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Abstract:

Integrated assessment models (IAMs) are playing an increasingly important role in long-run sustainability analysis.
At their core is a set of global economic and environmental accounts which capture a complete set of inter-industry
and inter-regional relationships in the global economy in a consistent manner. While much attention is focused on
the raw data and parameterization required to expand or add sectoral detail to IAMs, only rarely is there discussion
of how different matrix balancing methods (i.e. translating disparate raw data sources into the consistent database)
affect modeling results. This article offers an in-depth look into the database-modeling nexus in IAMs, focusing on
the electric power sector which is both a major source of CO, emissions and a critical vehicle for climate change
mitigation. Comparisons of the prevailing matrix balancing algorithms show how the choice of database
reconciliation methodology affects modeling results using policy-relevant simulations in the context of the electric
power sector. The resulting insights can be applied to the disaggregation of other, technology rich sectors in the
economy. We conclude that appropriate selection of database reconciliation methodologies can reduce the deviation
between bottom-up and top-down modeling.

Highlights:

- Database construction, particularly matrix balancing, is rarely well-documented in IAMs
- Database balancing alters key economic relationships in IAM

- These economic relationships affect modeling results

- Appropriate balancing methods help reconcile bottom-up and top-down models

- The ERP method is preferred for preserving bottom-up data in IAMs

Keywords: integrated assessment, computable general equilibrium, model validation, matrix balancing,
cross-entropy, database-modeling nexus
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1. Introduction

It is increasingly apparent that standalone economic, biophysical, atmospheric, or other data-
driven numerical models cannot address long-run sustainability issues which cut across traditional
academic boundaries. Such issues include, but are not limited to: anthropogenic climate change;
environmental degradation; and energy, food, and water security. Integrated assessment models (IAMs)
marry social, economic, and environmental modules within a single framework to offer a clearer picture
of how sustainability issues might evolve in the future and how public policies might alter this trajectory.
In light of the complex policy issues facing the world today, IAMs with increasing sector-level detail
have grown in popularity (Tol, 2006). Correspondingly, it is useful to identify and characterize new
sources of uncertainty in IAMs and how they affect uncertainties in policy impacts (Weyant, 2009).

The push of sector-level detail has not always the case. Early I1AMs such as DICE (Nordhaus, 1992) and
RICE (Nordhaus and Yang, 1996) included a single, aggregate economic sector. However, this stimulated
interest in IAMs in policy circles which led to a demand for increased sector detail. This has brought the
IAM community into intimate contact with the computable general equilibrium (CGE) modeling
community. CGE models offer consistent theoretical underpinnings of inter-sectoral and inter-regional
interactions across the entire global economy. Furthermore, adding sectoral detail is relatively
straightforward and well-studied. As such, CGE models are becoming the preferred economic module in
IAMs - especially for energy-related research. For example, 12 of the 18 models used in the EMF 27
study are CGE-based (Kriegler et al. 2014).

Sectoral extensions require disaggregating the largely aggregate sectors in an existing CGE database into
detailed sub-sectors to analyze specific technologies and policy shocks (McFarland et al. 2004; Edmonds
et al. 2004; Paltsev et al. 2004). For example, in the case of the electric power sector, many prevailing
CGE databases (e.g. Narayanan et al. 2012) only include a single aggregate industry’; however,
increasingly, policies are directed at specific generating technologies (e.g. solar investment tax credits,
nuclear phase-out). Further, economic shocks may impact diverse generating technologies in different
ways (e.g. a drop in the price of natural gas). Thus, several leading research groups independently
disaggregate the electricity sector into electricity sub-sectors which include several generating
technologies (Brenkert et al. 2004; Paltsev et al. 2005; Sue Wing, 2008; Burniaux and Chateau, 2010).

Greater sector-level detail allows IAMs to explore new (and reoccurring) research vistas such as energy
policy (Bhattacharyya, 1996), agriculture/biofuel linkages (Kretschmer et al. 2009), and climate policy
(Ciscar and Dowling, 2014). Introducing the detailed technologies involves two basic tasks: i)
disaggregating an aggregate sector in a CGE database into sub-sectors or technologies (e.g. electric power
into specific generating technologies) and ii) creating mathematical equations to represent supply and
demand in the new sectors. Modelers typically devote the most attention and the greatest amount of
documentation to the latter — that is, characterizing the supply and demand behavior in the detailed sub-
sectors. Unfortunately, much less attention is placed on the constructing the disaggregate baseline
database which defines key economic relationships in the economy and which, as this study demonstrates,
can play a key role in determining model outcomes.

The disaggregation process consists of two basic steps: i) collecting technologically-rich, sector-detailed
(often termed “bottom-up”) data which, when price and quantity data are combined, imply some value
flows in the new sub-sectors and ii) a method to allocate these estimated value flows across sub-sectors
while meeting CGE accounting (“top-down™) constraints. Unfortunately, the disaggregation process used

! The motivating example in this article is a disaggregation from an aggregate electricity sector into several
generating technologies. However, the discussion of the database-modeling nexus is general to disaggregations of
other sectors and extendable to estimating entire matrices.



in constructing the newly disaggregated database is often weakly or even wholly undocumented. When
the disaggregation process is published, the focus is on the bottom-up data and less so on the construction
method. Lenzen (2011) argues that models based on the disaggregation of sectors into individual
activities generally perform better than modeling the aggregate sector, even when the information used to
disaggregate is fragmentary. But how should this fragmentary information be combined and reconciled
with the key economic relationships implied by the original top-down data?

This article shows that the choice of database reconciliation methodology has a significant impact on
modeling results. Four commonly used disaggregation methods are compared: i) an ad-hoc method used
by Marriott (2007), Lindner et al. (2014), and Arora and Cai (2014), ii) minimum sum of column cross-
entropy (MSCCE) (Golan et al. 1994, Robinson et al. 2001), iii) RAS (e.g. Lahr and de Mesnard, 2004),
and iv) economic relationship preserving with no column constraint (ERP) (Peters and Hertel, in review).
The experiments use identical bottom-up data to create the balanced matrices and are then taken as input
to a simple partial equilibrium (PE) model which allows us to analytically trace how economic
relationships, which arise from the different disaggregation methods, impact modeling results.

The modeling analysis focuses on three contemporary economic shocks. The first is a technology-specific
capital subsidy (e.g. an investment tax credit). This is useful since it will highlight the value of preserving
the cost structure in the sub-sectors. The second example involves a shock to the price of natural gas (e.g.
a result of the shale gas boom in the US). Finally, a sector-wide capital tax (e.g. removal of a sector-wide
tax credit) is considered. This experiment illustrates the importance of preserving “row shares” in the
reconciled database (i.e. the relative capital intensity of different technologies in the power sector). Model
results are shown to be highly dependent on the balancing methods used to construct a CGE database and
flow directly from the mathematical features of the algorithms.

In current practice the database construction methods used in IAMs are, at best, not adequately
documented. This point will only increase in importance with the increasing demand for more highly
resolved analysis of critical sectors in IAMs. The results shown in this article advocate for greater
introspection at the database-modeling nexus. More broadly, the authors hope it will redirect attention
back to the validation of new and innovative CGE and IAM extensions. Finally, the results provide
evidence that the appropriate selection of matrix balancing methods can reduce the overall deviation
between bottom-up and top-down modeling.

2. Database construction

This article focuses on the matrix balancing methods used to reconcile bottom-up data with the
aggregate databases required by top-down IAM and CGE models. Schneider and Zenios (1990) provide
the following description of the matrix balancing problem: “Given a rectangular matrix Z°, determine a
matrix Z that is close to Z° and satisfies a given set of linear restrictions on its entries. [Matrix names
changed to conform to input-output (I-O) convention]” Matrix balancing for disaggregation of a sector in
I-O, SAM, and CGE databases consists of the matrix Z°, with elements 2%, where i is the input and t is the
new sub-sector, constructed from the values implied by the bottom-up data for the disaggregate sectors.
The linear restrictions, here, are the top-down economic accounting conditions (e.g. supply equals
demand) and any other restrictions (e.g. non-negativity) required for modeling. Matrix balancing methods
generally differ in the how they define the “closeness” of Z to Z° (e.g. an objective function) and the set of
required constraints.

2.1. Bottom-up data and the Z° matrix

The example presented in this paper is a disaggregation of the electricity sector for the 129
regions in the Global Trade Analysis Project (GTAP) version 8 database (Narayanan et al. 2012). Here,
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the original power sector is disaggregated into seven new electricity sectors: nuclear, coal, gas, oil,
hydroelectric, wind, and solar power. The data used for the disaggregation for this paper are:

i) g, - electricity production (in GWh) by technology, t (IEA, 2010a; IEA, 2010b),
ii) o;* - total value of inputs, i, (in US dollars) to the aggregate GTAP electricity sector , and

iii) li; - levelized (i.e. annualized cost in US dollars per GWh) capital, operating and maintenance
(O&M), fuel, and effective tax costs of electricity for generating technologies (IEA/NEA,
2010).

The data and formulations presented here are reduced to a single region; each regional database can be
estimated independently. The elements of matrix Z°, 2%, are thus the product of the levelized input costs,
li, and the total production g, scaled to the total value in the top-down data. The most important
consistency requirement in the balanced database, Z, is that the total value of each input employed across
the new sectors is equal to the total value of the corresponding input value employed in the original
electricity sector, 0;*.

0 lie'qe *

L= . . 0. 1
“it YiXelieqr 2101 (1)
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It is easy to see that the consistency requirement (Eq. 2) will not necessarily hold, since these data
come from disparate sources (i.e. techno-economic data versus national accounts). In fact, Table 1 shows
that the bottom-up data (Z°) implies different allocations of levelized input costs, i, in the total electricity
sector than the top-down data for this scenario.? Thus, it is important to analyze database reconciliation
methods to minimize the effect in the model economy.

Table 1. Comparison of input employment implied by the bottom-up data and the total input employment
in the top-down data (GTAPvV8) of the total electricity sector ("ely") in the United States ("usa™)

Bottom-up (Z°) Top-down (GTAP)
LCOE (i) Value (2007USD)  SVretyusar  Value (2007 USD) (0?) SV ely rusar
Capital 143,679 38.3% 118,955 31.7%
Oo&M 58,560 15.6% 141,615 37.8%
Coal 63,625 17.0% 42,782 11.4%
Gas 84,065 22.4% 47,288 12.6%
Qil 24,823 6.6% 24,111 6.4%
Total 374,752 100% 374,752 100%

2.2. Matrix balancing methods

The methods for disaggregation fall into two broad categories: ad-hoc and constrained
optimization. Ad-hoc methods employ straightforward algebraic rules to allocate the aggregate values

? Levelized costs try to capture the annualized cost of production while considering data such as overnight capital
costs, depreciation rate, fuel costs averaged over the year, heat rate, and other technological factors. Top-down data
comes from the reporting of final reported costs in broad categories which may encompass a wider breadth of costs
than the bottom-up data (e.g. transmission and distribution, insurance services, customer service, litigation). These
different perspectives offers some insight on the origin of the discrepancies between the two data types.



across the different technologies. Constrained optimization methods minimize a specific distance metric
with respect to important economic relationships, such as: i) cost structure (i.e. the share of an input cost
in total production cost of a sub-sector, c;) and ii) relative input intensity (i.e. the row share corresponding
to the relative employment of an input amongst the different sub-sectors, r;;). These relationships are
expressed mathematically below where the super-script O refers to the relationship implied by the original
matrix, Z°. The relationships in the estimated matrix, Z, have no super-script.

c0 = Zit and 70 = %t (3) and (4)
it izg it thg
cip = it/ and r;, = “it/ (5) and (6)
i XiZit i Xt Zi

Constrained optimization methods define the “closeness” metric explicitly via the objective function —
seeking to find a new matrix Z which satisfies the column and/or row totals while coming as close as
possible to the original column and/or row shares. Ad-hoc methods target these shares implicitly. The
most relevant constrained optimization methods minimize entropy distance: i) MSCCE, ii) RAS, and iii)
ERP.® The most popular ad-hoc method, and thus the one explored here, allocates value in the matrix
based on row share alone. Other ad-hoc methods may be equally prevalent, but are rarely publicly
documented. The term, ad-hoc, in this work always refers to the method described in Section 2.2.1. These
four matrix balancing methods are explained in detail in the subsequent sections.

2.2.1. Ad-hoc

Despite the ubiquity of well-studied matrix balancing methods, ad-hoc approaches remain very
popular in practice. The most prevalent of these is the row share-based allocation (Marriott, 2007;
Lindner et al. 2014; and Arora and Cai, 2014). Here, the matrix Z%is comprised of the implied value from
the bottom-up data (Eg. 1) and o;* is the input employment in the original aggregate sector. The ad-hoc
method allocates the original input value in the aggregate sector by the following equation:

0

Z:
2 = 50 @)
Li
or equivalently, using the initial row share:
— .0
Zig =Tit " 0] (8)

Of course, this is a simplification of the ad-hoc methods used by Marriott (2007), Arora and Cai (2014),
and Lindner et al. (2014). Their disaggregations include more detailed inputs than the illustrative ones
presented here. Basic assumptions on fuel inputs (e.g. coal to coal-fired power) and even more detailed
assumptions on other inputs (e.g. water transport is exclusive to coal-fired power and pipeline transport is
split between gas and oil power) are easily made. However, the general intuition is the same: row share-
based allocation in the cases where no exact assumption of values on Z can be made. Two key points are:
i) cost structure is not specifically considered in the ad-hoc method and ii) there can be no total cost or
any other informational constraint. These can be readily implemented in the context of constrained
optimization methods to follow.

® In addition to entropy methods, Sue Wing (2008) provides a minimum of sum squared error approach specific to
disaggregating the electricity sector. It is not clear how often this type of formulation is used in practice.



2.2.2. Minimum sum of column cross-entropy (MSCCE)

The minimum sum of column cross-entropy (MSCCE), as proposed by Golan et al. (1994) and
extended by Robinson et al. (2001), focuses on cost structure, but does not specifically focus on row
shares. The constrained optimization problem, in its most simplified form, is as follows:

ming,, it Ci lnz_iai )
subject to:
LeCie " Of =0f (10)
Decie =1 (11)
0<c¢c; <1 (12)

where ¢’ is the original cost structure implied by Z° and where o* and o;* are the given row and column
sums, respectively, which ensure consistency with the top-down data.* The optimal c; result can be
readily be transformed to z;; by multiplying them by the value of output for a given technology.

A key weakness of MSCCE is that the ordering of relative input intensities between technologies (i.e. row
shares) is not always preserved (McDougall, 1999). This can have adverse consequences for economic
modeling, as detailed in Section 3.

2.2.3. RAS

The biproportionate adjustment (RAS) method attempts to preserves both economic relationships
(i.e. cost structure and row share) by targeting the elements of matrix Z°, specifically. RAS is not always
treated as a constrained optimization problem, but the problem can be written as follows (McDougall,
1999):

ming, % Xe zie In 2 (13)

subject to:
Nt Zit =0; (14)
XiZit =0¢ (15)

This reflects a “true” cross-entropy formulation and is related to MSCCE as a weighted sum of column
cross-entropy. While the distance between Z and Z° may be greater than in MSCCE, the basic RAS
solution preserves the ordering of input intensity (McDougall, 1999). Robinson et al. (2001)
acknowledges that the RAS approach may be better suited to cases where both cost structure and row
shares are important, as is generally the case for CGEs and IAMs.

2.24.ERP

The MSCCE and RAS approaches both require column sum constraints (Eq. 10 and Eq. 15,
respectively), whereas the ad-hoc approach has none. These constraints ensure a fit to an observed total

* The total cost constraint, o*, jointly considers the bottom-up and top-down data by first allocating the top-down
value fuel to the corresponding sector (e.g. gas to gas power), then allocating the bottom-up values of O&M and
capital in the same manner as in Eq. 1. This ensures a feasible solution for all the regions. The value of constraint is
reflected in the total costs shown in Table 3.



cost for each sub-sector when such an observation exists. When data on the total cost associated with
individual technologies does not exist, or where targeting relationships rather than totals is judged to be of
more importance, the column sum constraint may unnecessarily restrict the problem (Peters and Hertel, in
review). The economic relationship preserving (ERP) method is based on the RAS approach where the
total cost constraint is relaxed. The result collapses to RAS when the constraint is included. It is
formulated as follows:

ming, ;5 (/s 5, )in(%%) (16)

it it
Xt Zi = 0] (17)

This objective explicitly balances both cost structure, c;;, and row share, ri.. The RAS row sum constraint
remains (Eq. 14 and Eq. 17). This formulation is easily compared with both the ad-hoc and constrained
optimization approaches because ERP does not require any assumption on total cost for the sub-sectors.

2.3. Comparison of construction methods

In summary, there are two primary considerations when selecting a matrix balancing method: i)
an objective which seeks to preserve important economic relationships (i.e. row share and/or cost
structure) and ii) required constraints (i.e. total input employment (row) and/or total cost (column)
constraints). Here, the required constraints are independent of additional informational constraints and
refer only to requirements of the method itself. Table 2 shows how MSCCE, RAS, ERP, and the ad-hoc
approach fit into these categories.

Table 2. Mathematical considerations for comparing matrix balancing methods.

Consideration MSCCE RAS ERP Ad-hoc (Row Share)
Objective - - Row share - Row share - Row share

- Cost structure - Cost structure - Cost structure -
Required - Total row - Total row - Total row - Total row
Constraints - Total column - Total column - -

Because of the interdependent relationships between the objective, the constraints, and disparities in data
sources, it is difficult to reach general conclusions about an algorithm’s usefulness. However, some
expectations from this investigation can be formed (all of which assume no additional informational
constraints and required constraints are the identical if required).

If the total cost constraint values for RAS are the same as those implied by the ad-hoc method, then the
RAS result is equivalent to the ad-hoc result. However, it is worth noting that, despite this equivalence,
both the RAS and ERP allow for additional information via the constraint set. Also, as mentioned before,
it is not necessary, but a total cost constraint can be imposed on ERP. If the optional total cost constraint
on ERP is the same as the required constraint on RAS, the two methods are equivalent.

The objective function determines whether the balancing method preserves row share, cost structure, or
both. The MSCCE objective considers only cost structure while sacrificing row share, and the ad-hoc
method considers only row share, while neglecting cost structure. The RAS and ERP objectives attempt
to preserve both, but in doing so sacrifice both (although likely to a lesser degree than MSCCE and ad-
hoc).



Required constraints may prevent an algorithm from preserving economic relationships. The row total
constraint is required in all cases for CGE consistency; however, the total cost constraint can be relaxed.’
MSCCE and RAS require total cost constraints; ad-hoc and ERP do not. Imposing total cost constraints
may prevent the algorithm from preserving the cost structure objective because the total cost is not
flexible to preserve the economic relationship of the individual elements. The row constraints impact the
overall possible “closeness” of the balanced top-down data to the unbalanced bottom-up data. These
constraints increasingly prevent preserving economic relationships as the constraints become increasingly
restrictive (i.e. increasing disparity between bottom-up and top-down data).

Assuming no additional constraints beyond those required, the objective and constraints imply a certain
ordering of how well each algorithm preserves both row share and cost structure. Here, ordering is only
relevant when viewing the entirety of the matrix; ordering may not hold for individual elements. First, the
ad-hoc methodology perfectly preserves row share while MSCCE makes no consideration whatsoever of
the row shares. Therefore, ERP and RAS lie somewhere in between. Second, ERP will preserve cost
structure better than the ad-hoc method, given that ERP explicitly considers this in the objective function.
Also, MSCCE should perform better than RAS with respect to cost shares, since there is no trade-off with
preserving row share. These expectations are summarized later, along with the numerical results in the
following sections, in Table 10.

2.4. Disaggregated matrices and numerical comparison

As mentioned previously, many researchers attempt to disaggregate CGE-consistent databases
using detailed economic or technological data. If the bottom-up technical data and the aggregate
economic data match perfectly, the balancing problem is moot; however, in practice the two data sources
invariably differ, sometimes by a large margin. For example, the top-down GTAP data estimates less
capital, coal, and gas employment and more O&M employment in the total electricity sector than the
unbalanced matrix assembled directly from the bottom-up data, Z° (Table 1). Therefore, the ensuing
differences between the matrix balancing algorithm results can be attributed to both the balancing method
(the focus of this work) and the magnitude of discrepancy between the bottom-up data and the top-down
economic data.

In this paper, ad-hoc, MSCCE, RAS, and ERP-based disaggregations are constructed for the 129
GTAPV8 regions using the data outlined in Section 2.1 (i.e. annual GWh production and levelized costs
fit to the GTAP input employment data). Table 3 shows the results for the United States for each
balancing method, and Table 4 shows the average deviation (in absolute value) from the bottom-up data
for each matrix balancing method — again for the US.

The disaggregated electricity sector for the United States (Table 3) shows three main points. First, the
unbalanced, bottom-up matrix, Z°, has different total input employment values in the sector (row totals
shown in Table 1) than the balanced matrices, all of which conform to the top-down data. However, as
discussed in Section 2.1, the input employment for the balanced matrices must match that of the original
electricity sector in the GTAP data. This is a major source of deviations shown in Table 4.

Second, expanding on the previous point, the total input employment of fuels from the bottom-up and
top-down do not match. The fuel inputs are specific to a technology (i.e. coal to coal power, gas to gas
power, and oil to oil power). This drives some of the deviations for the methods which attempt to preserve
the cost structure of the technology because the fuel input value is inflexible.

® The total row constraint also constrains the total value in the balanced database to the original value in the top-
down data (i.e. the sum of row constraints equals the original total sector value).



Table 3. Disaggregated electricity sector for the United States using different approaches (Z°, Ad-hoc,
MSCCE, RAS, and ERP) in 2007 USD.

ZO

Nuclear Coal Gas Qil Hydro Wind Solar Total
Capital 33985 61938 9744 1313 33091 3103 504 143679
O&M 16487 27782 5816 2642 4936 855 43 58560
Coal 0 63625 0 0 0 0 0 63625
Gas 0 0 84065 0 0 0 0 84065
Oil 0 0 0 24823 0 0 0 24823
Total 50472 153345 99626 28778 38027 3958 546

Ad-hoc

Nuclear Coal Gas Qil Hydro Wind Solar Total
Capital 28137 51280 8067 1087 27397 2569 417 118955
O&M 39869 67185 14066 6390 11936 2067 103 141615
Coal 0 42782 0 0 0 0 0 42782
Gas 0 0 47288 0 0 0 0 47288
Oil 0 0 0 24111 0 0 0 24111
Total 68007 161247 69422 31588 39333 4636 520

MSCCE

Nuclear Coal Gas Oil Hydro Wind Solar Total
Capital 32641 32447 8901 1350 39017 3949 649 118955
O&M 32388 83151 11147 3746 9978 1150 55 141615
Coal 0 42782 0 0 0 0 0 42782
Gas 0 0 47288 0 0 0 0 47288
oil 0 0 0 24111 0 0 0 24111
Total 65029 158380 67337 29207 48995 5100 704

RAS

Nuclear Coal Gas Qil Hydro Wind Solar Total
Capital 25991 48392 7039 705 33517 2753 558 118955
Oo&M 39038 67206 13009 4391 15478 2347 146 141615
Coal 0 42782 0 0 0 0 0 42782
Gas 0 0 47288 0 0 0 0 47288
Qil 0 0 0 24111 0 0 0 24111
Total 65029 158380 67337 29207 48995 5100 704

ERP

Nuclear Coal Gas QOil Hydro Wind Solar Total
Capital 34051 49088 6148 1081 25522 2707 358 118955
O&M 47776 63683 10614 6290 11010 2156 88 141615
Coal 0 42782 0 0 0 0 0 42782
Gas 0 0 47288 0 0 0 0 47288
Qil 0 0 0 24111 0 0 0 24111
Total 81827 155553 64051 31481 36532 4863 446




Third, both MSCCE and RAS require a total cost constraint for each of the disaggregated technologies
and are constrained to match the values in implied in Z°. However, the ad-hoc and ERP methods do not
require such a constraint and, in some cases, deviate greatly from the bottom-up data. This is especially
true for the gas sector, a fuel-intensive technology, where the total costs of the sector are much lower for
the unconstrained methods (ad-hoc and ERP). ERP has flexibility to preserve the cost structure where the
value of gas input implied by the bottom-up data is higher than the gas input value in the GTAP data.
Table 4 shows the deviations from cost structure and row share for the different methods.

Table 4. Percentage deviation (averaged absolute deviation across inputs and technologies) between the
economic relationships before, Z°, and after balancing for the United States. Ordering in parentheses.

Cost structure error Row share error Cell error
Z° 0 0 0
Ad-hoc 0.344 (4) 0(1) 0.341 (3)
MSCCE 0.201 (1) 0.129 (4) 0.232 (1)
RAS 0.336 (3) 0.072 (3) 0.378 (4)
ERP 0.315 (2) 0.044 (2) 0.326 (2)

The ordering of average absolute deviation between the bottom-up data and the data after balancing is
consistent with the expectations outlined previously. MSCCE dominates RAS and ERP, which in turn
dominate ad-hoc in cost structure preservation. The ad-hoc method perfectly preserves row share and
both RAS and ERP dominate MSCCE on this metric. Also as expected, ERP outperforms RAS in both
cases, because ERP does not require a possibly restrictive total cost constraint. The ad-hoc and ERP
methods may outperform the MSCCE and RAS methods in either economic relationship if the total cost
constraint is highly restrictive. As McDougall (1999) suggests, MSCCE generally preserves the original
cell values better than the others.

The ordering shown for the United States in Table 4 generally holds for all 129 regions. Figure 1 shows
percentage error for each region (averaged across inputs and technologies, in absolute values) between the
row shares (1a) and cost structure (1b) in the balanced data and those implied by the bottom-up data for
each method.

a) Row share b) Cost structure
70 50
60
40
50
40 30
30 20
20
10 10
0 0
0% 20% 40% 0% 20% 40% 60% 80%  100%
—e&— Ad-hoc —&— MSCCE —e— Ad-hoc —&— MSCCE
--0--RAS --®--ERP --0--RAS --0--ERP

Figure 1. Histograms of percentage deviation between bottom-up and balanced data in each region for
both row share (a) and cost structure (b) - where deviation is the absolute percentage deviation averaged
across inputs and technologies in each region.
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The results across the 129 regions show numerically that the deviation between row share, r;; and r%, are
generally ordered from least to greatest deviation as follows: ad-hoc (zero by definition), ERP, RAS,
MSCCE. The ordering for the deviation between cost structures, ¢;; and c%, is somewhat reversed:
MSCEE, ERP, RAS, followed by ad-hoc. This ordering is not necessarily identical in each region, but
indicates a general tendency that is again consistent with the expectation from the mathematical structure
of the matrix balancing methods.

The specific example of the United States shows what the deviation between the bottom-up data and
balanced data might look like in terms of values and magnitude of deviation. The ordering of the
dominance between balancing methods across the 129 regions in GTAP shows that these results are
consistent with the expectations from the mathematics of the methods.

The next section demonstrates how these deviations manifest in the ensuing economic analysis based on
these diverse databases. It illustrates the importance of preserving both the cost and row share economic
relationships in order to ensure the model results using balanced data are as consistent as possible with the
model results using bottom-up data. The shocks chosen for the simulations represent the type of
technological (e.g. shale gas extraction) and policy shocks (e.g. investment tax credits) prevalent in the
electric power sector and commonly investigated using IAMs.

3. Economic implications of alternative database construction methodologies

This section explores common energy and environmental-related shocks in the context of a model
which is broadly representative of those employed in IAMs, but tractable enough to follow how economic
relationships in a database map to modeling results. Therefore, a simple partial equilibrium (PE)
representation of the electricity sector is presented in this section. It is for illustration only and is not an
adequate representation of the electricity sector for use in a full-blown 1AM, nor is it representative of the
current state of electricity research.’ Rather this model is designed to clearly identify where and how
differences in cost structure and row shares evidence themselves in modeling results for the electric
power sector. The simple model implemented here assumes there is no trade in electricity, so the
equations can be written for each region separately. Therefore, the regional index is dropped for clarity
and conciseness without loss in generality. The simulations focus on the United States because of the
availability of quality bottom-up data, but could be readily extended to other regions.

The model is represented in linearized form in order to highlight the role of key economic relationships,
including key row and column shares. The ‘hat’ notation in Table 5 refers to percentage changes in the
associated levels variables. It is solved as a non-linear, initial value problem using the GEMPACK
software suite (Harrison and Pearson, 2006). The price responsiveness of electricity demand is
represented via a single, aggregate demand elasticity, « (Eq. 18), which aggregates the demand responses
of retail, commercial and industrial activities. The electricity sector production process is characterized by
a quantity-preserving constant elasticity of substitution (CES) production function which aggregates
power generated from different technologies based on the CES parameter, o, which yields a set of derived
demands for electricity produced from specific technologies (Eg. 20). Each individual power generating
technology demands fuel, O&M and capital in fixed proportion to generation (i.e. Leontief production)
(Eq. 22).

Prices for electricity produced by each technology and the aggregate electricity good are assumed to
cover costs, leaving no excess economic profits (Eq. 21 and Eq. 19, respectively) which is consistent with

® There are numerous studies on the electricity sector using partial equilibrium analysis which capture a vast quantity
of engineering-economic interactions. The purpose here is to precisely show the interaction between the balancing
methods and model results, rather than the precise sectoral interactions.
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average cost pricing in a regulated market. Exogenous price shocks enter into the model by shifting the
supply price of the input to electricity generation (Eq. 23). The supply of inputs to the generating
technologies is assumed to be perfectly elastic in this simple model (Eq. 24).

Table 5. Production structure for the simple PE model of the representative electricity sector

Production Nest Equation Description No.
ge ge = u-pe Final electricity demand (18)
pe = Z StQ - pt, Final electr|C|t){ price — zero profit, (19)
o - average cost pricing
7t = Ge — o - (BF, — p2) CES derived demand for individual (20)
N ) Ate =9 =0 Pl = P€) tachnologies
a1 q.. dr . .
pE, = Z SKt - B3i ¢ Prlcg of generating tec_h_nology — Zero 21)
- profit, average cost pricing
| | A Git = qt; Leontief derived demand for inputs (22)
e Gt dre . A Supply price for generating
pSit = pi,t + ti t technology (23)
Di¢ =0 Infinite factor supply elasticity (24)
qo; = i Total input employment in electricity (25)
- sector

The hat accent designates a variable measured in percent change.
ge is the percent change in total electricity production.

pe is the percent change in price of electricity.

w1 is the elasticity of demand for total electricity.

stQ is the quantity share of production from technology t in the electricity sector.
pt, is the percent change in price of electricity from technology t.
qt, is the percent change in GWh production from technology t.

o is the quantity-preserving CES parameter.

st is the value share of input i in technology t.

p3; . reflects the supply price for input i faced by technology t.

§; ¢ is the percent change in input i used in technology t.

Di ¢ is the percent change in price for input i for use in technology t.
£; . is an exogenous shock to price.

qo; is the total employment of input i in the electricity sector.

This simple framework is used to demonstrate the effect which different supply shocks, £; ¢, have on the
model economy. Again, the bottom-up data and the PE model (Eq. 18-25) are identical across the
experiments. Therefore, all variation in results comes from the balancing method.

3.1 Simulation to highlight the role of cost structure in modeling

Cost structure preservation comes into play when there is a shock to a particular input to a
particular technology (e.g. investment tax credit for a certain technology, fuel price). In order to show the
importance of preserving cost structure within each individual technology, a price shock is applied to only
one sector. Table 6 shows the capital intensity of each generating technology in the bottom-up data (Z°)
and after balancing using each method described above. The capital share in the cost structure of gas
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power is highlighted with a dashed box. The first simulation applies a -30% shock to the cost of capital
for gas-fired power only (£; s = -30).’

Table 6. Capital intensity in the cost structure of technologies after matrix balancing procedures for the
United States (¥,qpirqr,)

SV

"capital"t
Technology 2 Ad-hoc MSCCE RAS ERP
Nuclear 0.673 0.414 0.502 0.400 0.416
Coal 0.318 0.306 0.316
Gas 0098 0116 0132 0105 0.0%
il 0046 0034 0046 0024 0.034
Hydro 0.870 0.697 0.796 0.684 0.699
Wind 0.784 0.554 0.774 0.540 0.557
Solar 0.922 0.802 0.921 0.792 0.803

MSCCE is generally closer than the other methods to the capital share values implied by the bottom-up
data with the exception of gas power and coal power where the deviation is comparatively large. This
raises questions regarding the MSCCE method’s ability to preserve cost structure despite (and probably a
result of) focusing only on this in the objective.

Focusing on gas power, both the capital cost share in the RAS and ERP approaches are closer to the
bottom-up data than the ad-hoc approach because the ad-hoc method has no specific objective to preserve
cost structure. The ERP approach outperforms the RAS in this case because ERP does not require a total
cost constraint which allows additional flexibility to conform to the bottom-up data.

Table 7 shows that the results flow directly from the deviations from the bottom-up data. The ad-hoc,
MSCCE, and RAS methods overestimate capital intensity (S"Vcapimz","cas") in the gas power sector,
thereby overestimating the price of gas power (pt-;4s) in Eq. 21 and overestimating production changes

(qt,) for all technologies in Eq. 20, while the ERP underestimates only slightly.

Table 7. Targeted technology policy: a -30% shock to the price of capital for gas power (Gas) in the US
Percent change in production (GWh) by technology (gt,)

Technology Raw data Ad-hoc MSCCE RAS ERP
Nuclear -3.317 -3.957 -4.517 -3.55 -3.254
Coal -3.317 -3.957 -4.517 -3.55 -3.254
Gas 13017 15531 1773 13934 12.77
o T 3317 3957 4517 355 3254
Hydro -3.317 -3.957 -4.517 -3.55 -3.254
wind -3.317 -3.957 -4.517 -3.55 -3.254
Solar -3.317 -3.957 -4.517 -3.55 -3.254

These results can be attributed to the deviation for this particular cell, (S"Vcapital","Gas") of the balanced

matrices. The results may not deviate for shocks to other cells; however the implication is the same:
deviations should be minimized for each cell in the matrix balancing method.

" This serves as the most straightforward example; a more relevant example in the context of IAM is presented
subsequently (i.e. a negative price shock to gas as result of the shale gas extraction technology).
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The shock to the price of capital in gas power in the United States is shown because the connection from
cost structure to model results is transparent and tractable. However, the price of capital for gas is not
terribly relevant in the context of energy, electricity, climate, and other policies that IAMs have proven
useful for — although a similar shock on different sector might be more relevant (e.g. investment tax credit
for renewables). Therefore, another relevant example is the glut of gas in the United States due to shale
oil and gas extraction technology. Wellhead gas prices in the United States dropped roughly 67% from
2007 to 2012. If natural gas export terminals are constructed, then the rest of the world may also enjoy
lower gas prices. A 40% decrease in gas price is applied to each of the 129 regions in the GTAP database
(trgas" Gas+ = -40). Figure 2 shows a histogram of the absolute percentage deviation of each matrix
balancing method result as compared to the bottom-up data (2°).°
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Figure 2. Histogram of absolute percentage deviation from bottom-up model results and balanced data
model results from a -40% shock to the price of gas in each of the 129 GTAP regions.

The MSCCE and RAS results are identical because the share of fuel in gas power is given by the
employment of gas in the total electricity sector and the total cost is constrained. The total cost is flexible
for the ad-hoc and ERP methods, so the fuel shares may differ. The results clearly demonstrate that the
ERP, RAS, and MSCCE, which consider cost structure in their objectives, dominate the ad-hoc method,
which does not. However, it is difficult to discern any dominance between the ERP, RAS, and MSCCE
methods. The average across technologies of the absolute percentage deviations for each balancing
method are 22.83% for ad-hoc, 19.66% for RAS and MSCCE, and 18.47% for ERP. The same results (i.e.
ERP, RAS, and MSCCE dominating ad-hoc) are found in other simulations, such as a capital subsidy for
solar and wind power and a simple carbon-based tax on coal power and gas power, but to varying
magnitudes. The general conclusion is that ad-hoc model results are less consistent with the bottom-up
data model results than methods which explicitly preserve cost structure.

3.2 Simulation to highlight the role of row shares

Row share preservation primarily applies to a shock to an input shared by multiple technologies
(e.g. investment tax credit across multiple technologies, labor taxes). Recall that Table 6 shows that

® Due to the simple nature of the PE model, the magnitude of the price shock does not have any significant impact
on the percentage deviations between the balanced and bottom-up data (e.g. Figure 2). That is, the histogram looks
almost identical regardless of the magnitude of the price shock applied in each region (regions are independent from
one another).
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MSCCE deviates from the bottom-up data for cost structure of capital in gas power and coal power.
Another way to see this discrepancy for gas power and coal power is by capital employment across
technologies (row share) in Table 8 below.

Table 8. Capital employment across technologies after matrix balancing procedures for the United States
Share of total capital employment in electricity sector

Technology 2 Ad-hoc MSCCE RAS ERP
Nuclear 0.237 0.237 0.274 0.218 0.286
Coal 0.431 0.431 0.273 0.407 0.413
Gas 0.068 0.068 0.075 0.059 0.052
Oil 0.009 0.009 0.011 0.006 0.009
Hydro 0.230 0.23 0.328 0.282 0.215
Wind 0.022 0.022 0.033 0.023 0.023
Solar 0.004 0.004 0.005 0.005 0.003
Total 1 1 1 1 1

As expected, the ad-hoc method perfectly preserves the row share relationship. RAS and ERP deviations
are relatively similar which indicates the total cost constraint in RAS may not be overly restrictive in this
particular case. Here, MSCCE shows a switch of ordering in row share between nuclear and coal power
(shown in boxes in Table 8). A numerical simulation is provided in Table 9 by implementing a uniform
capital price shock of 10% (t;, = 10). A capital price shock is representative of a tax or subsidy on
electricity generation investment. Investment tax credits for renewable generation is a widely used policy
tool to promote renewable energy and crowd-out investment in carbon-intensive generation. Here the
policy is applied to all generation types to make the connection between matrix balancing and model
results clear and tractable.

Table 9. Shared input policy simulation: 10% shock to the price of capital in the United States electricity
sector

Percent change in production (GWh) by technology (§;)

Technology Z° Ad-hoc MSCCE RAS ERP

Nuclear -13.607 5.885 -11.3 -5.779 -6.231
Coal -1.298 -1.266 -1.417
Gas 14.476 8.730 6.511 8.723 9.511

oil 17.217 12.933 10.886 12.854 12.683
Hydro -22.307 -18.800 -24.318 -18.772 -19.107
Wind -18.557 -12.419 -23.384 -12.300 -12.755
Solar -24.517 -23.362 -29.535 -23.464 -23.638

The positive price shock, t; ¢, increases, p3; . (Eq. 23). The ensuing impact of ps3; , on pt, depends on the
input share s}ft (Eg. 21) which is where the differences in matrix balancing method enter the model. The

matrix balancing methods affect the result of interest, gt,, via the substitution between technologies base
on relative cost of technology, pt; (Eq. 20).

The results indicate that the large deviation in row share for coal power using the MSCCE method is
translated directly to the deviation in model results. The direction of change is opposite those implied by
the bottom-up data. The major implication is that, in the case of a uniform input price shock (e.g. tax
break for capital investment for renewable power) with substitutability between sectors, MSCCE can lead
to opposite interpretations of model results even with the simplest of models.
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4. Discussion

Divergent results from bottom-up and top-down modeling are well-known (Grubb et al. 1993),
and there is constructive research regarding the relative merits and reducing divergence between both
approaches (e.g. Bohringer, 1998; McFarland et al. 2004). The important takeaways here pertain to the
reasons the results of different top-down models might diverge even in the case of identical bottom-up
data.’ The divergence is the result of two primary factors: i) disparate bottom-up and top-down data and
ii) the preservation of economic relationships (i.e. row share and cost structure) after the matrix balancing
method which fits the bottom-up data to the top-down data. Of primary interest to this study are the
discrepancies caused by the matrix balancing methods.

4.1 Disparate bottom-up and top-down data

Moving to a CGE/IAM framework requires that the engineering data conforms to data on the
circular flow of the economy, which are important in certain analyses. For example, Hazilla and Kopp
(1990) and Bergman (1991) conclude general equilibrium impacts, such as input prices, output prices, and
allocation of resources in the economy, can be “significant and pervasive” in the context of environmental
policy. Unfortunately, the two data sources tend to differ, sometimes by large margins. The bottom-up
data is constructed from levelized (i.e. annualized) costs of electricity by technology and total production
while the top-down data is constructed by targeting prices of electricity, cost structure, and production
data (where available) in GTAPv8. The sources and type of data are disparate.

For example, Table 1 shows that the share of O&M is much higher in the top-down database which draws
cost away from capital and fuels. Still, in moving to a CGE model, the balanced database must conform to
the values in the top-down data via the total input employment constraint in the balancing methods
described above. The constraint contributes to a large portion of the difference between the results, but is
none-the-less necessary to move toward a CGE model which may be a more holistic representation of the
economy as compared to the bottom-up representation.

4.2 Preservation of economic relationships

Section 3.1 simulated a technology-specific capital price shock and a shock to the price of gas.
These simulations demonstrate that preserving the cost structure for individual technologies can be
important. The ad-hoc model does not specifically consider cost structure; inputs are allocated solely
based on row share. The RAS and ERP approaches, which specifically consider cost structure along with
row share, conform closer to the bottom-up data and, therefore, the bottom-up model predictions. It is
worth noting that the MSCCE may have large cost structure deviations for some technologies (e.g. coal-
fired power in Table 6) which may be unattractive for policies targeting these technologies.

Section 3.2 simulated an electricity sector-wide shock to the price of capital. The MSCCE method
implied an opposite result for one of the technologies. This can be attributed to the absence of
consideration of the row share relationship in the MSCCE objective function (Eg. 9). MSCCE does not
specifically preserve row share, so when a shock is applied which pertains to relative input employment
between sectors an opposite result may occur. Even if the result does not turn out to be opposite, it is still
less convincing after observing this simulation.

® Another important determinant of modeling results are the different inherent assumptions in top-down and bottom-
up models, which are (and should be) debatable. This work only focuses the differences in modeling results from the
data and data construction process, which should be less flexible to debate. The simulations here all have identical
assumptions and data. The data construction process solely reflects how the data is manipulated to conform to the
top-down assumptions.
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4.3 Selecting an appropriate matrix balancing method

The decision on which matrix balancing method is most appropriate for the research task at hand
depends on several factors and is highly case-specific. The initial decision is whether to include a total
cost constraint. This depends on the available bottom-up data and will drive the selection of matrix
balancing method. Table 10 summarizes the insights from the mathematical structure discussed in Section
2 which then tie this to the modeling results from Section 3, and charts the path to selecting an appropriate
matrix balancing method for CGE and IAMs (Table 11).

Table 10. Considerations for selecting an appropriate matrix balancing method — Insights from
algorithms. These only hold when no additional informational constraints are present.

Equivalence

El RAS = ad-hoc - If total cost constraint for RAS is identical to total costs implied by ad-hoc,
then the two are equivalent.
- RAS still allows for information on total cost.

E2 ERP = RAS - If total cost constraint is added as information to ERP, the two are
equivalent.

Cost structure preservation

C1 ERP > ad-hoc - ERP considers cost structure in the objective.

C2 MSCCE > RAS - RAS sacrifices some cost structure preservation for row share.

- Individual elements may differ in ordering (e.g. RAS result may be closer
than the MSCCE for certain elements), but as a whole MSCCE > RAS.

C3 ERP ~ MSCCE - The level of restriction from the total constraint required by RAS and
MSCCE will determine ordering.

Row share preservation
R1  Ad-hoc > all others - Ad-hoc perfectly preserves row shares.
R2 RASand ERP >MSCCE - MSCCE has no consideration of row shares.

Table 11. Considerations for selecting an appropriate matrix balancing method - Insights from modeling.
The corresponding insight from the algorithm (Table 10) are in parentheses.

Total cost Restrictions and Cost structure Row share Both
constraint? equivalence important? important? relationships
important?
No - RAS not possible - ERP > ad-hoc (C1) - ad-hoc > ERP (R1) ERP > all
- MSCCE not possible
Yes - ERP = RAS (E2) - RAS/ERP ~MSCCE - RAS/ERP >MSCCE RAS/ERP >all
- ad-hoc not possible (E2, C3) (R2)

If there are no data on input costs to technologies, then total cost may be the only way to differentiate
sectors. Also, if the researcher wishes only to shock the outputs of the new sectors (e.g. subsidy on
renewable technologies) rather than the input prices in the new sectors, perhaps total cost might be
preserved while sacrificing some of the component cost detail. In this case, where a total cost constraint is
desired, ERP and RAS are equivalent. A total cost constraint cannot be imposed on the ad-hoc method,
thereby rendering it impotent for this particular information set. The numerical simulations of the
RAS/ERP and MSCCE methods show that there is no clear dominance in method in the cost structure
case. That is, RAS/ERP performs better for some sectors while MSCCE performs better for others (Table
6). However, RAS/ERP performs much better in the case of the row share relevant simulations (Table 8)
which implies that the ERP/RAS might be the best selection when both relationships are relevant.

Alternatively, if technology specific input costs are available in the bottom-up data (e.g. levelized costs as

is the case here) and the researcher wishes to shock input prices in the new sectors, the restrictive total
cost constraint can be removed. In this case the applicable methods are the ad-hoc and the ERP approach,
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because the basic MSCCE and RAS approaches require a total cost constraint. The mathematical
properties imply and the numerical simulations show that ERP performs better in terms of model results
in the case of preserving cost structure (Table 7 and Figure 2) while the ad-hoc performs marginally
better in preserving row share (Table 8). On balance, the ERP seems to outperform the ad-hoc method
when both relationships are important. It is also worth noting that ad-hoc methods are unable to leverage
the vast research on incorporating additional information and reliability of information in constrained
optimization (Lahr and de Mesnard, 2004).

It is more than likely that both cost shares and row shares will eventually be of importance in most
CGE/IAM projects. While researchers may have a particular shock or set of shocks in mind initially, the
models are often subsequently used for simulations for which it was not originally designed. Given this,
the ERP method is the most flexible method and preserves both economic relationships, thereby
providing results which are the most consistent with the original bottom-up data over the largest set of
shocks.

5. Conclusions and broader impacts

Using a simple partial equilibrium model, the deviation between results with bottom-up data and
balanced data stem from two primary sources: i) differences between the bottom-up and top-down data
and ii) the matrix balancing methodology used to conform the dataset when there are disparate data. If
the database implied by the bottom-up data match that of the top-down data, there is no need for the
matrix balancing method at all. Unfortunately, that is rarely, if ever, the case, and the data balancing
methods are necessary. This work shows that the modeling differences can be quite large based on the
selection of matrix balancing method which necessitates close consideration, justification, and
documentation.

This article explores four matrix balancing methods which are commonly employed to create a consistent
CGE/IAM database and the implications each has on economic modeling. Their mathematical
constructions (i.e. the objective and constraints) provide some insight into how they might perform in
relation to two important economic relationships (i.e. cost structure and row share). The analytical
investigation is supported by numerical examples in a simple disaggregation of the electricity sector.
Identical data is used for each method. The numerical results are generally consistent with their
mathematical constructions regarding the economic relationships.

Numerical simulations showed the relevance of these economic relationships in modeling. The alternative
balancing methods, despite identical original data, differed from the original bottom-up data results
depending on their mathematical constructions and ability to preserve the economic relationships. In these
experiments the original bottom-up data, partial equilibrium model, and simulations were control
variables. The matrix balancing methods directly drove the modeling results.

Selecting an appropriate matrix balancing method will help decrease the divergence between bottom-up
and top-down models. The ERP method outperforms the other methods both in flexibility (i.e. it is the
only method which can be used with and without a total cost constraint) and where both economic
relationships are important, which is the most likely case.

The implications for large-scale CGE and IAM modeling are straightforward. First, the best way to
reduce deviation introduced by the matrix balancing methods is to inform the top-down data with the
bottom-up data, and vice versa. Second, in cases of disparate bottom-up and top-down data, the balancing
method matters. Finally, the database construction efforts, which includes the matrix balancing, should be
considered closely, justified, and documented. Moving forward data construction elements of CGE and
IAM modeling efforts should be publicly documented with data and methods posted online to promote
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continuous improvement at the data-database-modeling nexus. This is an under-researched, but critical,
aspect of IAM research and critical to the long-run credibility of this important work.
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