
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


This paper is from the 
GTAP Annual Conference on Global Economic Analysis

https://www.gtap.agecon.purdue.edu/events/conferences/default.asp

Global Trade Analysis Project
https://www.gtap.agecon.purdue.edu/



1 
 

Gaussian Quadrature with Correlation and Broader Sampling 
 

Paul V. Preckel1 
Monika Verma 
Thomas Hertel 
William Martin 

 
January 3, 2010 

 
Introduction 
 
Gaussian quadrature (GQ) has proven to be a useful approach to performing systematic 
sensitivity analysis on computable general equilibrium models.  By systematic sensitivity 
analysis, we refer to the case where the analyst makes explicit assumptions regarding the 
probability distributions of the exogenous model inputs that are not known with certainty, and 
estimates statistics regarding the probability distributions of the model results (e.g. means, 
variances, confidence bounds, etc.).  This activity is greatly facilitated by the incorporation of the 
procedure into the GEMPACK modeling system (Arndt 1996; Arndt and Pearson 1998).   
 
Users have noted two shortcomings with the system.  First, the initial implementation allowed 
for only two cases of stochastic relationships between the model inputs – either perfect 
correlation or stochastic independence.  Second, it has been noted that the sample points for the 
model inputs at which the model is evaluated do not range very far from the mean – plus or 
minus only one standard deviation with the Liu (1997) quadrature and plus or minus the square 
root of two times the standard deviation for the quadrature due to Stroud (1957).  The purpose of 
this note is to clarify and demonstrate methods for correcting these shortcomings.  (Another 
shortcoming relates to the perceived incompatibility of using the automated SSA system 
simultaneously for both “shocks” and “parameters.”  This point is addressed in a working paper 
by Horridge and Pearson [2010], and because it appears they have found a way to implement this 
feature in the existing system, it is not addressed here.)     
 
Correlation between Model Inputs 
 
There is really not much problem with allowing for correlation between parameters in a Gaussian 
quadrature (GQ).  As indicated in Preckel and DeVuyst (1992), adding correlation between 
parameters is straightforward and achieved by a linear transformation of an uncorrelated 
quadrature.  That paper recommended using an Eigen system decomposition of the covariance 
matrix to implement the transformation.  Others such as Artavia et al. (2009) have proposed 
using the Cholesky factorization (RtR where R is an upper triangular matrix).   
 
While algebraically these appear to achieve the same end, they are not geometrically equivalent.  
This is illustrated in Figure 1.  The independent quadrature (black stars) is a two-point, three-
moment Cartesian product quadrature with equally weighted points.  It is transformed via the 
Cholesky decomposition to get the red stars for a highly correlated approximate distribution.  In 

                                                 
1 This paper was prepared for presentation at the 14th Annual GTAP Conference, June 16-18, 2011, Venice, Italy.  
The author is grateful for useful comments from M. Horridge. 
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contrast, using the Eigen system results in the blue points.  It is interesting that for a polynomial 
of degree less than or equal to two, the blue and red points will result in the same expectation.  
However, for higher order polynomials or other nonlinear functions the results will be different.  
Which approach is better?  It is not obvious, and here we provide simulation evidence that 
suggests that they are similarly effective.   
 
Broader Sampling 
 
The idea with Gaussian quadrature-based systematic sensitivity analysis (SSA) is to assume an 
explicit joint distribution for the model inputs (SSA inputs), evaluate the model whose sensitivity 
is being investigated at a limited number of vectors and form the weighted sum of the associated 
results (the SSA outputs) to get an approximation to the mathematical expectation of the model 
results.  (One may also use a related weighted sum to approximate the expectation of some 
function of the model results such as their variance.)   
 

The motivation underlying Gaussian quadrature for the selection of the points and 
weights is that they should be chosen so that the mathematical expectations of all polynomials up 
to a certain degree are exactly equal to the true expectations – that is, there is no approximation 
error for polynomials of limited degree.  Thus, a degree o quadrature is a set of vectors xi and 
weights pi that satisfy the following system of equations: 
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The construction of analytic formulas for Gaussian quadratures in arbitrary dimensions is a 
challenging task.  Analytic formulas are known for arbitrary dimension for degree o = 2.  In 
addition, quadratures that include some moments of degree three for symmetric distributions and 
arbitrary dimensions are also known. (These are addressed in Stroud [1957] and Liu [1997].  
Note that while both Stroud and Liu claim that their formulas are degree o = 3, they are not.  
While all polynomials of degree less than or equal to two are exact and expected third central 
moments for the individual variables are equal to zero, as will always be the case with a 
symmetric distribution, third order polynomials containing a product of three different variables 
or the product of one variable and the square of another variable may not be exact.  While this 
does not negate their usefulness, it is not technically accurate to call these degree three 
quadratures.)   
 
 For convenience, we focus on the case where the distribution is symmetric, with mean 
equal to the zero vector and covariance matrix equal to the identity.  The Stroud quadrature 
implemented in the GEMPACK software for automated SSA samples has all vectors on the 

surface of a hypersphere centered on the origin for which no vector component exceeds 2± .  

Thus, no component of any vector for which the model is evaluated is greater than 2  in 
absolute magnitude.  Similarly for the Liu quadrature (also implemented in GEMPACK for 
automated SSA), no component of any vector for which the model is evaluated is greater than 
1.0 in absolute magnitude.   
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 Our goal is to develop a new quadrature that samples more broadly but which satisfies 
the following system of moment equations (the same system satisfied by the Stroud and Liu 
quadratures): 
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where δjk = 1 if j = k and δjk = 0 otherwise.  Denote a given quadrature satisfying this system by 

[ ]n

i
ii xp 1, = .  This quadrature could be derived by the Stroud or Liu formula, or any other formula 

that satisfies the system above.  To construct a new quadrature that samples more broadly, we 
conceptually (a) make two copies of the quadrature above, (b) stretch one to achieve the desired 
broadening of the sample, (c) shrink the other and allocate probability across the two copies so as 
to make it possible to maintain the variances.  To operationalize these ideas, it is useful to 
introduce three scalars: an expansion factor α, a contraction factor β and a probability allocation 
factor q.  The final quadrature will be the following:   
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This quadrature has twice as many vectors (2n) as the original quadrature and can be chosen to 
expand the sampling as much as desired by controlling the parameter α, where α > 1 > β.  Once α 
is chosen, the values for β and q follow from the system of equations above.  A small technical 
point is that there is an extra degree of freedom that must be nailed down in order to solve for β 
and q.  Here this degree of freedom has been removed by choosing to specify the kurtosis for one 
of the variables.  Denoting this kurtosis by κ, the parameters of the desired quadrature can be 
found by solving the following system: 
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Focusing on only positive values for α and β, the solution is: 
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It is straightforward to verify that these choices satisfy the systems (4) and (2).   
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Experiments 
 
We now present two experiments designed to examine the effect of the theory derived above. 
The first of experiment focuses on the linear transformations, while the second demonstrates the 
impact of broader sampling.   
 
Experiment 1 – Design  
 
For the first experiment, three CGE models are used to provide evidence of the importance of the 
choice of transformation used for incorporating imperfect covariance between SSA input 
variables.  The first case, due to Shoven and Whalley (1984), is a two household, two factor, two 
consumption good CGE model focused on tax policy with CES specifications of all production 
and preference relationships.  The SSA input variables are the elasticities of substitution for the 
two households between the two consumption goods and the elasticities of substitution for the 
two factors in the two sectors for a total of four SSA input variables.  The assumed distributions 
for the SSA input variables (for this problem as well as to the other two) are normal with mean 
equal to the original values in the deterministic model (i.e. with no distribution assumed for the 
SSA parameters).  The covariance structure is discussed below.  The SSA output variables are 
the prices of the factors and the consumption goods.  Note that this is not a policy simulation.  
Rather, we simply are estimating statistics of these SSA output variables whose variability is 
driven by the distributional assumptions regarding the SSA input variables.   
 

The second case is from Hansen’s thesis (1968) and is published in Scarf and Hansen 
(1973).  This is a four consumer, three factor, 14 good model with an activity analysis 
representation of productive possibilities.  The SSA input variables are the elasticities of 
substitution between goods in the preference relationships for each of the four households, and 
the level of output for the domestic agriculture sector.  To provide a special challenge for the 
methods, the activity levels for four productive sectors are chosen – import activities 2, 3, 5 and 
7 – to be the SSA output variables.  We focus on these particular activities because they exhibit 
some “action” when the SSA input variables are varied.  In particular, these activities have the 
potential to have zero levels for some draws of the input variables, thus illustrating the 
performance of the methods when the SSA output variables are non-differentiable functions of 
the SSA input variables.  As with the Shoven and Whalley case, this is not a policy simulation.  
We are estimating statistics (mean and variance) of these SSA output variables whose variability 
is driven by the distributional assumptions regarding the SSA input variables.   

 
The third case is a highly aggregated version of the GTAP model that includes five 

regions, eight commodities and five factors.  The SSA input variables are sector productivity 
indices (five regions times eight commodities for a total of 40 SSA input variables).  Assumed 
distributions for the input variables are joint normal with mean equal to zero.  The SSA output 
variables in this case are the percent changes in the factor prices for land in Africa by sector 
(land is not mobile across sectors in this model).  This is a policy simulation.  The percentage 
changes in factor prices are jointly driven by the productivity indices and by a full import tariff 
elimination policy. 
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One goal of this research is to assess the performance of the GQ approach with the two 
alternative methods for incorporating correlation between the SSA input variables.  This is of 
importance for both the Monte Carlo and the GQ approaches.  It is important for the former 
because the vast majority of methods for pseudo random number generation are designed to 
generate univariate random numbers.  Thus to generate correlated random numbers, one first 
generates vectors of independent univariate numbers and applies a linear transformation to obtain 
correlations.  This is especially easy to do with normal random numbers where a linear 
transformation of a vector of independent normal random variables is distributed according to a 
joint normal distribution, with parameters that are easily derived from the parameters of the 
transformation.  For example, if x is a vector of independent identically distributed normal 
random variables with mean zero and variance one, then the vector of random variables y = b + 
Ax where A is a square matrix is distributed as joint normal with mean b and covariance matrix 
AAt, where the t indicates a transpose.  If a given covariance structure, Σ, is desired, then y will 
have the desired covariance structure for any matrix A such that Σ = AAt.  Note that the choice of 
A is not unique.  Two approaches that are common in the literature are to choose A as a lower 
triangular matrix Rt such that RtR = Σ.  Another option is to choose A = QD1/2 where Q is an 
orthonormal (i.e. its transpose is its inverse) matrix whose columns are the eigenvectors of Σ, and 
D1/2 is a diagonal matrix whose diagonal elements are the square roots of the eigenvalues of Σ (in 
order corresponding to the ordering of the eigenvectors in Q).  Of course, there is an infinity of 
other choices, but methods are well developed for calculating these two types of decompositions 
of any positive definite matrix.  For the purposes below, we refer to the linear transformation 
based on the Cholesky decomposition as the RtR approach and the transformation based on the 
Eigen system as the QDQt approach. 

 
Because we want to avoid dependence of our results on a particular covariance structure, 

we will draw a series randomly generated covariance structures and apply our comparison of 
methods for each.  We then report average results where the averages are taken over the draws of 
alternative covariance structures. Now consider the comparisons for each covariance structure.  
The quantities of interest are the expected values and variances of the SSA outputs where their 
variability is driven by the randomness of the SSA inputs.   

 
We take as our basis of comparison the Monte Carlo approach.  It is well established that 

the Monte Carlo method under fairly mild conditions produces estimates of an expectation that 
can be made arbitrarily good provided that the sample size, or number of draws, is large enough 
(see e.g. Haber [1970]).  The italicized phrase ending the previous sentence provides our 
motivation for considering Gaussian quadrature.  The trouble is that the sample size needed for 
reasonably accurate estimates is typically quite large and therefore not practical for systematic 
sensitivity analysis with models for which an individual solution may require significant 
computing time.   

 
For the exercise presented here, we selected three models that can be solved quickly 

enough that using Monte Carlo methods to assess the expected values and variances of the SSA 
outputs is practical.  To do this, we generate a (fairly) large sample of random vectors from the 
SSA input variable distributions, solve the model for each vector and average each SSA output 
variable to obtain an estimate of its mean, and use the typical sample based formula to estimate 
its variance.  Unfortunately, it is not clear what linear transformation should be used to 
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incorporate correlation between the SSA input variables for the Monte Carlo.  As a check, we 
use both the RtR and QDQt approaches and compare the results to see if they are very different 
from each other.   

 
Our ultimate goal is to assess the effectiveness of Gaussian quadrature for the correlated 

case.  To generate the Gaussian quadrature estimates, we use a procedure that parallel’s the 
Monte Carlo approach.  Namely, we first generate multi-variate Gaussian quadratures (GQs) that 
have zero mean, variances equal to one, and covariances that are all zero.  We then apply a linear 
transformation to each of the points in these quadratures to obtain a multi-variate quadrature with 
the desired mean vector and covariance matrix.  (Because mathematical expectation is a linear 
operator, the algebra for the impact of the linear transformation on the moments of the Gaussian 
quadrature estimates is identical to the Monte Carlo case.)  As with Monte Carlo, there is 
ambiguity in the selection of the matrix in the linear transformation.  To get evidence on the 
efficacy of using the RtR or QDQt approaches for generating this linear transformation, the 
estimates are calculated twice – once for the GQ that is transformed using the RtR approach, and 
once for the GQ transformed using the QDQt approach.  However, a basis of comparison is 
needed.  While the best available estimates of the means and variances of the SSA outputs are 
the Monte Carlo results, we are unsure if the results based on RtR or on QDQt are superior.  
Hence, we compare the GQ results to each of these Monte Carlo results in turn.   

 
One final detail should be explained before turning to the description of the experiment – 

the random generation of the covariance matrices.  These are generated in a manner that 
facilitates the computations – namely, by first generating the elements of the Eigen system, Q 
and D, then by calculating the covariance matrix Σ = QDQt, and finally by calculating the 
Cholesky factors for Σ.  The matrix Q is generated as a product of n – 1 plane rotations (one for 
each of the off-diagonal pairs of variables), where the angle of the rotation is randomly generated 
from a uniform distribution on [0,2π], and the i-th diagonal element of D is taken to be equal to 
ten percent of the mean value of the i-th SSA input variable.  (Because the means for the GTAP 
model SSA input parameters are zero, some other scheme was necessary.  The diagonal elements 
of D for the GTAP experiment are uniformly generated random numbers on the interval 
[50,100].)    The latter selection is somewhat arbitrary, but serves to ensure that the likelihood of 
obtaining a parameter value outside the range of values that ensures regularity (e.g. a negative 
substitution elasticity) is highly unlikely.  (Operationally, in the rare instances where negative 
elasticities are generated, they are simply reset to a small value.  This happens very rarely.)  

 
So the procedure for our experiment is as follows: 
 

• Generate a covariance matrix for the SSA input variables. 
 

o Generate a Monte Carlo sample of vectors of independent normal random 
variables. 
 
 Transform the Monte Carlo sample via the RtR approach to reflect the 

mean vector and the current generated covariance matrix. 
• Solve the model for each sample point. 
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 Average the results to get Monte Carlo estimates of the SSA output 
means, and use the usual sample variance formula to get Monte Carlo 
estimates of the SSA output variances. 
 

 Transform the Monte Carlo sample via the QDQt approach to reflect the 
mean vector and the current generated covariance matrix. 

• Solve the model for each sample point. 
 Average the results to get Monte Carlo estimates of the SSA output 

means, and use the usual sample variance formula to get Monte Carlo  
estimates of the SSA output variances. 
 

o Generate a multivariate Gaussian quadrature (GQ) for independent random 
variables using the Stroud method (see Arndt [1996]).   
 
 Transform the GQ sample via the RtR approach to reflect the mean vector 

and the current generated covariance matrix. 
• Solve the model for each sample point. 

 Weight the GQ results by the associated probabilities and sum to get GQ 
estimates of the SSA output means and variances. 
 

 Transform the GQ sample via the QDQt approach to reflect the mean 
vector and the current generated covariance matrix. 

• Solve the model for each sample point. 
 Weight the GQ results by the associated probabilities and sum to get GQ 

estimates of the SSA output means and variances. 
 

This procedure is applied for each randomly generated covariance matrix, and the average 
absolute percentage errors are calculated for the means and variances of each of the SSA output 
variables, where the average is across the alternative covariance matrices.   
 
Experiment 1 – Results 
 
Simulation results are presented in Table 1.  All Monte Carlo estimates are based on 1,000 model 
solutions, and each of the GQ estimates is based on 2n solutions, where n is the number of SSA 
input variables (n is four in the Shoven and Whalley case, five in the Hansen case, and forty in 
the GTAP case).  The values reported in the table are averages across 100 draws of the 
covariance matrix for the first two problems and averages across 10 draws of the covariance 
matrix for the GTAP problem.  The latter reflects the fact that each instance of the GTAP 
problem takes an order of magnitude longer to solve than the smaller problems and that due to 
the large number of SSA input variables, the amount of computation for the GQ estimates is also 
substantially larger (although still much smaller than the associated Monte Carlo estimates).  
Future work will expand the sample sizes for the GTAP model, likely using supercomputer 
resources. 
 
 The first column in Table 1 displays the average relative difference between the Monte 
Carlo results based on the QDQt transformation divided by Monte Carlo results based on the RtR 
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transformation.  Consider the first block of these numbers, which are for the Shoven and 
Whalley problem.  The top half of these (labeled Mean) are the percentage errors in the estimates 
of the means of the factor prices (Labor and Capital) and consumption goods prices (Manuf. and 
Non-manuf.) relative to the RtR based Monte Carlo estimates.  That is, the RtR based Monte 
Carlo is taken to be the basis for comparison for this column.  These are quite small considering 
the small size of the Monte Carlo estimates (only 1,000 draws), with the largest amounting to 
less than 0.3 percent.  The bottom half of this block corresponds to the estimates of the variances 
of the model results.  These are quite a bit larger, with the largest being on the order of 9 percent 
squared, or about 3 percent in standard deviation terms.  This is not surprising given that the 
variance is a more nonlinear function of the SSA input parameters than the mean.   
 
 The second column of Table 1 is similar to the first except that the method evaluated is 
the Monte Carlo based on the RtR transformation and rather than taking the Monte Carlo results 
based on the RtR transformation as the basis for comparison, it uses the Monte Carlo results 
based on the QDQt transformation as the standard.  These are quite close to the values in column 
1, leading us to feel some confidence that the choice of transformation is not so important when 
the estimation method is Monte Carlo.   
 
 The third column gives the average percentage errors in the GQ estimates of the statistics 
for the SSA output variables where the GQ is transformed based on the QDQt transformation, 
and the Monte Carlo results based on the RtR transformation are taken as the basis for 
comparison.  These are of similar magnitude to either of the first two columns, doing slightly 
better for most of the SSA output variable statistics, with the exceptions of the variances for 
prices of the consumer goods.  The fourth column gives the average percentage errors in the GQ 
estimates of the statistics for the SSA output variables where the GQ is transformed based on the 
RtR transformation, and the Monte Carlo results based on the RtR transformation are taken as the 
basis for comparison.  The differences between columns three and four are not large.   
 
 Columns five and six of Table 1 are analogous to columns three and four, but they report 
the average percentage errors arising from the GQ that is transformed based on the RtR 
transformation.  The results in columns five and six are also quite similar to each other, 
indicating that the choice of standard of comparison (between our two alternative Monte Carlo 
approaches) is not critical.  Now compare columns three and five.  This comparison reflects the 
difference between the GQ transformed using the QDQt approach versus the GQ transformed 
using the RtR approach (using the Monte Carlo results based on an RtR-based transformation as 
the basis for comparison).  It is interesting that the percentage errors are uniformly lower for the 
GQ using the QDQt-based transformation, although the differences are quite small.  Columns 
four and six also reflect the difference in choice of the transformation approach for the GQ, but 
with a different basis of comparison – the Monte Carlo results using a QDQt-based 
transformation.  Some of the average percentage errors in column four are smaller than the ones 
in column six, and some are larger.   
 

Based on this evidence from the Shoven and Whalley case, we draw a couple of 
conclusions.  First, the choice of transformation method between our two candidate alternatives 
(RtR and QDQt) does not have a large impact on the estimated statistics.  Second, the choice of 
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transformation method for the GQs does not have a large impact on the estimates of the SSA 
output variable statistics. 

 
Now consider the second block of numbers, which correspond to the case due to Hansen.  

These tell a similar story to the one for the Shoven and Whalley case.  That is, there is little 
difference between the SSA output percentage error statistics for the Monte Carlo results based 
on RtR or QDQt transformations (i.e. columns one and two are of very similar magnitude, 
matching to at least two significant digits).  Similarly, the percentage error estimates for the GQ 
estimates are of similar magnitude regardless of what transformation is used for the basis of 
comparison.  As for the Shoven and Whalley case, the percentage errors for the means are quite 
small and the percentage errors for the variances are quite a bit larger.   

 
The results based on the GTAP model are a bit different (see the third and final block of 

numbers in Table 1).  The average percentage differences between the Monte Carlo results based 
on the two transformations is much larger – on the order of 5-20 percent for the mean estimates 
and 4-7 percent for the variance estimates.  (The mean estimates for Other Ag. and Services are 
exceptions to this rule.  This is due to the combination of low mean and high sensitivity of the 
results to the SSA input variables for these two SSA output variables.  In particular, this means 
that the base for the percentage error calculations is small – in the case of the mean for Services 
the value obtained from the Monte Carlo with the RtR transformation is –0.023 percent.)  The 
variances are of much more substantial magnitude, and the percentage error estimates for them 
are in line with those for the other two models.   

 
An interesting pattern emerges from these three cases.  The percentage errors for the 

estimates of the means and variances of the SSA outputs are of about the same magnitude for all 
cases.  This could be caused by inaccuracy of the Monte Carlo estimates.  For purposes of 
argument, assume that the GQ estimates are exact for a particular statistic and that the Monte 
Carlo estimate is inaccurate by 1 percent.  This means that because the basis of comparison is the 
Monte Carlo, each of the GQ estimates will be deemed to be inaccurate by 1 percent.  The theory 
for error analysis indicates that the error in a Monte Carlo estimate should decline (in a 
probabilistic sense) at a rate of one over the square root of d, where d is the number of draws.  
Thus, if the number of draws is increased by a factor of 100, then the number of correct digits in 
the Monte Carlo estimate should increase by 1 (see Haber [1970]).  Thus, the conjecture that 
inaccuracy of the Monte Carlo results could be causing the numbers in each row in Table 1 to be 
so similar can be tested by simply increasing the number of draws. 

 
Experiment 2 – Design  
 
The second experiment uses the same set of models and the same choices of input and output 
SSA variables.  Three levels of sample expansion (α in the theory section) are employed for 
illustrative purposes: 1.5, 2.0 and 3.0.  The Stroud quadrature is employed for this experiment.  
An expansion of 1.5 means that the most distant points will be just over two standard deviations 
from the mean.  In the univariate normal case, values this extreme occur with probability less 
than four percent of the time.  An expansion of 2 means that the most distant points will be over 
2.8 standard deviations from the mean, which will occur in the univariate normal case on the 
order of about one half of one percent of the time.  An expansion of 3 means that the most distant 
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points will be over 4 standard deviations from the mean, which will occur in the univariate 
normal case on the order of one hundredth of one percent of the time.  So, while the expansion 
factors may not seem large, they represent substantial deviations in the normal case.   As 
mentioned in the theory section, it is necessary to specify the kurtosis for one of the variables in 
order to fully determine the expanded quadrature.  Here we have arbitrarily chosen to set the 
kurtosis for the first variable to 3.0 – the kurtosis value for the standard normal distribution.   
 

As in the first experiment, random correlations between the SSA input variables are 
incorporated.  These correlations are reflected in the quadrature by applying the RtR-based 
transformation to the quadrature vectors, and results are compared to the Monte Carlo results that 
employ the RtR-based transformation to incorporate correlation.  These are the same Monte 
Carlo results used for comparison in the first experiment. 
 
Experiment 2 – Results  
 
Table 2 displays the results of the simulation exercise.  The figures in the table are average 
absolute percentage errors in the mean SSA output variables and variances of SSA output 
variables, where the Monte Carlo results based on the RtR approach to incorporating correlations 
are treated as the correct values.  As in Table 1, the first block of numbers corresponds to the 
model due to Shoven and Whalley.  Generally, the error estimates are slightly larger with the 
sample expansion – about 1-2 percent for the means and 1-33 percent for the variances.  (Results 
for the unexpanded sample are found in column five of Table 1.)  Exceptions for this rule are the 
percentage errors for the mean factor price for Non-manufactures which are 1-2 percent smaller 
than with no expansion, and the variance for Manufactures for the highest level of expansion, 
which is about 5 percent smaller than with no expansion.  As the expansion increases, the errors 
generally grow for the mean estimates, but generally fall for the variance estimates.  The 
variance of Non-manufactures is an exception to this rule. 
 

The second block of numbers corresponds to the model due to Hansen.  With the 
expansion factor of 1.5, there is almost not impact on the errors with the exception of the 
estimates of the variances for Import activities 3 and 5, which increase by about 10 percent and 4 
percent, respectively.  Increasing the expansion factor to 2.0 has little impact on the error 
estimates for the means or variances, with the exception of the variance for Import activity 5, 
which increases to nearly 10 percent.  The further increase to an expansion factor of 3.0 has 
generally negative impacts with increases in the errors greater than 1 percent for the mean 
estimates for Import activities 5 and 7, and for the variance estimates for all of the Import 
activities except 2.  Indeed, the average percentage error estimate increases very substantially for 
the variance estimate for Import activity 5, which increases to over 48 percent.   

 
The third block of numbers corresponds to the GTAP model and yields generally larger 

impacts.  With a few exceptions, the percentage errors for the means are larger for each of the 
expansions relative to the unexpanded quadrature.  The exceptions are for average percent error 
estimates of the mean for Services for expansions of 2.0 and 3.0, for the variance for Rice and 
Other Grains for the 3.0 expansion, for the variance for Other Ag. at the 1.5 and 3.0 expansions, 
and for the variance for manufacturing at the 1.5 expansion.  These GTAP results are a bit 
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perplexing, and a significant effort to redesign the generation scheme for the covariance matrix 
for the SSA input variables is likely warranted.   
 
Conclusions 
 
This technical report documents several experiments designed to explore the performance of 
Gaussian quadrature (GQ) approaches to systematic sensitivity analysis (SSA).  In particular, a 
first experiment was designed to test the importance of the choice of linear transformation for 
incorporating covariance between SSA input variables on the accuracy of the estimates of 
statistics for SSA output variables.  A second experiment was designed to demonstrate and test a 
procedure for broadening the SSA sampling procedure while increasing the number of model 
evaluations needed to perform the SSA by only a factor of two.   
 
 These experiments were implemented for three models that are well known in the 
literature: a model of tax policy due to Shoven and Whalley (1984), a model that includes an 
activity analysis representation of production due to Hansen (1968), and the GTAP model due to 
Hertel (1997).  The results for all three models support the view that the particular choice of 
linear transformation for incorporating covariance between SSA input variables is not crucial.  
Further increasing the sample size of the Monte Carlo estimates that are used as the basis of 
comparison may add to our confidence in this regard.  Results also suggest that the payoff to 
expansion of the range of the SSA sampling does not have a dramatic, or even consistent, impact 
on the accuracy of the results.  The latter may seem surprising at first, but given that the results 
(SSA output variables) of those models are quite smooth as functions of the SSA input variables, 
this could have been expected.   
 

The accomplishments of this project are manifold.  First, evidence has been produced that 
suggests that the choice of linear transformation between the two obvious contenders – the 
Cholesky factorization and the Eigen system decomposition – is not terribly important from a 
performance perspective.  Given that the Eigen system is much more difficult to compute than 
the Choleskey factorization, the preference for the Cholesky approach is clear.  Second, an 
approach to broader sampling that (a) satisfies the same moment conditions as the Stroud and 
Liu quadratures, (b) allows the user to choose how much to expand the range of sampling, and 
(c) can be applied for any number of SSA input variables is derived and demonstrated.  The 
demonstration indicated only modest changes in the performance of SSA for the first two 
models.  However for models that exhibit different behaviors (e.g. tariff regime changes) for 
more extreme perturbations of the SSA input variables, the differences in performance may be 
more substantial.  Third, a GAMS utility program was created that implements the calculations 
needed to incorporate covariance and to broaden the sampling.  (The program is found in the 
appendix of this report and can be obtained electronically by e-mailing a request to 
preckel@purdue.edu.)  This utility should serve as a blueprint for implementing these SSA 
features in GEMPACK at some point in the future.  Fourth, methods were developed for 
formally assessing the performance of SSA relative to Monte Carlo methods that are applicable 
not only to models implemented in GAMS, but also to models implemented in GEMPACK. 
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Potential Future Work 
 

Several potentially productive avenues for future work are clear.  These are briefly described 
below in order of increasing additional work needed to complete.   
 
 First, there is a paper that should be written that focuses on the issue of what method to 
choose for incorporating covariance between SSA input variables into sampling distributions via 
linear transformations.  This will require some additional work to improve the experimental 
design, but beyond that, the main improvement will be to increase Monte Carlo sample sizes to 
increase confidence that the results are robust.  In particular, the Shoven and Whalley and 
Hansen experiments could be refocused on a policy assessment.  This could be the published tax 
exercise for the Shoven and Whalley model, and perhaps a tariff or subsidy exercise for the 
Hansen model.  In addition, greater effort should be expended to specify SSA input variable 
variances that are better in line with what has been used in past SSA exercises.  This paper will 
present results similar to those in Table 1.  The software necessary to execute the computations 
for this paper has been developed in this project, and should take only minor tweaking to 
incorporate these modifications described here.  However, the computational effort will be 
substantial, especially for the GTAP model results.  It may be best to do the initial version of this 
paper as a GTAP Conference paper, with the ultimate goal of submission to a peer reviewed 
journal. 
 
 Second, a paper should be written on the approach to broadening the range of sampling 
for SSA that explains how the modified GQ is constructed and demonstrates the application of 
the approach to some test cases to demonstrate the impact on performance of SSA.  This paper 
will present results similar to those in Table 2 (plus column 5 in Table 1).  It may be useful to 
include a model among the test cases that incorporates regime changes and thus will be likely to 
exhibit greater differences in the SSA results depending upon the sampling range.  In the case of 
regime changes, this could also provide some evidence of the impact of failing to have 
differentiability of the SSA outputs as functions of the SSA inputs that are typically associated 
with regime changes.  The modifications to the experimental design suggested for the first paper 
should also be incorporated in this paper.  Because the Monte Carlo results are the most 
computationally demanding part of the experiment, the current GAMS programs incorporate the 
GQ calculations for both the correlated and broader sampling cases.  Thus, the marginal 
computational effort to produce the second paper should be minor.  As with the first paper, it 
may be best to do the initial version of this paper as a GTAP Conference paper, with the ultimate 
goal of submission to a peer reviewed journal.   
 
 Third, a more serious application that incorporates empirically motivated correlations 
between SSA inputs may serve to motivate modelers to seriously consider employing this 
potential feature of SSA.  Perhaps cases illustrating the impact of SSA with and without 
correlations (but with similar variances for the SSA inputs) would help make the point.  Having 
good motivation for the correlations will be essential.   
 
 Fourth (although this could possibly be combined with the third paper), a more serious 
application that uses broader sampling for a model that has regime changes could be examined.  
Perhaps cases illustrating the impact of using SSA with and without broader sampling (but the 
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same means and covariance structure for the SSA inputs) would be useful for establishing the 
need for broadening the sample in some cases.   
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Figure 1.  An Independent Order-Two Symmetric Quadrature (Black Stars) and Two 
Algebraically Equivalent Correlated Order-Two Quadratures Based on Cholesky 
Transformation (Red Stars) and Eigen system Transformation (Blue Stars) 
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Table 1.  Average Monte Carlo and GQ Absolute Percent Error Estimates of Price 
Distribution Parameters 
 

Method 
 

Monte Carlo 
QDQt 

Monte Carlo 
 RtR 

GQ  
QDQt 

GQ  
QDQt 

GQ  
RtR 

GQ  
RtR 

Relative to Monte  
Carlo Based on: RtR QDQt RtR QDQt RtR QDQt 
Shoven and Whalley  
Mean Labor 0.1742 0.1741 0.1206 0.1157 0.1215 0.1166 

Capital 0.2963 0.2965 0.2053 0.1970 0.2070 0.1986 
Manuf. 0.0697 0.0696 0.0489 0.0456 0.0496 0.0446 
Nonmanuf. 0.1289 0.1290 0.0931 0.0853 0.0930 0.0829 

Variance Labor 5.9284 5.9799 4.6558 5.2792 4.8628 4.8220 
Capital 5.9284 5.9799 4.6558 5.2792 4.8628 4.8220 
Manuf. 8.9376 9.1553 13.3685 13.1081 12.8495 12.1856 
Nonmanuf. 7.5166 7.6369 8.4936 8.9160 8.6164 8.4628 

Hansen  
Mean Imp 2 0.0597 0.0597 0.0414 0.0420 0.0414 0.0420 

Imp 3 0.0715 0.0715 0.0497 0.0517 0.0497 0.0517 
Imp 5 0.0012 0.0012 0.0009 0.0008 0.0009 0.0008 
Imp 7 0.0583 0.0584 0.0413 0.0420 0.0413 0.0421 

Variance Imp 2 4.5774 4.5925 4.0417 3.8079 4.0474 3.8096 
Imp 3 4.5949 4.5829 3.8524 3.5395 3.9012 3.6103 
Imp 5 4.9115 4.8854 5.2403 5.0235 4.6650 4.5799 
Imp 7 4.6260 4.6230 3.8805 3.4272 3.8655 3.4888 

GTAP 
Mean Rice 5.9598 6.3338 4.2840 3.7017 4.1738 4.4370 

Wheat 3.0659 3.1371 3.1337 2.9955 3.0660 3.0470 
Oth. Grains 6.6560 7.0182 5.8745 5.0401 5.6294 4.5715 
Other Ag. 33.1664 73.7542 29.2256 68.1431 27.1316 57.5977 
Extraction 18.0168 15.7275 22.7017 17.2371 15.2701 11.4120 
Manuf. 15.4388 16.6505 8.7632 14.5773 8.5875 11.9114 
Services 265.4627 266.4477 232.8846 353.4413 216.2967 239.7209 
Cons.Gds. 18.8702 21.3717 15.5039 21.1546 11.8331 18.2367 

Variance Rice 6.0124 6.1308 5.6806 4.8581 4.0825 5.2797 
Wheat 5.9521 6.2408 6.0655 5.9636 5.8892 4.3263 
Oth. Grains 5.2165 5.3551 3.4814 3.7231 5.4385 4.1646 
Other Ag. 5.1349 5.1887 4.5688 3.5342 7.9535 6.7364 
Extraction 4.6144 4.7399 3.3522 3.6082 5.0509 4.4744 
Manuf. 6.3713 6.3087 4.9155 4.1150 5.4729 5.9048 
Services 5.9986 5.9893 5.3112 3.3176 7.6696 8.1298 
Cons. Gds.  6.5570 6.4387 5.7710 5.8744 7.6232 6.6174 
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Table 2.  Average GQ Absolute Percent Error Estimates of Price Distribution Parameters 
with Broader Sampling 
 

Sampling Expansion Factor 
1.5 2.0 3.0 

Shoven and Whalley 
Mean Labor 0.1236 0.1240 0.1238 

Capital 0.2104 0.2110 0.2107 
Manuf. 0.0500 0.0504 0.0507 
Nonmanuf. 0.0915 0.0919 0.0923 

Variance Labor 5.7324 5.4106 4.9232 
Capital 5.7324 5.4106 4.9232 
Manuf. 15.6219 14.6791 12.2232 
Nonmanuf. 10.8700 11.4903 11.6601 

Hansen 
Mean Imp 2 0.0414 0.0414 0.0412 

Imp 3 0.0498 0.0498 0.0497 
Imp 5 0.0009 0.0009 0.0009 
Imp 7 0.0412 0.0413 0.0418 

Variance Imp 2 4.0593 4.0601 4.0658 
Imp 3 4.2909 4.3082 4.3349 
Imp 5 4.8336 5.1268 6.9284 
Imp 7 3.8672 3.8552 4.1696 

GTAP 
Mean Rice 5.8476 4.7670 4.7484 

Wheat 3.7620 3.9633 3.2728 
Oth. Grains 9.9953 5.9734 6.5200 
Other Ag. 54.2889 25.1965 31.4372 
Extraction 20.8218 17.9915 19.6705 
Manuf. 26.0533 9.9087 11.4139 
Services 1464.6826 139.9958 184.4650 
Cons. Goods 65.0538 13.2274 18.5636 

Variance Rice 6.7170 6.3274 4.0326 
Wheat 4.5782 7.7064 8.1167 
Oth. Grains 6.7601 8.8299 4.7882 
Other Ag. 4.3892 8.4500 4.5162 
Extraction 5.1491 9.8872 7.9730 
Manuf. 5.3147 7.3339 5.5802 
Services 8.3984 14.8438 9.7022 
Cons. Goods 14.0273 19.4205 10.7050 
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Appendix – A GAMS Utility for Calculation of Correlated and Expanded Quadratures 
 
 
$ontext 
GQ Utility Program Version 1.0 
Direct questions/problems to Paul Preckel preckel@purdue.edu 
December 28, 2010 
$offtext 
*Boilerplate 
option decimals=8 ; 
sets 
 v                  Variables (elements should be 1*n)     / 1*3 / 
 p                  Points (elements should be 1*2n)       / 1*6 / 
 p2                 Points for expanded GQ (should be 4*n) / 1*12 / ; 
abort$(card(p) ne 2*card(v) or card(p2) ne 2*card(p)) 
  'p must have 2*(elements of v) and p2 must have 2*(elements of p).' ; 
alias (v,vv,vvv) ; 
*User Inputs 
parameter mu(v)     Mean vector for random variables 
 / 1   7,  2  8, 3 9 / ; 
table vcv(v,v)      Covariance matrix for random variables 
       1     2     3 
1     10     4     5 
2      4     8     3 
3      5     3     9 ; 
scalars 
 expand    Expansioh factor for expanded quadrature            / 2 / 
 kurt      Kurtosis for first variable in expanded quadrature  / 3 / ; 
*End of User Inputs 
parameter 
  r(v,v)      Cholesky factors of covariance matrix / 1.1 0 / 
  muchk(v)    Verification for the mean 
  vcvchk(v,v) Verification for the covariance matrix 
  skwchk(v)   Verification for the skewness ; 
loop(v, 
  abort$((vcv(v,v) - sum(vv$(ord(vv) lt ord(v)),sqr(r(vv,v))))**0.5 le 0) 
    'The covariance matrix appears to not be positive definite.' ; 
  r(v,v) = (vcv(v,v) 
    - sum(vv$(ord(vv) lt ord(v)),sqr(r(vv,v))))**0.5 ; 
  loop(vv$(ord(vv) gt ord(v)), 
    r(v,vv) = (vcv(v,vv) 
      -sum(vvv$(ord(vvv) lt ord(v)),r(vvv,v)*r(vvv,vv)))/r(v,v) ; 
  ) ; 
) ; 
display 'Cholesky factors of the covariance matrix:',r ; 
vcvchk(v,vv) = sum(vvv,r(vvv,v)*r(vvv,vv)) ; 
display 'These two matrices should be equal (vcvchk = RtR).',vcv,vcvchk ; 
parameter 
 gqpt(p,v)     Stroud-based GQ points 
 prb(p)        Probabilities for Stroud GQ points ; 
* Generate Stroud points 
gqpt(p,v) = 2**0.5* 
  (cos(ord(v)*ord(p)*pi/card(v))$(2*trunc(ord(v)/2) ne ord(v)) 
  + sin((ord(v)-1)*ord(p)*pi/card(v))$(2*trunc(ord(v)/2) eq ord(v))) ; 
* Treat final component of points when v is odd. 
gqpt(p,v)$(ord(v) eq card(v) and 2*trunc(ord(v)/2) ne ord(v)) 
  = power(-1,ord(p)) ; 
prb(p)    = 1/card(p) ; 
display 'GQ points and weights before incorporating covariance',gqpt,prb ; 
gqpt(p,v) = sum(vv,r(vv,v)*gqpt(p,vv)) + mu(v) ; 
display 'GQ points and weights incorporating correlation',gqpt,prb ; 
* Verification that the mean, covariance and skew are as advertised for the GQ. 
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muchk(v)     = sum(p,prb(p)*gqpt(p,v)) ; 
vcvchk(v,vv) = sum(p,prb(p)*(gqpt(p,v)-muchk(v))*(gqpt(p,vv)-muchk(vv))) ; 
skwchk(v)    = sum(p,prb(p)*power((gqpt(p,v)-muchk(v))/(vcvchk(v,v)**0.5),3)) ; 
display 'These should be equal',mu,muchk ; 
display 'These should be equal',vcv,vcvchk ; 
display 'These should be zero',skwchk ; 
* Now expand to broaden sampling 
parameter 
  gqpt2(p2,v) Stroud-based GQ points with expansion 
  prb2(p2)    Probabilities for Stroud-based GQ points with expansion 
  alpha(v)    Expansion factor by variable 
  beta(v)     Contraction factor by variable 
  kurtchk(v)  Kurtosis check ; 
scalar 
  gqk         Original kurtosis in the GQ before expansion 
  q           Share of probability to expanded quadrature 
  contract    Amount by which the contracted quadrature should be shrunk ; 
* Generate two copies of Stroud points (noting that they cycle). 
gqpt2(p2,v) = 2**0.5* 
  (cos(ord(v)*ord(p2)*pi/card(v))$(2*trunc(ord(v)/2) ne ord(v)) 
  + sin((ord(v)-1)*ord(p2)*pi/card(v))$(2*trunc(ord(v)/2) eq ord(v))) ; 
* Deal with final component if v is odd. 
gqpt2(p2,v)$(ord(v) eq card(v) and 2*trunc(ord(v)/2) ne ord(v)) 
  = power(-1,ord(p2)) ; 
* Generate the unexpanded probabilities. (note these sum to 2.) 
prb2(p2) = 1/card(p) ; 
* Now calculate the distribution expansion/contraction factors and probability 
* allocation. 
gqk        = sum(p2$(ord(p2) le card(p2)/2), 
  prb2(p2)*power(sum(v$(ord(v) eq 1),gqpt2(p2,v)),4)) ; 
q          = (kurt - gqk)/(expand**4*gqk - 2*expand**2*gqk + kurt) ; 
contract   = ((expand**2*gqk - kurt)/(gqk*(expand**2 - 1)))**0.5 ; 
alpha(v) = expand ; 
beta(v)  = contract ; 
* Now do the expansion/contraction. 
gqpt2(p2,v) = (alpha(v)$(ord(p2) le card(p2)/2) 
    + beta(v)$(ord(p2) gt card(p2)/2))*gqpt2(p2,v) ; 
prb2(p2) = q*prb2(p2)$(ord(p2) le card(p2)/2) 
      + (1-q)*prb2(p2)$(ord(p2) gt card(p2)/2) ; 
display 'Expanded GQ before incorporating correlation',gqpt2,prb2 ; 
gqpt2(p2,v) = sum(vv,r(vv,v)*gqpt2(p2,vv)) + mu(v) ; 
display 'Expanded GQ after incorporating correlation',gqpt2,prb2 ; 
* Verification that the mean, covariance and skew are as advertised for the GQ. 
muchk(v)     = sum(p2,prb2(p2)*gqpt2(p2,v)) ; 
vcvchk(v,vv) = sum(p2,prb2(p2)*(gqpt2(p2,v)-muchk(v))*(gqpt2(p2,vv)-muchk(vv))) ; 
skwchk(v)    = sum(p2,prb2(p2)*power((gqpt2(p2,v)-muchk(v))/(vcvchk(v,v)**0.5),3)) ; 
kurtchk(v)   = sum(p2,prb2(p2)*power((gqpt2(p2,v)-muchk(v))/(vcvchk(v,v)**0.5),4)) ; 
display 'The following should be equal',mu,muchk ; 
display 'The following should be equal',vcv,vcvchk ; 
display 'The following should be zero',skwchk ; 
display 'The scalar kurt and first component of kurtchk should be equal', 
  kurt,kurtchk ; 
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