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Abstract: 

 
Integrated assessment models (IAMs) are playing an increasingly important role in long-run sustainability analysis. 

At their core is a set of global economic and environmental accounts which capture a complete set of inter-industry 

and inter-regional relationships in the global economy in a consistent manner. While much attention is focused on 

the raw data and parameterization required to expand or add sectoral detail to IAMs, only rarely is there discussion 

of how different matrix balancing methods (i.e. translating disparate raw data sources into the consistent database) 

affect modeling results. This article offers an in-depth look into the database-modeling nexus in IAMs, focusing on 

the electric power sector which is both a major source of CO2 emissions and a critical vehicle for climate change 

mitigation. Comparisons of the prevailing matrix balancing algorithms show how the choice of database 

reconciliation methodology affects modeling results using policy-relevant simulations in the context of the electric 

power sector. The resulting insights can be applied to the disaggregation of other, technology rich sectors in the 

economy. We conclude that appropriate selection of database reconciliation methodologies can reduce the deviation 

between bottom-up and top-down modeling. 

 

 

Highlights: 

- Database construction, particularly matrix balancing, is rarely well-documented in IAMs 

- Database balancing alters key economic relationships in IAM  

- These economic relationships affect modeling results 

- Appropriate balancing methods help reconcile bottom-up and top-down models  

- The ERP method is preferred for preserving bottom-up data in IAMs 

 

 

Keywords: integrated assessment, computable general equilibrium, model validation, matrix balancing, 

cross-entropy, database-modeling nexus 
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1. Introduction 

 

 It is increasingly apparent that standalone economic, biophysical, atmospheric, or other data-

driven numerical models cannot address long-run sustainability issues which cut across traditional 

academic boundaries. Such issues include, but are not limited to: anthropogenic climate change; 

environmental degradation; and energy, food, and water security. Integrated assessment models (IAMs) 

marry social, economic, and environmental modules within a single framework to offer a clearer picture 

of how sustainability issues might evolve in the future and how public policies might alter this trajectory. 

In light of the complex policy issues facing the world today, IAMs with increasing sector-level detail 

have grown in popularity (Tol, 2006). Correspondingly, it is useful to identify and characterize new 

sources of uncertainty in IAMs and how they affect uncertainties in policy impacts (Weyant, 2009). 

 

The push of sector-level detail has not always the case. Early IAMs such as DICE (Nordhaus, 1992) and 

RICE (Nordhaus and Yang, 1996) included a single, aggregate economic sector. However, this stimulated 

interest in IAMs in policy circles which led to a demand for increased sector detail. This has brought the 

IAM community into intimate contact with the computable general equilibrium (CGE) modeling 

community. CGE models offer consistent theoretical underpinnings of inter-sectoral and inter-regional 

interactions across the entire global economy. Furthermore, adding sectoral detail is relatively 

straightforward and well-studied. As such, CGE models are becoming the preferred economic module in 

IAMs - especially for energy-related research. For example, 12 of the 18 models used in the EMF 27 

study are CGE-based (Kriegler et al. 2014). 

 

Sectoral extensions require disaggregating the largely aggregate sectors in an existing CGE database into 

detailed sub-sectors to analyze specific technologies and policy shocks (McFarland et al. 2004; Edmonds 

et al. 2004; Paltsev et al. 2004). For example, in the case of the electric power sector, many prevailing 

CGE databases (e.g. Narayanan et al. 2012) only include a single aggregate industry
1
; however, 

increasingly, policies are directed at specific generating technologies (e.g. solar investment tax credits, 

nuclear phase-out). Further, economic shocks may impact diverse generating technologies in different 

ways (e.g. a drop in the price of natural gas). Thus, several leading research groups independently 

disaggregate the electricity sector into electricity sub-sectors which include several generating 

technologies (Brenkert et al. 2004; Paltsev et al. 2005; Sue Wing, 2008; Burniaux and Chateau, 2010). 

 

Greater sector-level detail allows IAMs to explore new (and reoccurring) research vistas such as energy 

policy (Bhattacharyya, 1996), agriculture/biofuel linkages (Kretschmer et al. 2009), and climate policy 

(Ciscar and Dowling, 2014). Introducing the detailed technologies involves two basic tasks: i) 

disaggregating an aggregate sector in a CGE database into sub-sectors or technologies (e.g. electric power 

into specific generating technologies) and ii) creating mathematical equations to represent supply and 

demand in the new sectors. Modelers typically devote the most attention and the greatest amount of 

documentation to the latter – that is, characterizing the supply and demand behavior in the detailed sub-

sectors. Unfortunately, much less attention is placed on the constructing the disaggregate baseline 

database which defines key economic relationships in the economy and which, as this study demonstrates, 

can play a key role in determining model outcomes.  

 

The disaggregation process consists of two basic steps: i) collecting technologically-rich, sector-detailed 

(often termed “bottom-up”) data which, when price and quantity data are combined, imply some value 

flows in the new sub-sectors and ii) a method to allocate these estimated value flows across sub-sectors 

while meeting CGE accounting (“top-down”) constraints. Unfortunately, the disaggregation process used 

                                                           
1
 The motivating example in this article is a disaggregation from an aggregate electricity sector into several 

generating technologies. However, the discussion of the database-modeling nexus is general to disaggregations of 

other sectors and extendable to estimating entire matrices.  
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in constructing the newly disaggregated database is often weakly or even wholly undocumented. When 

the disaggregation process is published, the focus is on the bottom-up data and less so on the construction 

method. Lenzen (2011) argues that models based on the disaggregation of sectors into individual 

activities generally perform better than modeling the aggregate sector, even when the information used to 

disaggregate is fragmentary. But how should this fragmentary information be combined and reconciled 

with the key economic relationships implied by the original top-down data?  

 

This article shows that the choice of database reconciliation methodology has a significant impact on 

modeling results. Four commonly used disaggregation methods are compared: i) an ad-hoc method used 

by Marriott (2007), Lindner et al. (2014), and Arora and Cai (2014), ii) minimum sum of column cross-

entropy (MSCCE) (Golan et al. 1994, Robinson et al. 2001), iii) RAS (e.g. Lahr and de Mesnard, 2004), 

and iv) economic relationship preserving with no column constraint (ERP) (Peters and Hertel, in review). 

The experiments use identical bottom-up data to create the balanced matrices and are then taken as input 

to a simple partial equilibrium (PE) model which allows us to analytically trace how economic 

relationships, which arise from the different disaggregation methods, impact modeling results.  

 

The modeling analysis focuses on three contemporary economic shocks. The first is a technology-specific 

capital subsidy (e.g. an investment tax credit). This is useful since it will highlight the value of preserving 

the cost structure in the sub-sectors. The second example involves a shock to the price of natural gas (e.g. 

a result of the shale gas boom in the US). Finally, a sector-wide capital tax (e.g. removal of a sector-wide 

tax credit) is considered. This experiment illustrates the importance of preserving “row shares” in the 

reconciled database (i.e. the relative capital intensity of different technologies in the power sector). Model 

results are shown to be highly dependent on the balancing methods used to construct a CGE database and 

flow directly from the mathematical features of the algorithms. 

 

In current practice the database construction methods used in IAMs are, at best, not adequately 

documented. This point will only increase in importance with the increasing demand for more highly 

resolved analysis of critical sectors in IAMs. The results shown in this article advocate for greater 

introspection at the database-modeling nexus. More broadly, the authors hope it will redirect attention 

back to the validation of new and innovative CGE and IAM extensions. Finally, the results provide 

evidence that the appropriate selection of matrix balancing methods can reduce the overall deviation 

between bottom-up and top-down modeling. 

 

2. Database construction 

 

This article focuses on the matrix balancing methods used to reconcile bottom-up data with the 

aggregate databases required by top-down IAM and CGE models. Schneider and Zenios (1990) provide 

the following description of the matrix balancing problem: “Given a rectangular matrix Z
0
, determine a 

matrix Z that is close to Z
0
 and satisfies a given set of linear restrictions on its entries. [Matrix names 

changed to conform to input-output (I-O) convention]” Matrix balancing for disaggregation of a sector in 

I-O, SAM, and CGE databases consists of the matrix Z
0
, with elements z

0
it, where i is the input and t is the 

new sub-sector, constructed from the values implied by the bottom-up data for the disaggregate sectors. 

The linear restrictions, here, are the top-down economic accounting conditions (e.g. supply equals 

demand) and any other restrictions (e.g. non-negativity) required for modeling. Matrix balancing methods 

generally differ in the how they define the “closeness” of Z to Z
0
 (e.g. an objective function) and the set of 

required constraints. 

 

2.1. Bottom-up data and the Z
0
 matrix 

 

 The example presented in this paper is a disaggregation of the electricity sector for the 129 

regions in the Global Trade Analysis Project (GTAP) version 8 database (Narayanan et al. 2012). Here, 
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the original power sector is disaggregated into seven new electricity sectors: nuclear, coal, gas, oil, 

hydroelectric, wind, and solar power. The data used for the disaggregation for this paper are:  

 

 i) qt - electricity production (in GWh) by technology, t (IEA, 2010a; IEA, 2010b), 

  

 ii) oi* - total value of inputs, i, (in US dollars) to the aggregate GTAP electricity sector , and  

 

 iii) lit - levelized (i.e. annualized cost in US dollars per GWh) capital, operating and maintenance 

 (O&M), fuel, and effective tax costs of electricity for generating technologies (IEA/NEA, 

 2010). 

 

The data and formulations presented here are reduced to a single region; each regional database can be 

estimated independently. The elements of matrix Z
0
, z

0
it, are thus the product of the levelized input costs, 

lit, and the total production qt scaled to the total value in the top-down data. The most important 

consistency requirement in the balanced database, Z, is that the total value of each input employed across 

the new sectors is equal to the total value of the corresponding input value employed in the original 

electricity sector, oi*. 

  

   
  

      

          
    

 
      (1) 

 

       
 

       (2) 

 

 It is easy to see that the consistency requirement (Eq. 2) will not necessarily hold, since these data 

come from disparate sources (i.e. techno-economic data versus national accounts). In fact, Table 1 shows 

that the bottom-up data (Z
0
) implies different allocations of levelized input costs, i, in the total electricity 

sector than the top-down data for this scenario.
2
 Thus, it is important to analyze database reconciliation 

methods to minimize the effect in the model economy. 

 

Table 1. Comparison of input employment implied by the bottom-up data and the total input employment 

in the top-down data (GTAPv8) of the total electricity sector ("ely") in the United States ("usa") 

 Bottom-up (Z
0
) Top-down (GTAP) 

LCOE (i) Value (2007 USD)               
  Value (2007 USD) (  

 )                
  

Capital 143,679 38.3% 118,955 31.7% 

O&M 58,560 15.6% 141,615 37.8% 

Coal 63,625 17.0% 42,782 11.4% 

Gas 84,065 22.4% 47,288 12.6% 

Oil 24,823 6.6% 24,111 6.4% 

Total 374,752 100% 374,752 100% 

 

 

2.2. Matrix balancing methods 

 

The methods for disaggregation fall into two broad categories: ad-hoc and constrained 

optimization. Ad-hoc methods employ straightforward algebraic rules to allocate the aggregate values 

                                                           
2
 Levelized costs try to capture the annualized cost of production while considering data such as overnight capital 

costs, depreciation rate, fuel costs averaged over the year, heat rate, and other technological factors. Top-down data 

comes from the reporting of final reported costs in broad categories which may encompass a wider breadth of costs 

than the bottom-up data (e.g. transmission and distribution, insurance services, customer service, litigation). These 

different perspectives offers some insight on the origin of the discrepancies between the two data types. 
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across the different technologies. Constrained optimization methods minimize a specific distance metric 

with respect to important economic relationships, such as: i) cost structure (i.e. the share of an input cost 

in total production cost of a sub-sector, cit) and ii) relative input intensity (i.e. the row share corresponding 

to the relative employment of an input amongst the different sub-sectors, rit). These relationships are 

expressed mathematically below where the super-script 0 refers to the relationship implied by the original 

matrix, Z
0
. The relationships in the estimated matrix, Z, have no super-script. 

 

   
  

   
 

    
 

 
  and     

  
   
 

    
 

 
     (3) and (4) 

 

    
   

     
  and      

   
     
     (5) and (6) 

 

Constrained optimization methods define the “closeness” metric explicitly via the objective function – 

seeking to find a new matrix Z which satisfies the column and/or row totals while coming as close as 

possible to the original column and/or row shares. Ad-hoc methods target these shares implicitly. The 

most relevant constrained optimization methods minimize entropy distance: i) MSCCE, ii) RAS, and iii) 

ERP.
3
 The most popular ad-hoc method, and thus the one explored here, allocates value in the matrix 

based on row share alone. Other ad-hoc methods may be equally prevalent, but are rarely publicly 

documented. The term, ad-hoc, in this work always refers to the method described in Section 2.2.1. These 

four matrix balancing methods are explained in detail in the subsequent sections. 

 

2.2.1. Ad-hoc 

 

Despite the ubiquity of well-studied matrix balancing methods, ad-hoc approaches remain very 

popular in practice. The most prevalent of these is the row share-based allocation (Marriott, 2007; 

Lindner et al. 2014; and Arora and Cai, 2014). Here, the matrix Z
0
 is comprised of the implied value from 

the bottom-up data (Eq. 1) and oi* is the input employment in the original aggregate sector. The ad-hoc 

method allocates the original input value in the aggregate sector by the following equation: 

 

    
   
 

    
 

 
   

        (7) 

 

or equivalently, using the initial row share:  

 

       
    

        (8) 

 

Of course, this is a simplification of the ad-hoc methods used by Marriott (2007), Arora and Cai (2014), 

and Lindner et al. (2014). Their disaggregations include more detailed inputs than the illustrative ones 

presented here. Basic assumptions on fuel inputs (e.g. coal to coal-fired power) and even more detailed 

assumptions on other inputs (e.g. water transport is exclusive to coal-fired power and pipeline transport is 

split between gas and oil power) are easily made. However, the general intuition is the same: row share-

based allocation in the cases where no exact assumption of values on Z can be made. Two key points are: 

i) cost structure is not specifically considered in the ad-hoc method and ii) there can be no total cost or 

any other informational constraint. These can be readily implemented in the context of constrained 

optimization methods to follow. 

  

                                                           
3
 In addition to entropy methods, Sue Wing (2008) provides a minimum of sum squared error approach specific to 

disaggregating the electricity sector. It is not clear how often this type of formulation is used in practice. 



6 
 

2.2.2. Minimum sum of column cross-entropy (MSCCE) 

  

The minimum sum of column cross-entropy (MSCCE), as proposed by Golan et al. (1994) and 

extended by Robinson et al. (2001), focuses on cost structure, but does not specifically focus on row 

shares. The constrained optimization problem, in its most simplified form, is as follows: 

  

             
   

   
        (9) 

subject to: 

       
     

       (10) 

 

             (11) 

 

             (12) 

 

where c
0
it is the original cost structure implied by Z

0
 and where oi* and ot* are the given row and column 

sums, respectively, which ensure consistency with the top-down data.
4
 The optimal cit result can be 

readily be transformed to zit by multiplying them by the value of output for a given technology. 

 

A key weakness of MSCCE is that the ordering of relative input intensities between technologies (i.e. row 

shares) is not always preserved (McDougall, 1999). This can have adverse consequences for economic 

modeling, as detailed in Section 3. 

 

2.2.3. RAS 

 

The biproportionate adjustment (RAS) method attempts to preserves both economic relationships 

(i.e. cost structure and row share) by targeting the elements of matrix Z
0
, specifically. RAS is not always 

treated as a constrained optimization problem, but the problem can be written as follows (McDougall, 

1999): 

 

             
   

   
         (13) 

subject to: 

        
       (14) 

 
        

      (15) 

 

This reflects a “true” cross-entropy formulation and is related to MSCCE as a weighted sum of column 

cross-entropy. While the distance between Z and Z
0
 may be greater than in MSCCE, the basic RAS 

solution preserves the ordering of input intensity (McDougall, 1999). Robinson et al. (2001) 

acknowledges that the RAS approach may be better suited to cases where both cost structure and row 

shares are important, as is generally the case for CGEs and IAMs. 

 

2.2.4. ERP 

 

 The MSCCE and RAS approaches both require column sum constraints (Eq. 10 and Eq. 15, 

respectively), whereas the ad-hoc approach has none. These constraints ensure a fit to an observed total 

                                                           
4
 The total cost constraint, ot*, jointly considers the bottom-up and top-down data by first allocating the top-down 

value fuel to the corresponding sector (e.g. gas to gas power), then allocating the bottom-up values of O&M and 

capital in the same manner as in Eq. 1. This ensures a feasible solution for all the regions. The value of constraint is 

reflected in the total costs shown in Table 3. 
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cost for each sub-sector when such an observation exists. When data on the total cost associated with 

individual technologies does not exist, or where targeting relationships rather than totals is judged to be of 

more importance, the column sum constraint may unnecessarily restrict the problem (Peters and Hertel, in 

review). The economic relationship preserving (ERP) method is based on the RAS approach where the 

total cost constraint is relaxed. The result collapses to RAS when the constraint is included. It is 

formulated as follows: 

 

         
   

       
     

       

   
     

         (16) 

 

        
       (17) 

 

This objective explicitly balances both cost structure, cit, and row share, rit. The RAS row sum constraint 

remains (Eq. 14 and Eq. 17). This formulation is easily compared with both the ad-hoc and constrained 

optimization approaches because ERP does not require any assumption on total cost for the sub-sectors. 

 

2.3. Comparison of construction methods 

 

In summary, there are two primary considerations when selecting a matrix balancing method: i) 

an objective which seeks to preserve important economic relationships (i.e. row share and/or cost 

structure) and ii) required constraints (i.e. total input employment (row) and/or total cost (column) 

constraints). Here, the required constraints are independent of additional informational constraints and 

refer only to requirements of the method itself. Table 2 shows how MSCCE, RAS, ERP, and the ad-hoc 

approach fit into these categories. 

 

Table 2. Mathematical considerations for comparing matrix balancing methods. 

Consideration MSCCE RAS ERP Ad-hoc (Row Share) 

Objective - 

- Cost structure 

- Row share 

- Cost structure 

 

- Row share 

- Cost structure 

- Row share 

- 

Required 

Constraints 

- Total row 

- Total column 

- Total row 

- Total column 

- Total row 

- 

- Total row 

- 

 

Because of the interdependent relationships between the objective, the constraints, and disparities in data 

sources, it is difficult to reach general conclusions about an algorithm’s usefulness. However, some 

expectations from this investigation can be formed (all of which assume no additional informational 

constraints and required constraints are the identical if required).  

 

If the total cost constraint values for RAS are the same as those implied by the ad-hoc method, then the 

RAS result is equivalent to the ad-hoc result. However, it is worth noting that, despite this equivalence, 

both the RAS and ERP allow for additional information via the constraint set. Also, as mentioned before, 

it is not necessary, but a total cost constraint can be imposed on ERP. If the optional total cost constraint 

on ERP is the same as the required constraint on RAS, the two methods are equivalent. 

 

The objective function determines whether the balancing method preserves row share, cost structure, or 

both. The MSCCE objective considers only cost structure while sacrificing row share, and the ad-hoc 

method considers only row share, while neglecting cost structure. The RAS and ERP objectives attempt 

to preserve both, but in doing so sacrifice both (although likely to a lesser degree than MSCCE and ad-

hoc).  
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Required constraints may prevent an algorithm from preserving economic relationships. The row total 

constraint is required in all cases for CGE consistency; however, the total cost constraint can be relaxed.
5
  

MSCCE and RAS require total cost constraints; ad-hoc and ERP do not. Imposing total cost constraints 

may prevent the algorithm from preserving the cost structure objective because the total cost is not 

flexible to preserve the economic relationship of the individual elements. The row constraints impact the 

overall possible “closeness” of the balanced top-down data to the unbalanced bottom-up data. These 

constraints increasingly prevent preserving economic relationships as the constraints become increasingly 

restrictive (i.e. increasing disparity between bottom-up and top-down data). 

 

Assuming no additional constraints beyond those required, the objective and constraints imply a certain 

ordering of how well each algorithm preserves both row share and cost structure. Here, ordering is only 

relevant when viewing the entirety of the matrix; ordering may not hold for individual elements. First, the 

ad-hoc methodology perfectly preserves row share while MSCCE makes no consideration whatsoever of 

the row shares.  Therefore, ERP and RAS lie somewhere in between.  Second, ERP will preserve cost 

structure better than the ad-hoc method, given that ERP explicitly considers this in the objective function. 

Also, MSCCE should perform better than RAS with respect to cost shares, since there is no trade-off with 

preserving row share.  These expectations are summarized later, along with the numerical results in the 

following sections, in Table 10. 

 

2.4. Disaggregated matrices and numerical comparison 

 

As mentioned previously, many researchers attempt to disaggregate CGE-consistent databases 

using detailed economic or technological data. If the bottom-up technical data and the aggregate 

economic data match perfectly, the balancing problem is moot; however, in practice the two data sources 

invariably differ, sometimes by a large margin. For example, the top-down GTAP data estimates less 

capital, coal, and gas employment and more O&M employment in the total electricity sector than the 

unbalanced matrix assembled directly from the bottom-up data, Z
0
 (Table 1). Therefore, the ensuing 

differences between the matrix balancing algorithm results can be attributed to both the balancing method 

(the focus of this work) and the magnitude of discrepancy between the bottom-up data and the top-down 

economic data. 

 

In this paper, ad-hoc, MSCCE, RAS, and ERP-based disaggregations are constructed for the 129 

GTAPv8 regions using the data outlined in Section 2.1 (i.e. annual GWh production and levelized costs 

fit to the GTAP input employment data). Table 3 shows the results for the United States for each 

balancing method, and Table 4 shows the average deviation (in absolute value) from the bottom-up data 

for each matrix balancing method – again for the US. 

 

The disaggregated electricity sector for the United States (Table 3) shows three main points. First, the 

unbalanced, bottom-up matrix, Z
0
, has different total input employment values in the sector (row totals 

shown in Table 1) than the balanced matrices, all of which conform to the top-down data. However, as 

discussed in Section 2.1, the input employment for the balanced matrices must match that of the original 

electricity sector in the GTAP data. This is a major source of deviations shown in Table 4.   

 

Second, expanding on the previous point, the total input employment of fuels from the bottom-up and 

top-down do not match. The fuel inputs are specific to a technology (i.e. coal to coal power, gas to gas 

power, and oil to oil power). This drives some of the deviations for the methods which attempt to preserve 

the cost structure of the technology because the fuel input value is inflexible. 

                                                           
5
 The total row constraint also constrains the total value in the balanced database to the original value in the top-

down data (i.e. the sum of row constraints equals the original total sector value). 
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Table 3. Disaggregated electricity sector for the United States using different approaches (Z
0
, Ad-hoc, 

MSCCE, RAS, and ERP) in 2007 USD. 

 Z
0
  

 Nuclear Coal Gas Oil Hydro Wind Solar Total 

Capital 33985 61938 9744 1313 33091 3103 504 143679 

O&M 16487 27782 5816 2642 4936 855 43 58560 

Coal 0 63625 0 0 0 0 0 63625 

Gas 0 0 84065 0 0 0 0 84065 

Oil 0 0 0 24823 0 0 0 24823 

Total 50472 153345 99626 28778 38027 3958 546  

         

 Ad-hoc  

 Nuclear Coal Gas Oil Hydro Wind Solar Total 

Capital 28137 51280 8067 1087 27397 2569 417 118955 

O&M 39869 67185 14066 6390 11936 2067 103 141615 

Coal 0 42782 0 0 0 0 0 42782 

Gas 0 0 47288 0 0 0 0 47288 

Oil 0 0 0 24111 0 0 0 24111 

Total 68007 161247 69422 31588 39333 4636 520  

   

 MSCCE  

 Nuclear Coal Gas Oil Hydro Wind Solar Total 

Capital 32641 32447 8901 1350 39017 3949 649 118955 

O&M 32388 83151 11147 3746 9978 1150 55 141615 

Coal 0 42782 0 0 0 0 0 42782 

Gas 0 0 47288 0 0 0 0 47288 

Oil 0 0 0 24111 0 0 0 24111 

Total 65029 158380 67337 29207 48995 5100 704  

         

 RAS  

 Nuclear Coal Gas Oil Hydro Wind Solar Total 

Capital 25991 48392 7039 705 33517 2753 558 118955 

O&M 39038 67206 13009 4391 15478 2347 146 141615 

Coal 0 42782 0 0 0 0 0 42782 

Gas 0 0 47288 0 0 0 0 47288 

Oil 0 0 0 24111 0 0 0 24111 

Total 65029 158380 67337 29207 48995 5100 704  

         

 ERP  

 Nuclear Coal Gas Oil Hydro Wind Solar Total 

Capital 34051 49088 6148 1081 25522 2707 358 118955 

O&M 47776 63683 10614 6290 11010 2156 88 141615 

Coal 0 42782 0 0 0 0 0 42782 

Gas 0 0 47288 0 0 0 0 47288 

Oil 0 0 0 24111 0 0 0 24111 

Total 81827 155553 64051 31481 36532 4863 446  
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Third, both MSCCE and RAS require a total cost constraint for each of the disaggregated technologies 

and are constrained to match the values in implied in Z
0
. However, the ad-hoc and ERP methods do not 

require such a constraint and, in some cases, deviate greatly from the bottom-up data. This is especially 

true for the gas sector, a fuel-intensive technology, where the total costs of the sector are much lower for 

the unconstrained methods (ad-hoc and ERP). ERP has flexibility to preserve the cost structure where the 

value of gas input implied by the bottom-up data is higher than the gas input value in the GTAP data. 

Table 4 shows the deviations from cost structure and row share for the different methods. 

 

Table 4. Percentage deviation (averaged absolute deviation across inputs and technologies) between the 

economic relationships before, Z
0
, and after balancing for the United States. Ordering in parentheses. 

 Cost structure error Row share error Cell error 

Z
0
 0 0 0 

Ad-hoc 0.344 (4) 0 (1) 0.341 (3) 

MSCCE 0.201 (1) 0.129 (4) 0.232 (1) 

RAS 0.336 (3) 0.072 (3) 0.378 (4) 

ERP 0.315 (2) 0.044 (2) 0.326 (2) 

 

The ordering of average absolute deviation between the bottom-up data and the data after balancing is 

consistent with the expectations outlined previously. MSCCE dominates RAS and ERP, which in turn 

dominate ad-hoc in cost structure preservation. The ad-hoc method perfectly preserves row share and 

both RAS and ERP dominate MSCCE on this metric. Also as expected, ERP outperforms RAS in both 

cases, because ERP does not require a possibly restrictive total cost constraint. The ad-hoc and ERP 

methods may outperform the MSCCE and RAS methods in either economic relationship if the total cost 

constraint is highly restrictive. As McDougall (1999) suggests, MSCCE generally preserves the original 

cell values better than the others. 

 

The ordering shown for the United States in Table 4 generally holds for all 129 regions. Figure 1 shows 

percentage error for each region (averaged across inputs and technologies, in absolute values) between the 

row shares (1a) and cost structure (1b) in the balanced data and those implied by the bottom-up data for 

each method. 

 

 
Figure 1. Histograms of percentage deviation between bottom-up and balanced data in each region for 

both row share (a) and cost structure (b) - where deviation is the absolute percentage deviation averaged 

across inputs and technologies in each region. 
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The results across the 129 regions show numerically that the deviation between row share, rit and r
0
it, are 

generally ordered from least to greatest deviation as follows: ad-hoc (zero by definition), ERP, RAS, 

MSCCE. The ordering for the deviation between cost structures, cit and c
0

it, is somewhat reversed: 

MSCEE, ERP, RAS, followed by ad-hoc. This ordering is not necessarily identical in each region, but 

indicates a general tendency that is again consistent with the expectation from the mathematical structure 

of the matrix balancing methods. 

 

The specific example of the United States shows what the deviation between the bottom-up data and 

balanced data might look like in terms of values and magnitude of deviation.  The ordering of the 

dominance between balancing methods across the 129 regions in GTAP shows that these results are 

consistent with the expectations from the mathematics of the methods. 

 

The next section demonstrates how these deviations manifest in the ensuing economic analysis based on 

these diverse databases. It illustrates the importance of preserving both the cost and row share economic 

relationships in order to ensure the model results using balanced data are as consistent as possible with the 

model results using bottom-up data. The shocks chosen for the simulations represent the type of 

technological (e.g. shale gas extraction) and policy shocks (e.g. investment tax credits) prevalent in the 

electric power sector and commonly investigated using IAMs. 

 

3. Economic implications of alternative database construction methodologies 

 

 This section explores common energy and environmental-related shocks in the context of a model 

which is broadly representative of those employed in IAMs, but tractable enough to follow how economic 

relationships in a database map to modeling results. Therefore, a simple partial equilibrium (PE) 

representation of the electricity sector is presented in this section. It is for illustration only and is not an 

adequate representation of the electricity sector for use in a full-blown IAM, nor is it representative of the 

current state of electricity research.
6
 Rather this model is designed to clearly identify where and how 

differences in cost structure and row shares evidence themselves in modeling results for the electric 

power sector. The simple model implemented here assumes there is no trade in electricity, so the 

equations can be written for each region separately. Therefore, the regional index is dropped for clarity 

and conciseness without loss in generality. The simulations focus on the United States because of the 

availability of quality bottom-up data, but could be readily extended to other regions. 

 

The model is represented in linearized form in order to highlight the role of key economic relationships, 

including key row and column shares. The ‘hat’ notation in Table 5 refers to percentage changes in the 

associated levels variables. It is solved as a non-linear, initial value problem using the GEMPACK 

software suite (Harrison and Pearson, 2006). The price responsiveness of electricity demand is 

represented via a single, aggregate demand elasticity, μ (Eq. 18), which aggregates the demand responses 

of retail, commercial and industrial activities. The electricity sector production process is characterized by 

a quantity-preserving constant elasticity of substitution (CES) production function which aggregates 

power generated from different technologies based on the CES parameter, σ, which yields a set of derived 

demands for electricity produced from specific technologies (Eq. 20). Each individual power generating 

technology demands fuel, O&M and capital in fixed proportion to generation (i.e. Leontief production) 

(Eq. 22). 

 

Prices for electricity produced by each technology and the aggregate electricity good are assumed to 

cover costs, leaving no excess economic profits (Eq. 21 and Eq. 19, respectively) which is consistent with 

                                                           
6
 There are numerous studies on the electricity sector using partial equilibrium analysis which capture a vast quantity 

of engineering-economic interactions. The purpose here is to precisely show the interaction between the balancing 

methods and model results, rather than the precise sectoral interactions. 
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average cost pricing in a regulated market. Exogenous price shocks enter into the model by shifting the 

supply price of the input to electricity generation (Eq. 23). The supply of inputs to the generating 

technologies is assumed to be perfectly elastic in this simple model (Eq. 24). 

 

Table 5. Production structure for the simple PE model of the representative electricity sector 

Production Nest Equation Description No.  

 

          Final electricity demand (18) 

       
      

 

 Final electricity price – zero profit, 

average cost pricing 
(19) 

                      
CES derived demand for individual 

technologies 
(20) 

          
        

 

 Price of generating technology – zero 

profit, average cost pricing 
(21) 

           Leontief derived demand for inputs (22) 

                   
Supply price for generating 

technology 
(23) 

        Infinite factor supply elasticity (24) 

            
 

 Total input employment in electricity 

sector 
(25) 

The hat accent designates a variable measured in percent change. 

    is the percent change in total electricity production. 

    is the percent change in price of electricity. 

μ is the elasticity of demand for total electricity. 

  
 

 is the quantity share of production from technology t in the electricity sector. 

     is the percent change in price of electricity from technology t. 

     is the percent change in GWh production from technology t. 

σ is the quantity-preserving CES parameter. 

    
  is the value share of input i in technology t. 

       reflects the supply price for input i faced by technology t. 

      is the percent change in input i used in technology t. 

      is the percent change in price for input i for use in technology t. 

      is an exogenous shock to price. 

     is the total employment of input i in the electricity sector. 

 

This simple framework is used to demonstrate the effect which different supply shocks,      , have on the 

model economy. Again, the bottom-up data and the PE model (Eq. 18-25) are identical across the 

experiments. Therefore, all variation in results comes from the balancing method.  

 

3.1 Simulation to highlight the role of cost structure in modeling 

 

Cost structure preservation comes into play when there is a shock to a particular input to a 

particular technology (e.g. investment tax credit for a certain technology, fuel price). In order to show the 

importance of preserving cost structure within each individual technology, a price shock is applied to only 

one sector. Table 6 shows the capital intensity of each generating technology in the bottom-up data (Z
0
) 

and after balancing using each method described above. The capital share in the cost structure of gas 
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power is highlighted with a dashed box.  The first simulation applies a -30% shock to the cost of capital 

for gas-fired power only (          = -30).
7
 

 

Table 6. Capital intensity in the cost structure of technologies after matrix balancing procedures for the 

United States (            
 ) 

             
  

Technology Z
0
 Ad-hoc MSCCE RAS ERP 

Nuclear 0.673 0.414 0.502 0.400 0.416 

Coal 0.404 0.318 0.205 0.306 0.316 

Gas 0.098 0.116 0.132 0.105 0.096 

Oil 0.046 0.034 0.046 0.024 0.034 

Hydro 0.870 0.697 0.796 0.684 0.699 

Wind 0.784 0.554 0.774 0.540 0.557 

Solar 0.922 0.802 0.921 0.792 0.803 

 

MSCCE is generally closer than the other methods to the capital share values implied by the bottom-up 

data with the exception of gas power and coal power where the deviation is comparatively large. This 

raises questions regarding the MSCCE method’s ability to preserve cost structure despite (and probably a 

result of) focusing only on this in the objective. 

 

Focusing on gas power, both the capital cost share in the RAS and ERP approaches are closer to the 

bottom-up data than the ad-hoc approach because the ad-hoc method has no specific objective to preserve 

cost structure. The ERP approach outperforms the RAS in this case because ERP does not require a total 

cost constraint which allows additional flexibility to conform to the bottom-up data.  

 

Table 7 shows that the results flow directly from the deviations from the bottom-up data. The ad-hoc, 

MSCCE, and RAS methods overestimate capital intensity (                
 ) in the gas power sector, 

thereby overestimating the price of gas power (        ) in Eq. 21 and overestimating production changes 

(    ) for all technologies in Eq. 20, while the ERP underestimates only slightly.  

 

Table 7. Targeted technology policy: a -30% shock to the price of capital for gas power (Gas) in the US 

 Percent change in production (GWh) by technology (    ) 
Technology Raw data Ad-hoc MSCCE RAS ERP 

Nuclear -3.317 -3.957 -4.517 -3.55 -3.254 

Coal -3.317 -3.957 -4.517 -3.55 -3.254 

Gas 13.017 15.531 17.73 13.934 12.77 

Oil -3.317 -3.957 -4.517 -3.55 -3.254 

Hydro -3.317 -3.957 -4.517 -3.55 -3.254 

Wind -3.317 -3.957 -4.517 -3.55 -3.254 

Solar -3.317 -3.957 -4.517 -3.55 -3.254 

 

These results can be attributed to the deviation for this particular cell, (                
 ) of the balanced 

matrices. The results may not deviate for shocks to other cells; however the implication is the same: 

deviations should be minimized for each cell in the matrix balancing method. 

                                                           
7
 This serves as the most straightforward example; a more relevant example in the context of IAM is presented 

subsequently (i.e. a negative price shock to gas as result of the shale gas extraction technology). 
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The shock to the price of capital in gas power in the United States is shown because the connection from 

cost structure to model results is transparent and tractable.  However, the price of capital for gas is not 

terribly relevant in the context of energy, electricity, climate, and other policies that IAMs have proven 

useful for – although a similar shock on different sector might be more relevant (e.g. investment tax credit 

for renewables).  Therefore, another relevant example is the glut of gas in the United States due to shale 

oil and gas extraction technology. Wellhead gas prices in the United States dropped roughly 67% from 

2007 to 2012. If natural gas export terminals are constructed, then the rest of the world may also enjoy 

lower gas prices. A 40% decrease in gas price is applied to each of the 129 regions in the GTAP database 

(                = -40).  Figure 2 shows a histogram of the absolute percentage deviation of each matrix 

balancing method result as compared to the bottom-up data (Z
0
).

8
  

 

 
Figure 2. Histogram of absolute percentage deviation from bottom-up model results and balanced data 

model results from a -40% shock to the price of gas in each of the 129 GTAP regions. 

 

The MSCCE and RAS results are identical because the share of fuel in gas power is given by the 

employment of gas in the total electricity sector and the total cost is constrained. The total cost is flexible 

for the ad-hoc and ERP methods, so the fuel shares may differ. The results clearly demonstrate that the 

ERP, RAS, and MSCCE, which consider cost structure in their objectives, dominate the ad-hoc method, 

which does not. However, it is difficult to discern any dominance between the ERP, RAS, and MSCCE 

methods. The average across technologies of the absolute percentage deviations for each balancing 

method are 22.83% for ad-hoc, 19.66% for RAS and MSCCE, and 18.47% for ERP. The same results (i.e. 

ERP, RAS, and MSCCE dominating ad-hoc) are found in other simulations, such as a capital subsidy for 

solar and wind power and a simple carbon-based tax on coal power and gas power, but to varying 

magnitudes. The general conclusion is that ad-hoc model results are less consistent with the bottom-up 

data model results than methods which explicitly preserve cost structure. 

 

3.2 Simulation to highlight the role of row shares 

 

 Row share preservation primarily applies to a shock to an input shared by multiple technologies 

(e.g. investment tax credit across multiple technologies, labor taxes). Recall that Table 6 shows that 

                                                           
8
 Due to the simple nature of the PE model, the magnitude of the price shock does not have any significant impact 

on the percentage deviations between the balanced and bottom-up data (e.g. Figure 2). That is, the histogram looks 

almost identical regardless of the magnitude of the price shock applied in each region (regions are independent from 

one another). 

0 

5 

10 

15 

20 

25 

30 

35 

0% 10% 20% 30% 40% 50% 60% 70% 80% 

Ad-hoc MSCCE and RAS ERP 



15 
 

MSCCE deviates from the bottom-up data for cost structure of capital in gas power and coal power. 

Another way to see this discrepancy for gas power and coal power is by capital employment across 

technologies (row share) in Table 8 below. 

 

Table 8. Capital employment across technologies after matrix balancing procedures for the United States 

 Share of total capital employment in electricity sector 

Technology Z
0
 Ad-hoc MSCCE RAS ERP 

Nuclear 0.237 0.237 0.274 0.218 0.286 

Coal 0.431 0.431 0.273 0.407 0.413 

Gas 0.068 0.068 0.075 0.059 0.052 

Oil 0.009 0.009 0.011 0.006 0.009 

Hydro 0.230 0.23 0.328 0.282 0.215 

Wind 0.022 0.022 0.033 0.023 0.023 

Solar 0.004 0.004 0.005 0.005 0.003 

Total 1 1 1 1 1 

 

As expected, the ad-hoc method perfectly preserves the row share relationship. RAS and ERP deviations 

are relatively similar which indicates the total cost constraint in RAS may not be overly restrictive in this 

particular case. Here, MSCCE shows a switch of ordering in row share between nuclear and coal power 

(shown in boxes in Table 8). A numerical simulation is provided in Table 9 by implementing a uniform 

capital price shock of 10% (      = 10). A capital price shock is representative of a tax or subsidy on 

electricity generation investment.  Investment tax credits for renewable generation is a widely used policy 

tool to promote renewable energy and crowd-out investment in carbon-intensive generation. Here the 

policy is applied to all generation types to make the connection between matrix balancing and model 

results clear and tractable. 

 

Table 9. Shared input policy simulation: 10% shock to the price of capital in the United States electricity 

sector 

 Percent change in production (GWh) by technology (   ) 

Technology Z
0
 Ad-hoc MSCCE RAS ERP 

Nuclear -13.607 -5.885 -11.3 -5.779 -6.231 

Coal -0.951 -1.298 2.882 -1.266 -1.417 

Gas 14.476 8.730 6.511 8.723 9.511 

Oil 17.217 12.933 10.886 12.854 12.683 

Hydro -22.307 -18.800 -24.318 -18.772 -19.107 

Wind -18.557 -12.419 -23.384 -12.300 -12.755 

Solar -24.517 -23.362 -29.535 -23.464 -23.638 

 

The positive price shock,      , increases,        (Eq. 23). The ensuing impact of        on      depends on the 

input share     
  (Eq. 21) which is where the differences in matrix balancing method enter the model. The 

matrix balancing methods affect the result of interest,     , via the substitution between technologies base 

on relative cost of technology,      (Eq. 20). 

 

The results indicate that the large deviation in row share for coal power using the MSCCE method is 

translated directly to the deviation in model results. The direction of change is opposite those implied by 

the bottom-up data. The major implication is that, in the case of a uniform input price shock (e.g. tax 

break for capital investment for renewable power) with substitutability between sectors, MSCCE can lead 

to opposite interpretations of model results even with the simplest of models.  
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4. Discussion 

 

 Divergent results from bottom-up and top-down modeling are well-known (Grubb et al. 1993), 

and there is constructive research regarding the relative merits and reducing divergence between both 

approaches (e.g. Böhringer, 1998; McFarland et al. 2004). The important takeaways here pertain to the 

reasons the results of different top-down models might diverge even in the case of identical bottom-up 

data.
9
 The divergence is the result of two primary factors: i) disparate bottom-up and top-down data and 

ii) the preservation of economic relationships (i.e. row share and cost structure) after the matrix balancing 

method which fits the bottom-up data to the top-down data. Of primary interest to this study are the 

discrepancies caused by the matrix balancing methods. 

 

4.1 Disparate bottom-up and top-down data 

 

Moving to a CGE/IAM framework requires that the engineering data conforms to data on the 

circular flow of the economy, which are important in certain analyses. For example, Hazilla and Kopp 

(1990) and Bergman (1991) conclude general equilibrium impacts, such as input prices, output prices, and 

allocation of resources in the economy, can be “significant and pervasive” in the context of environmental 

policy. Unfortunately, the two data sources tend to differ, sometimes by large margins. The bottom-up 

data is constructed from levelized (i.e. annualized) costs of electricity by technology and total production 

while the top-down data is constructed by targeting prices of electricity, cost structure, and production 

data (where available) in GTAPv8. The sources and type of data are disparate. 

 

For example, Table 1 shows that the share of O&M is much higher in the top-down database which draws 

cost away from capital and fuels. Still, in moving to a CGE model, the balanced database must conform to 

the values in the top-down data via the total input employment constraint in the balancing methods 

described above. The constraint contributes to a large portion of the difference between the results, but is 

none-the-less necessary to move toward a CGE model which may be a more holistic representation of the 

economy as compared to the bottom-up representation. 

 

4.2 Preservation of economic relationships 

 

Section 3.1 simulated a technology-specific capital price shock and a shock to the price of gas.  

These simulations demonstrate that preserving the cost structure for individual technologies can be 

important.  The ad-hoc model does not specifically consider cost structure; inputs are allocated solely 

based on row share. The RAS and ERP approaches, which specifically consider cost structure along with 

row share, conform closer to the bottom-up data and, therefore, the bottom-up model predictions.  It is 

worth noting that the MSCCE may have large cost structure deviations for some technologies (e.g. coal-

fired power in Table 6) which may be unattractive for policies targeting these technologies. 

 

Section 3.2 simulated an electricity sector-wide shock to the price of capital. The MSCCE method 

implied an opposite result for one of the technologies.  This can be attributed to the absence of 

consideration of the row share relationship in the MSCCE objective function (Eq. 9). MSCCE does not 

specifically preserve row share, so when a shock is applied which pertains to relative input employment 

between sectors an opposite result may occur.  Even if the result does not turn out to be opposite, it is still 

less convincing after observing this simulation. 

                                                           
9
 Another important determinant of modeling results are the different inherent assumptions in top-down and bottom-

up models, which are (and should be) debatable. This work only focuses the differences in modeling results from the 

data and data construction process, which should be less flexible to debate. The simulations here all have identical 

assumptions and data. The data construction process solely reflects how the data is manipulated to conform to the 

top-down assumptions. 
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4.3 Selecting an appropriate matrix balancing method 

 

 The decision on which matrix balancing method is most appropriate for the research task at hand 

depends on several factors and is highly case-specific.  The initial decision is whether to include a total 

cost constraint. This depends on the available bottom-up data and will drive the selection of matrix 

balancing method. Table 10 summarizes the insights from the mathematical structure discussed in Section 

2 which then tie this to the modeling results from Section 3, and charts the path to selecting an appropriate 

matrix balancing method for CGE and IAMs (Table 11). 

 

Table 10. Considerations for selecting an appropriate matrix balancing method – Insights from 

algorithms. These only hold when no additional informational constraints are present. 
Equivalence 

E1 RAS = ad-hoc - If total cost constraint for RAS is identical to total costs implied by ad-hoc, 

then the two are equivalent. 

- RAS still allows for information on total cost. 

E2 ERP = RAS - If total cost constraint is added as information to ERP, the two are 

equivalent. 

Cost structure preservation 

C1 ERP > ad-hoc - ERP considers cost structure in the objective. 

C2 MSCCE > RAS - RAS sacrifices some cost structure preservation for row share. 

- Individual elements may differ in ordering (e.g. RAS result may be closer 

than the MSCCE for certain elements), but as a whole MSCCE > RAS. 

C3 ERP ~ MSCCE - The level of restriction from the total constraint required by RAS and 

MSCCE will determine ordering. 

Row share preservation 

R1 Ad-hoc > all others - Ad-hoc perfectly preserves row shares. 

R2 RAS and ERP > MSCCE - MSCCE has no consideration of row shares. 

 

Table 11. Considerations for selecting an appropriate matrix balancing method - Insights from modeling. 

The corresponding insight from the algorithm (Table 10) are in parentheses. 
Total cost 

constraint? 

Restrictions and 

equivalence 

Cost structure 

important? 

Row share 

important? 

Both 

relationships 

important? 

No - RAS not possible 

- MSCCE not possible 

- ERP > ad-hoc (C1) - ad-hoc > ERP (R1) ERP > all 

Yes - ERP = RAS (E2) 

- ad-hoc not possible 

- RAS/ERP ~ MSCCE 

(E2, C3) 

- RAS/ERP > MSCCE 

(R2) 

RAS/ERP > all 

 

If there are no data on input costs to technologies, then total cost may be the only way to differentiate 

sectors.  Also, if the researcher wishes only to shock the outputs of the new sectors (e.g. subsidy on 

renewable technologies) rather than the input prices in the new sectors, perhaps total cost might be 

preserved while sacrificing some of the component cost detail. In this case, where a total cost constraint is 

desired, ERP and RAS are equivalent.  A total cost constraint cannot be imposed on the ad-hoc method, 

thereby rendering it impotent for this particular information set. The numerical simulations of the 

RAS/ERP and MSCCE methods show that there is no clear dominance in method in the cost structure 

case. That is, RAS/ERP performs better for some sectors while MSCCE performs better for others (Table 

6). However, RAS/ERP performs much better in the case of the row share relevant simulations (Table 8) 

which implies that the ERP/RAS might be the best selection when both relationships are relevant. 

 

Alternatively, if technology specific input costs are available in the bottom-up data (e.g. levelized costs as 

is the case here) and the researcher wishes to shock input prices in the new sectors, the restrictive total 

cost constraint can be removed.  In this case the applicable methods are the ad-hoc and the ERP approach, 
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because the basic MSCCE and RAS approaches require a total cost constraint. The mathematical 

properties imply and the numerical simulations show that ERP performs better in terms of model results 

in the case of preserving cost structure (Table 7 and Figure 2) while the ad-hoc performs marginally 

better in preserving row share (Table 8). On balance, the ERP seems to outperform the ad-hoc method 

when both relationships are important. It is also worth noting that ad-hoc methods are unable to leverage 

the vast research on incorporating additional information and reliability of information in constrained 

optimization (Lahr and de Mesnard, 2004). 

  

It is more than likely that both cost shares and row shares will eventually be of importance in most 

CGE/IAM projects.  While researchers may have a particular shock or set of shocks in mind initially, the 

models are often subsequently used for simulations for which it was not originally designed.  Given this, 

the ERP method is the most flexible method and preserves both economic relationships, thereby 

providing results which are the most consistent with the original bottom-up data over the largest set of 

shocks.  

 

5. Conclusions and broader impacts 

 

Using a simple partial equilibrium model, the deviation between results with bottom-up data and 

balanced data stem from two primary sources: i) differences between the bottom-up and top-down data 

and ii) the matrix balancing methodology used to conform the dataset when there are disparate data.  If 

the database implied by the bottom-up data match that of the top-down data, there is no need for the 

matrix balancing method at all. Unfortunately, that is rarely, if ever, the case, and the data balancing 

methods are necessary. This work shows that the modeling differences can be quite large based on the 

selection of matrix balancing method which necessitates close consideration, justification, and 

documentation. 

 

This article explores four matrix balancing methods which are commonly employed to create a consistent 

CGE/IAM database and the implications each has on economic modeling. Their mathematical 

constructions (i.e. the objective and constraints) provide some insight into how they might perform in 

relation to two important economic relationships (i.e. cost structure and row share). The analytical 

investigation is supported by numerical examples in a simple disaggregation of the electricity sector.  

Identical data is used for each method. The numerical results are generally consistent with their 

mathematical constructions regarding the economic relationships. 

 

Numerical simulations showed the relevance of these economic relationships in modeling. The alternative 

balancing methods, despite identical original data, differed from the original bottom-up data results 

depending on their mathematical constructions and ability to preserve the economic relationships. In these 

experiments the original bottom-up data, partial equilibrium model, and simulations were control 

variables. The matrix balancing methods directly drove the modeling results. 

 

Selecting an appropriate matrix balancing method will help decrease the divergence between bottom-up 

and top-down models. The ERP method outperforms the other methods both in flexibility (i.e. it is the 

only method which can be used with and without a total cost constraint) and where both economic 

relationships are important, which is the most likely case. 

 

The implications for large-scale CGE and IAM modeling are straightforward.  First, the best way to 

reduce deviation introduced by the matrix balancing methods is to inform the top-down data with the 

bottom-up data, and vice versa. Second, in cases of disparate bottom-up and top-down data, the balancing 

method matters. Finally, the database construction efforts, which includes the matrix balancing, should be 

considered closely, justified, and documented. Moving forward data construction elements of CGE and 

IAM modeling efforts should be publicly documented with data and methods posted online to promote 
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continuous improvement at the data-database-modeling nexus. This is an under-researched, but critical, 

aspect of IAM research and critical to the long-run credibility of this important work.  
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