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Abstract 
 

This study implements and tests a mathematical programming model to estimate 

interregional, interindustry transaction flows in a national system of economic regions based on 

an interregional accounting framework and initial information of interregional shipments. A 

complete national IO table, regional sectoral data on gross output, value-added, exports, imports 

and final demand are used as inputs to generate an interregional input-output system that 

reconciles regional market data and interregional transactions. The analytical and empirical 

properties of the model are discussed in detail. The model is tested by a 3-region 10-sector 

example against data aggregated from the version 4 GTAP database. It shows that the model has 

remarkable capacity to discover the true interregional trade pattern from highly distorted initial 

estimates. The paper also discusses an application of the model to estimate an interregional 

input-output account for the US economy based on the BEA 1997 national benchmark IO table 

and detailed state level data from the 1997 economic Census and other sources.    
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I. Introduction 

A major obstacle in regional economic analysis is the lack of consistent, reliable regional 

data, especially data on interregional trade and inter-industrial transactions. Despite decades of 

efforts by regional economists, data analogous to national input-output accounts and 

international trade accounts, which have become increasingly available to the public today, still 

are generally not available even for well defined sub-national regions in many developed 

countries. Therefore, regional economists have had to develop various non-survey methods to 

estimate such data.  

This paper present a flexible modeling framework to estimate interregional trade flows 

and input–output accounts for a national system of economic regions.  The approach employed 

simultaneously optimizes the information gained by data available from different sources in a 

consistent interregional accounting system. Typically, data from different statistical sources have 

substantial gaps and inconstancies that preclude routine solutions from being obtained without 

modification. Our approach allows all relevant information to be incorporated in the data 

adjustment process in an internally consistent manner with an objective ranking of their relative 

reliabilities, and is also flexible enough in the model specification to use useful information from 

all possible sources. While the applications of this modeling framework may be quite broad, its 

design has been specifically targeted to the problem of developing spatial enhancements to a 

national input-output account for economies with well-defined economic sub-regions. 

This paper is organized as follows. Section II specifies the modeling framework and 

discusses its theoretical and empirical properties. Section III tests the model by using a 3- region, 

10-sector data set aggregated from the version 4 GTAP database. Test results from seven 

experiments were evaluated against eight Mean Absolute Percentage Error indexes. Section IV 
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discusses the empirical issues involved in applying such a modeling framework to estimate a 51-

region (50 states plus Washington DC), 38 sector inter-state input-output account for the US 

economy based on the BEA 1997 national benchmark IO table and detailed state level data from 

the 1997 economic Census and other ancillary data sets. The paper ends with conclusions and 

direction for future research. Appendix A contains a brief discussion of constrained matrix 

balancing literature. Appendix B lists the GAMS code of the model and data processing 

program.   

 

II. A Mathematical Programming Model for Estimating Interregional Trade and Inter-

industrial Transaction Flows1 

 
Consider a national economy consisting of N sectors that are distributed over M regions. 

The sectors use each other’s products as inputs for its own production, which is in turn used up 

either in further production or by consumers. Each region exports some of its products to other 

regions and some to other nations. They also import products from other regions and nations to 

meet their intermediate and final demand. Assuming a predetermined location of production that 

defines the structure of the national economic system of regions, the shipments of goods and 

services are determined by imbalances between supply and demand inside the different regions. 

Denote STXir, STYir, SVAir, SEXir, and SMXir as sector i’s total output, final demand, value-

added, exports, and imports in region r respectively, and denote TXi, TYi, VAi, EXi, and MXi as 

their respective national counterparts. Also denote SHIPisr as shipment of sector i’s products 

from region s to region r, SIXijr and IXij as regional and national intermediate transaction from 
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sector i to sector j respectively. All variables are measured in annual values. In such a static 

national system of economic regions, the following accounting identities must hold at each given 

year for all i ∈ N and s, r ∈ M.     

     STX=SVASIX   irirjir

n

j=1

           +∑         (1) 

   SMXSHIP =STYSIX   ir isr

m

=1s
irijr

n

j=1

           ++ ∑∑       (2) 

         (3)      STX=SEXSHIP iririrs

m

=1s

           +∑

           (4)       IXSIX ijijr

m

=1r

 =           ∑

          (5)       TXSTX iir

m

=1r

 =           ∑

      VASVA iir

m

=1r

 =           ∑          (6) 

          TYSTY iir

m

=1r

 =           ∑          (7) 

          EXSEX iir

m

=1r

 =           ∑          (8) 

          MXSMX iir

m

=1r

 =           ∑         (9) 

The economic meanings of each of the nine equations are straightforward: equation (1) 

defines the sum of sector i’s intermediate and primary factor inputs equals the sector’s total 

output in each region. Equation (2) states the sum of each region’s intermediate and final demand 

                                                                                                                                                             
1 The modeling framework is also a special case of constrained matrix balancing problem from 
mathematical perspective. It is a core mathematical structure for diverse empirical applications. See 
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must be met by shipments from all regions (including from its own) within the nation plus 

imports from other nations. Equation 3 defines a region can only ship to all regions within the 

nation and export to other nations what it produces2, while equations (4) –(9) are simply the facts 

that sums of all the region’s economic activities within a nation must equal to the national totals. 

Having those accounting identities in mind, the estimation problem can be formally stated as 

follows: 

Given a n × m × m non-negative array SHIP0 = {ship0
isr} and a n × n × m non-negative array 

SIX0 = {six0
ijr}, determine a non-negative array SHIP = {shipisr} and a non-negative array SIX = 

{sixijr} that is close to SHIP0 and SIX0 such that equations (1) to (9) are satisfied, where s ∈ M 
denotes the shipping regions, r ∈ M denotes the receiving regions, and i, j ∈ N denotes the make 
and use sectors respectively. 
 
In plain English, the estimation problem is to modify a given set of prior inter-regional and inter-

industrial transaction estimates to satisfy the above nine known accounting constraints. The 

mathematical programming model conducting the estimation uses an objective function that 

penalizes the deviations of the estimated array SHIP and SIX from the initial array SHIP0 and 

SIX0. Two types of alternative functional forms could be used: 

(i) Quadratic function: 

}{
0
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 (ii) Entropy function: 
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There are desirable theoretical properties of the above estimation framework that are well 

documented in the literature. Firstly, it is a separable nonlinear programming problem subject to 

                                                                                                                                                             
appendix A for details.     
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linear constraints. The entropy function is motivated from information theory and is the objective 

function underlying the well-known RAS procedure with row and column totals known with 

certainty (Senesen and Bates, 1988). It measures the information surprise contained in SHIP and 

SIX given the initial estimates ship0 and six0. The quadratic penalty function is motivated by 

statistical arguments. There are different statistical interpretations underlying the model by 

choices of different reliability weights swisr and wiijr. When the weights are all equal to one, 

solution of this model gives a constrained least square estimator. When the initial estimates are 

taken as the weights, solution of the model gives a weighted constrained least square estimator, 

which is identical to the Friedlander-solution, and a good approximation of the RAS solution. 

When those weights are proportional to the variances of the initial estimates and the initial 

estimates are statistically independent (the variance and covariance matrix of ship0 and six0 are 

diagonal), the solution of the model yields best linear unbiased estimates of the true unknown 

matrix (Byron, 1978), which is identical to the Generalized Least Squares estimator if the 

weights equal to the variance of initial estimates (Stone, 1984, Ploeg, 1984). Furthermore, as 

noted by Stone et al. (1942) and proven by Weale (1985), in cases where the error distributions 

of the initial estimates are normal, the solution also satisfies the maximum likelihood criteria. 

The corresponding likelihood function can be written as: 

exp }{
00
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2ws
)  ship-  SHIP(

  -
2

mmn
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2 Put another way, SHIPisr describes the process of transforming sector output i of region s into either an 
input of any sector j or the property of any final user in region r. 
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Secondly, the quadratic and entropy objective functions are equivalent in the 

neighborhood of initial estimates, under a properly selected weighing scheme.  By taking second 

order Taylor expansion of the likelihood function (12) at point (shipisr, sixijr) we have 

R +   
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This is the quadratic function (10) plus a remainder term R. As long as the posterior estimates 

and the prior estimates are close and the prior estimates are used as reliability weights3, the term 

R will be very small and the two objective functions thus can be regarded as approximating one 

another.  

 Thirdly, as proved by Harrigan (1990), in all but the trivial case, posterior estimates 

derived from entropy or quadratic loss minimand will always better approximate the unknown, 

true values than do the associated initial estimates. In this framework, information gain is 

interpreted as the imposition of additional valid constraints or the narrowing of bounds on 

existing constraints as long as the true but unknown values belong to the feasible solution set.  

This is because adding valid constraints or further restricting the feasible set through the 

narrowing of interval constraints cannot move the posterior estimates away from the true values, 

unless the additional constraints are non-binding (have no information value). Although the 
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solve than the entropy function in very large models because they can be solved by software specifically 
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posterior estimates may not always be regarded as providing a "reasonable" approximation to the 

true value4, the resulting constrained estimates are always better than the initial estimates in the 

sense the former is closer to the true value than the later, so long as the imposed constraints are 

true. In other words, the optimization process has the effect of reducing, or at least not 

increasing, the variance of the estimates. This property is simple to show by using matrix 

notation. Define W as the variance matrix of initial estimates ship0, A as the coefficient matrix of 

all linear constraints. The least squares solution (equivalent to the quadratic minimand as noted 

above) to the problem of adjusting ship0 to SHIP, which satisfies the linear constraint, A•SHIP = 

0 can be written as: 

SHIP = (I - WAT(AWAT)-1A)SHIP0         (14) 

Thus   var(SHIP) = (I - WAT(AWAT)-1A)W = W - WAT(AWAT)-1A)W   (15) 

since WAT(AWAT)-1A)W is a positive semi-definite matrix, the variance of posterior estimates 

will always be less, or at least not greater than the variance of the initial estimates as long as 

A•SHIPtrue = 0 holds. This is the fundamental reason why such an estimating framework will 

provide better posterior estimates. Imposing accounting relationship’s (1)–(9) will definitely 

improve, or at least not worsen the initial estimates, since we are sure from economics those 

constraints are identities and must be true for any national system of economic regions. 

Finally, the choice of weights in the objective function has very important impacts on the 

estimation results. For instance, using the initial estimates as weights has the nice property that 

each entry of the array is adjusted in proportion to its magnitude in order to satisfy the 

                                                 
4 The minimand objective function reflects the principle that the 'distance' between the posterior and prior 
estimates should be minimized. While what we would like is to minimize is the 'distance' between the 
posterior estimates and the unknown true values. This 'distance' can not be measured, but a good 
estimation procedure should have a desirable influence on it.  
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accounting identities, and the variables can not change sign and that large variables are adjusted 

more than small variables. However, the adjustment relates directly to the size of the initial 

estimates ship0
isr and six0

ijr, and does not force the unreliable prior to absorb the bulk of the 

required adjustment. Furthermore, only under the assumptions: (1) the initial estimates for 

different elements in the array are statistically independent, and (2) each error variance is 

proportional to the corresponding initial estimates, this commonly used weighing scheme 

(underlying RAS) can obtain best unbiased estimates, while those assumptions may not hold in 

many cases. Fortunately, the model is not restricted to use a diagonal-weighing matrix such as 

the priors only. When a variance-covariance matrix of the initial estimates is available, it can be 

incorporate into the model by modifying the objective function as follows: 

)  SIX-  SIX( WI)  SIX- (SIX + )  SHIP-  SHIP( WS )  SHIP-  SHIP( =  Z          -1T-1 0000Min   (16) 

The efficiency of the resulting posterior estimator will be further improved if the error structure 

of the priors is available, because such a weighting scheme makes the adjustment independent of 

the size of the priors. The larger the variance, the smaller its contribution to the objective 

function, and hence the less punishment for shipisr and sixijr to move away from their priors (only 

the relative, not the absolute size of the variance affects the solution). A small variance of the 

priors indicates they are very reliable data and thus should not change by much, whilst a large 

variance of the priors indicates unreliable data and will be adjusted considerably in the solution 

process. Therefore, this weighing scheme gives the best-unbiased estimates of the true, unknown 

inter-regional and inter-industrial transaction value under the assumption that initial estimates for 

different elements in the array are statistically independent. Although there is not much difficulty 

to solve such a nonlinear programming problem like this today, the major problem is lack of data 

to estimate the variance-covariance matrix associate with the priors. 
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Stone (1982) proposed to estimate the variance of six0
ijr as var(six0

ijr) = (θijrsix0
ijr)2, where 

θij is a subjectively determined reliability rating, expressing the percentage ratio of the standard 

error to six0
ijr. Weale (1989) had used time series information on accounting discrepancies to 

infer data reliability. The similar methods can be used to derive variances associated with those 

initial estimates in our model. 

Despite the difficulties in obtaining data for the best weighting scheme, advantages of 

such a model in estimating inter-regional shipments and inter-industrial transactions are still 

obvious from an empirical perspective. Firstly, it is very flexible regarding the required know 

information. For example, it allows for the possibility that the state total of output, value-added, 

exports, imports and final demands are not known with certainty. In the real world, these 

regional totals typically have substantial gaps and inconstancies with the national total. 

Incorporating associated terms similar to SHIP0 and SIX0 in the objective function to penalize 

solution deviations from the initial estimates from statistical sources allows the estimation of 

those regional totals, together with entries in the inter-regional shipping and inter-industrial 

transaction array. With the use of upper and lower bounds, this fact can also be modeled by 

specifying ranges rather than precise values for the linear constraints (1) - (3). In addition, the 

estimation of SHIP or SIX will be a special case of the framework when only one set of 

additional data is available. 

Secondly, it permits a wider variety and volume of information to be brought to bear on 

the estimation process than what is possible with scaling methods. For example, the ability of 

introducing upper and/or lower bounds on those regional totals is one of the flexibilities not 

offered by commonly used scaling procedures such as RAS. The gradient of the entropy function 

tends to infinity as shipisr and sixijr → 0, and hence restricts the value of the posterior estimates to 
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nonnegative. This is a desirable property of estimating inter-regional trade data. Such non-

negativity requirements can be enforced in the case of quadratic penalties through the use of 

lower bounds on the values of shipisr and sixijr. 

Thirdly, the weights in the objective function reflect the relative reliability of a given set 

of priors. The interpretation of the reliability weights is straightforward. Entries with higher 

reliability should be changed less than entries with a lower reliability. The choice of those 

weights is also very flexible. They will use the best available information to insure that reliable 

data in the prior estimates are not being modified by the optimization model as much as 

unreliable data. In practice, such reliability weights can be put into a second array that has the 

same dimension and structure as the priors. The inverted variance-covariance matrix of the priors 

can be interpreted as the best index of the reliability for the initial data by statistics. 

Finally, solution of this estimation problem exactly provide the data needed to construct a 

so called multi-regional input-output (MRIO) model in the IO literature (Miller and Blair, 1985, 

Isard, et al. 1998), which was pioneered by professor Polenske and her associates at MIT in the 

1970’s (Polenske, 1980), and is still widely used in regional economic impact analysis today.  

The above model could be easily extended to further allocate SIX and SHIP to 

distinguish intermediate and final delivery of good and services within a national system of 

economic regions. The extended model will be similar in many aspects with the interregional 

accounting framework proposed by David F. Batten (1982) two decades ago. However, as we 

will show later in this paper, it becomes more operational and provides much better empirical 

estimation results on interregional shipments because of the explicit incorporation of 

interregional trade flow information into both the initial estimates and the accounting framework. 
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To demonstrate, denote SXijsr as intermediate inputs delivered from sector i in region s to 

sector j in region r within a nation, and SYihsr as final goods and services delivered from sector i 

in region s to type h final demand in region r. Further, denote SIMijr and SIYihr as imported (from 

other nations) intermediate and final goods and services delivered to sector j or final demand 

type h in region r respectively. Other notation regarding state total output, intermediate inputs, 

value-added, exports and imports are the same with the aggregated model. Then  the accounting 

framework for the national system of economic regions can be defined as follows: 

        (17)      STX=SVASIMSX   irir

n
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        (22) 

Adding a quadratic penalty objective function, we have an extended model to estimate a detailed 

interregional input-output account based on the results from the earlier model5.  
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5 By incorporated the 6 accounting identities that the sum of all regions in the nation should equals their national 
totals defined in equation (4-9), the model could be solved independently without use of the earlier model, however, 
the dimension of the model will be much higher and data requirements will be much larger than the earlier model. 
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This model has the theoretical and empirical properties similar to the earlier model, but 

with much higher details. The solution to 23, subject to constraints 17-22, provides a complete 

set of data for a so called inter-regional input-output (IRIO) model with imports endogenous in 

the IO literature (Miller and Blair, 1985, Isard, et al. 1998). 

 

III. Empirical Test of the Model and Evaluation Measures 

3.1 The testing data set 

How does the model specified above perform when applied to data from the real world? 

In order to evaluate the models’ performance, a benchmark data set from the real world is 

needed. Because good interregional trade data is quite rare and very difficulty to obtain in any 

countries of the world, a natural place to find such data sets is existing global production and 

trade databases such as the GTAP (Global Trade Analysis Project) database. For instance, 

version 4 GTAP database contains detailed bilateral trade, transportation, and individual 

country’s input-output data covering 45 countries and 50 sectors (McDougall, Elbehri, and 

Truong, 1998). For our particular purpose, version 4 GTAP database was first aggregated into a 

4-region, 10-sector data set. Then three of the four regions (the United States, European Union 

and Japan) were further aggregated into a single open economy which engages in both 

interregional trade among its 3 internal regions and international trade with rest of the world.  

We will use this partitioned data set as the benchmark multi-regional input-output account for a 
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hypothetical national economy, and attempt to use our model to replicate the underlying inter-

continental trade flows among Japan, EU and the United Sates as well as the individual country’s 

input-output account.  

3.2 Experiment design  

In the first experiment, we do this without use of the region-specific input-output 

coefficients as the situation encountered in the real world, where only the national IO table is 

available to economists (it is the three region’s weighted average in our experiment). Using 

initial estimates of interregional commodity flow that are distorted from the ‘true’ interregional 

trade data in the GTAP data by a normal distributed random error term with zero mean and the 

size of standard deviation as large as 5 times the “true” trade data. The solution from the model 

is compared with the benchmark data set for both the inter-regional shipment and inter-sector 

transaction flows. 

 In the second experiment, we use the region-specific input-output coefficients as constant 

in the model. We re-estimate the interregional shipment data as the first experiment, and 

compare the model solution with the benchmark data set for the inter-regional trade data only. 

 In the third experiment, we assume the interregional shipment pattern is known with 

certainty, we use the three region’s weighted average IO coefficients as priors (which is defined 

as IXij/(TXij-VAi) * (STXir –SVAir) to make full use of the known information) to estimate the 

region-specific input-output account. 

 In the fourth experiment, David F. Batten’s model was used to estimate the interregional 

shipment and individual region IO flows. In the fifth to the seventh experiments, experiments 1-3 

were repeated by using the extended model. Solution from both models is compared with the 
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“true” interregional trade and inter-sector IO flow data in the aggregated GTAP data set. The 

assumptions, initial estimate and expected model solution are summarized in table 1.   

 
Table 1 Experiment Design 
Experiment 
number 

Data Know with 
Certainty 1 

Initial Estimates What is estimated 
by the model 

1 None Shipr
isr is distorted from the “true” data ship0

isr 

Sixr
ijr = IXij/(TXij-VAi) × (STXir –SVAir)   

SHIP and SIX 

    

2 SIX = SIX0 Shipr
isr is distorted from the “true” data ship0

isr SHIP only 

    

3 SHIP = SHIP0 Sixr
ijr = IXij/(TXij-VAi) × (STXir –SVAir)   SIX only 

    

4 None sx0
ijsr = [(STXis + SMXis – SEXis) / (TXI + MXi – 

EXi)]×[(STXjr – SVAjr) / (TXj – VAj)]* IXij 
sy0

isr  = [(STXis + SMXis – SEXis) / (TXi + MXi - 
EXi) ]×STYir     Eqs. (16) and (17) in Batten (1982)  

SHIP and SIX 

    

5 None sx0
ijsr = [(Sixr

ijr / (∑j Sixr
ijr  + STYir)] × Shipr

isr 

sy0
isr  = [(STYir / (∑j Sixr

ijr  + STYir)] × Shipr
isr 

SHIP and SIX 

    

6 SIX = SIX0 sx0
ijsr = [(Six0

ijr / (∑j Six0
ijr  + STYir)] × Shipr

isr 

sy0
isr  = [(STYir / (∑j Six0

ijr  + STYir)] × Shipr
isr 

SHIP only 

    

7 SHIP = SHIP0 sx0
ijsr = [(Sixr

ijr / (∑j Sixr
ijr  + STYir)] × Ship0

isr 

sy0
isr  = [(STYir / (∑j Sixr

ijr  + STYir)] × Ship0
isr 

SIX only 

Note: 
 
1. In all experiments, national totals: IXij, TXi, TYi, VAi, EXi, and MXi are known with certainty, i.e. they 
enter the model as constant. It is not necessary for the state totals: STXir, STYir, SVAir, SEXir, and SMXir 
to be know as certainty in the model, however, in all experiment reported in this paper, they enter the 
model as constant. The relative importance of the different items of regional totals will be explored in the 
next set of experiments.    
 
2. In experiment 5-7, we did not distinguish different final demand types when the extended 
model is used.  
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3.3 Measures to evaluate test results 

Each experiment produces a different set of estimates, and it is desirable to know how 

much each set of estimates differs from the true, known data. However, it is difficult to use a 

single measure to compare the estimated results. Since there are so many dimensions in the 

model solution sets, a particular set of estimates may score well on one region or commodity but 

badly on others. It is meaningful to use several measures to gain more insight on the model 

performance in different experiments. Generally speaking, it is the large proportionate errors but 

not the large absolute error that matter, therefore, the "Mean absolute Percentage Error" with 

respect to the true data will be calculated for different commodity and regional aggregations. The 

following eight index measures will be used in evaluating the model solution: 

(1) Total Mean absolute percentage error (MAPE) of shipment estimates: 
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(2) Total Mean absolute percentage error (MAPE) of IO transaction estimates: 
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(3) Mean absolute percentage error of shipment estimates by commodities: 
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(4) Mean absolute percentage error of shipment estimates by shipping regions 
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(5) Mean absolute percentage error of shipment estimates by receiving regions 
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(6) Mean absolute percentage error of IO transaction estimates by inputs 
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(7) Mean absolute percentage error of IO transaction estimates by use 
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(8) Mean absolute percentage error of IO transaction estimates by region 
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The model and all test experiments are implemented in GAMS and the complete GAMS program 

is listed in Appendix B.  
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4.4 Testing results  

 Table 2 summarizes all the eight measurement indexes from the seven testing 

experiments listed in Table 1. The accuracy of the estimates is judged by their closeness to the 

true interregional trade and individual region’s input–output flows aggregated from the GTAP 

database. 

(Insert Table 2 here) 

Generally speaking, the model has remarkable capacity to rediscover the true 

interregional trade flows from the highly distorted data.  The estimated shipment data are very 

close to the true data by the eight types of measurement in all testing experiments except the 

Batten model. Most of the mean absolute percentage errors are about 4-7 percent of the true data 

value, which implies the model has great potential in the application of estimating interregional 

trade flows. In contrast, recovering the individual region’s input-output flows from national 

average values only obtained very limited success, indicating national detailed IO coefficients 

may be the best place to start in building regional IO account if there is no additional prior 

information on regional technology or cost structure available.      

  Comparing estimates from different test experiments, there are several interesting 

observations. First, when there is no additional information that could be incorporated into the 

estimation framework, a more detailed model may not perform better than a simpler model 

(compare results from Exp-1 and Exp-5, the more sophisticated extended model actually bring 

less accurate estimates overall because of losing degrees of freedom). However, as results in 

Experiments 2-3 and 6-7 show, the estimation accuracy does improve by a more detailed model 

when more useful data become available.  Second, the marginal accuracy gained from actual 

individual regional IO flows is significant in estimating interregional trade flow using the 
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extended model, but quite small in the aggregate version. In contrast, the marginal value of 

accurate interregional shipment data is rather small in estimating individual regional IO 

coefficients under both versions of the model. Finally, Batten’s model performed poorly in 

interregional shipment estimation, but obtained very similar estimates on individual regional IO 

flows as our model, providing further evidence that there may be no high dependency between 

individual regional IO coefficients and interregional trade flows. However, caution may be 

needed for a firm conclusion because the particular data set used to test the model in this paper 

may be part of the problem. Since the United States, EU and Japan are all large economies, their 

intermediate demands are largely meet by their own production.  Therefore, the correlation 

between their individual inter-industrial flow and inter-regional shipments may be particular low. 

This may be responsible for the insensitivity of their IO flow estimates to changes in 

interregional shipment data. In most single country regional models, inter-regional trade flows 

are likely to provide a substantial share of intermediate and final demand needs within the 

region. 

    Because the extended model only provide better estimates of interregional shipments 

when individual regional IO data are available, the aggregate version of the model specified in 

this paper may be the best practitioner’s tool in estimating interregional trade flows. It not only 

demands less statistical information, but also has a smaller model dimension, which will 

facilitate the implementation and computation process6.  

                                                 
6 The aggregate model only has N(NM+M2+5M) variables and N(3M+N+5) constraints, while the 
extended model has (N2M  + NHM)(M+1) variables and N(M2+NM+N+5) constraints. This is a much 
larger model, having NM2(N-1) + NM(HM-5) more variables and MN(M+N-3) additional constraints. 
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V. Empirical Issues when the Model is applied to the US Economy 

To implement the model in the context of the United States, the first task is assembling 

data from different sources. This data will be used to specify the national input-output account, 

sector totals of output, value-added, exports, imports and final demand at the state level as well 

as initial information of inter/intra-state commodity shipments. Much of this information is  

available directly from official statistical sources. 

The Detailed Benchmark Input-Output Account of the United States7 is estimated every 

five years, with the most recent benchmark having been published in December of 2002 by the 

Bureau of Economic Analysis (BEA), based on calendar year 1997 economic statistics. As is true 

for the majority of nations who maintain official national economic accounting systems, the U.S. 

system of official economic statistics does not include an interregional, inter-industry accounting 

system.   

The benchmark account coincides with the calendar year economic statistics of the 

Economic Census and Census of Governments (U.S. Dept. of Census), Census of Agriculture 

(U.S. Dept. of Agriculture), and other ancillary U.S. regional economic accounts. State level 

statistics on gross output, value added and/or total wage-bill are, for the most part, routinely 

extracted from these sources. Other relevant statistics include annual industry gross state product 

accounts (BEA), ‘origin of movement’ State export statistics and import statistics by port of 

entry into the U.S. (Census)8. Finally, depending on the emphasis of the modeler’s application, 

                                                 
7 This ‘detailed’ account characterizes all U.S. domestic inter-industry activities for calendar year 1997, 
as summarized into 491 industry aggregates, 483 commodity aggregates, and U.S. GDP by commodity, 
broken out into personal consumption, gross private investment, net exports, inventory change, and 
government investment and consumption. 
8 Equations (2) and (3) can be modified to be consistent with those officially published export and import 
statistics. 

 21



other Federal and State Government statistics, trade association data, and proprietary data have 

useful information that will complement the primary official data sources. 

State final demand statistics are the only data items that are not as routinely extracted 

from primary data sources. Important indirect information that can be used to estimate State 

consumer expenditures include the Bureau of Labor Statistics (BLS), Consumer Expenditure 

Survey (CES), the decennial Census of Population, and Internal Revenue Service (IRS) statistics 

on income. For example, using BLS regional CES tables, one can allocate U.S. expenditure data 

out to one of four U.S. regions. Next, using CES expenditure statistics by household income, and 

by other socioeconomic categories, one can use Census of Population State statistics to further 

allocate regional expenditure estimates out to States. 

For gross private investment, BEA produces detailed wealth account statistics that 

include annual gross private investment by major industry groups. The Internal Revenue Service 

publishes State investment and depreciation statistics that allow one to infer the level and type of 

investments that business’ and households are making in each state. Combining these data with 

the national private investment statistics by detailed commodity groups, one can develop 

regional estimates of gross private state investment. Federal and State procurement data are 

available from two comprehensive sources, the General Services Administration and the U.S. 

Census of Governments. Perhaps the most elusive information is that on State inventory change. 

State level information does exist for some of the 483 Commodity aggregates, and this data can 

supplement estimates that assume, at the detailed commodity level, that inventory change is a 

constant percentage of both national and State final demand. 

The confidence of the developer in their estimates may depend on their abilities to obtain 

relevant data not typically available. This data can be used to fill data gaps created by 
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deficiencies of the conventional data sources. If that confidence exists, estimates of State level 

data on output, value added, imports, exports, and total final demand, by commodity, can be used 

as the ‘true’ identities in solving the national system of regional input-output accounts. To the 

extent that a subset of this data is considered unreliable, employing methods of attaching 

reliability weights (Stone, 1982, 1988) to these suspect data points can facilitate the more general 

specification of the models presented in the previous section. 

Whichever approach one takes, the most challenging empirical obstacle to solving an 

U.S. balanced IRIO from the model is the development of regional technical input-output 

coefficient priors, and inter/intra-regional shipment data priors. Two very useful ‘rules of thumb’ 

can be applied to this problem and when applied together, can reinforce each other.   

One often-applied ‘rule’ is known as the product mix approach (Miller & Blair, 1985, p. 

70).  This approach requires that, in lieu of other information on the regional technical 

coefficients, estimates of the product mix for the detailed industries that map into a regional 

commodity aggregate should be used. With this information, a weighted average of the national 

input-output coefficients of these products, where the weights are the share of regional aggregate 

commodity gross output that each detailed industry represents, produces a unique regional 

coefficient for each commodity aggregate represented in the regional system. 

Another useful ‘rule’ pertains to the use of aggregate transportation data. This rule states 

that in lieu of detailed transportation statistics on inter/intra regional commodity flows, a regional 

input-output system should be solved at a level of aggregation most closely aligned with the 

aggregation reported in the transportation data. While this aggregation may be insufficient for the 

specific purposes of the developer, it is likely that the developer knows of other unique data 

sources related to transportation in the sectors of particular relevance to their research and this 
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data can be incorporated. For other sectors that the developer has little familiarity with, the 

aggregated data will probably end up providing more information than if it was used, for 

example, to move all subcategories of each commodity aggregate. 

To illustrate how to use both of these ‘rules’ could complement each other, consider the 

following example. Suppose annual state-to-state transportation statistics were available to a 

developer designing an U.S. MRIO system for use in energy analysis.  If this transportation data 

described the value of shipments within and between states on ‘Food and Kindred Products’, 

commodities as diverse as cotton and ice would belong to this industry aggregate. Suppose a 

particular region of an MRIO system produces food and kindred products that predominantly 

have similar cost structures as ice, and another region has products in this category that 

predominantly have similar cost structures as cotton. Using the product mix approach, the former 

region would end up with an aggregate food industry I-O coefficient for electricity that would be 

considerably higher than in the later region. 

Now suppose that after doing the work of developing detailed regional output data for the 

product mix approach, the developer decided to keep the detail in the model they are trying to 

solve. Typically, this would mean that if transportation data indicated 20-percent of region I food 

and kindred product shipments went to region II, than a prior for each detailed commodity would 

have 20-percent going to region II.  In solving a system with such priors, it is very likely that a 

substantial amount of product will be redirected, while a more aggregated system would most 

likely not have as much redirection. The significance of this result is illustrated in the following 

scenario. 

Suppose an U.S. MRIO system includes regions of Florida and California, and one of the 

commodities modeled was ‘canned fruits and vegetables’. While this is typically viewed as a 

 24



detailed commodity category, there is a large product variety within this group, including fresh 

orange juice—a product almost unique to Florida. California produces a substantial share of the 

canned vegetables.  Using the aggregated transportation data priors to move canned fruits and 

vegetables, both Florida and California will initially have too much canned products remaining 

in State.  Further, from an optimization perspective, it will be very efficient to diminish or sever 

the bilateral flows of canned products between California and Florida.  A developer specializing 

in the energy industry is unlikely to notice this outcome. On the other hand, using the aggregated 

sectors, the CA/FL trade linkage is more likely to be preserved. For most energy issues, it’s not 

important to know that Florida and California are trading orange juice and canned vegetables, 

but it is important to know that the two economies have a strong direct economic linkage. 

 Appendix III reports an U.S. MRIO system with 51 regions and 38 sectors based on the 

data and approaches discussed in this section [forthcoming].  While such a system is likely to 

have too much industry aggregation for most practical applications, extensions of this data set 

using the procedures discussed above for the sectors of interest to the developer’s application 

would be a routine extension of this approach. Evaluating the accuracy for this MRIO system is 

an important topic, but is beyond the scopes of present inquiry.  

 

VI. Conclusions and Direction for Future Research 

 This study constructed a mathematical programming model to estimate interregional 

trade patterns and input-output accounts based on an interregional accounting framework and 

initial estimates of interregional shipments in a national system of economic regions. The model 

is quite flexible in its data requirement and has desirable theoretical and empirical properties. An 

empirical test on the model using a 3-region, 10-sector example aggregated from version 4 
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GTAP database show that the model performed remarkably well in discovering the true patterns 

of interregional trade from highly distorted initial estimates on interregional shipments. It shows 

the model may have great potential in the application of estimating and reconciliation of 

interregional trade flow data, which often are the most difficult part in assembling the 

equilibrium base year data set for interregional CGE models. In addition, solutions from the 

aggregated model exactly provide the data needed for a MRIO model and solution from the 

extended model exactly provide the data needed for an IRIO model. This will greatly reduce the 

data processing burden in such analysis. Therefore, application of the model will further 

facilitate quantitative economic analysis in regional sciences.  

 However, there are important questions not yet answered by the current study.  First, test 

results from the data set aggregated from GTAP also show that our model’s ability to improve 

the IO transaction estimates of individual regions from national average may be limited. 

Continuing research on the real underlying causes and ways of improvement are needed to 

further enhance the model’s capacity as an estimating and reconciliation tool in building 

interregional production and trade accounts.  Second, the relative importance of regional sector 

output, value-added, exports, imports and final demand as model input in the accuracy of a 

model solution is also not analyzed yet, and could be addressed with minor changes of the 

current model. Finally, the robustness of the model performance needs further testing by using 

other data sets.  
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Appendix A: Constraint Matrix Balancing problem 

The model is a special case of the constrained matrix-balancing problem from a 

mathematical perspective. It is so named because it involves the computation of the best estimate 

of an unknown matrix from a given matrix, with some prior information to constrain the solution 

set.  It appears as a core structure in diverse applications. These applications include the 

estimation of input-output tables (Bachem and Korte, 1981; Harrigan and Buchanan, 1984; 

Miller and Blair, 1985; Kaneko, 1988; Nagurney, 1989; Antonello, 1990) and inter-regional 

trade flows in regional science (Batten, 1982; Byron et al., 1993), balancing of social/national 

accounts in economics (Byron, 1978; Van der Ploeg, 1982, 1984,1988; Zenios, Drud, and 

Mulvey, 1989; Nagurney, Kim, and Robinson, 1990), estimating interregional migration in 

demography (Plane, 1982), the analysis of voting patterns in political science (Johnson, Hay, and 

Taylor, 1982), the treatment of census data and estimation of contingency tables in statistics 

(Friedlander, 1961), the estimation of transition probabilities in stochastic modeling (Theil and 

Rey, 1966), and the projection of traffic within telecommunication and transportation networks 

(Florian, 1986; Klincewicz, 1989). A comprehensive survey can be found in Schneider and 

Zenios (1990).  

Methods for matrix balancing can be classified into two broad classes -- bi-proportional 

scaling and optimization. The scaling methods are based on the adjustments of the initial matrix 

to multiplying its row and column by positive constants until the matrix is balanced. It was 

developed by Stone and other members of the Cambridge Growth Project (Stone et al., 1963) 

and is usually known as RAS. The basic method was originally applied to known row and 

column totals but had been extended to cases where the totals themselves are not known with 

certainty (Senesen and Bates, 1988). Optimization methods are based on mathematical 
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programming, usually minimizing a penalty function, which measures the deviation of the 

candidate balanced matrix from the initial matrix subject to a set of balance condition. 

The scaling methods such as RAS have been one of the most widely applied 

computational algorithms for the solution of the constrained matrix balancing problems. They 

are simple, iterative, and require minimal programming effort to implement. However, as pointed 

out by van der Ploeg (1982), they are not straightforward to use when including more general 

linear restrictions and when allowing for different degrees of uncertainty in the initial estimates 

and restraints. They also lack a theoretical interpretation of the adjustment process.  Those 

aspects are crucial for an adjustment procedure to improve the information content of the 

balanced estimates rather than only adjusting the initial estimates mechanically. Mohr, Crown 

and Polenske (1987) discussed the problems encountered when the RAS procedure is used to 

adjust trade flow data. They pointed out that the special properties of interregional trade data 

increase the likelihood of non-convergence of the RAS procedure and proposed a linear 

programming approach that incorporate exogenous information to override the unfeasibility of 

the RAS problem. 

Since the 1980s more and more researchers have tended to formulate constrained matrix 

balancing problems as mathematical programming problems (var der Ploeg, 1988, Nagurney and 

Robinson, 1989, Bartholdy, 1991, Byron et al., 1993), with an objective function that forces 

"conservatism" on the process of rationalizing X from the initial estimate X0. The theoretical 

foundation for the approach can be viewed from both the perspectives of mathematical statistics 

and information theory. When a quadratic penalty function is used, the solution of this 

mathematical programming problem gives a minimum variance unbiased linear estimate of the 

unknown matrix X (Byron, 1978, Van der Ploeg, 1982, 1984); while when a entropy function is 
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used, its solution gives the estimate of X which minimizes the "information added" to X0 needed 

to conform to the constraints (Wilson 1970). In addition, the solution of the RAS method is 

equivalent to constrained entropy minimization with fixed prior row and column totals, as shown 

by Bregman (1967), thus can been seen as a special case of the optimization methods.  

  Another important advantage of mathematical programming models over scaling 

methods in applied matrix balancing problems is that it permits one to introduce relative degree 

of reliability for the initial estimates. Further, additional constraints may be imposed on the data 

adjustment process, such as allowing precise upper and lower bounds to be placed on unknown 

elements, or incorporating an associated term in the objective function to penalize solution 

deviations from the initial row or column total estimates when they are not known with certainty. 

Therefore, it provides more flexibility to the matrix balancing procedure. This flexibility is very 

important in terms of improving the information content of the balanced estimates.  

The idea of including reliability of the initial estimate in the matrix balancing process can 

be traced back half a century to Richard Stone and his colleagues (1942) when they explored 

procedures for compiling national income accounts. Their ideas were formalized into a 

mathematical procedure to balance the system of accounts after assigning reliability weights to 

each entry in the system. The minimization of the sum of squares of the adjustments between 

initial entries and balanced entries in the system, weighted by the reliabilities or the reciprocal of 

the variances of the entries is carried out subject to linear (accounting) constraints. This approach 

had first been operationlized by Byron (1978) and applied to the System of National Accounts of 

UK by Ploeg (1982, 1984). Zenios and his collaborators (1989) further extended this approach to 

balance a large social accounting matrix in a nonlinear network-programming framework. 
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Although computational burden is no longer a problem today, the difficulty of estimating the 

error variances with this method still remains unsolved. 
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Appendix B GAMS Program for the 3-region, 10-sector Example  

1. Data processing program 
 
*This program produces a test data set for the minimum information gain model 
**from a 4-region 10-sector aggregation version 4 GTAP database 
 
**## SECTORS 
 SETS 
    IS       / AGR,PFD,RES,CON,DUR,UTL,CNS,TAT,PSV,GSV,CGD,total / 
 
    I(IS)   /  AGR     AGRICULTURE 
               PFD     FOOD PROCESSING 
               RES     RESOURCE BASED SECTOR 
               CON     NON-DURABLE CONSUMER GOODS 
               DUR     DURABLE GOODS 
               UTL     UTILITY 
               CNS     CONSTRUCTION 
               TAT     TRADE AND TRANSPORT 
               PSV     PRIVATE SERVICE 
               GSV     PUBLIC SERVICE 
               CGD     INVESTMENT GOODS / 
 
     TTS(IS) / AGR,PFD,RES,CON,DUR,UTL,CNS,TAT,PSV,GSV,total / 
 
     T(I)    / AGR,PFD,RES,CON,DUR,UTL,CNS,TAT,PSV,GSV / 
 
     II(T)    / AGR,PFD,RES,CON,DUR,UTL,CNS,PSV,GSV / 
 
     JJ(T) /  PFD,RES,CON,DUR,UTL,CNS,TAT,PSV,GSV / 
     JI(T)  / PFD,CON,DUR,UTL,CNS,TAT,PSV,GSV / 
 
     IOM(T)  / DUR,TAT,PSV / 
     ISV(T)  / UTL,CNS,TAT,PSV,GSV / 
     MFL(T)  / PFD,CON   / 
     MFH(T)  / DUR  / 
     KK(T)   / res / 
     IAG(T)  / agr / 
     IAG1(T) / agr,pfd / 
 
**## REGIONS 
     rs    / USA,EEC,JPN,ROW,tot / 
 
     r(rs)   REGIONS  / USA      UNITED STATES 
                        EEC      European Union 
                        JPN      JAPAN 
                        ROW      REST OF THE WORLD / 
 
     rr(r)  / USA,EEC,JPN / 
 
**## FACTORS OF PRODUCTION 
 
     IIF    FACTORS        /   LND         LAND 
                               AGLB        RURAL-LABOR 
                               ULB         UNSKILLED-LABOR 
                               SLB         SKILLED-LABOR 
                               CAP         CAPITAL 
                               NRS         SECTOR SPECIFIC RESOURCES / 
 
     F                    / LND,ULB,SLB,CAP,NRS / 
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     FF(IIF) / LND,ULB,SLB,CAP,NRS / 
     FF0(FF) / LND,ULB,SLB,CAP / 
     FC(FF)  / LND,SLB,CAP / 
     FF1(FF) / ULB,SLB,CAP / 
     FF2(FF) / ULB,SLB,CAP,NRS / 
     FL(F)  / ULB,SLB / 
     FR(F) / LND,CAP,NRS / 
     FB(FF)  / LND,SLB,CAP / ; 
 
SETS 
**## SET FOR CET FUNCTION CONTROL 
 
     IE1(T,R)   CET AGGREGATE EXPORT SECTORS 
 
     IE2(T,R)   COMPETITIVE EXPORT SECTORS 
 
 / (agr). 
   (USA,EEC,JPN,ROW) / 
; 
 
 ALIAS (FF,FFC),(FF0,FFC0),(FF1,FFC1),(FF2,FFC2),(JJ,JJC),(FC,FCC); 
 ALIAS (R,RT,S,ST), (rr,ss),(I,IT), (F,FT),(FL,FLT),(T,K,KC); 
 
SETS 
**## OTHER SETS 
     MAC     MACRO VARIABLES 
/    SAVE    Regional savings 
     VDEP    Capital Depreciation 
     VKB     Capital stock in the beginning period 
     HTAX    Household income tax  / 
   ; 
 
SETS     MISX(T,R,S)   ZERO TRADE 
         MISE(T,R)     ZERO EXPORT 
         MISM(T,R)     ZERO IMPORT 
         MISQ(T,R)     ZERO PRODUCTION 
         MISDF(FF,T,R) ZERO FACTOR DEMAND 
         MISVA(T,R)    ZERO VALUE-ADDED 
         QOUTA(T,R,S)  TRADE FLOWS SUBJECT IMPORT QOUTAS ; 
 
*---------- BASIC DATA FROM GTAP GLOBAL TRADE DATA BASE ----------* 
 
$INCLUDE data\gtap4.DAT 
 
*-------------------------------DERIVED DATA FROM THE BASIC DATA -----------------------------------------------* 
 
PARAMETER 
  VFA(T,I,R)    PRODUCER COST ON INTEMEDIATE INPUTS T BY INDUSTRY I IN REGION R AT AGENT'S PRICE 
  VFM(T,I,R)    PRODUCER COST ON INTEMEDIATE INPUTS T BY INDUSTRY I IN REGION R AT MARKET PRICE 
  VOA(I,R)      TOTAL PRODUCTION COST OF SECTOR I IN REGION R AT AGENT'S PRICE 
  VOM(I,R)      TOTAL VALUE OF OUTPUT I IN REGION R AT MARKET PRICE 
 
  EVOM(F,R)     TOTAL VALUE ADDED FOR FACTOR F AT MARKET PRICE 
  VDM(T,R)      DOMESTIC SALES OF COMMODITY T IN REGION R AT MARKET PRICE 
  VDA(T,R)      DOMESTIC SALES OF COMMODITY T IN REGION R AT AGENT PRICE 
  VPA(T,R)      HOUSEHOLD EXPENDITURE ON COMMODITY T IN REGION R VALUED AT AGENT'S PRICE 
  VPM(T,R)      HOUSEHOLD EXPENDITURE ON COMMODITY T IN REGION R VALUED AT MARKET PRICE 
  VIM(T,R)      VALUE OF TOTAL IMPORTS OF COMMODITY T BY REGION R 
  HEXP(R)       HOUSEHOLD CONSUMPTION EXPENDITURE IN REGION R 
  VGA(T,R)      GOVERNMENT HOUSE HOLD EXPENDITURE ON COMMODITY T IN REGION R AT AGENT'S PRICE 
  VGM(T,R)      GOVERNMENT HOUSE HOLD EXPENDITURE ON COMMODITY T IN REGION R AT MARKEY PRICE 
  GEXP(R)       GOVERNMENT CONSUMPTION EXPENDITURE ON REGION R 
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  VTW(T,R,S)    TRANSPORTATION COST ASSOCIATED WITH THE SHIPMENT 
*                  OF COMMODITY T FROM REGION R TO S 
  ER(T,R)       DIFFERENCE BETWEEN TOTAL IMPORTS AND DOMESTIC ABSORBTION 
*               OF IMPORT GOODS, SHOULD BE ZERO 
  BOT(R)        BALANCE OF TRADE IN REGION R 
  CHECKA(T,R) 
  CHECKC(T,R) 
  VT            TOTAL COST OF INTERNATIONAL TRANSPORTATION SERVICES 
  SAVE(R)       HOUSEHOLD SAVINGS 
  VDEP(R)       DEPRECIATION 
  VKB(R)        CAPITAL STOCK 
  REGINV(R)     GROSS REGIONAL INVESTMENT IN REGION R 
  GSAV(R)       GOVERNMENT SAVING OR DEFICIT; 
 
PARAMETERS 
SAVE(R)         Expenditures on net savings (AP) 
VDEP(R)         Value of capital depreciation (AP) 
VKB (R)         Value of beginning-of-period capital stock (AP) 
GTRANS0(R)      GOVERNMENT SAVING OR DEFICIT 
; 
 
SAVE(R) = MACRO(R,"save") ; 
VDEP(R) = MACRO(R,"vdep") ; 
VKB (R) = MACRO(R,"vkb") ; 
 
  VFA(T,I,S) = VDFA(T,I,S) +  VIFA(T,I,S); 
  VFM(T,I,S) = VDFM(T,I,S) +  VIFM(T,I,S); 
  VOA(I,R) = SUM(T, VFA(T,I,R)) + SUM(F, EVFA(F,I,R)); 
  VDM(T,R) = VDPM(T,R) + VDGM(T,R) + SUM(I, VDFM(T,I,R)); 
  VDA(T,R) = VDPA(T,R) + VDGA(T,R) + SUM(I, VDFA(T,I,R)); 
  VOM("CGD",R) = VOA("CGD",R); 
  VOM(T,S) = VDM(T,S) + SUM(R, VXMD(T,S,R)) + VST(T,S); 
  EVOM(F,R)= SUM(I, EVFM(F,I,R)); 
  VPA(T,S) = VDPA(T,S) + VIPA(T,S); 
  VPM(T,S) = VDPM(T,S) + VIPM(T,S); 
  HEXP(R)  = SUM(T, VPA(T,R)); 
  VGA(T,S) = VDGA(T,S) + VIGA(T,S); 
  VGM(T,S) = VDGM(T,S) + VIGM(T,S); 
  GEXP(R)  =  SUM(T, VGA(T,R)); 
  SAVE(R)  = MACRO(R,"SAVE"); 
  VDEP(R)  = MACRO(R,"VDEP"); 
  VKB(R)   = MACRO(R,"VKB"); 
  VTW(T,R,S) = VIWS(T,R,S) - VXWD(T,R,S); 
 
  BOT(R) = SUM(T,VST(T,R))+ SUM((T,S), VXWD(T,R,S)) - SUM((T,S), VIWS(T,S,R)); 
  VT = SUM((T,S,R), VTW(T,R,S)); 
 
*  DISPLAY VDM, VFA, VFM, VPA,VPM,VGA,VGM; 
   DISPLAY VOA,VOM; 
*   DISPLAY EVOM,HEXP,GEXP,VTW, BOT,VT; 
 
PARAMETER 
  PTAX(I,R)        VALUE OF PRODUCT TAX 
  DPTAX(T,R)       VALUE OF CONSUMPTION TAX OF DOMESTIC GOODS BY HOUSEHOLD 
  IPTAX(T,R)       VALUE OF CONSUMPTION TAX OF IMPORTS BY HOUSEHOLD 
  DGTAX(T,R)       VALUE OF CONSUMPTION TAX OF DOMESTIC GOODS BY GOVERNMENT 
  IGTAX(T,R)       VALUE OF CONSUMPTION TAX OF IMPORTS BY GOVERNMENT 
  DFTAX(T,I,R)     VALUE OF CONSUMPTION TAX OF DOMESTIC GOODS BY FIRMS 
  IFTAX(T,I,R)     VALUE OF CONSUMPTION TAX OF IMPORTS BY FIRMS 
 
  XTAX(T,R,S)      VALUE OF EXPORT TAX 
  MTAX(T,S,R)      VALUE OF TARRIFF 
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  ETAX(F,R)        VALUE OF FACTOR TAX 
  HTAX(R)          VALUE OF HOUSEHOLD INCOME TAX 
  ITAX(I,R)        VALUE OF FIRM INPUT TAX 
  CTAX(T,R)        VALUE OF CONSUMPTION TAX 
  KTAX(T,R)        VALUE OF CAPITAL GOODS TAX; 
 
  DPTAX(T,R) = VDPA(T,R)-VDPM(T,R); 
  IPTAX(T,R) = VIPA(T,R)-VIPM(T,R); 
  DGTAX(T,R) = VDGA(T,R)-VDGM(T,R); 
  IGTAX(T,R) = VIGA(T,R)-VIGM(T,R); 
  DFTAX(T,I,R) = VDFA(T,I,R)-VDFM(T,I,R); 
  IFTAX(T,I,R) = VIFA(T,I,R)-VIFM(T,I,R); 
 
  PTAX(I,R)   = VOM(I,R)-VOA(I,R); 
  XTAX(T,R,S) = VXWD(T,R,S) - VXMD(T,R,S); 
  MTAX(T,S,R) = VIMS(T,S,R) - VIWS(T,S,R); 
 
  ETAX(F,R) = SUM(I, (EVFA(F,I,R) - EVFM(F,I,R))); 
  HTAX(R)   = SUM(F, (EVOM(F,R) - EVOA(F,R))); 
 
  CTAX(T,R) = DPTAX(T,R) + IPTAX(T,R) + DGTAX(T,R) + IGTAX(T,R) 
              + IFTAX(T,"CGD",R) + DFTAX(T,"CGD",R); 
  ITAX(T,R) = SUM(K, (IFTAX(K,T,R) + DFTAX(K,T,R))); 
 
  DISPLAY  PTAX,XTAX,MTAX,ETAX,HTAX,CTAX,ITAX; 
 
*------------- CHECKING THE BENCHMARK DATA FROM GTAP DATABASE -----------------* 
 
PARAMETER 
 
  PROFITS(I,R)     PROFITS INSECTOR I OF REGION R, SHOULD BE ZERO 
  SURPLUS(R)       ECONOMIC SUPLUS IN REGION R, SHOULD BE ZERO 
  ACTER(T,R) 
  RESBOT 
  TSR              RESIDUAL OF INTERNATIONAL TRANSPORTATION INDUSTRY, SHOULD BE ZERO; 
 
  PROFITS(I,R) = VOA(I,R) - SUM(T,VFA(T,I,R)) - SUM(F, EVFA(F,I,R)); 
  ACTER(T,R)  =  VOM(T,R) - VDM(T,R) - SUM(S, VXMD(T,R,S)) - VST(T,R); 
 
  VIM(T,R) =  SUM(I, VIFM(T,I,R)) + VIPM(T,R) + VIGM(T,R); 
  ER(T,R) = VIM(T,R) - SUM(S, VIMS(T,S,R)); 
 
  SURPLUS(R) = SUM(F,EVOA(F,R))- VDEP(R) + SUM(I,PTAX(I,R)) + SUM(T,CTAX(T,R)) 
           + SUM(T,ITAX(T,R)) + SUM((T,S), (XTAX(T,R,S) + MTAX(T,S,R))) 
           + SUM(F,ETAX(F,R)) + HTAX(R) - SUM(T,(VPA(T,R)+VGA(T,R))) - SAVE(R); 
 
  TSR=SUM((T,R), VST(T,R)) - VT; 
  RESBOT=SUM(R, BOT(R)); 
 
  DISPLAY RESBOT,TSR,ER,PROFITS,ACTER,SURPLUS; 
 
   GSAV(R) = SUM(T, PTAX(T,R)) + SUM((K,S),(MTAX(K,S,R)+XTAX(K,R,S))) 
   + SUM(T,(CTAX(T,R)+ITAX(T,R))) + SUM(F,ETAX(F,R)) + HTAX(R) - GEXP(R); 
 
*## eliminate intra-regional trade flows 
 
 PARAMETERS 
 
  INTSHIPW(T,R) INTRA-REGIONAL SHIPPING SERVICES AT WORLD PRICE 
  INTTAXM(T,R)  INTRA-REGIONAL IMPORT TAX 
  INTTAXE(T,R)  INTRA-REGIONAL EXPORT TAX 
  VIA(T,R)      VALUE OF INVESTMENT BY SECTOR AND BY REGION 
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  VPAWT(T,R)    SHARE OF HOUSEHOLD CONSUMPTION IN FINAL DEMAND BY SECTOR 
  VGAWT(T,R)    SHARE OF GOVERNMENT SPENDING IN FINAL DEMAND BY SECTOR 
  VIAWT(T,R)    SHARE OF INVESTMENT IN FINAL DEMAND BY SECTOR; 
 
  VPAWT(T,R)$(VPA(T,R)+VGA(T,R)+VFA(T,"CGD",R)) = VPA(T,R)/(VPA(T,R)+VGA(T,R)+VFA(T,"CGD",R)); 
  VGAWT(T,R)$(VPA(T,R)+VGA(T,R)+VFA(T,"CGD",R)) = VGA(T,R)/(VPA(T,R)+VGA(T,R)+VFA(T,"CGD",R)); 
  VIAWT(T,R)$(VPA(T,R)+VGA(T,R)+VFA(T,"CGD",R)) = VFA(T,"CGD",R)/(VPA(T,R)+VGA(T,R)+VFA(T,"CGD",R)); 
 
  INTSHIPW(T,R)= VIWS(T,R,R)-VXWD(T,R,R); 
  INTTAXM(T,R) = VIMS(T,R,R) - VIWS(T,R,R); 
  INTTAXE(T,R) = VXWD(T,R,R) - VXMD(T,R,R); 
  VST("tat",R) = VST("tat",R) - SUM(T,INTSHIPW(T,R)); 
  CTAX(T,R) = CTAX(T,R) + INTTAXM(T,R) + INTTAXE(T,R); 
  VDM(T,R) = VDM(T,R) + VXWD(T,R,R) - INTTAXE(T,R); 
  VDM("tat",R) = VDM("tat",R) + SUM(T,INTSHIPW(T,R)); 
  VDM("tat","ROW") = VDM("tat","ROW") + TSR; 
  VST("tat","ROW") = VST("tat","ROW") - TSR; 
  VDA(T,R) = VDA(T,R) + VXWD(T,R,R) - INTTAXE(T,R); 
  VDA("tat",R) = VDA("tat",R) + SUM(T,INTSHIPW(T,R)); 
  VDA("tat","ROW") = VDA("tat","ROW") + TSR; 
 
  VPA(T,R) = VPA(T,R) - VPAWT(T,R)*INTSHIPW(T,R); 
  VIPM(T,R) = VIPM(T,R) - VPAWT(T,R)*VIMS(T,R,R) ; 
  VGA(T,R) = VGA(T,R) - VGAWT(T,R)*INTSHIPW(T,R); 
  VIGM(T,R) = VIGM(T,R)-VGAWT(T,R)* VIMS(T,R,R); 
  VIFM(T,"CGD",R) = VIFM(T,"CGD",R) - VIAWT(T,R)* VIMS(T,R,R); 
 
  VFA(T,"CGD",R) = VFA(T,"CGD",R) - VIAWT(T,R)*INTSHIPW(T,R); 
  VPA("tat",R) = VPA("tat",R) + SUM(T,VPAWT(T,R)*INTSHIPW(T,R)); 
  VGA("tat",R) = VGA("tat",R) + SUM(T,VGAWT(T,R)*INTSHIPW(T,R)); 
  VFA("tat","CGD",R) = VFA("tat","CGD",R) + SUM(T,VIAWT(T,R)*INTSHIPW(T,R)); 
  VIA(T,R) = VFA(T,"CGD",R); 
  DISPLAY INTTAXM,INTTAXE,INTSHIPW, VGA,VPA,VIA; 
 
  VIMS(T,R,R) = 0.0; 
  VIWS(T,R,R) = 0.0; 
  VXMD(T,R,R) = 0.0; 
  VXWD(T,R,R) = 0.0; 
  XTAX(T,R,R) = 0.0; 
  MTAX(T,R,R) = 0.0; 
  VTW(T,R,R)  = 0.0; 
 
  VT = SUM((T,S,R), VTW(T,R,S)); 
  TSR=SUM((T,R), VST(T,R)) - VT ; 
  DISPLAY TSR; 
 
  save(r) = save(r) + surplus(r); 
 
*## RE-CHECK DATA CONSISTANCY AFTER ADJUSTMENTS 
 
  SURPLUS(R) = SUM(F,EVOA(F,R))- VDEP(R) + SUM(I,PTAX(I,R)) + SUM(T,CTAX(T,R)) 
             + SUM((T,S), (XTAX(T,R,S) + MTAX(T,S,R))) 
             + SUM(F,ETAX(F,R)) + HTAX(R) - SUM(T,(VPA(T,R)+VGA(T,R))) - SAVE(R); 
  VIM(T,R) =  SUM(I, VIFM(T,I,R)) + VIPM(T,R) + VIGM(T,R); 
  ER(T,R) = VIM(T,R) - SUM(S, VIMS(T,S,R)); 
 
  DISPLAY ER,SURPLUS; 
 
*## RE-CALCULATION GOVERNMENT TRANSFER AND BALANCE OF TRADE AFTER ADJUSTMENTS 
 
  GTRANS0(R) = SUM(T, PTAX(T,R)) + SUM((K,S),(MTAX(K,S,R)+XTAX(K,R,S))) 
              + SUM(T,CTAX(T,R)) + SUM(F,ETAX(F,R)) + HTAX(R) - GEXP(R); 
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  BOT(R) = SUM(T,VST(T,R))+ SUM((T,S), VXWD(T,R,S)) - SUM((T,S), VIWS(T,S,R)); 
 
*--------------CONSTRUCTION OF SOCIAL ACCOUNTING MATRIX---------------* 
 
SETS 
 
  SI / ACT,COMD,FLD,FLB,FK,ENT,PH,GV,KA,WT,ITR,TOTAL/ 
  SIT(SI) /TOTAL/ 
  S1(SI) / ENT,GV,PH,KA,WT,ITR / 
  SSI(S1) / WT,ITR / 
  SI1(SI); 
 
  ALIAS(SI1,SI2); 
 
  PARAMETER 
 
  SAM(R,SI,SI)     SOCIAL ACCOUNTING MATRIX 
  RES(SI,R)        RESIDUAL OF REVENUE AND EXPENDITURE, SHOULD BE ZERO; 
 
  SI1(SI) = NOT  SIT(SI); 
 
* FIRST BLOCK: ACTIVITIES. DOMESTIC SUPPLY,EXPORT SUBSIDY, EXPORTS AT MP 
* EXPORTS FOR INTERNATIONAL TRANSPORTATION. 
 
  SAM(R,"ACT","COMD") = SUM(T, VDM(T,R)) ; 
  SAM(R,"ACT","GV") = -SUM((T,S), (VXWD(T,R,S) - VXMD(T,R,S))); 
  SAM(R,"ACT", "WT") = SUM((T,S), VXWD(T,R,S)); 
  SAM(R,"ACT","ITR") = SUM(T,VST(T,R)); 
 
* SECOND BLOCK: COMMODITIES. INTERMEDIATE DEMAND,HOUSEHOLD CONSUMPTION, 
* GOVERNMENT CONSUMPTION,INVESTMENT. 
 
  SAM(R,"COMD","ACT") = SUM((T,K), VFA(T,K,R)); 
  SAM(R,"COMD","PH")  =  SUM(T, VPA(T,R)); 
  SAM(R,"COMD","GV")  = SUM(T, VGA(T,R)); 
  SAM(R,"COMD","KA") = SUM(T, VFA(T,"CGD",R)); 
 
* THIRD BLOCK: VALUE ADDED 
  SAM(R,"FLD","ACT") = SUM(I, EVFM("LND",I,R)); 
  SAM(R,"FLB","ACT") = SUM(I, EVFM("ULB",I,R)) + SUM(I, EVFM("SLB",I,R)); 
  SAM(R,"FK","ACT") = SUM(I, EVFM("CAP",I,R)) + SUM(I, EVFM("NRS",I,R)); 
 
* FOURTH BLOCK: ENTERPRISE. CAPITAL INCOME AND DEPRECIATION. 
 
  SAM(R,"ENT","FK") = EVOM("CAP",R) + EVOM("NRS",R); 
  SAM(R,"ENT","PH") = VDEP(R); 
 
* FIFTH BLOCK: HOUSEHOLDS. INCOME FROM FACTORS. 
 
  SAM(R,"PH","FLD") =EVOM("LND",R); 
  SAM(R,"PH","FLB") =SUM(T,EVFM("ULB",T,R)) + SUM(T,EVFM("SLB",T,R)); 
  SAM(R,"PH","ENT") = EVOM("CAP",R) +  EVOM("NRS",R); 
 
* SIXTH BLOCK: GOVERNMENT. INDIRECT TAX,TARIFFS,FACTOR TAX,CAPITAL RETURN 
* HOUSEHOLD TAX,NET TRANSFER AMONG GOVERNMENT. 
 
  SAM(R,"GV","FLD") = ETAX("LND",R); 
  SAM(R,"GV","FLB") = ETAX("ULB",R) + ETAX("SLB",R); 
  SAM(R,"GV","FK") =  ETAX("CAP",R) + ETAX("NRS",R); 
  SAM(R,"GV","PH") =  HTAX(R) - GSAV(R); 
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  SAM(R,"GV","ACT") = SUM(T, PTAX(T,R)) ; 
  SAM(R,"GV","COMD") = SUM((T,S), MTAX(T,S,R)) + SUM(T,CTAX(T,R)) + SUM(T,ITAX(T,R)); 
 
* SEVENTH BLOCK: CAPITAL ACCOUNT. ENTERPRISE SAVEINGS,HOUSEHOLD SAVEINGS, 
* GOVERNMENT SAVEING AND NET CAPITAL INFLOW 
* (BANLANCE OF TRADE + NET FOREIGHN INVESTMENT) 
 
  SAM(R,"KA","ENT") = VDEP(R); 
  SAM(R,"KA","PH") = SAVE(R); 
  SAM(R,"KA", "WT") = - BOT(R) -SUM((T,S),VTW(T,S,R))+SUM(T,VST(T,R)); 
  SAM(R,"KA","ITR") = SUM((T,S),VTW(T,S,R))-SUM(T,VST(T,R)); 
 
* EIGTH BLOCK: REST OF THE WORLD. IMPORTS 
 
  SAM(R,"WT","COMD") = SUM((T,S), VXWD(T,S,R)); 
 
*NINTH BLOCK: INTERNATIONAL TRANSPORTATION SEVERCE. COST 
 
  SAM(R,"ITR","COMD") = SUM((T,S),VTW(T,S,R)); 
 
* TENTH BLOCK: SUM OF COLUMN. EXPENDITURE 
 
  SAM(R,"TOTAL","COMD") = SUM(SI1,SAM(R,SI1,"COMD")); 
  SAM(R,"TOTAL","ACT") = SUM(SI1,SAM(R,SI1,"ACT")); 
  SAM(R,"TOTAL","FLD") = SUM(SI1,SAM(R,SI1,"FLD")); 
  SAM(R,"TOTAL","FLB") = SUM(SI1,SAM(R,SI1,"FLB")); 
  SAM(R,"TOTAL","FK") = SUM(SI1,SAM(R,SI1,"FK")); 
  SAM(R,"TOTAL","ENT") = SUM(SI1,SAM(R,SI1,"ENT")); 
  SAM(R,"TOTAL","PH") = SUM(SI1,SAM(R,SI1,"PH")); 
  SAM(R,"TOTAL","GV") = SUM(SI1,SAM(R,SI1,"GV")); 
  SAM(R,"TOTAL","KA") = SUM(SI1,SAM(R,SI1,"KA")); 
  SAM(R,"TOTAL","WT") = SUM(SI1,SAM(R,SI1,"WT")); 
  SAM(R,"TOTAL","ITR") = SUM(SI1,SAM(R,SI1,"ITR")); 
 
* SUM OF ROW: REVENUE 
 
  SAM(R,SI2,"TOTAL") = SUM(SI1,SAM(R,SI2,SI1)); 
  RES(SI,R) = SAM(R,"TOTAL",SI) - SAM(R,SI,"TOTAL"); 
 
  OPTION EJECT; 
  OPTION SAM:3:1:1; DISPLAY  SAM; 
  OPTION DECIMALS=3; DISPLAY RES; 
  PARAMETER  SMRES(SI); 
  SMRES(SI) = SUM(R, RES(SI,R)); 
 
  OPTION DECIMALS=3; DISPLAY SMRES; 
 
  CHECKA(T,R) = SUM(K, VFM(K,T,R)) + SUM(F, EVFM(F,T,R)) + PTAX(T,R) + ITAX(T,R) 
              - VDM(T,R) - SUM(S, VXMD(T,R,S)) - VST(T,R); 
  CHECKC(T,R) = SUM(K, VFM(T,K,R)) + VPA(T,R) + VGA(T,R) + VFA(T,"CGD",R) 
              - VDM(T,R) - SUM(S,MTAX(T,S,R)) - CTAX(T,R) - SUM(S,VXWD(T,S,R)) 
              - SUM(S,VTW(T,S,R)); 
 
  DISPLAY CHECKA, CHECKC ; 
 
*## Create data sets for Minimum information gain model 
 
sets DF final demand categories / 
     hhs  household consumption 
     gov  government spending 
     inv  investment 
     exp  exports 
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     imp  imports 
  output  gross output 
     lab  conpensation to employee 
     cap  capital 
     tax  other value-added / 
 
 fd(df) / hhs,gov,inv / 
 va(df) / lab,cap,tax /; 
 
parameter stateinf(r,t,df), NX(t,k),NFD(t,df) 
ship0(t,s,r)  total shipment from region s to region r 
NTX(i)     National total gross output in sector i 
NEX(i)     National exports in sector i 
NMX(i)     National imports in sector i 
NTY(i)     National total final demand for sector i 
NVA(i)     National value-added in sector i 
STX0(i,r)  State total gross output in sector i 
SEX0(i,r)  State exports in sector i 
SMX0(i,r)  State imports in sector i 
STY0(i,r)  State total final demand for sector i 
SVA0(i,r)  State value-added in sector i 
chkrows(i) Row residuals 
chkcols(i) Column residuals 
chkship(i,r) 
 ; 
 
stateinf(r,t,"hhs") = VPA(t,r); 
stateinf(r,t,"gov") = VGA(t,r); 
stateinf(r,t,"inv") = VFA(T,"CGD",r); 
stateinf(r,t,"exp") = VIMS(t,r,"row"); 
stateinf(r,t,"imp") = VIMS(T,"row",R); 
stateinf(r,t,"lab") = SUM(fl, EVFA(fl,T,R)); 
stateinf(r,t,"cap") = SUM(fr, EVFA(fr,T,R)); 
stateinf(r,t,"tax") = PTAX(t,r); 
stateinf(r,t,"output") = VOM(t,r); 
 
ship0(t,s,r) = VIMS(T,S,R) ; 
ship0(t,r,r) = VDA(t,r)  ; 
 
STX0(t,r) = STATEINF(r,t,"output")   ; 
SEX0(t,r) = STATEINF(r,t,"exp")      ; 
SMX0(t,r) = MAX(0,STATEINF(r,t,"imp"))  ; 
SVA0(t,r) = sum(va, STATEINF(r,t,va)) ; 
STY0(t,r) = SUM(fd,STATEINF(r,t,fd)) ; 
 
positive variables 
STX(t,r)   State total gross output in sector i 
SEX(t,r)   State exports in sector i 
SMX(t,r)   State imports in sector i 
STY(t,r)   State total final demand for sector i 
SVA(t,r)   State value-added in sector i 
SHIP(t,s,r) 
STIO(t,k,r); 
 
Variables 
IOQ(t,k,r) 
txq(t,r) 
exq(t,r) 
mxq(t,r) 
vaq(t,r) 
fdq(t,r) 
spq(t,s,r) 
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ss1 ; 
 
STX.L(t,r) = STX0(t,r); 
SEX.L(t,r) = SEX0(t,r); 
SMX.L(t,r) = SMX0(t,r); 
STY.L(t,r) = STY0(t,r); 
SVA.L(t,r) = SVA0(t,r); 
STIO.L(t,k,r) = VFA(t,k,r); 
SHIP.L(t,s,r) = ship0(t,s,r); 
 
Equations 
colbal(t,r) 
rowbal(t,r) 
shipbal(t,r) 
ioeq(t,k,r) 
txeq(t,r) 
exeq(t,r) 
mxeq(t,r) 
vaeq(t,r) 
fdeq(t,r) 
spqeq(t,s,r) 
obj; 
 
colbal(t,r)..   SUM(k, stio(k,t,r)) + SVA(t,r) =E= STX(t,r); 
rowbal(t,rr)..  SUM(k, stio(t,k,rr)) + STY(t,rr) =E=   SMX(t,rr)+ SUM(ss,ship(t,ss,rr))  ; 
shipbal(t,rr).. SUM(ss,ship(t,rr,ss)) + SEX(t,rr) =E=  STX(t,rr); 
ioeq(t,k,r)..  IOQ(t,k,r) =E= stio(t,k,r) - VFA(t,k,r); 
txeq(t,r)..    txq(t,r)   =E= STX(t,r) - STX0(t,r); 
exeq(t,r)..    exq(t,r)   =E= SEX(t,r) - SEX0(t,r); 
mxeq(t,r)..    mxq(t,r)   =E= SMX(t,r) - SMX0(t,r); 
vaeq(t,r)..    vaq(t,r)   =E= SVA(t,r) - SVA0(t,r); 
fdeq(t,r)..    fdq(t,r)   =E= STY(t,r) - STY0(t,r); 
spqeq(t,ss,rr)..  spq(t,ss,rr) =E= ship(t,ss,rr)- ship0(t,ss,rr); 
 
obj..          SS1    =E= SUM((t,k,r)$VFA(t,k,r),SQR(IOQ(t,k,r))/VFA(t,k,r)) 
               + SUM((t,r)$STX0(t,r), SQR(txq(t,r))/stx0(t,r)) 
               + SUM((t,r)$SEX0(t,r), SQR(exq(t,r))/sex0(t,r)) 
               + SUM((t,r)$SMX0(t,r), SQR(mxq(t,r))/smx0(t,r)) 
               + SUM((t,r)$SVA0(t,r), SQR(vaq(t,r))/sva0(t,r)) 
               + SUM((t,r)$STY0(t,r), SQR(fdq(t,r))/sty0(t,r)) 
               + SUM((t,ss,rr)$ship0(t,ss,rr),SQR(SPQ(t,ss,rr))/ship0(t,ss,rr)); 
*## Model solusion 
 
  OPTIONS ITERLIM=1500000,LIMROW=0,LIMCOL=0,SOLPRINT=OFF; 
 
  MODEL databal / colbal 
                  rowbal 
                  shipbal 
                  ioeq 
                  txeq 
                  exeq 
                  mxeq 
                  vaeq 
                  fdeq 
                  spqeq 
                  obj      / ; 
 
 OPTIONS NLP=pathnlp; 
 DATAbal.OPTFILE=1; 
 SOLVE databal USING NLP MINIMIZING SS1; 
 
NX(t,k)   =  SUM(rr, STIO.L(t,k,rr)); 
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NTX(t)    =  SUM(rr, STX.L(t, rr)); 
NEX(t)    =  SUM(rr, SEX.L(t, rr)); 
NMX(t)    =  SUM(rr, SMX.L(t, rr)); 
NVA(t)    =  SUM(rr, SVA.L(t, rr)); 
NTY(t)    =  SUM(rr, STY.L(t, rr)); 
 
chkrows(t) = SUM(k, NX(t,k)) + NEX(t) + NTY(t) - NMX(t) - NTX(t); 
chkcols(t) = SUM(k, NX(k,t)) + NVA(t) - NTX(t); 
chkship(t,rr)= SUM(ss, ship.l(t,rr,ss)) + SEX.L(t,rr) - STX.L(t,rr); 
 
*chkrows(t) = round (chkrows(t),2) ; 
*chkcols(t) = round (chkcols(t),2) ; 
DISPLAY chkrows, chkcols,chkship ; 
 
 
*---Putting the GTAP data to GAMS data file -------------------------- 
  file  DATAOUT / E:\GAMSMO~1\region\data\GTAPtest.DAT /  ; 
  DATAOUT.PW = 255 ;    PUT dataout ; 
  PUT '*## DATA FROM GTAP95 DATA BASE ' //; 
  PUT '*CREATED FROM '; PUT SYSTEM.IFILE; PUT ' ON '; PUT SYSTEM.DATE ; 
  PUT ' AT '; PUT SYSTEM.TIME //; 
 
*  National IO flows 
 
   PUT 'TABLE NX(i,j) IO flows at national level' // ; 
    PUT @10, LOOP( k, PUT k.TL:>20); PUT //; 
      LOOP(t, 
          PUT t.TL @10 ; 
          LOOP(k, PUT NX(t,k):20:8 ) ; 
          PUT / ; 
      ); 
    PUT /; 
    PUT@3,';' ; PUT / ; 
    PUT /; 
 
* regional IO flows 
 
  PUT 'Table STIO0 (i,j,r) Initial regional IO flows ' // ; 
    PUT @14, LOOP( rr, PUT rr.TL:>23); PUT //; 
      LOOP((t,k), PUT t.TL @6 ; PUT "." @7 ; 
               PUT k.TL @14 ; 
               LOOP(rr, PUT stio.l(t,k,rr):23:11 ) ; 
          PUT / ; 
      ); 
    PUT /; 
    PUT@3,';' ; PUT / ; 
    PUT /; 
 
* regional value-added 
 
    PUT 'Table SVA0(i,r) regional value-added by sector' // ; 
    PUT @10, LOOP( rr, PUT rr.TL:>23); PUT //; 
      LOOP(t, 
          PUT t.TL @10 ; 
          LOOP(rr, PUT SVA.L(t,rr):23:11 ) ; 
          PUT / ; 
      ); 
    PUT /; 
    PUT@3,';' ; PUT / ; 
    PUT /; 
 
* regional final demand 
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    PUT 'Table STY0(i,r) regional final demand by sector' // ; 
    PUT @10, LOOP( rr, PUT rr.TL:>23); PUT //; 
      LOOP(t, 
          PUT t.TL @10 ; 
          LOOP(rr, PUT STY.L(t,rr):23:11 ) ; 
          PUT / ; 
      ); 
    PUT /; 
    PUT@3,';' ; PUT / ; 
    PUT /; 
 
* regional total output 
 
    PUT 'Table STX0(i,r) regional total output by sector' // ; 
    PUT @10, LOOP( rr, PUT rr.TL:>23); PUT //; 
      LOOP(t, 
          PUT t.TL @10 ; 
          LOOP(rr, PUT STX.L(t,rr):23:11 ) ; 
          PUT / ; 
      ); 
    PUT /; 
    PUT@3,';' ; PUT / ; 
    PUT /; 
 
* regional exports 
 
    PUT 'Table SEX0(i,r) regional exports by sector' // ; 
    PUT @10, LOOP( rr, PUT rr.TL:>23); PUT //; 
      LOOP(t, 
          PUT t.TL @10 ; 
          LOOP(rr, PUT SEX.L(t,rr):23:11 ) ; 
          PUT / ; 
      ); 
    PUT /; 
    PUT@3,';' ; PUT / ; 
    PUT /; 
 
* regional imports 
 
    PUT 'Table SMX0(i,r) regional imports by sector' // ; 
    PUT @10, LOOP( rr, PUT rr.TL:>23); PUT //; 
      LOOP(t, 
          PUT t.TL @10 ; 
          LOOP(rr, PUT SMX.L(t,rr):23:11 ) ; 
          PUT / ; 
      ); 
    PUT /; 
    PUT@3,';' ; PUT / ; 
    PUT /; 
 
* Inter-regional trade flows 
 
  PUT 'Table ship0(i,s,r) original inter-regional trade flow data ' // ; 
    PUT @14, LOOP( rr, PUT rr.TL:>23); PUT //; 
      LOOP((ss,t), PUT t.TL @6 ; PUT "." @7 ; 
               PUT ss.TL @14 ; 
               LOOP(rr, PUT ship.l(T,SS,RR):23:11 ) ; 
          PUT / ; 
      ); 
    PUT /; 
    PUT@3,';' ; PUT / ; 
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    PUT /; 
 
2. The minimum information gain model program 
 
$OFFSYMLIST OFFSYMXREF 
*## This program implement minimum information gain procedure 
*## to estimate interregional, interindustry transaction flows in a national system 
*## of regions based on a regional accounting framework and limited regional statistic 
*## data. The complete national IO table, regional sectoral data on gross output, 
*## value-added, exports, imports and final demand are used as inputs to generate 
*## interregional pattern of shipment from limited information. 
 
*---------------------- SET DEFINITION ------------------------* 
 
$INCLUDE setgtap.inc 
 
*---------- READ US 1997 BENCHMARK IO TABLE FROM BEA ----------* 
 
PARAMETERS 
 
*NX(i,j)    National IO flows (input from sector i to sector j) 
NTX(i)       National total gross output in sector i 
NEX(i)       National exports in sector i 
NMX(i)       National imports in sector i 
NTY(i)       National total final demand for sector i 
NVA(i)       National value-added in sector i 
chkrows(i)   Row residuals 
chkcols(i)   Column residuals 
chkship(i,r) residual of shipment ; 
 
$INCLUDE  data/GTAPTEST.dat 
 
NX(i,j)   =  SUM(r, STIO0(i,j,r)); 
NTX(i)    =  SUM(r, STX0(i, r)); 
NEX(i)    =  SUM(r, SEX0(i, r)); 
NMX(i)    =  SUM(r, SMX0(i, r)); 
NVA(i)    =  SUM(r, SVA0(i, r)); 
NTY(i)    =  SUM(r, STY0(i, r)); 
 
*# Check balance of the national IO table 
 
chkrows(i) = SUM(j, NX(i,j)) + NEX(i) + NTY(i) - NMX(i) - NTX(i); 
chkcols(i) = SUM(j, NX(j,i)) + NVA(i) - NTX(i); 
chkship(i,r)= SUM(s, ship0(i,r,s)) + SEX0(i,r) - STX0(i,r) ; 
 
*chkrows(t) = round (chkrows(t),2) ; 
*chkcols(t) = round (chkcols(t),2) ; 
 
DISPLAY chkrows, chkcols,chkship ; 
 
*##  assign coefficient in the objective function for QP 
 
parameters 
 
TXQ(i,r) 
TYQ(i,r) 
EXQ(i,r) 
MXQ(i,r) 
VAQ(i,r) 
SPQ(i,s,r) 
IOQ(i,j,r); 
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SCALAR Qscal 'coefs of Q range from [Qscal - 1/Qscal]'   / 1e-3 /; 
 
TXQ(i,r)$STX0(i,r)         =   MAX[Qscal,1/MAX(STX0(i,r),Qscal)]; 
TYQ(i,r)$STY0(i,r)         =   MAX[Qscal,1/MAX(STY0(i,r),Qscal)]; 
EXQ(i,r)$SEX0(i,r)         =   MAX[Qscal,1/MAX(SEX0(i,r),Qscal)]; 
MXQ(i,r)$SMX0(i,r)         =   MAX[Qscal,1/MAX(SMX0(i,r),Qscal)]; 
VAQ(i,r)$SVA0(i,r)         =   MAX[Qscal,1/MAX(SVA0(i,r),Qscal)]; 
SPQ(i,s,r)$ship0(i,s,r)    =   MAX[Qscal,1/MAX(SHIP0(i,s,r),Qscal)]; 
IOQ(i,j,r)$stio0(i,j,r)    =   MAX[Qscal,1/MAX(STIO0(i,j,r),Qscal)]; 
 
*---------- READ KNOWN REGIONAL DATA FROM VARIOUS SOURCES ----------* 
 
PARAMETERS 
 
checka(i,r) 
checkc(i,r) 
chkship(i,r) 
shipr(i,s,r)  Distored interregional shipment data 
stior(i,j,r)  regional IO flows by aveage IO coefficients 
er(i,s,r)     error term 
    ; 
 
*## generate distored data 
 
er(i,s,r) = 5*ship0(i,s,r) ; 
shipr(i,s,r) = ship0(i,s,r) + abs(normal(0,er(i,s,r))); 
*shipr(i,s,r)$(shipr(i,s,r) le 0) = ship0(i,s,r) + abs(normal(0,er(i,s,r))); 
 
stior(i,j,r)= (STX0(i,r)-SVA0(i,r))*(NX(i,j)/(NTX(i)-NVA(i))); 
 
display ship0, shipr; 
 
positive variables 
STX(i,r)    State total gross output in sector i 
SEX(i,r)    State exports in sector i 
SMX(i,r)    State imports in sector i 
STY(i,r)    State total final demand for sector i 
SVA(i,r)    State value-added in sector i 
SHIP(i,s,r) Inter-state shipment 
STIO(i,k,r) Indivadual region IO flows; 
 
Variables 
QIX(i,j,r) 
Qtx(i,r) 
Qex(i,r) 
Qmx(i,r) 
Qva(i,r) 
Qfd(i,r) 
Qsp(i,s,r) 
ss1 ; 
 
*## Variable initiation 
 
STX.L(i,r) = STX0(i,r); 
SEX.L(i,r) = SEX0(i,r); 
SMX.L(i,r) = SMX0(i,r); 
STY.L(i,r) = STY0(i,r); 
SVA.L(i,r) = SVA0(i,r); 
STIO.L(i,j,r) = stior(i,j,r); 
SHIP.L(i,s,r) = shipr(i,s,r); 
 
Equations 
colbal(i,r)   Sum of intermediate and factor input equals each sector output in each region 
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rowbal(i,r)   Sum of intermediate and final demand equals shipment from all region plus imports 
shipbal(i,r)  Sum of shipment to all region and export equals the region's output 
NIOBAL(i,j)   Sum IO flows from sector i to sector j for all state equal the national totals 
NFDBAL(i)     Sum final demand of commodity i delivered by each state equal to national totals 
NMAKBAL(i)    Sum of output for sector i by each state equal to national output in sector i 
NEXPBAL(i)    Sum of exports of commodity i by each state equal to total national exports 
NIMPBAL(i)    Sum of imports of commodity i by each state equal to total national imports 
NVABAL(i)     Sum of value-added of each state equal to total national exports 
 
ioeq(i,k,r) 
txeq(i,r) 
exeq(i,r) 
mxeq(i,r) 
vaeq(i,r) 
fdeq(i,r) 
spqeq(i,s,r) 
obj 
objetr 
objqp; 
 
colbal(i,r)..  SUM(j, stio(j,i,r)) + SVA(i,r) =E= STX(i,r); 
rowbal(i,r)..  SUM(j, stio(i,j,r)) + STY(i,r) =E= SMX(i,r) + SUM(s,ship(i,s,r)); 
shipbal(i,r).. SUM(s,ship(i,r,s))  + SEX(i,r) =E= STX(i,r) ; 
NIOBAL(i,j)..  NX(i,j)  =E= SUM(r, STIO(i,j,r)) ; 
NFDBAL(i)..    NTY(i)   =E= SUM(r, STY(i,r)) ; 
NMAKBAL(i)..   NTX(i)   =E= SUM(r, STX(i,r)) ; 
NEXPBAL(i)..   NEX(i)   =E= SUM(r, SEX(i,r)) ; 
NIMPBAL(i)..   NMX(i)   =E= SUM(r, SMX(i,r)) ; 
NVABAL(i)..    NVA(i)   =E= SUM(r, SVA(i,r)) ; 
 
ioeq(i,j,r)..  QIX(i,j,r) =E= stio(i,j,r)- stior(i,j,r); 
spqeq(i,s,r).. Qsp(i,s,r) =E= ship(i,s,r)- shipr(i,s,r); 
txeq(i,r)..    Qtx(i,r)   =E= STX(i,r) - STX0(i,r); 
exeq(i,r)..    Qex(i,r)   =E= SEX(i,r) - SEX0(i,r); 
mxeq(i,r)..    Qmx(i,r)   =E= SMX(i,r) - SMX0(i,r); 
vaeq(i,r)..    Qva(i,r)   =E= SVA(i,r) - SVA0(i,r); 
fdeq(i,r)..    Qfd(i,r)   =E= STY(i,r) - STY0(i,r); 
 
 
obj..          SS1        =E= SUM((i,j,r)$STIOr(i,j,r),SQR(QIX(i,j,r))/stior(i,j,r)) 
                            + SUM((i,s,r)$shipr(i,s,r),SQR(QSP(i,s,r))/shipr(i,s,r)) 
                            + SUM((i,r)$STX0(i,r), SQR(Qtx(i,r))/stx0(i,r)) 
                            + SUM((i,r)$SEX0(i,r), SQR(Qex(i,r))/sex0(i,r)) 
                            + SUM((i,r)$SMX0(i,r), SQR(Qmx(i,r))/smx0(i,r)) 
                            + SUM((i,r)$SVA0(i,r), SQR(Qva(i,r))/sva0(i,r)) 
                            + SUM((i,r)$STY0(i,r), SQR(Qfd(i,r))/sty0(i,r)); 
 
 
OBJQP..        SS1  =E=  0 ; 
 
*## Model solusion 
 
  OPTIONS ITERLIM=1500000,LIMROW=0,LIMCOL=0,SOLPRINT=OFF; 
 
  MODEL databal   / colbal 
                    rowbal 
                    shipbal 
                    NIOBAL,  NFDBAL 
                    NMAKBAL, NEXPBAL, NIMPBAL, NVABAL, 
                    ioeq 
                    txeq 
                    exeq 
                    mxeq 
                    vaeq 
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                    fdeq 
                    spqeq 
                    obj      / ; 
 
  MODEL databaletr / colbal 
                     rowbal 
                     shipbal 
                     NIOBAL,  NFDBAL 
                     NMAKBAL, NEXPBAL, NIMPBAL, NVABAL, 
                     objetr   / ; 
 
  MODEL databalqp / colbal 
                    rowbal 
                    shipbal 
                    NIOBAL, NFDBAL 
                    NMAKBAL, NEXPBAL, NIMPBAL, NVABAL, 
                    ioeq 
                    txeq 
                    exeq 
                    mxeq 
                    vaeq 
                    fdeq 
                    spqeq 
                    objqp      / ; 
 
file qp / qmatrix.txt /; 
qp.pc=5;qp.nr=2;qp.nd=10;qp.nw=0; 
put qp 'Q Matrix for %system.fn%'; 
 
loop{(i,j,s,r), 
    put / 'QIX' i.tl j.tl r.tl 'QIX' i.tl j.tl r.tl IOQ(i,j,r); 
}; 
loop{(i,s,r), 
    put / 'QSP' i.tl s.tl r.tl 'QSP' i.tl s.tl r.tl SPQ(i,s,r); 
}; 
loop{(i,r), 
    put / 'QTX' i.tl r.tl 'QTX' i.tl r.tl TXQ(i,r); 
}; 
loop{(i,r), 
    put / 'QEX' i.tl r.tl 'QEX' i.tl r.tl EXQ(i,r); 
}; 
loop{(i,r), 
    put / 'QMX' i.tl r.tl 'QMX' i.tl r.tl MXQ(i,r); 
}; 
loop{(i,r), 
    put / 'QVA' i.tl r.tl 'QVA' i.tl r.tl VAQ(i,r); 
}; 
loop{(i,r), 
    put / 'QTY' i.tl r.tl 'QTY' i.tl r.tl TYQ(i,r); 
}; 
putclose; 
 
 OPTIONS NLP=pathnlp; 
* DATAbal.OPTFILE=1; 
* SOLVE databal USING NLP MINIMIZING SS1; 
* OPTIONS NLP=conopt2; 
* OPTIONS NLP=snopt; 
 
 SOLVE databal USING NLP MINIMIZING SS1; 
 
*SOLVE databalqp USING LP MINIMIZING SS1; 
 
*ship.fx(i,s,r) = ship0(i,s,r) ; 
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*stio.fx(i,j,r) = stio0(i,j,r) ; 
STX.fx(i,r) = STX0(i,r); 
SEX.fx(i,r) = SEX0(i,r); 
SMX.fx(i,r) = SMX0(i,r); 
STY.fx(i,r) = STY0(i,r); 
SVA.fx(i,r) = SVA0(i,r); 
 
*## calculate MAPE index 
 
parameters serror0(i,s,r), serror(i,s,r), ierror0(i,j,r), ierror(i,j,r); 
 
ierror0(i,j,r)$stio0(i,j,r) = 100*ABS(stior(i,j,r)-stio0(i,j,r))/stio0(i,j,r); 
ierror(i,j,r)$stio.l(i,j,r) = 100*ABS(stio.l(i,j,r)-stio0(i,j,r))/stio0(i,j,r); 
 
serror0(i,s,r)$ship0(i,s,r) = 100*ABS(shipr(i,s,r)-ship0(i,s,r))/ship0(i,s,r); 
serror(i,s,r)$ship0(i,s,r)  = 100*ABS(ship.l(i,s,r)-ship0(i,s,r))/ship0(i,s,r); 
 
DISPLAY serror0, serror, ierror0, ierror; 
 
parameters MAPE(*)       Total mean absolute percentage error 
           MAPERS(r,*)     Mean absolute percentage by sending region 
           MAPERR(r,*)     Mean absolute percentage error by receiving region 
           MAPEI(i,*)      Mean absolute percentage error by commodity 
           MAPEU(i,*) ; 
 
MAPE("distored s")     =  100*SUM((i,s,r),ABS(shipr(i,s,r)-
ship0(i,s,r)))/SUM((i,s,r),ship0(i,s,r)); 
MAPE("estimate s")     =  100*SUM((i,s,r),ABS(ship.l(i,s,r)-
ship0(i,s,r)))/SUM((i,s,r),ship0(i,s,r)); 
MAPERs(r,"distored s") =  100*SUM((i,s),ABS(shipr(i,r,s)-ship0(i,r,s)))/SUM((i,s),ship0(i,r,s)); 
MAPERs(r,"estimate s") =  100*SUM((i,s),ABS(ship.l(i,r,s)-ship0(i,r,s)))/SUM((i,s),ship0(i,r,s)); 
MAPERr(r,"distored s") =  100*SUM((i,s),ABS(shipr(i,s,r)-ship0(i,r,s)))/SUM((i,s),ship0(i,s,r)); 
MAPERr(r,"estimate s") =  100*SUM((i,s),ABS(ship.l(i,s,r)-ship0(i,s,r)))/SUM((i,s),ship0(i,s,r)); 
MAPEI(i,"distored s")  =  100*SUM((s,r),ABS(shipr(i,s,r)-ship0(i,s,r)))/SUM((s,r),ship0(i,s,r)); 
MAPEI(i,"estimate s")  =  100*SUM((s,r),ABS(ship.l(i,s,r)-ship0(i,s,r)))/SUM((s,r),ship0(i,s,r)); 
MAPE("distored i")     =  100*SUM((i,j,r),ABS(stior(i,j,r)-
stio0(i,j,r)))/SUM((i,j,r),stio0(i,j,r)); 
MAPE("estimate i")     =  100*SUM((i,j,r),ABS(stio.l(i,j,r)-
stio0(i,j,r)))/SUM((i,j,r),stio0(i,j,r)); 
MAPERr(r,"distored i") =  100*SUM((i,j),ABS(stior(i,j,r)-stio0(i,j,r)))/SUM((i,j),stio0(i,j,r)); 
MAPERr(r,"estimate i") =  100*SUM((i,j),ABS(stio.l(i,j,r)-stio0(i,j,r)))/SUM((i,j),stio0(i,j,r)); 
MAPEI(i,"distored i")  =  100*SUM((j,r),ABS(stior(j,i,r)-stio0(j,i,r)))/SUM((j,r),stio0(j,i,r)); 
MAPEI(i,"estimate i")  =  100*SUM((j,r),ABS(stio.l(j,i,r)-stio0(j,i,r)))/SUM((j,r),stio0(j,i,r)); 
MAPEu(i,"distored u")  =  100*SUM((j,r),ABS(stior(i,j,r)-stio0(i,j,r)))/SUM((j,r),stio0(i,j,r)); 
MAPEu(i,"estimate u")  =  100*SUM((j,r),ABS(stio.l(i,j,r)-stio0(i,j,r)))/SUM((j,r),stio0(i,j,r)); 
 
DISPLAY MAPE,MAPERs,MAPERr,MAPEI,MAPEU ;
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