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Abstract 

This paper explores the sensitivity of model statistics to breadth of sampling used under the 
Sensitivity Analysis – a method very often used for General Equilibrium models and an inbuilt 
tool in General Equilibrium Modeling Package (GEMPACK). We force the Stroud and Liu 
Gaussian Quadratures available in Systematic Sensitivity Analysis (SSA) in GEMPACK to 

sample from beyond their usual √2ߪ and 1ߪ limits. The breadth of sampling domain could be an 
important aspect for models that are highly non-linear and where results depend on thresholds 
and regime switches. In the Special Safeguards (SSM) example used here, we find that the 
broader sampling technique gives us very different results for second tier tariffs on wheat 
imports. 
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I. Introduction 

In recent years, Sensitivity Analysis has become more commonplace in the context of 

Computable General Equilibrium (CGE) analyses. It has long played a role in assessing the 

robustness of model results (e.g. Wigle 1991; Harrison et al., 1992). However, its domain of 

application has now extended to model validation (Valenzuela et al. 2007; Beckman et al. 2010), 

trade policy analysis (Hertel et al. 2010; Verma et al. 2011), and climate volatility (Ahmed et al. 

2010). These new areas of application have raised important questions about SSA methodology. 

One issue that has recently drawn attention from users is that Gaussian Quadratures (GQ) 

proposed by Stroud or Liu restrict the variation around the mean to no more than √2ߪ and 1ߪ 

respectively. This restricted variation, might or might not take one as far from mean as is 

desirable for a problem. This may have implications for applications where the CGE model has 

different policy regimes which kick in at different threshold levels. In the context of productivity 

shocks to agriculture, for example, the existing mechanism definitely fails to simulate the impact 

of extreme weather events. Preckel et al. (2011) suggest that the presently restricted sampling (as 

in Original Stroud or Liu – OS or OL) may lead to distorted estimates of mean and standard 

deviations of endogenous variables in the sensitivity results and provide a method to push GQ to 

sample from extreme ends of a parameter’s distribution.  

This paper offers an application using the new quadrature proposed by Preckel et al., to 

sample more widely from the shock distributions than the OS or OL quadratures allow in their 

present implementations. We call the new implementation results – the Broad Sample Stroud or 

Liu (BS or BL). For technique of broader sampling used, see (Preckel et al 2011); the 
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implementation of the technique in the current SSA framework in GEMPACK is elaborated 

upon in the methodology section of this work.  

For application we chose the one used by Hertel et al (2010) – analyzing the implications 

Special Safeguard Mechanism (SSM) which have been proposed as a method of shielding 

countries from import surges. The impacts of a specific special safeguard mechanism likely 

depend substantially on its design. The one under discussion is based broadly on the current 

special agricultural safeguard, which includes two triggers—one based on the price of imports 

and one on the quantity1 of imports (GATT 1994). The quantity-based safeguard can be used 

when imports in a year exceed base imports – a three-year moving average of imports. The duty 

that can be applied increases as imports exceed this base. Imports of 110–115 percent of the base 

allow an additional duty of 25 percent of the current binding or 25 percentage points, imports of 

115-135 percent of the base allow an additional duty of 40 percent of the binding or 40 

percentage points, and imports of more than 135 percent of the base allow an additional duty of 

50 percent of the binding or 50 percentage points. At present only the first two tiers of the policy 

are modeled in this this application. 

Hertel et al. find that the quantity-based safeguard reduces imports, raises domestic 

prices, and boosts mean domestic production in the countries that implement it. However, rather 

than insulating developing countries in those regions from price volatility, the quantity-based 

safeguard increases domestic price volatility, largely by restricting imports when domestic output 

is low and prices are high. The authors estimate that the quantity based safeguard would shrink 

average wheat imports nearly 50 percent in some regions. However, all of these results are based 

on the Stroud sampling strategy, which does not sample beyond the √2ߪ of the productivity 
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distributions. This may explain why their results hardly ever trigger the second level of the 

quantity-based SSM tariff regime.  

In order to explore the sensitivity of these findings to the breadth of sampling used by 

Gaussian Quadrature, we rerun their model (a reduced dimensions version of it), under broader 

sampling strategy. A priori we expect that the number of times a specific regime kicks in under 

the two quadrature types – broader sampling versus standard sampling – to be different though 

we cannot say if it would significantly alter the means of the distributions of the endogenous 

variables. Comparisons are made for the results of the new quadrature with those of the old 

quadratures. By making such a comparison we hope to assess the usefulness of broader sampling 

techniques. 

 

II. Methodology 

i. Concept 
The methodology section here basically outlines the implementation of the idea 

developed in Preckel et al. Let’s begin by thinking about the inputs into any SSA exercise. SSA 

usually assesses the sensitivity of model results to changes in exogenous inputs. Once the user 

has identified the key parameters, outside information (from literature or data) is used for 

determining the “amount of variation” in the parameters. We usually get this outside information 

in terms of standard deviation for a given exogenous variable e.g. standard deviation in historic 

yield changes; or in terms of cut off points e.g. the upper and/or lower bound estimates in 

literature for elasticity of factor substitution. This section shows how under each scenario one 

can make the OS and OL, sample from given variation such that the cut off points (or any point 
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beyond the √2ߪ and 1ߪ are also sampled by OS and OL respectively. We first highlight this in a 

generic framework before getting down to specifics. As the analysis here pertains to the SSA 

application in GEMPACK we restrict attention to symmetric triangular and uniform 

distributions. 

 

a. Case I: Known Mean and Standard Deviation  
 

For a symmetric triangular distribution (and therefore we deal here with only the right 

half of the distribution) with known mean (ߤ) and standard deviation (ߪ), one can determine the 

end point (ܧ௔) corresponding to the probability density that one needs to cover:  

ߤ)ܲ ≤ ݔ ≤ (௔ܧ = ܽ 2⁄  

  :௔ can be written asܧ

௔ܧ = ߤ + (ܽ)ݏ ∙  ,(1)           ߪ

where the scaling factor ݏ(ܽ) is a scalar and its value depends on the chosen ܽ. 2  
For the extreme endpoint such that the entire domain is spanned 

ߤ)ܲ ≤ ݔ ≤ (ଵܧ = 1 2⁄ ܽ	݋ݏ)										 = 1); 
the relevant value of ݏ(ܽ) of a triangular distribution (TD) equals √6 and the same for the 

uniform distribution (UD) is √3 therefore the relevant right tail endpoints are 
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ଵ௧ܧ = ߤ + ଵ௨ܧ  and ߪ	6√ = ߤ +  .(2)      ߪ	3√

The end point ܧ௔ (for ܽ ∈ ሾ0,1ሿ) is relevant as the input into (SSA).3 The only thing that 

changes in the RHS of equation (1) is the scaling factor ݏ(ܽ). With some algebraic manipulation 

it can be shown that for a symmetric TD, ݏ(ܽ) = ൫1 − √1 − ܽ൯√6 and for a symmetric UD, ݏ(ܽ) = ܽ√3	; and ܧ௔ can be thus be written as follows 

௔௧ܧ = ߤ + ൫1 − √1 − ܽ൯√6	ߪ  and  ܧ௔௨ = ߤ +  .(3)    ߪ	3√ܽ

For example, if we want the shocks to be sampled from the TD with 1 = ߪ and ܽ = 0.90 

(so sampling from 90 percent of the total distribution area or equivalently leaving out the 5 

percent of the distribution in each tail); the end point to be specified in SSA “Amount of 

Variation” box should be ൫1 − √1 − 0.9൯√6 = 1.67. The same ߪ and ܽ values for a symmetric 

UD will yield the Amount of Variation = 1.56. 4 

Equation (3) can be used to figure out the Amount of Variation for any desired value of ܽ, 

for a symmetric triangular and uniform distributions. Let’s for now concentrate on the TD 

example and call [0, 1.67], the true5 triangular distribution domain. 

Giving this input of 1.67 as the Amount of Variation to SSA would however lead the OS 

or OL quadrature to pick up shock values that are never more than √2ߪ or ߪ respectively. For 

our TD example this means that any values between 1.414 and 1.67 will never be chosen by OS 

quadrature and those between 1 and 1.67 will not be sampled by OL. The effective distributions 

that are sampled from, are thereby restricted to [0, 1.414] for Stroud and [0, 1] for Liu. 

Equivalently one can say that samples shocks are drawn from only approximately 82 percent (for 
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Stroud’s) and 65 percent (for Liu’s) of the distribution’s area; and this area is symmetrically 

concentrated around the mean of the distribution. The tails of the distribution are never sampled 

from; this can be a big mistake when one considers climate models (think extreme weather 

shocks) or regime switching models where low probability but high magnitude shocks can alter 

the results sometimes irreversibly so. 

The concept of sampling shocks outside the restricted range is what we call broader 

sampling. The theory is explained in Preckel et al. (2011). One can implement it using existing 

SSA tools. Basically it involves doing the SSA twice – once with the original distribution 

expanded and the second time with the original distribution contracted – and then using a 

probability weights to combine the results of the two. The details follow. 

The first step is to choose the expansion parameter ߙ. This would depend on how far 

along in the true distribution, do we want to go, to sample the shocks. If one wants to largest 

possible shock to be 1.67 then it translates into equating the effective and the true distributions. 

Now given that Stroud quadrature would never pick up a shock greater than √2ߪ, one would 

need to scale up the ߪ to use the existing mechanism but still pick a shock bigger than √2ߪ! One 

can rely on equation (3) to determine this expansion parameter to be ൫1 − √1 − ܽ൯√3. When we 

want the entire domain of distribution to be spanned (and we have argued above that this means ܽ = 1) then the expansion factor is √3. Table 1 below provides the expressions for the 

expansion factors in terms of ܽ. 
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Table 1: Expansion parameter for Standard Deviation of Original Distribution 

 Triangular Distribution Uniform Distribution 

Stroud’s Quadrature ൫1 − √1 − ܽ൯√3 ܽඥ3/2 

Liu’s Quadrature ൫1 − √1 − ܽ൯√6 ܽ√3 

Source: Authors’ Derivations 

Once we have the expansion parameters figured out, one can solve the following system 

of equations given by Preckel et al. to get the contraction factor (ߚ) and probability (݌).  

݌ଶߙ + ଶ(1ߚ − (݌ = ݌ସߙ 1 + ସ(1ߚ − (݌ =  has been shown to equal the ratio of theoretic kurtosis for the symmetric distribution (2.4 for ߢ ߢ

TD and 1.8 for UD) to the actual kurtosis of the original SSA sample inputs. This problem is 

programmed as a small GAMS utility and with inputs for ߢ and ܽ from the user, will give the 

outputs needed for SSA implementation in GEMPACK. 

 

b. Case II: Known Mean and Cut-off points 
  

Sometimes however it could be that the information available for SSA are the mean and 

the extreme (true) end-point. In such a scenario we already know the variation ܸ; where ܸ ଵܧ= −  But again to make sure that Stroud and Liu quadratures do not restrict this range of .ߤ

variation, we can use the following scaling factors for the variation. 
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Table 2: Expansion factor for Variation in Original Distribution 

 Triangular Distribution Uniform Distribution 
Stroud’s Quadrature ඥ3/2 √3/2 

Liu’s Quadrature √6 √3 

Source: Authors’ Derivations 

 

ii. Broad Sample: SSA Inputs and Output  
With the values for ߙ and ߚ handy; all that is required, is scale the original ߪ by these 

factors. Let’s call these ߪఈ and ߪఉ respectively. Equation (3) then for a chosen value of ܽ and 

these standard deviations will give us the new extreme points. For e.g. ܧ௔ா்஽ will be the extreme 

point for the expanded triangular distribution (ETD) and ܧ௔஼்஽ is the same for the contracted 

triangular distribution (CTD). Similarly we have those for the UD. 

௔ா்஽ܧ = ߤ + ൫1 − √1 − ܽ൯√6	ߪఈ and  ܧ௔ா௎஽ = ߤ +  .ఈ    (4)ߪ	3√ܽ

௔஼்஽ܧ = ߤ + ൫1 − √1 − ܽ൯√6	ߪఉ and  ܧ௔஼௎஽ = ߤ +  .ఉ    (5)ߪ	3√ܽ

So the amount of variation that one would specify for the SSA in its ETD version (the expanded 

triangular distribution version) would be given by ܧ௔ா்஽ − ߤ = ൫1 − √1 − ܽ൯√6	ߪఈ. One can 

similarly use (4) and (5) to determine the same for other versions. Note that the only difference 

in comparison to the original triangular distribution SSA is that we use a scaled version of the ߪ. 

Also note that though (4) and (5) can be used to determine endpoints for both Stroud and Liu the 

values will differ because ߪఈ and ߪఉ will differ owing to the different expansion factors for the 

two quadratures (as in Table 1). With these new inputs for extreme end points we do the SSA 
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twice. The amount of variation for a Stroud TD for our application, obtained using the above 

procedure, are reported in Table 3. 

Finally we need to combine the results (mean and standard deviations) of the expanded 

and the contracted SSAs using the probability ݌. And the formula for Broad sample mean (ߤ஻ௌ) 

and broad sample standard deviation (ߪ஻ௌ) can be shown to be as follows: 

஻ௌߤ = ఈߤ݌ + (1 −  ;ఉ         (6)ߤ(݌

஻ௌߪ = ቂߪ݌ఈଶ + (1 − ఉଶߪ(݌ + 1)݌ − ఈߤ൫(݌ −  .ఉ൯ଶቃభమ      (7)ߤ

These formulae apply to both, distribution of inputs (in our case sample shock values for wheat 

yields) as well as the distribution of endogenous model variables (additional SSM tariffs for our 

application). 

 

III. Results 

Using the formulae mentioned just above now we compare the SSA inputs and outputs 

for the broad sample SSA to that of the original SSA for the Stroud and Liu TD, for our SSM 

application. We chose to span the entire distribution domain, i.e. we chose the value of ܽ = 1. 

i. Moments of Yield Distribution: Mean and Variance (just to show that these should still 

be the same) 

We start with showing the extreme points and the min and max shocks to all the regions 

in our model. Appendix Table 3 provides the yield shocks for wheat in the regions. The original 



Page 11 of 20 

extreme end points (given by √6ߪ in column 1 of Table 3) are taken from Hertel et al. As one 

can see the maximum shock values sampled under the initial SSA setup never exceed √6ߪ √3⁄  

or √2ߪ whereas those under the broad sample SSA, span just about the whole distribution. The 

acronyms OSTD and BSSTD refer to Original Stroud Triangular Distribution and Broad Sample 

Stroud Triangular Distribution respectively. 

The expansion and contraction of the original GQ is done subject to the conditions that 

the moments of distribution of the original sample shocks and the weighted moments of 

distribution of the two new distributions remain the same. This is what we check in Table 4. The 

mean and standard deviations of the original sample shocks can be calculated as 

ைௌߤ  = ∑ ௜௜ݔ ݊⁄   and  ߪைௌ = ሾ∑ ௜ݔ) − ைௌ)ଶ௜ߤ ݊⁄ ሿభమ   for ݅ = 1… . ݊   (8), 

where ݔ denotes the sample shock value chosen by the original Stroud GQ. These values can be 

accessed from reports saved by the SSA utility, which also provides the above two statistics for 

the shock values. We compare the results given by (8) to those given by (6) and (7). 
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Table 3: Stroud’s End-Points (EP) and Extreme Shocks for Wheat Yields (percentage) 

Region 
Original EP 
for OSTD 

Expanded EP 
for BSSTD  

Contracted  EP 
for BSSTD 

Max shock  
(OSTD 
SSA) 

Max shock  
(BSSTD 

SSA) 

Australia 26.0 45.0 21.8 15.0 26.0 

China 32.2 55.8 26.9 18.5 32.1 

Japan 15.0 26.0 12.5 8.7 15.0 

Other East 
Asia 

21.5 37.2 18.0 12.4 21.4 

South East 
Asia 

24.5 42.4 20.5 14.1 24.5 

Canada 16.2 28.1 13.6 9.3 16.1 

USA 18.4 31.9 15.4 10.6 18.4 

Mexico 24.5 42.4 20.5 14.1 24.4 

Argentina 34.7 60.1 29.0 20.0 34.7 

Brazil 86.1 149.1 72.0 49.5 85.7 

Rest of Latin 
America 

22.1 38.3 18.5 12.8 22.1 

EU15 15.0 26.0 12.5 8.6 14.9 

Other EUR 38.1 66.0 31.9 22.0 38.1 

Russia 55.4 96.0 46.4 31.8 55.2 

MENA 21.1 36.5 17.7 12.2 21.1 

Sub-Saharan 
Africa 

23.7 41.0 19.8 13.6 23.6 

Rest of the 
World 

64.5 111.7 54.0 26.3 45.6 

Source: Hertel et al. and Model SSA Simulations 

                                                           
BSSTD: Broad Sample Stroud Triangular Distribution; OSTD: Original Stroud Triangular 
Distribution 
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Table 4: Comparing Mean and Standard Deviation of Sample Shocks to Wheat Yields in 
Original versus the Broad Sample 

Region ߤைௌ ߪைௌ ߤ஻ௌ ߪ஻ௌ ߤைௌ − ைௌߪ ஻ௌߤ −  ஻ௌߪ

Australia -3.51E-08 1.06E+01 -3.48E-08 1.06E+01 -3.00E-10 0.00E+00 

China 1.32E-07 1.31E+01 8.83E-08 1.31E+01 4.37E-08 0.00E+00 

Japan -2.79E-07 6.12E+00 -2.86E-07 6.12E+00 7.00E-09 0.00E+00 

Other East 
Asia 

-3.56E-07 8.78E+00 -3.70E-07 8.78E+00 1.40E-08 0.00E+00 

South East 
Asia 

-7.05E-07 1.00E+01 -6.59E-07 1.00E+01 -4.60E-08 0.00E+00 

Canada -2.90E-07 6.61E+00 -2.19E-07 6.61E+00 -7.10E-08 0.00E+00 

USA 7.19E-07 7.51E+00 6.84E-07 7.51E+00 3.50E-08 0.00E+00 

Mexico -6.83E-07 1.00E+01 -6.06E-07 1.00E+01 -7.70E-08 0.00E+00 

Argentina 8.48E-07 1.42E+01 9.23E-07 1.42E+01 -7.50E-08 0.00E+00 

Brazil -1.28E-05 3.52E+01 -1.21E-05 3.52E+01 -7.00E-07 0.00E+00 

Rest of 
Latin 

America 
1.11E-06 9.02E+00 1.02E-06 9.02E+00 9.00E-08 0.00E+00 

EU15 -1.36E-06 6.12E+00 -1.32E-06 6.12E+00 -4.00E-08 0.00E+00 

Other EUR 3.28E-06 1.56E+01 3.15E-06 1.56E+01 1.30E-07 0.00E+00 

Russia -1.12E-06 2.26E+01 -1.13E-06 2.26E+01 1.00E-08 0.00E+00 

MENA -2.32E-06 8.61E+00 -2.21E-06 8.61E+00 -1.10E-07 0.00E+00 

Sub-Saharan 
Africa 

-4.10E-06 9.68E+00 -4.01E-06 9.68E+00 -9.00E-08 0.00E+00 

Rest of the 
World 

0.00E+00 2.63E+01 0.00E+00 2.63E+01 0.00E+00 0.00E+00 

Source: SSA Input Report Files and Authors’ Calculations 
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ii. Moments of Additional Tariffs: Mean and Variance  

Having satisfied ourselves that the shocks were in fact generated from a broader sample 

with the same means and standard deviations (Table 4) and also that the new shocks do span the 

entire original sample domain (Table 3) we next turn to variables of our interest, which in this 

application are the additional SSM tariffs. We report the same measures (mean and standard 

deviations: original and broad sample) for SSM additional tariffs in Tables 5 and 6 as those for 

wheat yields reported in Table 4. Note that as only 9 of the 17 regions resort to SSM as a policy 

measure, the additional tariffs are reported for only those 9. 

As one can see from the Tables below, for yield distributions characterized by the same ߤ 

and ߪ (Table 4) we get slight differences in the distributions of the results. These differences 

depend on the non-linearity of the model results in the variables shocked and also the inter-

dependency of results in General Equilibrium set up. 

For our application we see the Tier 1 mean tariffs to be lower for the Broad Sample SSA 

in comparison to original SSA, for both Stroud and Liu quadratures but the same cannot be said 

about the Tier 2 mean tariffs. Standard deviations too present mixed results across the two Tiers 

and Quadrature types.  

One result that does stand out however and needs further look is that under Broad Sample 

SSA Tier 2 mean tariffs are positive for more countries than under the original SSA. It’s true for 

both Stroud and Liu quadratures. While only 3 (for Stroud) and 2 (for Liu) countries see positive 

Tier 2 tariffs with original SSA, the number jumps to 7 under the broad sample SSA.  
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Table 5: Mean and Standard Deviation for Additional SSM Tariffs under the Original and Broad Sample Stroud SSA  

 China 
Other East 

Asia 
South Asia Mexico Argentina Brazil 

Rest of 
Latin 

America 
MENA 

Sub-
Saharan 
Africa 

TIER 1 ߤைௌ 9.5 0.0 4.3 3.3 6.2 10.2 2.9 2.1 2.5 ߤ஻ௌ 9.1 0.0 3.4 2.8 5.5 9.9 2.6 1.9 2.2 ߤைௌ −  ஻ௌ 0.3 0.0 0.9 0.5 0.7 0.3 0.3 0.2 0.3ߤ

ைௌߪ ஻ௌ 11.4 0.0 6.5 5.4 8.4 11.7 5.2 4.3 4.9ߪ ைௌ 11.9 0.0 7.6 5.3 9.6 11.9 5.1 3.9 4.8ߪ           −  ஻ௌ 0.4 0.0 1.2 -0.1 1.2 0.3 -0.1 -0.4 -0.1ߪ

TIER 2 ߤைௌ 1.2 0.0 0.0 0.0 0.1 3.6 0.0 0.0 0.0 ߤ஻ௌ 1.1 0.0 0.3 0.1 0.4 3.3 0.1 0.0 0.1 ߤைௌ −  ஻ௌ 0.1 0.0 -0.3 -0.1 -0.3 0.3 -0.1 0.0 -0.1ߤ

ைௌߪ ஻ௌ 1.8 0.0 1.8 0.9 2.2 5.2 0.7 0.3 0.8ߪ ைௌ 1.8 0.0 0.0 0.0 0.7 5.5 0.0 0.0 0.0ߪ           −  ஻ௌ 0.1 0.0 -1.8 -0.9 -1.5 0.3 -0.7 -0.3 -0.8ߪ

Source: Model SSA Results and Authors’ Calculations 
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Table 6: Mean and Standard Deviation for Additional SSM Tariffs under the Original and Broad Sample Liu SSA 

 China 
Other East 

Asia 
South Asia Mexico Argentina Brazil 

Rest of 
Latin 

America 
MENA 

Sub-
Saharan 
Africa 

TIER 1 ߤைௌ 12.5 0.0 4.4 3.2 6.4 12.5 2.9 2.0 2.4 ߤ஻ௌ 12.4 0.0 3.1 2.5 5.3 12.3 2.3 1.6 2.0 ߤைௌ −  ஻ௌ 0.1 0.0 1.2 0.7 1.1 0.2 0.6 0.4 0.4ߤ

ைௌߪ ஻ௌ 12.4 0.0 5.2 4.6 7.5 12.3 4.4 3.8 4.1ߪ ைௌ 12.6 0.0 5.7 4.8 8.8 12.6 4.1 2.9 3.7ߪ           −  ஻ௌ 0.2 0.0 0.6 0.1 1.3 0.3 -0.3 -0.9 -0.5ߪ

TIER 2 ߤைௌ 1.8 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 ߤ஻ௌ 1.4 0.0 0.3 0.2 0.3 3.2 0.1 0.0 0.1 ߤைௌ −  ஻ௌ 0.4 0.0 -0.3 -0.2 -0.3 1.1 -0.1 0.0 -0.1ߤ

ைௌߪ ஻ௌ 1.9 0.0 1.7 1.3 1.8 5.3 1.2 0.4 0.7ߪ ைௌ 2.0 0.0 0.0 0.0 0.0 5.2 0.0 0.0 0.0ߪ           −  ஻ௌ 0.1 0.0 -1.7 -1.3 -1.8 -0.1 -1.2 -0.4 -0.7ߪ

Source: Model SSA Results and Authors’ Calculations 
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iii. Frequency of Policy Trigger  

The presence of positive tariffs for a greater number of countries, under the broad sample 

SSA, motivates one to look at the frequency of Tier 2 SSM tariffs being triggered under the two 

different types of SSAs. Table 7 below reports this information.  

Instead of actual numbers of times that a Tier 2 tariff gets triggered for a given SSA 

exercise, we report the percentage of the simulations in which the tariff gets triggered; the reason 

being that the broader sample involves twice as many number of simulations as the original 

standard SSA and therefore the actual trigger numbers are not strictly comparable.  

Having a total of 17 regions translates into the number of SSA simulations for OSTD, 

BSSTD, OLTD (Original Liu Triangular Distribution) and BSLTD (Broad Sample Liu 

Triangular Distribution) are 34, 68, 64 and 128 respectively. For broad sample SSA the 

simulations with both the contracted and expanded distributions are pooled together, but unlike 

for ߤ and ߪ, the frequency of trigger being a count data they are not weighted. 

The point that stands out is that Tier 2 SSM tariffs are triggered more often under the 

broad sample simulations.  and Liu (needs more explanation). The result here is expected 

because the samples being drawn now cover a wider domain of original distribution (recall that 

by construction, the ߤ and ߪ of input distribution remains the same even under Broader sample 

SSA). 
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Table 7: SSM Policy Trigger Frequency (percent of sample simulations) 

 China 
Other East 

Asia 
South Asia Mexico Argentina Brazil 

Rest of 
Latin 

America 
MENA 

Sub-
Saharan 
Africa 

TIER 1 

OSTD 47% 0% 32% 38% 38% 44% 35% 26% 29% 

BSSTD 46% 0% 40% 38% 47% 46% 35% 32% 32% 

          

OLTD 50% 0% 47% 38% 47% 50% 42% 42% 42% 

BSLTD 50% 0% 46% 43% 53% 50% 42% 41% 42% 

TIER 2 

OSTD 29% 0% 0% 0% 3% 35% 0% 0% 0% 

BSSTD 32% 0% 9% 6% 13% 35% 6% 3% 3% 

          

OLTD 47% 0% 0% 0% 0% 47% 0% 0% 0% 

BSLTD 44% 0% 23% 18% 23% 40% 16% 8% 11% 

Source: Model SSA Results and Authors’ Calculations 
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iv. Other Comparisons  

Across the two strategies for SSA, it turns out that the mean domestic prices are higher 

and more volatile when broader sample strategy is used. They are as much as 10 percent higher 

and 65 percent more volatile in Brazil, which is the country relying on SSM the most. However 

it is puzzling that the mean wheat imports under the broader sample strategy fall less or even rise 

somewhat. As expected both import quantities and output become more volatile.  

 

IV. Conclusions   

The broader sample SSA strategy developed by Preckel et al. does indeed help one to 

cover domain of input distributions that were not plausible to sample from with the existing SSA 

mechanism. It does so by splitting the input distribution into two – an expanded and contracted – 

distributions, while still imposing the ߤ and ߪ of the original distribution on the new composite 

distribution.  

As we have seen it does make a difference in the frequency of an extreme regime (Tier 2) 

coming into play and also its intensity. Whether or not this new approach to doing SSA is 

important depends on application at hand; but it might be of particular interest for climate change 

models. 
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1 Our work here focuses only on quantity triggers, for the ease of detailed comparison. 
2 The value for ܽ is chosen by the user and depends on his/her belief about what portion of the 
triangular distribution is the true domain for the SSA sample shocks. We for now recommend to 
use the values of ܽ	 ∈ [0.83,1] for Stroud TD, [0.65,1] for Liu TD, [0.82,1] for Stroud UD and 
[0.58,1] for Liu UD. 
3 Note that the way SSA operates in GEMPACK, the input is only the difference between the end 
point and the mean, which is only √6ߪ (for TD) or √3ߪ (for UD) when ܽ = 1. 
4 The exact values for TD and UD are 1.67489307354169 and1.55884572681199 respectively. 
5 By true we mean that we want the shocks to be drawn from the entire domain not have only 
part of it covered. 
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