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Abstract: Armington elasticities are a key parameter in applied general equilibrium 

models, more so in those models used to analyze free trade agreements and other trade 

related issues. However, frequently only educated guesses, or extrapolated figures, are used 

to run the models, and Mexico has not been an exception. In this paper, given the quantity 

and quality of available data from the Mexican Statistics Institute, we consider the 

Maximum Entropy approach to be a suitable tool to estimate such elasticities for Mexico. 

Using annual time series from 1988 to 2004, we estimate the Armington elasticities using 

the 72 Activities disaggregation level of the System of National Accounts of Mexico 

(SNAM). Specifically, we use three main model specifications to estimate short run and 

long run elasticities. The first model is just the simplest regression in levels, while the 

second one is a partial adjustment model, and the third one an error correction mechanism 

model. 
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1. Introduction 

The structure introduced by Armington (1969) has been used to analyze trade policy 

in partial and general equilibrium models. The Armington Elasticities (AE), which is to say 

the degree of substitution between domestic and imported goods, are known to be 

important, but are seldom estimated empirically and, to our knowledge, no AE have been 

estimated for Mexico, which casts some doubts, for example, on CGE models used to 

analyze the NAFTA from Mexico’s viewpoint. 

Armington Elasticities (AE) are a key parameter in applied general equilibrium 

models, more so in those models used to analyze free trade agreements and other trade 

related issues. However, frequently only educated guesses, or extrapolated figures, are used 

to run the models, and Mexico has not been an exception. In this working paper, given the 

quantity and quality of available data from the Mexican “National Institute of Satitistics, 

Geography and Informatics” (INEGI), we consider the Maximum Entropy (ME) approach 

to be a suitable tool to estimate said elasticities. Using time series from 1988 to 2004, we 

estimate the AE for the main 61 aggregated commodities, according to the classification of 

the System of National Accounts of Mexico (SNAM). Specifically, we use three main 

model specifications to estimate short run and long run elasticities. The first model is just 

the simplest regression in levels, while the second one is a partial adjustment model, and 

the third one an error correction mechanism model. 

 

2. The Armington Elasticity (AE) 

Armington (1969) assumed that, besides being differentiated by kind, goods are also 

differentiated by their place of production, and in this sense he distinguished among 

“goods” and “products”. Therefore, products from one country are not perfect substitutes 

for the same kind of products from another country. 

Then, for each sector i, total domestic supply results from a CES aggregation of 

domestically produced goods and imported goods: 
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𝑄𝑖 = 𝑄 𝑖 𝜌𝑖𝑀𝑖
−𝜌 𝑖 + (1 − 𝛿𝑖)𝐷𝑖

−𝜌 𝑖 
−1/𝜌 𝑖

  (2.1) 

 

Where Qi, Mi, and Di, are respectively, total supply, imports, and domestic 

production, in sector i, 𝑄 𝑖  the scale parameter, 0<i<1 a distribution parameter, and i 

accounts for the degree of substitution between imported and domestic goods. Since the 

CES function is specified with negative powers, then i > -1; and i = 1/(1+i) . 

Considering prices PMi and PDi for imports and domestic goods respectively, and 

assuming a representative firm, the firm’s optimal ratio, Mi/Di, as given by cost 

minimization is: 

𝑀𝑖

𝐷𝑖
=  

𝛿𝑖

1−𝛿𝑖

𝑃𝐷𝑖

𝑃𝑀𝑖
 
𝜎𝑖

     (2.2) 

And then, the optimal ratio, Mi/Di, is a function of (variable) prices and (constant) 

parameters. Note that, for i=0 the CES function collapses to a Cobb-Douglas and the 

(constant) elasticity of substitution equals 1, then the optimal ratio is a function of prices as 

given by (2). Else, for i > -1, 𝜎𝑖 ≠ 1 and diverse degrees of substitution will be observed 

for different sectors. 

Therefore, if 𝜌𝑖 → ∞, then 𝜎𝑖 → 0, and there is no substitution between imports and 

domestic goods, so that the optimal ratio is independent of relative prices. And, if 𝜌𝑖 → −1, 

then 𝜎𝑖 → ∞, and both goods are said to be perfect substitutes.  

Then, we can see that small changes in relative prices, might promote significant 

changes in the optimal ratio, depending on how big i is. To illustrate this, suppose PMi 

decreases (while PDi remains unchanged), then the whole expression inside the parenthesis 

will increase; if i>1, this will cause an even higher increase in the optimal ratio. However, 

if transmission mechanisms allow for a full reaction of domestic prices, then the domestic 

price will increase up to the point, where the optimal ratio will recover its former level. 
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3. Traditional Estimation of i. 

Traditional estimation of Armington elasticities departs from the optimal ratio in 

(2), to estimate i from time series for Mi/Di and PDi/PMi; usually considering that, the 

relevant price for imports is the CIF price, a function of the foreign price (in foreign or 

international currency) (PEi), the exchange rate (e), and the tariff (i), so that PMi = PEi e 

(1+i) . 

However this approach has been subject to several problems, which had prevented 

many researchers from estimating Armington elasticities, leading them to rely on sensitivity 

analysis instead, or informal adjustment of parameters to meet target observed variables.  

One of the main problems has been lack of information, mainly in developing 

countries. And also data processing, since some variables must suffer several manipulations 

before they can be used in a traditional econometric estimation. 

Second, econometric estimates are almost always obtained using annual data. The 

elasticities obtained are thus short run. However, most CGE analysis consider much longer 

periods of adjustment. Short run elasticities are likely to understate the response capacity of 

agents over longer periods. 

Third, given the large number of parameters to be estimated, long time series data 

for numerous variables are required to provide sufficient degrees of freedom for estimation. 

In many cases, the economy is likely to have undergone structural changes over the period, 

which may or may not be appropriately reflected in the estimation procedure. 

Finally, even those econometric estimates designed specifically to feed parameter 

estimates to CGE models undertake estimation without imposition of the full set of general 

equilibrium constraints. While the estimated parameters might provide a highly plausible 

description of historical production and consumption data sets, the estimated values will not 

be fully compatible with the general equilibrium system they are designed to represent. 

For this reasons, the so called maximum entropy approach, which presumably 

overcomes these problems, and has some additional advantages, has been developed to 

tackle several estimation problems in economics, and particularly, estimation of CGE 

models parameters. 
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4. (Generalized) Maximum Entropy Estimation 

 

The Maximum Entropy (ME) approach is motivated by “information theory” and a 

function to measure the uncertainty, or entropy, of a collection of events, and the 

maximization of that function subject to appropriate consistency relations, such as moment 

conditions.   

In general, information in an estimation problem using the entropy principle comes 

in two forms: 1) information (theoretical or empirical) about the system that imposes 

constraints on the values that the various parameters can take; and 2) prior knowledge of 

likely parameter values. 

 

In the first case, the information is applied by specifying constraint equations in the 

estimation procedure. In the second, the information is applied by specifying a discrete 

prior distribution and estimating by minimizing the entropy distance between the estimated 

and prior distribution –the Minimum Cross-Entropy approach. Since we do not have any 

prior information on our subject parameters, only the (Generalized) Maximum Entropy 

principle will be used.  

 

4.1 The model. 

For each Activity i, the optimal ratio 
𝑀

𝐷
=  

𝛿

1−𝛿

𝑃𝐷

𝑃𝑀
 
𝜎

 can be log-linearized as: 

 

𝑙𝑜𝑔  
𝑀

𝐷
 = 𝜎𝑙𝑛  

𝛿

1−𝛿
 + 𝜎𝑙𝑛  

𝑃𝐷

𝑃𝑀
      (4.1) 

 

And the econometric model (or consistency constraint) specified as: 

 

𝑙𝑛  
𝑀(𝑡)

𝐷(𝑡)
 = 𝛽1 + 𝛽2𝑙𝑛  

𝑃𝐷 (𝑡)

𝑃𝑀 (𝑡)
 + 𝑒(𝑡)    (4.2) 

 



 
6 

 

Where t (=1,2,…,T) is the number of data points,  the constant term,  the 

Armington elasticity, and e the noise associated to each equation. We call (4.2) the Base 

Model (BM). 

Since no a priori information on the distributions is available, instead of using the 

more general cross entropy specification, we directly focus on the maximum entropy (ME) 

specification. In order to specify the (Generalized) ME problem, consider the parametric 

space supports zk=(zk1,…,zkM)’, k=1,2, M=5,
1
 with corresponding probabilities 

pk=(pk1,…,pkM)’, for the vector of parameters =(1,2)’, and the support vt=(v1,…,vJ)’, 

J=3, with corresponding weights wt=(w1t,…,wJt)’ for the noise terms 𝒆 ∈ ℝ𝑇 . Given this 

specifications we can re-parameterize as follows: 

 

𝜷 = 𝒁𝒑 =  
𝒛1

′ 𝟎

𝟎 𝒛2
′   

𝒑𝟏

𝒑𝟐
       (4.3) 

 

𝒆 = 𝑽𝒘 =  
𝒗′ … 𝟎
⋮ ⋱ ⋮
𝟎 … 𝒗′

  

𝒘1

⋮
𝒘𝑇

      (4.4) 

 

Where Z is the (K×KM) matrix of parameter supports, 𝒑 ∈ ℝ𝐾𝑀  is the vector of 

unknown parameters, V is the (T×JT) matrix of error supports, and 𝒘 ∈ ℝ𝐽𝑇  the vector of 

unknown errors. Then (following Golan et al. 1996, and Golan 2008) we can state the ME 

problem as: 

 

maxp,w  H(p,w) =  p’ ln(p) - w’ln(w)     (4.5) 

 

Subject to  

                                                           
1
 According to Golan, et al. (1996). 
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𝑙𝑛  
𝑀(𝑡)

𝐷(𝑡)
 =  𝑧1𝑚𝑝1𝑚

5
𝑚=1 +  𝑧2𝑚𝑝2𝑚

5
𝑚=1  

𝑃𝐷 (𝑡)

𝑃𝑀 (𝑡)
 +  𝑣𝑗𝑤𝑗𝑡

3
𝑗=1 , ∀𝑡 (4.6)

2
 

𝟏𝑲 =  𝑰𝑲 ⊗ 𝟏𝑴
′  𝒑        (4.7) 

𝟏𝑻 =  𝑰𝑻 ⊗ 𝟏𝑱
′  𝒘        (4.8) 

 

5. The data 

We use four data sets provided by the National Institute of Statistics, 

Geography and Informatics (INEGI), all four sets containing yearly information 

from 1988 to 2004 for i) Domestic Production in current pesos, ii) Domestic 

Production in Constant Pesos of 1993, iii) Imports in current pesos and iv) Imports 

in constant pesos of 1993, at the 72 industries or activities disaggregation level. 

Therefore we have 17 yearly observations for each variable. Also, these data sets do 

not include maquila. 

To build the series used for the ME estimation of Armington Elasticities, we 

begin by dividing domestic production in current pesos by domestic production in 

constant pesos to obtain price indexes for domestic production, the same applies to 

imports. Then we divide Imports in constant pesos by domestic Production in 

constant pesos, and take the natural logarithm, to obtain the series for the ratio 

ln(M/D); and finally, we divide domestic prices by imports prices, and take de 

natural logarithm to obtain the series for the ratio ln(PD/PM).  

 

 

6. Results 

In the first place we estimate the base model (BM) in levels to obtain annually based 

(short run) Armington elasticities. According to the above specifications, a typical output 

                                                           

2 In matrix form: 𝜶 = 𝚪𝒁𝒑 + 𝑽𝒘, where 𝜶 =

 
 
 
 𝑙𝑛  

𝑀(1)

𝐷(1)
 

⋮

𝑙𝑛  
𝑀(𝑇)

𝐷(𝑇)
  
 
 
 

, and 𝚪 =

 
 
 
 1 𝑙𝑛  

𝑝𝐷 (1)

𝑝𝑀 (1)
 

⋮ ⋮

1 𝑙𝑛  
𝑝𝐷 (𝑇)

𝑝𝑀 (𝑇)
  
 
 
 

. 
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for an activity results as Table 6.1 shows. In this table the first column specifies the 

parameters support set, second column shows the ME estimated AE for each support set, 

and the third column the corresponding normalized entropy. 

 

Table 6.1 Output for Activity 2 (Livestock) from  

   Maximum Entropy estimation of Base Model 

 

A2 Livestock 2 COEFF NORMALIZED 
ENTROPY 

PARAMETERS SUPPORT (SRAE*)  

(-10, -5, 0, 5, 10) 2.684 0.934 

(-20, -10, 0, 10, 20) 2.870 0.983 

(-40 -20, 0, 20, 40) 2.921 0.996 

(-80, -40 0, 40, 80) 2.934 0.999 

(-160, -80, -40 0, 40, 80, 160) 2.938 1.000 

 SRAE*: Short Run Armington Elasticity 

 

 

According to Golan, et al. (1996), we use the normalized entropy measure as the 

“model selection” rule, then as a general rule we select the estimate from support with 

normalized entropy nearest to 0.999 (Although we do not use any prior info, it is sensible to 

consider that, usually, elasticities will not go beyond a value of 50 for example).  

In the second place we estimate the partial adjustment model (PAM) (Reinert, et al. 

1992, Hernández 1998, Kapuscinsky 1999), with the following specification for each 

Activity: 

y(t) = 1 + 2 x(t) + 3 y(t-1) + e(t) 

Where 2 is the short run elasticity, and 2/(1-3) the long run elasticity, if 0<3<1, 

else 2 is it. 

According to the above specifications, a typical output for an activity results as 

Table 6.2 shows. In this table the first column specifies the parameters support set, second 

column shows the Maximum Entropy (ME) estimated short run Armington Elasticity (AE) 

for each support set, the third column the 3 coefficient, fourth column the long run 

elasticity, and the fifth column the corresponding normalized entropy. 
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Table 6.2 Output for Activity 2 (Livestock) from Maximum Entropy 

estimation of Partial Adjustment Model. 

 

 2 Coeff  Coeff 2 / (1-3) Normalized  

PARAMETERS SUPPORT (SRAE*)  (LRAE*) Entropy 

(-10, -5, 0, 5, 10) 2.963 0.178 3.604 0.963 

(-20, -10, 0, 10, 20) 3.315 0.068 3.556 0.988 

(-40 -20, 0, 20, 40) 3.413 0.037 3.543 0.997 

(-80, -40 0, 40, 80) 3.439 0.028 3.539 0.999 

(-160, -80, -40 0, 40, 80, 160) 3.445 0.026 3.539 1.000 

SRAE*: Short Run Armington Elasticity 

LRAE*: Long Run Armington Elasticity 

 

 

In the third place we estimate the Error Correction Mechanism model (ECM) 

(Gallaway et al. 2003, Kapuscinsky 1999), with the following specification for each 

Activity: 

y(t) = 1 + 2 x(t) + 3 y(t-1) +4 x(t-1) + e(t) 

Where 2 is the short run Armington elasticity (SRAE), and  (-4 / 3) the long run 

Armington Elasticity (LRAE).  

According to the above specifications, a typical output for an activity results as table 

6.3 shows. In this table the first column specifies the parameters support set, second column 

shows the 2 coefficient (short run AE) for each support set, the third column the  3  

coefficient, the fourth column the  4, the fifth column the long run AE, and the sixth 

column the corresponding normalized entropy. 
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Table 6.3 Output for Activity 2 (Livestock) from Maximum Entropy  

estimation of Error Correction Mechanism model. 

A2 Livestock 2 COEFF  COEFF  COEFF  / 3 NORMALIZED 

PARAMETERS SUPPORT (SRAE*)   (LRAE*) ENTROPY 

(-10, -5, 0, 5, 10) 2.745 -0.596 1.587 2.664 0.963 

(-20, -10, 0, 10, 20) 3.263 -0.803 2.594 3.230 0.988 

(-40 -20, 0, 20, 40) 3.444 -0.885 2.998 3.388 0.997 

(-80, -40 0, 40, 80) 3.494 -0.908 3.114 3.428 0.999 

(-160, -80, -40 0, 40, 80, 160) 3.507 -0.914 3.144 3.438 1.000 

SRAE*: Short Run Armington Elasticity 

LRAE*: Long Run Armington Elasticity 

 

 

To begin with, Table 6.4 presents the estimates for the 13 main aggregated 

Activities of the Mexican economy for which we have imports. Out of 17 main aggregates, 

four of them do not have any imports: 4 Construction, 6 Commerce, Restaurants, and 

Hotels, 7 transport, Storage, and Communications, and 8 Financial Services, Insurance, and 

Real Estate. 
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Table 6.4 Maximum Entropy estimation of Armington Elasticities (AE) 

for 13 main aggregated Activities of the Mexican economy. 

Base Model (BM), Partial Adjustment Model (PAM), and  

Error Correction Mechanism Model (ECM). 

 

 SHORT RUN AE LONG RUN AE 

Activity BM PAM ECM PAM ECM 

1     Agriculture, Livestock, Forestry, and Fishing 0.47 0.11 0.35 0.51 -0.52 

2     Mining -0.36 -0.16 -0.35 -1.95 -1.92 

3     Manufacturing Industries 

   
 

 I      Food, Beberages, and Tobacco 1.54 1.00 1.09 1.46 1.31 

II    Textiles, Clothing, and Leather 0.37 0.62 1.38 3.15 -0.18 

III   Wood, and Wood Products 2.50 1.35 1.70 3.71 3.77 

IV   Paper, Paper Products, Printing and Editing 0.00 0.67 1.08 6.62 28.88 

V    Chemicals, Crude Oil Derivatives, and 
Rubber and Plastic Products 2.89 0.32 0.74 2.16 -4.42 

VI   Products from Non-metallic Minerals, 
except Crude Oil and Carbon Derivatives 1.90 0.27 0.57 1.09 -0.08 

VII   Basic Metal Industries -0.95 0.32 1.15 1.84 -1.00 

VIII  Metal Products, Machinery, and Equipment 2.88 0.91 1.25 2.74 1.91 

IX   Other Manufacturing Industries 2.89 0.03 0.25 0.15 -2.75 

5    Electricity, Gas, and Water 2.85 1.19 1.19 2.37 2.37 

9    Communal, Social, and Personal Services* 0.00 -0.07 -0.03 -0.08 -0.10 
*Only includes Activities 68 (Professional Services) and 71 (Entertainment Services). 

 

In what follows we present results for Activities disaggregated to a more detailed 

level, using the 72 Activities disaggregation level of the SNAM. Table 6.5 presents the 

estimates for the 61 Activities in which the previous 13 more aggregated are disaggregated. 
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Table 6.5 Maximum Entropy estimation of Armington Elasticities (AE) 

for Base Model (BM), Partial Adjustment Model (PAM), and 

Error Correction Mechanism Model (ECM). 61 Activities 

 

Activity SHORT RUN AE LONG RUN AE 

AGRICULTURE, LIVESTOCK,  
FORESTRY, AND FISHING 

BM PAM ECM PAM ECM 

1  Agriculture 0.44 0.07 0.26 0.31 -0.35 

2  Livestock 2.93 3.44 3.49 3.54 3.43 

3  Forestry -0.19 -0.07 -0.08 -0.30 -0.27 

4  Fishing 2.01 0.80 1.26 14.62 11.06 

MINING      

5  Carbon and graphite -1.11 -0.18 0.15 -0.86 -0.99 

7  Ferrous mineral -2.59 -1.74 -2.75 -1.75 -1.20 

8  Non-ferrous Metalic Minerals 0.46 0.51 1.06 1.26 0.92 

9  Sand and Clay -0.40 -0.32 -0.21 -0.48 -0.49 

10 Other Non-metallic Minerals -0.28 -0.21 0.53 -0.30 -0.86 

FOOD, BEBERAGES, AND TOBACCO      

11 Meat and dairy products 0.58 0.56 1.01 1.63 -2.16 

12 Fruits and vegetables 1.17 0.95 1.47 2.47 1.77 

13 Wheat 4.78 1.80 1.79 3.49 3.96 

14 Maize 0.87 0.03 0.14 0.05 0.03 

15 Coffe -1.95 -0.26 -0.20 -0.49 -1.24 

16 Sugar -0.14 -2.71 -0.52 -5.26 -7.61 

17 Edible oils and fats 2.00 0.76 0.84 1.68 1.66 

18 Food for animals 0.71 0.09 0.94 0.41 -1.57 

19 Other food 2.66 1.26 1.44 2.32 1.94 

20 Alcoholic beberages 1.82 1.03 1.08 2.70 2.76 

21 Beer and malt 1.93 0.55 0.74 0.82 0.57 

22 Non-alcoholic beberages and water 1.98 1.06 1.14 1.25 1.23 

23 Tobacco 2.44 0.37 0.72 0.86 -0.05 
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Table 6.5 Continues. 

 

 SHORT RUN AE LONG RUN AE 

Activity BM PAM ECM PAM ECM 

TEXTILES, CLOTHING, AND LEATHER 
   

 
 24 Soft fibers textiles -0.75 0.46 1.60 3.60 -0.39 

25 Hard fibers textiles -3.01 0.42 1.36 3.65 -1.10 

26 Other textiles -0.23 0.66 1.26 3.35 1.22 

27 Clothing 2.16 0.77 1.20 2.22 0.18 

28 Leather and shoes 2.73 1.86 2.16 6.57 5.37 

WOOD AND WOOD PRODUCTS 
   

 
 29 Wood, plywood and the like 2.47 1.43 1.69 3.20 3.31 

30 Other wood and cork products 1.51 1.07 1.62 4.33 3.95 

PAPER, PRINTING AND EDITING 
   

 
 31 Paper and cardboard -0.20 0.58 1.19 4.48 27.00 

32 Printing and editing 1.15 0.68 1.20 2.04 1.74 

CHEMICALS, CRUDE OIL DERIVATIVES, 
RUBBER AND PLASTIC PRODUCTS 

     

33 Crude oil and derivatives 1.90 0.46 0.86 1.23 0.63 

34 Basic petrochemicals 2.02 0.18 0.45 55.73 0.58 

35 Basic chemicals -3.43 -0.67 -0.77 -2.61 -2.67 

36 Fertilizers -1.31 1.71 2.16 157.94 181.50 

37 Sinthetic resinas -2.51 -0.04 0.38 -0.30 -1.80 

38 Pharmaceutical products 1.48 0.62 0.76 1.45 1.43 

39 Soaps, detergents, and cosmetics 2.71 0.79 1.00 2.71 2.09 

40 Other chemical products 0.38 0.19 0.35 3.35 3.39 

41 Rubber products -3.65 0.09 1.31 0.59 -2.64 

42 Plastic products 3.12 0.41 0.47 2.07 2.38 

PRODUCTS FROM NON-METALLIC 
MINERALS, EXCEPT CRUDE OIL AND 
CARBON DERIVATIVES 

     

43 Glass and derivatives 1.01 0.43 0.99 1.92 -1.86 

44 Hydraulic cement 1.20 0.01 0.04 0.08 0.06 

45 Non-metallic minerals products 1.58 0.34 0.57 1.28 0.69 

BASIC METAL INDUSTRIES 
   

 
 46 Basic ferrous and steel industries -0.23 0.37 1.34 1.05 0.36 

47 Basic non-ferrous metals industries 1.38 0.08 0.56 0.65 -0.45 
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Table 6.5 Ends. 

 

 SHORT RUN AE LONG RUN AE 

METAL PRODUCTS, MACHINERY, AND 
EQUIPMENT 

BM PAM ECM PAM ECM 

48  Metal furniture 2.21 1.22 1.33 2.00 1.85 

49  Structural metal products 1.56 0.25 -0.17 1.24 0.64 

50  Other Metal Products, except 
Machinery -1.19 0.27 0.58 1.43 1.28 

51  Machinery and Non-Electrical 
Equipment 1.69 0.17 0.69 1.00 -1.53 

52  Machinery and Electrical Devices 1.65 0.86 1.00 1.97 1.86 

53  Electrodomestic Devices 0.87 0.28 0.59 0.74 0.71 

54  Electronic Devices -0.18 -0.14 0.81 -0.32 -2.65 

55  Electric Devices -3.48 0.25 0.62 1.62 -0.09 

56  Automotive Vehicles 6.92 -0.08 -0.64 -0.81 6.01 

57  Bodyworks, Motors, Spare parts and 
Accesories for Automotive Vehicles 1.09 0.12 1.03 0.31 0.36 

58  Transport Equipment and Material  1.47 1.42 0.44 1.76 1.71 

OTHER MANUFACTURING INDUSTRIES 
   

 
 59  Other Manufacturing Industries 2.85 0.03 0.25 0.15 -2.75 

ELECTRICITY, GAS, AND WATER      

61  Electricity, Gas, and Water 2.85 1.19 1.19 2.37 2.37 

COMMUNAL, SOCIAL, AND PERSONAL 
SERVICES 

   
 

 68  Professional services -0.48 -0.40 -0.11 -0.49 -0.49 

71  Entertainment Services 0.51 0.08 0.17 0.16 0.15 

 

 

7. Final Comments 

In this working paper three alternative models were used to estimate short run and 

long run Armington Elasticities for 61 Activities of the Mexican economy, considering data 

for imports and domestic production. Which elasticities are to be selected as those 

reflecting the best estimates, is a task that in principle can be undertaken following two 

main criteria: the normalized entropy measure to assess extraneous variables, and the time 

series analysis to test for unitary roots and cointegration.    



 
15 

 

  

8. References 

Armington, Paul S. (1969). A theory of demand for products distinguished by place 

of production. IMF Staff Papers, v. 16, n. 1.  

Blonigen, Bruce A. and Wesley W. Wilson (1999). Explaining Armington: What 

determines substitutability between home and foreign goods? Canadian 

Journal of Economics, v. 32, n. 1. 

de Melo, J., and Robinson, S. (1989). Product differentiation and the treatment of 

foreign trade in computable general equilibrium models of small economies. 

Journal of International Economics, 27, 47-67. 

Fontes Tourinho, Octávio Augusto, Honorio Kume and Ana Cristina de Souza 

Pedroso (2002). Elasticidades de Armington para o Brasil: 1986-2001. Texto 

para Discussao N° 901. Instituto de Pesquisa Economica Aplicada. 

Gallaway, Michael P., Christine A. McDaniel and Sandra A. Rivera (2003). Short 

-run and Long-run Industry-level Estimates of U.S. Armington Elasticities. 

The North American Journal of Economics and Finance, 14, 49-68.  

Golan, A. (2006) Information and Entropy Econometrics – A Review and Synthesis. 

Foundations and Trends in Econometrics. Vol. 2, Nos. 1-2.  

Golan, A., G. Judge, and D. Miller (1996) Maximum Entropy Econometrics:  

Robust Estimation with Limited Data. John Wiley and Sons. 

McDaniel, Christine A. and Edward J. Balistreri (2002). A discussion on Armington 

Trade Substitution Elasticities. Office of Economics Working Paper No. 

2002-01-A, U.S. International Trade Commission.  



 
16 

 

Nganou, JP. N. (2004) Estimating the Key Parameters of the Lesotho CGE Model. 

International Conference “Input-Output and General Equilibrium: Data, 

Modeling, and Policy Analysis”. Brussels, Belgium. 

*Reinert, Kenneth A. and David W. Roland-Holst (1992). Armington elasticities 

for United States manufacturing sectors,” Journal of Policy Modeling, v14, 

n5, pp. 631-39. 

Saito, Mika (2004). Armington elasticities in intermediate inputs trade: a problem in 

using multilateral trade data. Canadian Journal of Economics, v. 37, n. 4.  

Shiells, Clinton R. and Kenneth A. Reinert (1993). Armington models and 

terms-of-trade effects: some econometric evidence for North America. 

Canadian Journal of Economics, XXVI, No. 2. 

Shiells, Clinton R., Robert M. Stern and Alan V. Deardorff (1986). Estimates of the 

elasticities of substitution between imports and home goods for the United 

States. Weltwirtschaftliches- Archiv, v122, n3, pp. 497-519. 

 

 

 

 

 

 

 

 

 



 
17 

 

 

Appendix 1 Base gams code 

 

$title 1 

 

$ontext 

 

maximum entropy estimation of base, pa, and ecm models 

Armington elasticity 

 

$offtext 

 

set a   b variables     /lnMD, lnPDPM/ 

    t     b index         /1988*2004/ 

    k    b  index        /1*2/ 

 

    apa  pa variables    /lnMD, lnPDPM, lnMDL1/ 

    tpa  pa index        /1989*2004/ 

    kpa  pa index        /1*3/ 

 

    aec  ec variables    /DlnMD, DlnPDPM, lnMDL1, lnPDPML1/ 

    tec  ec index        /1989*2004/ 

    kec  ec index        /1*4/ 

 

    m       index        /1*5/ 

    j       index        /1*3/ 

; 

 

parameters 

data(t,a) 

datapa(tpa,apa) 

dataec(tec,aec) 

; 

$LIBINCLUDE XLIMPORT data   datbysA72.XLS d1!H2:J19 

$LIBINCLUDE XLIMPORT datapa datbysA72.XLS d1!L3:O19 

$LIBINCLUDE XLIMPORT dataec datbysA72.XLS d1!Q3:U19 

 

parameters 

y(t)       dependent variable series 

ybar       average dep var 

sampvar    sample variance 

sigma3     three times sigma 

; 

y(t)      = (DATA(t,'lnMD') ) ; 

ybar      = sum(t, y(t)) / 17       ; 
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sampvar   = sum(t, (y(t)-ybar)*(y(t)-ybar) ) / 16 ; 

sigma3    = (sampvar**0.5)*3      ; 

 

parameters 

ypa(tpa)     pa dependent variable series 

ybarpa       average dep var 

sampvarpa    sample variance 

sigma3pa     three times sigma 

; 

ypa(tpa)    = (datapa(tpa,'lnMD') ) ; 

ybarpa      = sum(tpa, ypa(tpa)) / 16       ; 

sampvarpa   = sum(tpa, (ypa(tpa)-ybarpa)*(ypa(tpa)-ybarpa) ) / 15 ; 

sigma3pa    = (sampvarpa**0.5)*3      ; 

 

parameters 

yec(tec)     ec dependent variable series 

ybarec       average dep var 

sampvarec    sample variance 

sigma3ec     three times sigma 

; 

yec(tec)    = (dataec(tec,'DlnMD') ) ; 

ybarec      = sum(tec, yec(tec)) / 16       ; 

sampvarec   = sum(tec, (yec(tec)-ybarec)*(yec(tec)-ybarec) ) / 15 ; 

sigma3ec    = (sampvarec**0.5)*3      ; 

 

PARAMETERS 

Z(m) parameters support 

/1 -10.0 

 2 -5.00 

 3  0 

 4  5.00 

 5  10.0/ 

 

V(j)       errors support 

x(t,k)     independent variables 

 

Vpa(j)           pam error support 

xpa(tpa,kpa) independent variables 

 

Vec(j)           ecm error support 

xec(tec,kec)  ecm independent variables 

 

LB     lower bounds 

; 

V('1') = -sigma3 ; 

V('2') =  0.0    ; 
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V('3') =  sigma3 ; 

 

x(t,'1') = 1                  ; 

x(t,'2') = (DATA(t,'lnPDPM') ) ; 

 

Vpa('1') = -sigma3pa ; 

Vpa('2') =  0.0      ; 

Vpa('3') =  sigma3pa ; 

 

xpa(tpa,'1') = 1                       ; 

xpa(tpa,'2') = (DATApa(tpa,'lnPDPM') ) ; 

xpa(tpa,'3') = (DATApa(tpa,'lnMDL1') ) ; 

 

Vec('1') = -sigma3ec ; 

Vec('2') =  0.0      ; 

Vec('3') =  sigma3ec ; 

 

xec(tec,'1') = 1                  ; 

xec(tec,'2') = (dataec(tec,'DlnPDPM') ) ; 

xec(tec,'3') = (dataec(tec,'lnMDL1') ) ; 

xec(tec,'4') = (dataec(tec,'lnPDPML1') ) ; 

 

LB = 0.0000001 ; 

 

 

VARIABLES 

p(k,m) parameter probabilities 

w(t,j) error probabilities 

 

ppa(kpa,m) parameter probabilities 

wpa(tpa,j) error probabilities 

 

pec(kec,m) parameter probabilities 

wec(tec,j) error probabilities 

 

OBJ   bm OBJECTIVE 

OBJpa pam OBJECTIVE 

OBJec ecm  OBJECTIVE 

; 

*lower bounds for p and w 

p.lo(k,m) = LB ; 

w.lo(t,j) = LB ; 

 

ppa.lo(kpa,m) = LB ; 

wpa.lo(tpa,j) = LB ; 
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pec.lo(kec,m) = LB ; 

wec.lo(tec,j) = LB ; 

 

EQUATIONS 

OBJECTIVE b objective 

AD1(k)    parameter add up constraint 

AD2(t)    error add up constraint 

CON(t)    consistency constraint 

; 

OBJECTIVE.. OBJ =E= -SUM(k, SUM(m, p(k,m)*LOG( p(k,m) ) ) ) 

                    -SUM(t, SUM(j, w(t,j)*LOG( w(t,j) ) ) ) ; 

 

AD1(k)..  SUM(m, p(k,m) ) =e= 1 ; 

 

AD2(t)..  SUM(j, w(t,j) ) =e= 1 ; 

 

CON(t)..  y(t) =e= SUM(k, x(t,k)*SUM(m, p(k,m)*z(m) ) ) 

                 + SUM(j, w(t,j)*v(j) )  ; 

 

EQUATIONS 

OBJECTIVEpa   pa objective 

AD1pa(kpa)    parameter add up constraint 

AD2pa(tpa)    error add up constraint 

CONpa(tpa)    consistency constraint 

; 

OBJECTIVEpa.. OBJpa =E= -SUM(kpa, SUM(m, ppa(kpa,m)*LOG( ppa(kpa,m) ) 

) ) 

                    -SUM(tpa, SUM(j, wpa(tpa,j)*LOG( wpa(tpa,j) ) ) ) ; 

 

AD1pa(kpa)..  SUM(m, ppa(kpa,m) ) =e= 1 ; 

 

AD2pa(tpa)..  SUM(j, wpa(tpa,j) ) =e= 1 ; 

 

CONpa(tpa)..  ypa(tpa) =e= SUM(kpa, xpa(tpa,kpa)*SUM(m, ppa(kpa,m)*z(m) ) ) 

                 + SUM(j, wpa(tpa,j)*vpa(j) )  ; 

 

EQUATIONS 

OBJECTIVEec   ec objective 

AD1ec(kec)    parameter add up constraint 

AD2ec(tec)    error add up constraint 

CONec(tec)    consistency constraint 

; 

OBJECTIVEec.. OBJec =E= -SUM(kec, SUM(m, pec(kec,m)*LOG( pec(kec,m) ) ) 

) 

                    -SUM(tec, SUM(j, wec(tec,j)*LOG( wec(tec,j) ) ) ) ; 
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AD1ec(kec)..  SUM(m, pec(kec,m) ) =e= 1 ; 

 

AD2ec(tec)..  SUM(j, wec(tec,j) ) =e= 1 ; 

 

CONec(tec)..  yec(tec) =e= SUM(kec, xec(tec,kec)*SUM(m, pec(kec,m)*z(m) ) ) 

                 + SUM(j, wec(tec,j)*vec(j) )  ; 

 

MODEL armington   /objective,   ad1,   ad2,   con  / ; 

MODEL armingtonpa /objectivepa, ad1pa, ad2pa, conpa/ ; 

MODEL armingtonec /objectiveec, ad1ec, ad2ec, conec/ ; 

 

SOLVE armington MAXIMIZING OBJ USING NLP ; 

 

parameter 

bhat1(k)   parameter estimates 

ehat1(t)   error estimates 

bentr1     parameter entropy (the double sum) 

sp1        normalized entropy for parameters 

sse1       sum of squared errors 

beta12     elast armington 

; 

bhat1(k) = SUM(m, p.l(k,m)*z(m) )   ; 

 

beta12 = bhat1('2') ; 

 

ehat1(t) = sum(j, w.l(t,j)*v(j) )  ; 

 

sse1  =  sum(t, ehat1(t)*ehat1(t))  ; 

 

bentr1 = -sum(k, sum(m, p.l(k,m)*log(p.l(k,m) ) ) ); 

 

*NORMALIZED ENTROPY (ME) 

sp1 = bentr1 / (2*LOG(5)) ; 
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