstrate Generalised Cross Entropy (GCE) estimation (the formal term for entropy 
estimation) in the simplest possible way, consider a single linear equation with one 
unknown elasticity to be estimated. For example, given a time series of percentage (or log) 
changes in the relative price of two goods or factors 𝑝𝑝𝑡𝑡 and the percentage change in the 
relative quantities 𝑞𝑞𝑡𝑡, the elasticity of substitution parameter 𝜎𝜎 can be estimated from  

(3.1)  𝑞𝑞𝑡𝑡 = 𝜎𝜎 ∙ 𝑝𝑝𝑡𝑡 + 𝑁𝑁𝑡𝑡,      t = 1, … ,T 

This example is commonly found in linearised CGE models where capital-labour 
substitution elasticities and domestic-import (Armington) substitution elasticitites play an 
important role. 

3.1 Single observation 

Initially suppose that T=1 and that the only observation is 𝑞𝑞1 = 0.5 and 𝑝𝑝1 = 1. With one 
observation and two unknowns (σ and 𝑁𝑁1) this problem is underdetermined.  

The equation can be solved by assuming that 𝑁𝑁1 = 0 in which case 𝜎𝜎 =  𝑞𝑞1 𝑝𝑝1⁄  = 0.5. This 
is broadly representative of the approach used by Zhang and Verikios (2006) to estimate 
Armington elasticities from successive databases of the GTAP model. Implicit in this 
approach is the assumption that there is no unobserved noise (or that the noise is centred 
around zero when using aggregated variables) and there are no changes in preferences or 
technology in the intervening period.  

The equation can also be solved by taking a given value for σ and use (3.1) to calculate 𝑁𝑁1. 
This is somewhat analogous to the approach in the historical simulations of Dixon and 
Rimmer (1998) where given elasticity values are used in order to estimate shifts in 
consumer preferences and technological change, which are roughly comparable to any 
trend in the error term.2 

In both these examples, prior information is essentially used to be able to solve the 
problem, by fixing the value of one of the parameters. The entropy estimation approach, 
rather than fix a value, starts with prior probability distributions for σ and 𝑁𝑁1 (see box 3.1). 
This consists of both the support values — i.e. possible values for σ and 𝑁𝑁1 — and the 
associated prior probabilities of those values.  

Table 3.1 provides an example in which the support values for σ and 𝑁𝑁1 contain only two 
elements which are the lower and upper bounds. The associated prior probabilities are 

2 Their approach assumes that there is both a shift term (representing changes in preferences or technology) 
and an error term, with the error term being equal to zero. In our simple example, it is assumed that there 
are no underlying trends in the data and thus no shift term is required. 
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assumed to be 0.5. For σ the prior is a mean of 1 with possible values of 0 and 2, each with 
probability 0.5. For 𝑁𝑁1 the prior is a mean of 0 with possible values -1 and 1, each with 
probability 0.5.  

 
Table 3.1 Support values and prior probabilities for unknowns 

 Element 1 
(lower bound) 

Element 2 
(upper bound) 

Mean of prior 
distribution 

σ (elasticity)    
Support values (𝑧𝑧𝑗𝑗𝜎𝜎) 0.0 2.0  

Prior probabilities (𝜋𝜋𝑗𝑗′𝜎𝜎) 0.5 0.5 1.0 

𝒆𝒆𝟏𝟏(error term)    
Support values (𝑧𝑧𝑘𝑘𝑒𝑒) -1.0 1.0  
Prior probabilities (𝜋𝜋𝑘𝑘′𝑒𝑒) 0.5 0.5 0.0 

  
 

 
Box 3.1 Prior probability distributions 
The prior probability distribution used in entropy estimation should represent prior information 
about the unknown parameter. This prior information could consist of: 

• Well-tested theoretical constraints — for instance, some elasticities are highly unlikely to be 
less than zero. 

• econometric estimates from different contexts — there may exist econometric estimates that 
apply to different times, locations or industries but that still provide some information 
regarding the value of the parameter in another context. 

• educated guesswork based on the characteristics of goods or factors — for example, 
characteristics of certain goods imply that they are likely to be elastic (or inelastic). 

While the prior distribution used in entropy estimation is represented as a discrete probability 
distribution it can be considered an approximation of a continuous distribution and can be used 
flexibly: 

• if the value of the unknown parameter is relatively certain, most of the probability weight will 
be placed around that value.  

• if there is less certainty about the value of the parameter then the probabilities can be 
spread even over a large range. 

• or if the possibilities are asymmetric, that too can be incorporated. 

Note too that the lower and upper bounds of the support values determine the lower and upper 
bounds of the entropy estimator. They can therefore be used to enforce theoretical constraints. 
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Generalised Cross Entropy estimation involves starting with prior probabilities and support 
values such as those in table 3.1 and then determining the probabilities 𝜋𝜋𝑗𝑗𝜎𝜎 and 𝜋𝜋𝑗𝑗𝑒𝑒  that 
minimise the weighted sum of the entropy functions for each of the unknowns (one for σ 
and one for 𝑁𝑁1), i.e. minimising: 

(3.2)  𝐶𝐶𝐶𝐶 = 𝛾𝛾 ∑ �𝜋𝜋𝑗𝑗𝜎𝜎ln�𝜋𝜋𝑗𝑗𝜎𝜎 𝜋𝜋𝑗𝑗′𝜎𝜎⁄ ��𝑗𝑗  + (1 − 𝛾𝛾)∑ �𝜋𝜋𝑗𝑗𝑒𝑒ln�𝜋𝜋𝑗𝑗𝑒𝑒 𝜋𝜋𝑗𝑗′𝑒𝑒� ��𝑗𝑗  

subject to the sum of estimated probabilities equalling unity: 

(3.3)  ∑ 𝜋𝜋𝑗𝑗𝜎𝜎 = 1𝑗𝑗  

  ∑ 𝜋𝜋𝑗𝑗𝑒𝑒 = 1𝑗𝑗  

and subject to the values of the unknown parameters equalling the sum of the supports 
weighted by the estimated probabilities:  

(3.4)  𝜎𝜎 = ∑ 𝜋𝜋𝑗𝑗𝜎𝜎𝑧𝑧𝑗𝑗𝜎𝜎𝑗𝑗  

  𝑁𝑁1 = ∑ 𝜋𝜋𝑗𝑗𝑒𝑒𝑧𝑧𝑗𝑗𝑒𝑒𝑗𝑗  

and subject to the values of the unknown parameters satisfying the constraints of the 
equations of the economic model:  

(3.5)  𝑞𝑞1 = 𝜎𝜎 ∙ 𝑝𝑝1 + 𝑁𝑁1 

Equation 3.2 implies that there is a tension between minimising the entropy function for σ 
(choosing a value for σ that reflects the priors about σ) and minimising the entropy function 
for 𝑁𝑁1 (choosing a value of σ that is consistent with the data) (box 3.2).3 The relative 
weight placed on each of these entropy functions can be altered using the weighting 
factor γ.4  

Table 3.2 presents the entropy estimation results based on: (i) the single observation 
that 𝑞𝑞1 = 0.5 and 𝑝𝑝1 = 1; (ii) the two element support values and prior probabilities in 
Table 3.1; and (iii) 𝛾𝛾 = 0.5. Because in this simple example there is only one observation, 
two unknown parameters and two elements in the support values, the results can also be 
illustrated in a two-dimensional graph (box 3.3). 

3 The entropy function for 𝑁𝑁1, like the sum of least squares function used in least squares estimation, is a 
penalty function — a measure of undesirability. Indeed, (Preckel 2001) demonstrates that the entropy 
function for an error term (with two elements in the support and a mean of zero) is approximately 
quadratic for values close to zero. 

4 If no weighting factor is included, then the two objective functions are implicitly weighted equally. 
Alternatively, when estimating multiple parameter models, a different weight can be assigned to the cross 
entropy terms in the objective function for each parameter.  
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Box 3.2 Minimising cross entropy 
The figure below plots the relationship between different values of σ and the associated values 
of the cross entropy functions for σ, for 𝑁𝑁1, and the equally weighted aggregate of the two. As 
can be seen: 

• the cross entropy function for σ is minimised when σ = 1, its prior;  

• the cross entropy function for 𝑁𝑁1 is minimised when σ = 0.5, the value from the single 
observation; and  

• the aggregate cross entropy function is minimised when σ = 0.75, the entropy estimation 
result (table 3.2) 

 
 
 

 
Table 3.2 Entropy estimation results with a single observation and the 

support values and prior probabilities in table 3.1 and γ=0.5 

 Element 1 
(lower bound) 

Element 2 
(upper bound) 

Mean of prior 
distribution 

σ (elasticity)    
Support values (𝑧𝑧𝑗𝑗𝜎𝜎) 0 2  

Estimated probabilities σ (𝜋𝜋𝑗𝑗𝜎𝜎) 0.625 0.375 0.750 

𝒆𝒆𝟏𝟏(error term)    
Support values (𝑧𝑧𝑗𝑗𝑒𝑒) -1 1  

Estimated probabilities (𝜋𝜋𝑗𝑗𝑒𝑒) 0.625 0.375 -0.250 
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As can be seen in table 3.2, the estimated probability that 𝜎𝜎 = 0 is 0.625 which is higher 
than the prior of 0.5, and the estimated probability that 𝜎𝜎 = 2 is 0.375 which is lower than 
the prior of 0.5. Thus the entropy estimate of the mean for σ is lowered from 1.0 to 0.75. 
The entropy estimates of the probabilities for 𝑁𝑁1 also differ from the priors resulting in the 
mean for 𝑁𝑁1 being lowered to -0.25. 

As this example makes clear what is being estimated are the probabilities that an unknown 
parameter takes on given values, not the value of the parameter itself. It is important to 
note that unlike Bayesian techniques (box 3.4), the estimated probability distribution of σ 
is not an estimate of the uncertainty surrounding the estimate of σ and thus is not 
particularly relevant (Preckel 2001).5 

5 To understand this point, consider a perfectly specified model — a model without error — where the 
priors for the unknown parameter σ deviate from the ‘true’ value of that parameter. In this scenario 
entropy estimation will arrive at the true value of the parameter, and the probabilities associated with that 
parameter will be chosen such that the difference between estimated and prior probabilities for the 
parameter is minimised. These estimated probabilities cannot be interpreted as a measure of the 
uncertainty surrounding the value of the parameter because if this were the case, the estimated 
probabilities would indicate that we are certain of its value. (That is, there would be a probability of one 
for the true value and a probability of zero for all other values rather than probabilities that are chosen 
based on their distance from the associated priors.) 
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Box 3.3 Graphical representation of entropy estimation solution in 

the single observation example 
Minimisation of the CE function in equation 3.2 subject to the constraints in equations 3.3 
through 3.5 can be represented in a simple two-dimensional diagram if there are only two 
elements in the support values as in table 3.1.  

The equations in 3.3 are first used to substitute out 𝜋𝜋1𝜎𝜎 and 𝜋𝜋1𝑒𝑒. Then with 𝜋𝜋2𝜎𝜎 and 𝜋𝜋2𝑒𝑒 on the 
axes, values of the objective function (the weighted sum of the entropy functions for σ and 𝑁𝑁1) 
are plotted as contours, with each ellipse representing a single value (‘level’) of the CE function. 
The point where 𝜋𝜋2𝜎𝜎 and 𝜋𝜋2𝑒𝑒 both equal 0.5 (their priors) is where CE is equal to zero. The further 
an ellipse is from this point, the greater the value of the aggregate entropy function; CE = 0.016 
for the blue ellipse, CE = 0.032 for the grey ellipse etc.  

 

Next the equations in 3.4 can be used to convert the probabilities on the axes to the 
corresponding values of σ and e1. For example to convert 𝜋𝜋2𝜎𝜎 into values of σ, the values of 𝜋𝜋2𝜎𝜎 
and 𝜋𝜋1𝜎𝜎 (=1 − π2σ) are multiplied by their support values 𝑧𝑧2𝜎𝜎(= 2) and 𝑧𝑧1𝜎𝜎(= 0).  

The e1 and σ axes are used to plot the equation of the economic model itself, 3.5. Inserting the 
values for the single observation 𝑞𝑞1 = 0.5 and 𝑝𝑝1 = 1 into 3.5 and re-arranging gives the linear 
relationship 𝑁𝑁1 = 0.5 − 𝜎𝜎 which is plotted as the black line in the diagram. This constraint must 
be satisfied in the entropy estimation problem. 

(continued next page). 
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Box 3.3 continued 
The solution to the entropy estimation problem occurs at the point where the constraint line is 
tangent to the lowest-entropy-value ellipse (that is, where the entropy function is minimised and 
the constraint is satisfied). The diagram shows that this tangency occurs where cross entropy 
equals 0.032, σ is equal to 0.75 and 𝑁𝑁1 is equal to -0.25. This point is equivalent to 𝜋𝜋2𝜎𝜎and 𝜋𝜋2𝑒𝑒 
both being equal to 0.375, a decrease from their prior probabilities of 0.5.  

It should also be evident in this example and diagram that if there were changes to the prior 
probabilities or supports or weights, then the shape of ellipses and/or the values on the axes 
would change and thus the solution would change (this issue is taken up in section 3.2). Also if 
the single observation were different, then the constraint line and solution would change.  
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Box 3.4 How does Bayesian estimation differ from entropy 

estimation? 
Entropy and Bayesian estimation both use prior information, in addition to the available data, to 
estimate unknown parameters.  

What is Bayesian estimation? 

Bayesian techniques estimate the distribution of a parameter by updating prior knowledge about 
the distribution with new information. The equation for estimating the distribution is  

 𝑝𝑝(𝜃𝜃|𝑥𝑥) = 𝑝𝑝(𝜃𝜃) ∙ 𝐿𝐿(𝑥𝑥|𝜃𝜃) 

where: 

𝜃𝜃 represents the parameters to be estimated 

𝑥𝑥 represents the observed data 

𝑝𝑝(𝜃𝜃|𝑥𝑥) represents the estimated distribution (or posterior distribution) for 𝜃𝜃 

𝑝𝑝(𝜃𝜃) represents the prior knowledge (or prior distribution) for 𝜃𝜃 

𝐿𝐿(𝑥𝑥|𝜃𝜃) represents the likelihood function (the probability of obtaining the observed data 
conditional on the unknown parameter value). 

What are the differences between entropy estimation and Bayesian estimation? 

Bayesian techniques estimate the posterior distribution of the unknown parameters. In contrast, 
entropy estimation only provides a point estimate of the unknown parameter. (While entropy 
estimation does estimate a posterior distribution, this distribution does not reflect the uncertainty 
surrounding the value of the unknown — see footnote 4.) 

That said, Bayesian estimation is much more difficult to implement.  

• To employ Bayesian estimation, a researcher needs to specify the prior distribution of the 
unknown parameter. This involves choosing a continuous probability distribution (for 
example, a normal distribution or a gamma distribution) and values for the parameters that 
define that distribution (for example, µ and σ in the case of the normal distribution), such that 
the distribution matches the researcher’s priors. In contrast, entropy estimation allows the 
researcher to use prior information in a much simpler way. A researcher only needs to set a 
discrete prior distribution rather than a more complex continuous distribution. 

Using Bayesian estimation, the posterior distribution of the unknown parameter is calculated by 
multiplying the prior distribution by the likelihood function (the probability of obtaining the 
observed data conditional on the unknown parameter value). It is often not possible to derive 
the posterior distribution algebraically, which means numerical techniques are required. This 
can make Bayesian estimation computationally difficult and thus an impractical approach for the 
calibration of large economic models with many parameters. 

Source: Greene (2007). 
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3.2  Changing the weights, prior probabilities and support values 

The results of the entropy estimation of the single observation example in section 3.1 
depend on the assumed weights on the two entropy functions and the prior probabilities 
and support values for both σ and 𝑁𝑁1.  

Table 3.3 summarises the results of changing some of the assumptions about σ while still 
assuming a single observation and maintaining the same assumptions for 𝑁𝑁1 as in section 
3.1. 

 
Table 3.3 Changing the assumptions about σa 

 Weight 
for σ (γ) 

Support 
set (𝑧𝑧𝜎𝜎) 

Prior prob. 
(𝜋𝜋′𝜎𝜎) 

Prior 
mean 

Estimated 
mean 

Section 3.1 example 0.50 [0, 2] [0.5, 0.5] 1.00 0.750 

1. Change weight      

a) less importance on prior for σ 0.25 " " " 0.629 
b) zero weight on prior for σ  0.00 " " " 0.500 
c) zero weight on prior for e1 1.00 " " " 1.000 

2. Change prior probabilities  0.50 " [0.25, 0.75] 1.50 1.000 

3. Change supports       

a) increasing the bounds 
symmetrically " [-0.5, 2.5] [0.5, 0.5] 1.00 0.655 

b) increasing the bounds 
asymmetrically " [0, 2.5] " 1.25 0.796 

c) increasing the bounds 
asymmetrically by a larger amount  [0, 12] " 6.00 0.725 

 

a Based on a single observation (𝑞𝑞1 = 0.5 and 𝑝𝑝1 = 1) and on the support set and associated probabilities 
for 𝑁𝑁1 being unchanged from table 3.1. Cells in red indicate changes from the section 3.1 example. 
 
 

A number of important insights come from these results. Most are intuitive but some are 
less so. 

1. The entropy estimate for σ more closely reflects the data when there is less 
weight on the entropy function for σ, and with more weight it more closely 
reflects its priors.  

In 1.a) in table 3.3, the weight placed on the entropy function for σ is decreased to 0.25 
(and the weight placed on the entropy function for 𝑁𝑁1 is increased to 0.75) resulting in a 
decrease in the entropy estimate for σ from 0.750 to 0.629 which more closely reflects the 
data.  
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In 1.b) the weight on the entropy function for σ is set to zero resulting in the entropy 
estimate of σ equalling 0.5, the value in the data. 

In 1.c) the weight on the entropy function for σ is set to one resulting in the entropy 
estimate of σ equalling 1.0, its prior.  

2. In the two element case, changing the prior probabilities alters the mean of the 
prior probability distribution and the entropy estimate shifts towards the new 
mean.  

In 2 in table 3.3, 𝜋𝜋1′𝜎𝜎 and 𝜋𝜋2′𝜎𝜎 are changed to 0.25 and 0.75 respectively. With no change in 
the support values (0 and 2), the prior mean of σ is increased from 1.0 to 1.5. The effect is 
to increase the entropy estimate of σ from 0.75 to 1.00. 

In essence the entropy estimator is being told that the value of σ should be larger and the 
estimator responds accordingly, and especially so when there is only one data observation 
to contradict that assumption. Behind the result is the cross entropy objective function now 
having a smaller penalty on a higher value of σ and having a larger penalty on a smaller 
value for σ. Or put differently, if the cross entropy function is viewed as a preference 
function, the preference is now for larger values of σ.  

Note that in this example with two elements in the support values, changing the prior 
probabilities necessarily changes the mean of σ (assuming that the supports are 
unchanged). If the support values had three or more elements, it would be possible to 
change the prior probabilities in a way that did not change the mean of the prior 
distribution. 

Note also that the effect of changing the prior probabilities is dependent on assumptions 
made about weights and supports. For example, if the weighting placed on σ is equal to 
zero, changing the prior probabilities related to σ would have no effect on the entropy 
estimate. Furthermore, changing the supports for σ at the same time as changing the prior 
probabilities associated with σ would augment the effect on the entropy estimate.  

3. a) Changing the bounds of the supports symmetrically (in the case of two 
support elements) is analogous to changing the weighting factor.  

In 3.a) 𝑧𝑧1𝜎𝜎 and 𝑧𝑧2𝜎𝜎 are changed to -0.5 and 2.5 respectively. With no change in the 
probabilities (0.5 and 0.5), the prior mean of σ is unchanged at 1.0. The resulting entropy 
estimate of σ is reduced from 0.750 to 0.655.  

The intuition behind this result is that by increasing the range of the support on σ, the 
modeller is effectively asserting that they are less confident about the value of σ. And with 
no change in the assumptions about the distribution of 𝑁𝑁1, more weight is implicitly placed 
on the priors of 𝑁𝑁1. 
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This logic also applies if the range of the support values on 𝑁𝑁1 R were increased. Although it 
might be instinctive to think that if the range of the support for the error term were 
increased, the entropy estimate would place more weight on the data because the error term 
could take a wider range of values, this is not the case. Rather if the range of the support 
values on 𝑁𝑁1 R were increased, the modeller would effectively be asserting that they were 
less certain about the value of the error and thus implicitly placing more weight on the 
prior information for σ. In the entropy estimation procedure there is no fundamental 
difference between σ and 𝑁𝑁1 — they are both unknowns with prior probabilities and 
support values.  

Changing the support values in the two-element case has a similar effect to changing the 
weighting factor because all of the ‘prior probability’ is in the bounds of the support 
values. Two observations follow for cases where more than two elements in the support 
values: 

• The effect of changing the bounds would be reduced (assuming that there is a prior 
probability associated with the centre of the support values).  

• Increasing the amount of prior probability in the bounds relative to the centre of the 
support values (making the prior distribution flatter) will have a similar effect as 
expanding the support values in the two-element case. That is, the more uninformative 
the prior distribution is, the more weight that is placed on choosing parameters that are 
consistent with the data.6  

3. b) and c) The effect of an asymmetric manipulation of the supports depends on 
the size of the shift (in the case of two support elements). 

In 3.b) 𝑧𝑧2𝜎𝜎 is set to 2.5 while 𝑧𝑧1𝜎𝜎 is unchanged at zero. With no change in the probabilities 
(0.5 and 0.5), the mean of the prior distribution for σ is increased from 1.0 to 1.25. The 
resulting entropy estimate of σ is increased from 0.750 to 0.796.  

In 3.c) 𝑧𝑧2𝜎𝜎 is set to 12 while 𝑧𝑧1𝜎𝜎 is unchanged at zero with the consequence that the mean of 
the prior distribution for σ is increased from 1.0 to 6.0. In this case, the resulting entropy 
estimate of σ is decreased from 0.750 to 0.725. 

These examples illustrate that even though it might seem intuitive that increasing the upper 
bound for σ would always lead to an increase in the entropy estimate of σ, this is not the 
case.  

The reason is that there are two competing influences, each working in the opposite 
direction. The first is the expected one that changing the mean of the prior probability 
distribution does move the entropy estimate towards the new mean. But second, and less 
expectedly, as the gap between the lower and upper bound increases, the prior becomes 

6 For any given range, the uniform distribution is the most uninformative prior distribution. Thus it should 
be the default unless there is some information about more likely outcomes in a range. 

20 ENTROPY ESTIMATION  

 

                                                 



   
less informative and the data (0.5) increase their influence on the entropy estimate. As is 
evident in 3.c with the large increase in the upper bound of the support values, the second 
effect dominates in this case. 

3.3 Multiple observations 

For each additional observation it is necessary to add: (i) a cross entropy term for that 
observation’s error term to the aggregate cross entropy function 3.2; and (ii) additional 
constraints to the equations in 3.3, 3.4 and 3.5. Box 3.5 sets out how this is done for the 
single equation 3.1 example and provides a general formulation that is used in section 4 
below for economic models with multiple equations and multiple elasticity parameters. 

Table 3.4 illustrates the effects of additional observations on the estimated value of σ. The 
first row repeats the results from the single observation example in section 3.1 in which the 
prior for σ is 1.0. With the single observation 𝑞𝑞1 = 0.5 and 𝑝𝑝1 = 1.0, the entropy estimate 
of σ is 0.750 (based on the assumptions in table 3.1 and equal weights on the cross entropy 
terms). 

 
Table 3.4 Effect of additional observationsa 

   Entropy estimate of σ from: 

t qt pt 1 obs 2 obs 100 obs 

Identical observations     
1 0.5 1.0 0.750   
2 0.5 1.0  0.670  

... ... ...    
100 0.5 1.0   0.505 

Different observations     
1 0.5 1.0 0.750   
2 1.0 1.5  0.707  

 

a Based on the support sets and associated prior probabilities from table 3.1. All et are assumed to have 
the same supports and probabilities. All et and σ are weighted equally in the aggregate cross entropy 
function. 
 
 

The next few rows in table 3.4 show the effects of having additional observations that are 
identical to the first observation. With two identical observations the entropy estimate for σ 
decreases to 0.670 and with 100 it decreases to 0.505. Thus the greater the number of 
observations, the more the prior estimate of σ is dragged towards the mean value of σ in the 
data. The reason is that with an increasing number of observations there is an increasing 
amount of weight in the aggregate entropy function being placed upon the error terms in 
the function and a decreasing weight on the prior for σ.  
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Box 3.5 A general formulation for GCE estimation of parameters from 

time series 
A convenient and general way to express the Generalised Cross Entropy estimation method 
(and one that is used in subsequent sections below) is to first define the set of parameters to be 
estimated. For example, with one elasticity σ and 𝑇𝑇 error terms in the economic model in 
equation (3.1) this set is 

(1)  𝑆𝑆 = {𝜎𝜎, 𝑁𝑁1 , … , 𝑁𝑁𝑇𝑇}, 

where for each element 𝑘𝑘 the modeller specifies: (i) the support values for the parameter 

(2)  𝑧𝑧𝑘𝑘 =  �𝑧𝑧1𝑘𝑘, … ,  𝑧𝑧𝑛𝑛(𝑘𝑘)
𝑘𝑘 � 

and (ii) the associated prior probabilities for the support values 

(3)  𝜋𝜋′𝑘𝑘 =  �𝜋𝜋1′𝑘𝑘, … ,  𝜋𝜋𝑛𝑛(𝑘𝑘)
′𝑘𝑘 �, 

where 𝑙𝑙(𝑘𝑘) are the number of elements in 𝑧𝑧𝑘𝑘 and 𝜋𝜋′𝑘𝑘.  

The cross entropy measure for element 𝑘𝑘 is given by 

(4)  𝐶𝐶𝐶𝐶𝑘𝑘 = ∑ 𝜋𝜋𝑗𝑗𝑘𝑘  ln�𝜋𝜋𝑗𝑗𝑘𝑘 𝜋𝜋𝑗𝑗′𝑘𝑘� �𝑗𝑗 , 

where 𝜋𝜋𝑗𝑗𝑘𝑘 are the probabilities to be estimated and 𝑗𝑗 is summed from 1 to 𝑙𝑙(𝑘𝑘).  

Assuming equal weights for the cross entropy of all elements of 𝑆𝑆, GCE estimation then 
involves estimating the probabilities 𝜋𝜋𝑗𝑗𝑘𝑘 for all 𝑗𝑗 for each parameter 𝑘𝑘 to minimise: 

(5)  𝐶𝐶𝐶𝐶 =  ∑  𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘∈𝑆𝑆  

subject to the sum of the estimated probabilities for each parameter equalling unity: 

(6)  ∑ 𝜋𝜋𝑗𝑗𝑘𝑘 = 1𝑗𝑗 ,       ∀ 𝑘𝑘 ∈ 𝑆𝑆 

and subject to the sum of the supports 𝑧𝑧𝑗𝑗𝑘𝑘, weighted by the estimated probabilities 𝜋𝜋𝑗𝑗𝑘𝑘 equalling 
the value of the unknown parameters: 

(7)  𝑘𝑘 = ∑ 𝜋𝜋𝑗𝑗𝑘𝑘𝑧𝑧𝑗𝑗𝑘𝑘𝑗𝑗 ,        ∀ 𝑘𝑘 ∈ 𝑆𝑆 

and subject to the equations of the economic model that contain the unknown parameters — 
which in the example from section 3.1 is equation (3.1),: 

(8)  𝑞𝑞𝑡𝑡 = 𝜎𝜎 ∙ 𝑝𝑝𝑡𝑡 + 𝑁𝑁𝑡𝑡,      t = 1, … , 𝑇𝑇 

This formulation is used in other economic models discussed below where (1) is replaced with 
the relevant set of parameters and (8) is replaced with the relevant model equations. GCE 
estimation of these models then involves the same constrained optimisation problem as is 
expressed here even though they have multiple equations and multiple elasticity parameters. 
 
 

Table 3.4 also shows the effects of having a second observation which is not identical to 
the first. In this case, the second observation indicates that σ is larger than is suggested by 
the first observation. Accordingly the entropy estimate of σ is larger (0.707) than is the 
case when the two observations are identical (0.670).  

But regardless of the values of the additional observations, as more become available, the 
entropy estimate of σ converges towards the mean value in that data. This feature of 
entropy estimation is illustrated in Figure 3.1 where the gradient of the slope is equal to the 
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parameter σ being estimated. With each additional observation the estimate of σ is less 
dependent on the prior and more reflective of its mean value in the data.  

 
Figure 3.1 Stylised effect of additional observations 

  

  
  

 

3.4 Comparing the Ordinary Least Squares and the entropy 
estimators when data are limited 

Monte Carlo methods are used in this section to compare the advantages of the entropy 
estimator over the Ordinary Least Squares (OLS) estimator when data are limited.  

The estimated equation is (3.1) and it is assumed that the true value of 𝜎𝜎 is 0.25 and that 𝑁𝑁𝑡𝑡 
is normally distributed with a mean of zero and a standard deviation of 5. It is assumed that 
there are only 10 observations to estimate the elasticity.  

To compare the OLS and entropy estimates of 𝜎𝜎 under these assumptions, 10 000 sets of 
10 observations are generated. Figure 3.2 provides a scatterplot showing the correlation 
between 𝑞𝑞𝑡𝑡 and  𝑝𝑝𝑡𝑡. 
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Figure 3.2 Scatterplot of the joint distribution of 𝒒𝒒𝒕𝒕 and 𝒑𝒑𝒕𝒕 32T

a 

 
 

a This scatterplot includes 1000 observations. The trend line represents the relationship between 𝑞𝑞𝑡𝑡 and 
 𝑝𝑝𝑡𝑡.  
 

For each set of 10 observations, the OLS and entropy estimates of 𝜎𝜎 are calculated. The 
entropy estimates are based on the support values and prior probabilities assumptions in 
table 3.4. Of particular note is the assumption that the mean of the prior distribution for 𝜎𝜎 
is 0.5. 

 
Table 3.4 Support set and prior probabilities for entropy estimation 

 Element 1 
(lower bound) 

Element 2 Element 3 
(upper bound) 

Mean of prior 
distribution 

σ (elasticity)     
Support set for σ 0.00 0.25 3.00  
Prior probabilities for σ 0.10 0.80 0.10  
Mean of prior distribution    0.50 

e (error term)     

Support set for 𝑁𝑁𝑁𝑁 
-20.00 0.00 20.00  

Prior probabilities for 𝑁𝑁𝑁𝑁 
0.10 0.80 0.10  

Mean of prior distribution    0.00 
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Figure 3.3 presents the distribution of the OLS and entropy estimators of σ. The first point 
to note is that the mean of the OLS estimator (0.25) is equal to the true value of σ, whereas 
the mean of the entropy estimator (0.39) is biased in that it deviates from the true value of 
σ.  

 
Figure 3.3 Distribution of OLS and entropy estimates of σ 

 
  

 

Although an unbiased estimator is generally preferable to a biased estimator, in this 
example the variance of the OLS estimator (0.12) is much larger than the variance of the 
GCE estimator (0.02). This means that any individual OLS estimate of σ has the potential 
to deviate quite significantly from the true value of σ. 

Indeed, if a modeller relied on the OLS estimator to estimate the value of σ, there is a 
23 per cent probability that they would obtain a negative estimate for σ (figure 3.4). In 
contrast, it is not possible for the entropy estimator to produce an estimate that is less than 
zero, because the prior distribution is bounded by zero.  

Not only does entropy estimation avoid values that are inconsistent with the underlying 
model, it also is more likely to improve on prior assumptions about the value of parameters 
in this case (figure 4.3). Suppose that if the modeller did not use an estimate of σ for their 
economic model, they would assume a value of 0.5 (the prior mean). In this example, there 
is a 78 per cent chance that the entropy estimate would be an improvement over assuming 
a value of 0.5 (if an improvement is defined as an estimate that is close to the ‘true’ value 
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of 0.25, i.e. between 0.20 and 0.50). In contrast, there is only a 34 per cent chance that the 
OLS estimate would be located between 0.20 and 0.50. 

 
Figure 3.4 The entropy estimator of σ is preferable in this example 

 
  

 

3.5 When is the entropy estimator preferable? 

The previous example highlights the tradeoff that exists when choosing between the 
entropy estimator and an alternative econometric estimator. The benefit of the entropy 
estimator is that the variance of the estimates tends to be much smaller compared to 
alternative estimators, but the cost is that the entropy estimator can be biased. For the 
entropy estimator to be preferable to an alternative estimator, the benefits need to outweigh 
the costs. 

There will be net benefits in choosing the entropy estimator over an alternative estimator if 
(i) there is useful prior information and (ii) the variance of the alternative estimator is 
relatively large.  
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There is useful prior information 

Useful prior information reduces the variance of the entropy estimator, which in turn 
increases the chance of obtaining sensible results. It also reduces the bias associated with 
the entropy estimator. 

Two important sets of prior information have a slightly different effect on the entropy 
estimator. 

• The lower and upper bounds of the support values represent absolute restrictions on the 
entropy estimate; they can significantly reduce the variance of the entropy estimator 
and force the entropy estimate to produce only results that are within the specified 
range.  

• The prior probabilities can also reduce the variance of the estimator; unlike the lower 
and upper bounds, the effect of prior probabilities on the entropy estimator diminishes 
as the number of observations increase. 

What if the prior information is ‘wrong’? 

Entropy estimation necessarily leads to biased estimates unless the mean of the prior 
probability distribution is exactly equal to the true value.  

• The further the ‘true’ value of an unknown parameter is from the mean of the prior 
probability distribution, the more biased the entropy estimate.  

– If the true value of an unknown parameter is between the lower and upper bound of 
the support values, then the entropy estimator will still be consistent (as the number 
of observations increases, the estimator will converge to the ‘true’ value). 

– If the true value is not between the lower and upper bound of the support values, 
then the entropy estimator will be inconsistent (it will always be biased, no matter 
how many observations are available.7 

All else being equal, the more biased the entropy estimator, the more likely it is that an 
alternative estimator will be preferable. This underscores the need to have credible, well-
motivated priors. 

What if the prior information is uninformative? 

There is little difference between the entropy estimator and alternative estimators if the 
prior information used is uninformative (the prior probability distribution is close to 

7 Practically speaking, obtaining an entropy estimate that is very close to a bound when there are a large 
number of observations available, should prompt the modeller to re-examine whether the bounds and 
prior distribution are appropriate.  
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uniform over a wide range of values). This is because the entropy estimator is not receiving 
any assistance from the prior probability distribution.  

The variance of the alternative estimator needs to be relatively large 

The entropy estimator tends to have a relatively small variance if there is useful prior 
information. If the variance of an alternative estimator is also relatively small, then the 
alternative estimator will be preferable as it will be unbiased. However if the variance of 
the alternative estimator is relatively large, meaning an estimate could differ substantially 
from the true value of the parameter, the entropy estimator is likely to be preferable. 

To see the situations in which the variance of alternative estimators might be large, 
consider equation 3.6 which is one representation of the formula for the variance of the 
OLS estimator (Greene 2007, p. 59):  

(3.6) 𝑣𝑣𝑎𝑎𝑣𝑣��̂�𝛽𝑘𝑘� =  𝜎𝜎2

�1−𝑅𝑅𝑘𝑘
2�∙∑ (𝑥𝑥𝑖𝑖𝑘𝑘−�̅�𝑥𝑘𝑘)2𝑛𝑛

𝑖𝑖
 

Here: 

�̂�𝛽𝑘𝑘 is the parameter associated with the kth explanatory variable, 

𝑥𝑥𝑖𝑖𝑘𝑘 is ith observation of the kth explanatory variable,  

𝜎𝜎2 is the variance of the error term, and 

𝑅𝑅𝑘𝑘2 is the coefficient of determination in a regression of 𝑥𝑥𝑘𝑘, using all other variables 
as explanatory variables.8  

8 The coefficient of determination can be interpreted as the percentage of the variation in variable (𝑥𝑥𝑘𝑘) that 
can be explained by variation in the other explanatory variables. 
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Equation 3.6 suggests that there are four reasons why the variance of an estimated 
parameter might be large:  

• The variance of the error term (𝜎𝜎2) could be large; this could be because of omitted 
variables or inexact data collection methods. 

• There may be few observations (n is small); in most cases, if there are more than a few 
observations (more than 20), the variance of the alterative estimator is likely to be too 
small for the entropy estimator to be preferable. 

• The variance of the explanatory variable linked to the kth parameter may be relatively 
small; that is, the values that the kth explanatory variable takes might all be very 
similar. 9  

• There may be a high degree of collinearity between the explanatory variables; that is, 
the explanatory variables might move together which in equation 3.6 would be 
characterised by 𝑅𝑅𝑘𝑘2 being close to one.  

In practice, the economic data used for modelling is often limited and noisy and thus the 
variance of alternative estimators tend to be large. This suggests that if there is useful prior 
information about parameter values, the net benefits of using entropy estimation will likely 
be large. 

3.6  How to make assumptions about support values and prior 
probabilities 

Theoretically, it should be easy to choose the ‘right’ probability distribution — as noted in 
box 3.1, the modeller should choose a distribution that reflects the uncertainty surrounding 
the values that the unknown parameters can take. However, modellers may not be 
confident about (or may not agree on) the underlying distribution. For this reason, it is 
important to consider how assumptions about support values and prior probability 
distributions affect the properties of entropy estimation.  

Bounds on support values 

As noted above, the smaller the range of the bounds on the support values, the more likely 
it is that the true value of the parameter is not within those bounds (and the entropy 
estimate is inconsistent). But if the true value is within those bounds, then the estimator 
will be consistent and the variance of the estimator will small. Thus the choice of bounds 
will be determined by a tradeoff between efficiency and consistency. 

9 The estimated variance of the independent variable is calculated as: 

  1
𝑛𝑛

× ∑ (𝑥𝑥𝑖𝑖𝑘𝑘 − �̅�𝑥𝑘𝑘)2𝑛𝑛
𝑖𝑖 . 
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Additionally, it is important to note that the bounds of the support values for the error term 
should be sufficiently large so that they are never binding. If the estimate of the error term 
is equal to one of its bounds, the parameter estimate will be biased to accommodate the 
misspecified error term. 

Number of elements in the support values 

For a given set of bounds on the support values, the choice of the number of elements in 
the support values has two competing effects.  

• The more elements there are, the easier it is to represent prior information about the 
unknown parameter. For example, it is easier to represent a normal-like distribution 
when there are five elements in the support values, than when there are three elements. 
With only three elements in the support values, it is hard to represent all but the 
simplest of distributions if there are theoretical bounds which should only be associated 
with a very small amount of prior probability. 

• The problem becomes more difficult computationally as the number of elements in the 
support values increases. This is because increasing the support values adds variables to 
the objective function and increases the size of the optimisation problem to solve. 
Indeed, if an element is added to the support values for the error term, then a variable is 
added to the objective function for each observation. 

In most cases, setting the support values to include five elements seems like an appropriate 
starting point. This allows for normal-like prior distributions while not making the problem 
too difficult to solve.  

Prior probabilities 

As noted above, the prior probabilities (in conjunction with the support values) will bias 
the entropy estimate unless the mean of the prior distribution is equal to the true value of 
the parameter. That said, unlike the choice of bounds, the influence of the prior 
probabilities diminishes as the number of observations increases. Thus for a large set of 
observations, the priors chosen will have little effect on the entropy estimate.  
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4 Using cross entropy to estimate elasticities from 
time series: Part II multiple equations 

The complicating factor that often arises when estimating multi-equation models is the 
presence of simultaneous-equation bias.10 This occurs when two or more endogenous 
variables are determined by the system (the equations are not independent) and the 
estimation technique used does not account for this interdependency. The bias arises 
because the assumption that the regressors are uncorrelated with the residual does not hold. 

A simple example of simultaneous equations that cannot be estimated consistently using 
OLS or entropy is the percentage change supply and demand equations: 

(4.1)  𝑞𝑞𝑑𝑑,𝑡𝑡 = 𝛼𝛼1𝑝𝑝𝑡𝑡 + 𝛼𝛼2𝑦𝑦𝑡𝑡 + 𝑁𝑁𝑑𝑑,𝑡𝑡     t = 1, ... , T 

(4.2)  𝑞𝑞𝑠𝑠,𝑡𝑡 = 𝛽𝛽1𝑝𝑝𝑡𝑡 + 𝛽𝛽2𝑥𝑥𝑡𝑡 + 𝑁𝑁𝑠𝑠,𝑡𝑡 1T     t = 1, ... , T 

(4.3)  𝑞𝑞𝑑𝑑,𝑡𝑡 = 𝑞𝑞𝑠𝑠,𝑡𝑡 = 𝑞𝑞𝑡𝑡      t = 1, ... , T 

where the 𝛼𝛼 and 𝛽𝛽 are elasticities, 𝑞𝑞𝑠𝑠,𝑡𝑡 and 𝑞𝑞𝑑𝑑,𝑡𝑡 are percentage changes in the quantity 
demanded and supplied of a good, 𝑝𝑝𝑡𝑡 is the percentage change in the price, 𝑦𝑦𝑡𝑡 is the 
percentage change in income and 𝑥𝑥𝑡𝑡 is the percentage change in unit costs. Both 𝑦𝑦𝑡𝑡 and 𝑥𝑥𝑡𝑡 
are exogenous, and 𝑝𝑝𝑡𝑡 and 𝑞𝑞𝑡𝑡 are endogenous. 

There are two main approaches to countering simultaneity bias in entropy estimation:11 

• using a structural equation entropy estimator (analogous to two-stage least squares 
estimation), discussed in section 4.1; 

• allowing endogenous variables to be determined endogenously in the estimation 
process (‘endogenous variables entropy estimator’), discussed in section 4.2. 

Sections 4.3 uses Monte Carlo simulations to compare the structural equation entropy 
estimator, endogenous variables entropy estimator, and the simple entropy estimator of the 
elasticities in equations 4.1 through 4.3.  

4.1  A structural equation entropy estimator 

In traditional econometric techniques, simultaneous equation bias is typically avoided by 
using instrumental variables in a two-stage or three-stage least squares estimation 
procedure (Greene 2007). These estimators avoid simultaneity bias by: 

10 Harmon, Preckel and Eales (1998) develop a entropy estimator to estimate linear systems of equations 
where the errors are correlated across equations, but where there is no simultaneous equation bias. 

11 Both these approaches can also be used to address simultaneous-equation bias in nonlinear models. For 
example, Arndt, Robinson and Tarp (2001) use the endogenous variables approach to estimate parameter 
values for nonlinear multi-equation models. 
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• estimating the relationship between the endogenous regressor and all the exogenous 

regressors;  

• using this relationship to calculate predicted values for the endogenous regressor; and 

• using these predicted values in place of the original values for the endogenous right-
hand-side variables in an OLS estimation of each model equation.12  

In the above supply-demand example, the two-stage least squares estimator would involve 
first estimating: 

(4.4)   𝑝𝑝𝑡𝑡 = 𝛿𝛿1𝑦𝑦𝑡𝑡 + 𝛿𝛿2𝑥𝑥𝑡𝑡 + 𝑁𝑁𝑝𝑝,𝑡𝑡     t = 1, ... , T 

and then using 4.4 to obtain the predicted values �̂�𝑝𝑡𝑡:  

(4.5)  �̂�𝑝𝑡𝑡 = 𝛿𝛿1𝑦𝑦𝑡𝑡 + 𝛿𝛿2𝑥𝑥𝑡𝑡      t = 1, ... , T 

which are then used to estimate equations 4.6 and 4.7 using OLS: 

(4.6)  𝑞𝑞𝑡𝑡 = 𝛼𝛼1�̂�𝑝𝑡𝑡 + 𝛼𝛼2𝑦𝑦𝑡𝑡 + 𝑁𝑁𝑑𝑑,𝑡𝑡     t = 1, ... , T 

(4.7)  𝑞𝑞𝑡𝑡 = 𝛽𝛽1�̂�𝑝𝑡𝑡 + 𝛽𝛽2𝑥𝑥𝑡𝑡 + 𝑁𝑁𝑠𝑠,𝑡𝑡     t = 1, ... , T 

A similar approach can be applied to entropy estimation. Marsh, Mittelhammer and Cardell 
(1998) developed a structural-equation entropy estimator that avoids simultaneous 
equation bias. Like two-stage least squares, this estimator uses exogenous regressors to 
obtain predicted values for the endogenous regressors. These imputed values are used in 
place of the actual values to estimate the model equations. Unlike two-stage least squares, 
the Marsh, Mittelhammer and Cardell formulation estimates both types of equations 
simultaneously.13 

A convenient way to express the entropy estimation equations for this estimator is to use 
the GCE formulation set out above in box 3.5. 

First define the set of parameters to be estimated. In the Marsh, Mittelhammer and Cardell 
estimator for equations 4.4 through 4.7, this set is:  

(4.8)  S = �𝛼𝛼1,𝛼𝛼2, β1,β2, 𝛿𝛿1,𝛿𝛿2,𝑁𝑁𝑝𝑝,1, 𝑁𝑁𝑑𝑑,1, 𝑁𝑁𝑠𝑠,1, … , 𝑁𝑁𝑝𝑝,𝑇𝑇 , 𝑁𝑁𝑑𝑑,𝑇𝑇 , 𝑁𝑁𝑠𝑠,𝑇𝑇� 

which replaces the set in equation 1 in box 3.5. For each element k it is necessary to 
specify the support values of possible parameter values and associated prior probabilities 
(2 and 3 in box 3.5). 

12 If there are multiple endogenous regressors, this process can be expanded, with a separate relationship 
estimated (using exogenous regressors) for each endogenous regressor to obtain predicted values. 

13 It is also possible to solve two separate entropy estimation problems — one to obtain predicted values for 
the endogenous regressors and one to estimate the unknown parameters. This estimator produces broadly 
similar results to the structural equation estimator. 
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Then Generalised Cross Entropy estimation involves minimising the aggregate cross 
entropy measure (5 in box 3.5) subject to: 

• the sum of the estimated probabilities for each parameter equalling unity (6 in box 3.5) 

• the sum of the supports weighted by the estimated probabilities equalling the value of 
the unknown parameters (7 in box 3.5) 

• the 4T equations of the model in equations 4.4 through 4.7 (which replace the equations 
in 8 in box 3.5).  
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4.2 Endogenous variables approach 

The approach used by Arndt, Robinson and Tarp (2001), Liu, Arndt and Hertel (2000) and 
Go et al. (2014) to avoid simultaneous equation bias allows the entropy estimation model 
to determine the variables that are considered endogenous in the economic model (such as 
prices and quantities in the previous example). The error terms are the differences between 
the calculated values for these variables and their historically observed values. Thus the 
error terms are associated with the endogenous variables, not the equations as is the case 
with the structural equation approach. 

Returning to the supply-demand example in equations 4.1 through 4.3, the estimating 
model can be re-specified as: 

(4.9)  𝑞𝑞�𝑡𝑡 = 𝛼𝛼1�̂�𝑝𝑡𝑡 + 𝛼𝛼2𝑦𝑦𝑡𝑡      t = 1, ... , T 

(4.10)  𝑞𝑞�𝑡𝑡 = 𝛽𝛽1�̂�𝑝𝑡𝑡 + 𝛽𝛽2𝑥𝑥𝑡𝑡      t = 1, ... , T 

(4.11)  𝑞𝑞𝑡𝑡 = 𝑞𝑞�𝑡𝑡 + 𝑁𝑁1,𝑡𝑡       t = 1, ... , T 

(4.12)  𝑝𝑝𝑡𝑡 = �̂�𝑝𝑡𝑡 + 𝑁𝑁2,𝑡𝑡       t = 1, ... , T 

With this specification, �̂�𝑝𝑡𝑡 and 𝑞𝑞�𝑡𝑡 are the values of the endogenous variables that are 
calculated in the entropy estimation and 𝑝𝑝𝑡𝑡 and 𝑞𝑞𝑡𝑡 are the actual observed values.  

An important way to view these 4T equations is that they contain 4T endogenous variables 
(�̂�𝑝𝑡𝑡, 𝑞𝑞�𝑡𝑡, 𝑁𝑁1,𝑡𝑡, 𝑁𝑁2,𝑡𝑡) and 4T exogenous variables that take on their historical values (𝑦𝑦𝑡𝑡, 𝑥𝑥𝑡𝑡 ,  𝑝𝑝𝑡𝑡, 
𝑞𝑞𝑡𝑡).  

One use of these equations would be in a historical validation of a model (Dixon and 
Rimmer 2013) where the initial priors for the elasticities are used to solve the model in 
each period. Examination of the errors then gives an indication of how well the model 
tracks historically.  

The endogenous variables approach for GCE estimation can be seen as a generalisation of 
this model validation. It goes further by adjusting the prior estimates of the elasticities to 
better fit the historical data, and thus it will improve the tracking performance of the 
economic model. As noted in section 3.3, the more historical observations available, the 
more the elasticity estimates will reflect what is in the data and not the priors. 

A particular strength of the endogenous-variables approach is that it is easier to implement 
than the structural-equation estimator, especially for large models. Adding the error 
equations to the endogenous variables in an economic model is much simpler than adding 
numerous structural equations. In addition, the error values themselves are of considerable 
interest in model evaluation. 
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With the endogenous variables approach for entropy estimation, the set of parameters to be 
estimated is:  

(4.13)  S = �𝛼𝛼1,𝛼𝛼2, β1,β2, 𝑁𝑁1,1, 𝑁𝑁2,1, … , 𝑁𝑁1,𝑇𝑇 , 𝑁𝑁2,𝑇𝑇� 

which replaces the set of parameters in 1 in the general formulation for GCE estimation in 
box 3.5. Again, the support values and associated probabilities (2 and 3 in box 3.5) need to 
be specified for each parameter. 

The endogenous variable entropy estimator then involves minimising the aggregate cross 
entropy measure (5 in box 3.5), subject to estimated probabilities for each parameter 
equalling unity (6 in box 3.5), subject to the sum of the supports weighted by the estimated 
probabilities equalling the value of the unknown parameter (7 in box 3.5) and subject to the 
4T equations in 4.9 through 4.12. 

An issue to be aware of with the endogenous variables approach is whether the model is 
identified; if it is not then it will not provide consistent estimates. This can happen if, for a 
given set of exogenous variables, more than one set of parameters generates the same set of 
observations for the outcome variables.14 The model in equations 4.9 through 4.12 is 
identified because there is only one feasible combination of the parameters for given 
values of 𝑞𝑞𝑡𝑡, 𝑝𝑝𝑡𝑡, 𝑦𝑦𝑡𝑡, 𝑥𝑥𝑡𝑡, 𝑁𝑁1,𝑡𝑡 and 𝑁𝑁2,𝑡𝑡. Thus the entropy estimators for 𝛼𝛼1, 𝛼𝛼2, 𝛽𝛽1 and 𝛽𝛽2 will 
be consistent. This is illustrated in the Monte Carlo results below in section 4.3 as well as 
an example of inconsistent estimators from an unidentified model (a model with equations 
4.9 through 4.11 only). 
  

14 The problem of identification can also apply to the structural-equation entropy estimator. If the structural 
equation entropy estimator is not identified, the endogenous variables entropy estimator is necessarily not 
identified. That said, unless there is an outcome equation for every endogenously determined variable, the 
endogenous variables approach is at a greater risk of identification problems.  
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4.3 Some Monte-Carlo simulations — consistency of the estimators 

and effectiveness with small samples 

In this section two sets of Monte Carlo simulations are undertaken to:  

• assess the consistency of the estimators (whether the estimators converge to the true 
value as the number of observations increase) (section 4.3.1)  

• compare the effectiveness of the structural equation and endogenous variables entropy 
estimators at estimating a model with 10 observations (section 4.3.2).  

Table 4.1 presents the specifications for the two sets of Monte Carlo simulations.  

Table 4.2 presents the support values and prior distributions used for the unknown 
parameters in equations 4.1 through 4.3. 

 
Table 4.1 Monte Carlo simulation specifications 

 Base Case 

Distribution of 𝑦𝑦𝑡𝑡and 𝑧𝑧𝑡𝑡 Normal(0,1) 
Distribution of 𝑁𝑁𝑑𝑑,𝑡𝑡 and𝑁𝑁𝑠𝑠,𝑡𝑡 Normal(0,1) 
True value of α1 -2 
True value of α2 2 
True value of 𝛽𝛽1 0.5 
True value of 𝛽𝛽2 -2 

Consistency simulations (section 4.3.1)  
Number of observations 1 000 
Number of simulations 100 
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Table 4.2 Support set and prior probabilities for entropy estimation 

 Element 1 
(lower bound) 

Element 2 Element 3 
(upper bound) 

Mean of prior 
distribution 

𝜶𝜶𝟏𝟏      
Support set -6.00 -1.00 0.00  
Prior probabilities 0.10 0.80 0.10 -1.40 

𝜶𝜶𝟐𝟐      
Support set 0.00 1.00 6.00  
Prior probabilities 0.10 0.80 0.10 1.40 

𝜷𝜷𝟏𝟏      
Support set 0.00 0.50 3.00  
Prior probabilities 0.10 0.80 0.10 0.70 

𝜷𝜷𝟐𝟐      
Support set for -6.00 -1.00 0.00  
Prior probabilities 0.10 0.80 0.10 -1.40 

𝒆𝒆𝒅𝒅,𝒕𝒕 and 𝒆𝒆𝒔𝒔,𝒕𝒕     
Support set -4.00 0.00 4.00  
Prior probabilities 0.10 0.80 0.10 0.00 

  
 

4.3.1 Consistency of the estimators  

The simple entropy estimator is not consistent 

Table 4.3 presents the results from estimating the simultaneous equation supply-demand 
model in equations 4.1 through 4.3 with a large number of observations. The assumed 
supports and probabilities are from table 4.2. 

As can be seen in table 4.3, the absolute difference between the estimates and the true 
values is between 0.32 and 0.42 for all parameters. This suggests that the estimator is not 
consistent as the average of 100 simulations of 1000 observations would be much closer to 
zero if it were consistent. 

 
Table 4.3 Simple entropy elasticity estimates 

 Average estimatea True value Difference 

 𝛼𝛼1 -1.58 -2.00 0.42 
 α2 1.66 2.00 -0.34 
 𝛽𝛽1 0.11 0.50 -0.39 
 𝛽𝛽2 -1.68 -2.00 0.32 

 

a Based on the average of 100 simulations of 1000 observations. 
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The structural equation entropy estimator is consistent 

The elasticity estimates based on the structural equation entropy estimator for the model in 
equations 4.4 through 4.8 are presented in table 4.4. Table 4.5 documents the assumed 
supports and probabilities additional to those in table 4.2. 

Table 4.4 illustrates that the structural equation entropy estimator provides average 
elasticity estimates that are almost identical to the true values when there are a large 
number of observations available. 

 
Table 4.4 Structural equation elasticity estimates 

 Average estimatea True value Difference 

 𝛼𝛼1 -2.00 -2.00 0.00 
 α2 1.99 2.00 -0.01 
 𝛽𝛽1 0.51 0.50 0.01 
 𝛽𝛽2 -2.00 -2.00 0.00 
 𝛿𝛿1 0.80 0.80 0.00 
 𝛿𝛿2 0.80 0.80 0.00 

 

a Based on the average of 100 simulations of 1000 observations. 
 
 

 
Table 4.5 Support set and prior probabilities for structural equation 

entropy estimation (additional to table 4.2) 

 Element 1 
(lower bound) 

Element 2 Element 3 
(upper bound) 

Mean of prior 
distribution 

𝜹𝜹𝟏𝟏     
Support set 0.00 0.50 2.67  
Prior probabilities 0.10 0.80 0.10 0.67 

𝜹𝜹𝟐𝟐     
Support set 0.00 0.50 2.67  
Prior probabilities 0.10 0.80 0.10 0.67 

𝒆𝒆𝒑𝒑,𝒕𝒕     

Support set -4.00 0.00 4.00  
Prior probabilities 0.10 0.80 0.10 0.00 

  
 

The endogenous variables entropy estimator is consistent 

The elasticity estimates based on the endogenous variables entropy estimator for the model 
in equations 4.9 through 4.11 are presented in table 4.6. The assumed supports and 
probabilities additional to those in table 4.2 are provided in table 4.7. 
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As is clear in table 4.6 the endogenous variables entropy estimator also provides consistent 
estimates. 

 
Table 4.6 Endogenous-variables elasticity estimates 

 Average estimatea True value Difference 

 𝛼𝛼1 -1.99 -2.00 0.01 
 α2 1.99 2.00 -0.01 
 𝛽𝛽1 0.51 0.50 0.01 
 𝛽𝛽2 -2.00 -2.00 -0.00 

 

a Based on the average of 100 simulations of 1000 observations. 
 
 

 
Table 4.7 Support set and prior probabilities for endogenous variables 

entropy estimation (additional to table 4.2) 

 Element 1 (lower 
bound) 

Element 2 Element 3 (upper 
bound) 

Mean of prior 
distribution 

𝒆𝒆𝟏𝟏,𝒕𝒕 and 𝒆𝒆𝟐𝟐,𝒕𝒕       
Support set -4.00 0.00 4.00  
Prior probabilities 0.10 0.80 0.10 0.00 

  
 

The endogenous-variables entropy estimator is inconsistent if it is underidentified 

As briefly noted in section 4.2, for the endogenous-variables entropy estimator to be 
consistent, the model must be identifiable. Equations 4.9 through 4.10 on their own, (ie not 
including equation 4.11) represent an endogenous variables specification of the linear 
demand-supply model that is not identifiable. 

Table 4.8 presents the elasticity values that result from applying the endogenous variables 
estimator to this unidentified system. As can be seen from the differences between the 
estimates and the true values, the estimator is not consistent. 

This example also illustrates that an important way to achieve identification in an 
unidentified model is to include more outcome variables (i.e. include equation 4.11), but 
this approach can only be used if data are available for the additional variables. 
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Table 4.8 Underidentified endogenous-variables elasticity estimates 

 Average estimatea True value Difference 

 𝛼𝛼1 -1.60 -2.00 0.40 
 α2 1.46 2.00 -0.54 
 𝛽𝛽1 0.61 0.50 0.11 
 𝛽𝛽2 -2.21 -2.00 -0.21 

 

a Based on the average of 100 simulations of 1000 observations. 
 
 

4.3.2  Comparing the effectiveness of the estimators with small 
samples 

10 000 Monte Carlo simulations of 10 observations were generated. For each simulation, a 
structural-equation entropy estimate and a (consistent) endogenous-variables entropy 
estimate were calculated. Figure 4.1 plots the distributions of the results for the two 
estimators. 

As can be seen the distributions of structural-equation entropy estimates and the 
endogenous-variables entropy estimates are similar. Both estimators produce almost the 
same distribution of estimates for 𝛽𝛽1 and 𝛽𝛽2. The structural-equation entropy estimator is 
less biased for all parameters, but the difference is only substantial for 𝛼𝛼1 as can be seen in 
table 4.9. 
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Figure 4.1 Monte Carlo simulation results for the structural equation 

and endogenous variables entropy estimatorsa 

  

  
Structural-equation estimates        Endogenous variables estimates 

a Based on 1 000 simulations of 10 observations. 

 
Table 4.9 Comparing the mean estimates of the structural-equation 

and endogenous-variables entropy estimatesa 

 Mean of structural-equation 
parameter estimates 

Mean of endogenous-variables 
parameter estimates 

True value 

 𝛼𝛼1 -1.65 -1.81 -2.00 
 α2 1.64 1.66 2.00 
 𝛽𝛽1 0.61 0.63 0.50 
 𝛽𝛽2 -1.97 -2.01 -2.00 

 

a Based on the average of 100 simulations of 1000 observations. 
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5 Concluding remarks 

Traditional econometric techniques are effective at estimating parameters when a large 
number of observations are available. This is because as the number of observations 
increase, the variance of traditional estimators shrink (we are more confident about the 
estimate) (Greene 2007). When only a few observations are available, the variance of 
traditional estimators can be quite large, even infinite for underdetermined models. In these 
circumstances, an estimate may deviate significantly from the true value. Indeed using 
traditional estimators when the data is limited may even produce estimates that that are 
inconsistent with well-tested economic theory. 

Modellers tend to avoid these problems by not estimating relationships when the data are 
limited and noisy. But when a model requires a value for a particular parameter, modellers 
are forced to either choose values based on judgment or use econometric estimates that 
have large standard errors. 

Entropy estimation is a useful technique for estimating relationships in these 
circumstances. It enables economic modellers to improve the assumptions they make about 
parameter values in economic models when the available data are limited and the variance 
of alternative estimators are large. With limited data, parameter estimates depend on the 
priors, but as new data becomes available the estimates depend more on the data. 

An important feature of entropy estimation is that the parameter estimates are obtained as 
part of solving the economic model itself. That is, the estimating equations are those in the 
model and indeed the parameter estimates must satisfy the constraints of all model 
equations in all periods. The alternative and more common practice is that the equations 
used to estimate parameters are separate from the economic model and the econometrics is 
done outside of the model. In such cases the resulting parameter estimates, which are 
subsequently used in solving the economic model, may come from estimating equations 
that are quite different from those in the model. 

Of particular interest for simultaneous equation CGE modelling is the endogenous 
variables entropy estimator. With this approach, additional equations for errors are added 
to the CGE model specifying the difference between the calculated values for endogenous 
variables and their actual observed values for each period in which data are available. Thus 
for each period if there are m observable endogenous variables then m equations are added 
to the CGE model along with m endogenous error terms. If the assumed priors for elasticity 
values were used to solve the model in each period, examination of the errors – the 
difference between calculated and actual values – would provide a goodness-of-fit 
validation test of the model, and it would be a starting point for entropy estimation to 
improve those elasticity values. With ever-increasing computing power and usable time 
series data available, that exercise is now becoming possible. 
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Appendix 

The GAMS code below calculates the endogenous variables entropy estimates for the 
simultaneous equation model in equations 4.9 through 4.12.  

It is based on the general GCE formulation set out in box 3.5 and thus can be easily 
modified to generate the entropy estimates for the other examples in this paper. Notice 
however that in box 3.5 no distinction is made between elasticity and error parameters 
whereas in the code below it is convenient to distinguish between the two types of entropy 
parameters.  

 
 
 
$ontext 
 
This code generates entropy estimates of elasticities from time series for 
simultaneous equations using the endogenous variables approach.  
 
A simple example is hard-wired. To modify the code for other cases, change  
the:  
1) sets  
2) time series data in the table 
3) priors and support values for elasticities and errors 
4) model equations (eqn_M1 and eqn_M2 below) 
 
A limitation of this code is that it restricts the number of support  
values and prior probabilities to be the same (3) for all elasticities and  
errors. 
 
 
$offtext 
 
 
*------------------------------------------------------------------------------- 
SETS 
t                                       Time (number of observations available) 
/1*5/                                    
                                         
j                                       3 support values for all elast & errors 
/0,1,2/                                  
                                         
set_vars                                All variables 
/q,p,y,z/                                
                                         
set_endog(set_vars)                     Endogenous variables 
/q,p/                                    
                                         
set_elas                                Elasticities 
/a1,a2,b1,b2/ 
 
 
 
*------------------------------------------------------------------------------- 
TABLE 
data(set_vars,t)                        Time series data for variables 
     1     2     3     4     5 
q    1     2     3    -1    -2 
p   -1    -2    -3     1     2 
y    1   1.5     1    -1  -0.5 
z   -1     1    -1     1    -1 
; 
 
 
*------------------------------------------------------------------------------- 
PARAMETERS 
probs_elas_priors(set_elas,j)           Prior probabilities for elasticities 
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probs_errors_priors(set_endog,j)        Prior probabilities for errors  
supports_elas(set_elas,j)               Support values for elasticities 
supports_errors(set_endog,j)            Support set for errors 
                                         
weight                                  For estimated parameters in objective 
tiny                                    A small value 
; 
 
* assign prior probabilities for elasticities 
probs_elas_priors(set_elas,"0") = 0.1; 
probs_elas_priors(set_elas,"1") = 0.8; 
probs_elas_priors(set_elas,"2") = 0.1; 
 
* assign support values for elasticities 
supports_elas("a1","0") = -6; 
supports_elas("a1","1") = -1; 
supports_elas("a1","2") = 0; 
 
supports_elas("a2","0") = 0; 
supports_elas("a2","1") = 1; 
supports_elas("a2","2") = 6; 
 
supports_elas("b1","0") = 0; 
supports_elas("b1","1") = 0.5; 
supports_elas("b1","2") = 3; 
 
supports_elas("b2","0") = -6; 
supports_elas("b2","1") = -1; 
supports_elas("b2","2") = 0; 
 
* assign prior probabilities for errors 
probs_errors_priors(set_endog,"0") = 0.1; 
probs_errors_priors(set_endog,"1") = 0.8; 
probs_errors_priors(set_endog,"2") = 0.1; 
 
* assign support values for errors 
supports_errors(set_endog,"0") = -10; 
supports_errors(set_endog,"1") = 0; 
supports_errors(set_endog,"2") = 10; 
 
weight = 0.5; 
tiny = 1E-6; 
 
 
*------------------------------------------------------------------------------- 
VARIABLES 
probs_elas(set_elas,j)                  Estimated probabilities for elasticities 
probs_errors(set_endog,t,j)             Estimated probabilities for errors 
elas(set_elas)                          Estimated elasticities 
errors(set_endog,t)                     Estimated errors 
data_calculated(set_endog,t)            Estimated values for endogenous variables 
CE                                      Aggregate cross entropy objective 
; 
 
* lower and upper bounds and initial levels for variables 
probs_elas.lo(set_elas,j) = tiny; 
probs_elas.up(set_elas,j) = 1; 
probs_elas.l(set_elas,j)  = probs_elas_priors(set_elas,j) ; 
 
probs_errors.lo(set_endog,t,j) = tiny; 
probs_errors.up(set_endog,t,j) = 1; 
probs_errors.l(set_endog,t,j)  = probs_errors_priors(set_endog,j); 
 
elas.lo(set_elas) = -10; 
elas.up(set_elas) =  10; 
elas.l(set_elas)  =  sum(j,probs_elas_priors(set_elas,j)*supports_elas(set_elas,j)) ; 
 
errors.lo(set_endog,t) = -10; 
errors.up(set_endog,t) =  10; 
errors.l(set_endog,t)  =  0; 
 
data_calculated.lo(set_endog,t) = -10; 
data_calculated.up(set_endog,t) = 10; 
data_calculated.l(set_endog,t)  = data(set_endog,t); 
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*------------------------------------------------------------------------------- 
EQUATIONS 
eqn_obj                        The aggregate CE objective function 
                               
eqn_probs_elas(set_elas)       Estimated elasticity probabilities sum to unity  
eqn_probs_error(set_endog,t)   Estimated error probabilities sum to unity  
 
eqn_elas(set_elas)             Elasticities equal estimated probs * supports  
eqn_error(set_endog,t)         Errors equal estimated probs * supports  
 
eqn_endog(set_endog,t)         Difference between data and data_calculated 
 
eqn_M1(t)                      Model equation 1 
eqn_M2(t)                      Model equation 2 
; 
 
 
eqn_obj..                      CE =e=  
                                 weight*sum([set_elas,j],probs_elas(set_elas,j) 
                                           *log(probs_elas(set_elas,j) 
                                           /probs_elas_priors(set_elas,j))) 
                                +(1-weight)*sum([set_endog,j,t],probs_errors(set_endog,t,j) 
                                           *log(probs_errors(set_endog,t,j) 
                                           /probs_errors_priors(set_endog,j))); 
 
eqn_probs_elas(set_elas)..     sum(j,probs_elas(set_elas,j)) =e= 1; 
eqn_probs_error(set_endog,t).. sum(j,probs_errors(set_endog,t,j)) =e= 1; 
 
eqn_elas(set_elas)..           elas(set_elas) =e=  
                                 sum(j,probs_elas(set_elas,j)*supports_elas(set_elas,j)); 
eqn_error(set_endog,t)..       errors(set_endog,t) =e=  
                                 sum(j,probs_errors(set_endog,t,j) 
                                *supports_errors(set_endog,j)); 
 
 
eqn_endog(set_endog,t)..       errors(set_endog,t) =e=  
                                data(set_endog,t)-data_calculated(set_endog,t); 
 
 
eqn_M1(t)..                    data_calculated("q",t) =e=  
                                 elas("a1")*data_calculated("p",t) 
                                +elas("a2")*data("y",t); 
eqn_M2(t)..                    data_calculated("q",t) =e=  
                                 elas("b1")*data_calculated("p",t) 
                                +elas("b2")*data("z",t); 
 
 
*------------------------------------------------------------------------------- 
MODEL GCE 
/all/; 
 
Solve GCE using NLP minimising CE; 
 
display elas.l; 
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