
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

This paper is from the
GTAP Annual Conference on Global Economic Analysis

https://www.gtap.agecon.purdue.edu/events/conferences/default.asp

Global Trade Analysis Project
https://www.gtap.agecon.purdue.edu/

Eleventh Floor, Menzies Building
Monash University, Wellington Road
CLAYTON Vic 3800 AUSTRALIA

Telephone: from overseas:
(03) 9905 2398, (03) 9905 5112 61 3 9905 2398 or
 61 3 9905 5112
Fax:
(03) 9905 2426 61 3 9905 2426

e-mail: impact@buseco.monash.edu.au
Internet home page: http//www.monash.edu.au/policy/

 Paper presented at the 9th Conference on
 Global Economic Analysis
 Addis Ababa, Ethiopia, June 2006

Running Simulations Faster on
Multi-Processor or 64-Bit PCs

 via GEMPACK

by

J. Mark HORRIDGE

And

Ken PEARSON

Centre of Policy Studies
Monash University

Computing Document No. C15-01 April 2006

ISSN 1 031 9034 ISBN 0 7326 1562 3

The Centre of Policy Studies (COPS) is a research centre at Monash University devoted to
quantitative analysis of issues relevant to Australian economic policy.

Running Simulations Faster on
Multi-Processor or 64-Bit PCs via GEMPACK

J. Mark Horridge and Ken Pearson
Abstract

Many modern Windows PCs now have two or more processors. These PCs cost little more than a PC with a
single processor.

If you are solving a model accurately using GEMPACK, you will usually extrapolate from 2 or 3 multi-step
calculations (for example, from Gragg 2-step, 4-step and 6-step calculations). The separate multi-step
calculations are independent of each other. For example, if you are doing Gragg 2,4,6-step calculations, the
6-step calculation can be done independently of the 4-step calculation.

If you wish to solve a model by extrapolating from 2 or 3 multi-step calculations, you can now ask
GEMPACK to carry out one or two of these multi-step calculations in parallel. In this way you may be able
to solve the model significantly more quickly than previously.

Suppose, for example, you are solving using Gragg 2,4,6-step calculations. If you have two processors, you
can ask the main program to carry out the 2-step and 4-step calculations. And you can ask the main
program to run (on the other processor) a separate job which carries out the 6-step calculation. When that 6-
step calculation is finished, the main program will read the results from the 6-step calculation and then
combine these results with the results of the 2-step and 4-step calculations to do the extrapolation and
produce the usual results. We refer to the main program as the "master" and to the run which carries out the
6-step calculation in parallel as "the servant". Since the 6-step calculation probably only takes as long as the
2-step followed by the 4-step, this will approximately halve the total elapsed time required to solve the
model.

If you have more than two processors, you can ask the master to run two servant programs.

When you run two or three calculations in parallel (one master and one or two servants), each program
requires about the same amount of memory. If your model takes about 500MB of memory to solve
normally, you will need about 1000MB to run one servant or about 1500MB to run two servants. If you
don't have this much memory, the servants and/or the master will be running in virtual memory (which is
very slow).

The new 64-bit processors (combined with a 64-bit version of Windows) are interesting in this context
since they are able to address more than 2GB of memory. [2 gigabytes of memory is effectively the
maximum which can be addressed by any program under 32-bit Windows XP and Windows 2000.]

The version of GEMPACK which allows master/servant solving is available as a best test version for
customers from organisations which have a multi-user Source-Code Version of GEMPACK with expiring
annual licences.

 2

TABLE OF CONTENTS

1. PRESS RELEASE 1

2. SOLVING IN PARALLEL 2

2.1 Several Subintervals, Automatic Accuracy, Complementarities 2

2.2 Multi-Processor PCs 3

2.3 Telling the Program to Run in Parallel 3
2.3.1 Problems with the Program Deciding How Many Servants 4

2.4 Some Elapsed Times 4
2.4.1 Comments on the Elapsed Times Reported in Table 2.4 5

3. 64-BIT PROCESSORS, OPERATING SYSTEMS ON WINDOWS PCS 6

4. INTEL FORTRAN COMPILER (32-BIT AND 64-BIT) SUPPORTED 6

4.1 Should I Consider Moving To 64-bit Intel Now? 7

5. BETA TEST VERSION IS AVAILABLE 7

1. Press Release

The following "press release" summarises the situation well.

WHEN TWO HEADS ARE BETTER THAN ONE:
PROFESSORS PROMOTE PARALLEL PROCESSING

Professors Kenneth and Robert Pearson of Monash University's BusEco's Centre of
Policy Studies have developed a method of speeding up complex economic
calculations.

Their software system, GEMPACK, is used to solve many of the world's biggest
economic models. Complex simulations can take many hours to complete.

Modern PC's often contain two CPUs, effectively doubling processing power. The
challenge is to design software that can take advantage of both CPUs at once.

"We divided the calculations into parts which could be executed independently by
either processor -- so halving compute time," chorused the twins. "Faster
computations will enable economists to conduct more simulations, or to solve even
bigger models," claimed Robert. "Or they could spend more time playing golf,"
echoed Ken.

 2

2. Solving in Parallel

Many modern Windows PCs now have two or more processors. These PCs cost little more than a PC with a
single processor.

If you are solving a model accurately using GEMPACK, you will usually extrapolate from 2 or 3 multi-step
calculations (for example, from Gragg 2-step, 4-step and 6-step calculations). The separate multi-step
calculations are independent of each other. For example, if you are doing Gragg 2,4,6-step calculations, the
6-step calculation can be done independently of the 4-step calculation.

We are grateful to Hom Pant who pointed out that these calculations are independent of each other and who
encouraged us to implement parallel calculations to take advantage of this.

If you wish to solve a model by extrapolating from 2 or 3 multi-step calculations, you can now ask
GEMPACK to carry out one or two of these multi-step calculations in parallel. In this way you may be able
to solve the model significantly more quickly than previously.

Suppose, for example, you are solving using Gragg 2,4,6-step calculations. If you have two processors, you
can ask the main program to carry out the 2-step and 4-step calculations. And you can ask the main
program to run (on the other processor) a separate job which carries out the 6-step calculation. When that 6-
step calculation is finished, the main program will read the results from the 6-step calculation and then
combine these results with the results of the 2-step and 4-step calculations to do the extrapolation and
produce the usual results. We refer to the main program as the "master" and to the run which carries out the
6-step calculation in parallel as "the servant". Since the 6-step calculation probably only takes as long as the
2-step followed by the 4-step, this will approximately halve the total elapsed time required to solve the
model.

If you have more than two processors, you can ask the master to run two servant programs.

Of course, there is no gain from using a master and servants if you are only carrying out a single multi-step
calculation – for example, if you are solving the model using just an Euler 4-step calculation.

This ability to run separate multi-step calculations in parallel is a new GEMPACK feature which will be
available in Release 10 of GEMPACK (see section 5).

When you run two or three calculations in parallel (one master and one or two servants), each program
requires about the same amount of memory. If your model takes about 500MB of memory to solve
normally, you will need about 1000MB to run one servant or about 1500MB to run two servants. If you
don't have this much memory, the servants and/or the master will be running in virtual memory (which is
very slow).

The new 64-bit processors (combined with a 64-bit version of Windows) are interesting in this context
since they are able to address more than 2GB of memory. [2 gigabytes of memory is effectively the
maximum which can be addressed by any program under 32-bit Windows XP and Windows 2000.]

If your model takes about 1.5GB of memory to solve normally, there is no point in running a servant as
well under 32-bit Windows XP since the master and servant will be competing for memory. But, if you are
running 64-bit Windows XP on a 64-bit PC and have say 4GB of memory, you can happily run one master
and one servant (each using 1.5GB) simultaneously. Or, if you have more than two processors and 6GB of
memory, you can happily run a master and two servants (each accessing 1.5GB of memory). And this
remains true even if the EXEs you are running are made with a 32-bit compiler such as the Lahey compiler
LF95.

The version of GEMPACK which allows master/servant solving is available as a best test version for
customers from organisations which have a multi-user Source-Code Version of GEMPACK with expiring
annual licences (see section 5 for details).

2.1 Several Subintervals, Automatic Accuracy, Complementarities

Running a master and one or two servants is allowed in more complicated situations including

• when you have two or more subintervals. Then each servant is called to carry out the multi-step
calculation it is responsible for on each subinterval.

 3

• when you are using automatic accuracy. As when there are several subintervals, each servant is
called to carry out the multi-step calculation it is responsible for on each subinterval. The master
controls the testing of the accuracy (has it been sufficient?) on each subinterval. If the values of a
Coefficient go out of range, the master is informed and repeats the subinterval as usual.

• when there are Complementarity statements in the model. Then the master has to carry out all of
the approximate run in each subinterval. The master enlists the aid of servants when doing the
accurate run in each subinterval (since this probably requires two or three separate multi-step
calculations). The time saving will be less in this case since the master must do all of the
approximate run. There is only time saving on the accurate run.

2.2 Multi-Processor PCs

For some years Windows PCs have been available which incorporated 2 or more CPUs. The PC’s
motherboard has 2 or 4 CPU sockets. Windows NT (and now XP) is able to schedule tasks to either
processor. Specially written programs (as described here) are able to speed execution by using both
processors.

These traditional multi-processor PC’s are usually large, noisy and expensive, with a rather limited
market (server applications). Not much software was adapted to use multiple CPUs.

Recently, dual-core processors which incorporate 2 processing units in a single package have become
popular. AMD has led the market, producing 2-processor chips which are plug-in replacements for
existing (single-processor) CPUs. No special motherboard is required, leading to a cheap, quiet PC
with multi-processing capacity.

Intel is rushing to catch up, and has already released a dual-core version of its popular Pentium M
laptop CPU (christened “Core Duo”). Desktop versions will follow. Within 1 or 2 years the majority of
new PCs will contain such chips. 4-core and even 8-core chips are planned. Multi-processing, once a
niche specialty, is becoming ubiquitous.

One reason for this trend is that traditional single-core CPUs have reached a performance plateau (or at
least improve more slowly than before). Multi-processing offers the prospect of continued performance
increases – if software can take advantage of it.

Although Windows allows for virtual memory (when the hard disk emulates RAM), good performance
requires that each running task has ample access to RAM. However, ordinary 32-bit CPUs and 32-bit
Windows can only manage 4GB of RAM. This limits the possibility of running several memory-
intensive tasks simultaneously. 64-bit CPUs and Windows versions are now available which can
manage much more memory. Indeed, all the dual-core AMD chips are 64-bit capable. Hence, there is a
connection between the transition to multicore PCs and the transition to 64-bit computing. That
connection is explored in section 3 below.1

2.3 Telling the Program to Run in Parallel

You can do this by including the following statement in your Command file.

servants = NO|1|2 ; ! NO is the default

• "servants = 1 ;" tells the program to use one servant. That will do the longest multi-step calculation.

• "servants = 2 ;" tells the program to use two servants. Those two servants will do the longer two
multi-step calculations. This only makes sense if you have three or more processors on your machine
since the main program will use one processor and each of the servants ideally has its own processor.
This only makes sense if you are extrapolating from three (not two) multi-step calculations.

1 When you run computational-intensive and memory-intensive jobs simultaneously on two or more
processors, it is important that each processor has quick access to the part of memory allocated to the
task it is performing. In some cases, each processor has its own channel to memory while in other
cases, two processors may share a common channel to memory.

 4

• "servants = no ;" tells the program not to use servants. That may be appropriate even if you have two
processors because you want to do serious word-processing while the simulation is running and you
want the second processor to concentrate on the word processing.

2.3.1 Problems with the Program Deciding How Many Servants

The program may be able to tell how many processors are available on your PC (though this is not easy to
find out reliably).

The program could find out how much memory is available on your PC. However, the program cannot
know early on how much memory will be required to solve your model. Accordingly, the program cannot
sensibly decide whether you have sufficient memory for one or more servants.

That is why, at least for the present, we require you to tell the program whether or not to use servants and,
if so, how many servants to use.

2.4 Some Elapsed Times

In this section we report some elapsed times with and without servants for various models with different
compilers.

All times reported here were obtained on a Windows XP PC with two dual-core AMD64 chips2 (that is, 4
processors) with 8Gb of physical memory.

The times for the LF90, LF95 and Intel-32 compilers were obtained running under the Windows XP
Professional (32-bit) operating system. The times for the Intel-64 compiler were obtained running under the
Windows XP Professional x64 Edition (a 64-bit operating system).

In each case, the default compiler options as supplied with Release 10 of GEMPACK were used. For LF90
and LF95 this is basically O1 optimisation options (the same as for Release 9.0 of GEMPACK with these
compilers). For the Intel compilers, this is /O2 optimisation option (which is also the default recommended
by Intel).

The times reported are elapsed times. Even for the same compiler and Command file, the elapsed time
varies from run to run.3 The times reported are the average of 3 runs in each case.

• The version of GTAP is one with 38 regions and 39 tradeable commodities. This is the same 38x39
aggregation we reported about in sections 4.2.9, 5.2.1 and 5.3.1 of the Release 9 version of GPD-5.
The simulation in SIM1.CMF is a Gragg 2,4,6-step simulation.

• The version of GTEM used for the report below has 23 regions and 29 tradeable commodities. [This is
the same version of GTEM we reported about in section 5.3.1 of the Release 9 version of GPD-5.]
GTEMSIM3.CMF is an Euler 3,5,7-step simulation. We are grateful to Guy Jakeman for supplying us
with this version of ABARE's GTEM model.

• The TERM-WATER version is a version of TERM with 48 commodities and 20 regions aimed at
water-related applications. This is the TERM model reported in the tables in sections 5.2.1 and 5.3 of
the Release 9 version of GPD-5. This model contains Complementarity statements.
TERMSIM1.CMF does 3-step Euler approximate run followed by Euler 2,3,4-step accurate run.
There are no Complementarity state changes in this simulation.

2 Two Dual Core AMD Opteron Processors 270 2.01GHz.
3 For example, with Intel 32, the 3 elapsed times for the 2-servant GTAP simulation were 24 m 48s,
21m 58s and 23m 40s, while for Intel 64, the 3 elapsed times for the same 2-servant simulation were
21m 31s, 21m 30s and 21m 36s.

 5

Simulation and
Compiler

Simulation
(no servants)

1 Servant 2 Servants Longest multi-step
calculation

GTAP38X39
SIM1.CMF

Gragg 2,4,6 Gragg 2,4,6 Gragg 2,4,6 Gragg 6

LF90 48m 35s4 32m 18s 26m 39s 20m 57s

LF95 66m 24s 35m 19s 34m 58s 33m 58s

Intel 32 48m 10s 26m 28s 23m 49s 23m 40s

Intel 64 41m 23s 24m 55s 21m 32s 20m 48s

GTEM
GTEMSIM3.CMF

Euler 3,5,7 Euler 3,5,7 Euler 3,5,7 Euler 7

LF90 17m 31s 10m 51s 10m 21s 10m 14s

LF95 46m 8s 25m 32s 24m 57s 24m 19s

Intel 32 19m 43s 11m 3s 10m 57s 10m 45s

Intel 64 18m 20s 10m 39s 10m 38s 9m 54s

TERM-WATER
TERMSIM1.CMF

Euler 2,3,4 (plus
3-step approx run)

Euler 2,3,4 (plus
3-step approx run)

Euler 2,3,4 (plus
3-step approx run)

Euler 4 (plus
3-step approx run)

LF90 6m 33s 4m 38s 4 m 32s 4 m 33s

LF95 7m 34s 5m 28s 5m 32s 5m 15s

Intel 32 5m 23s 3m 38s 3m 27s 3m 37s

Intel 64 3m 58s 2m 50s 2m 50s 2m 45s

Table 2.4 : Elapsed Times for Typical Simulations With and Without Servants

2.4.1 Comments on the Elapsed Times Reported in Table 2.4

The best you can hope for is that, by using 2 servants, the elapsed time will be the same as the elapsed time
for the longest of the 3 separate calculations. As you can see from the last two columns in Table 2.4, that
pretty much happens (except for the LF90 GTAP simulation).

With one servant, the master does the shorter two multi-step calculations while the servant does the longest
multi-step calculation.

In the case of the Gragg 2,4,6 GTAP simulation, this means that the master does something like 2+4=6
passes while the servant does 6 passes. [A Gragg 4-step has 5 passes. The first pass of all multi-step
calculations is done by the master before the servant starts. So the servant does the last 6 passes of the 7-
pass Gragg 6-step while, starting at the same time, the master does the last 2 passes of the Gragg 2-step and
then the last 4 passes of the Gragg 4-step.] On the basis of this (crude) analysis, you might expect that the
master would finish its two tasks (Gragg 2 and 4) at about the same time as the servant finished its one task
(Gragg 6). In fact, in this simulation, the master takes longer than the servant because of variations between
the times taken for the different steps.5

The TERM-WATER simulation has a 3-step Euler approximate run followed by an Euler 2,3,4-step
accurate run. The master does all of the approximate run (the servants are not able to help with that). Hence
the overall time saving is not as great as for the other simulations reported.

4 This is an abbreviation for 48 minutes, 35 seconds.
5 For the Intel-32 compiler, the single step times taken through this simulation vary from about 2m 35s
to about 4m 56s. In this case, it just happens that more of the longer ones occur in the parts done by the
master. For another simulation, the reverse might happen.

 6

Summary

• If you have 3 or more processors and run with 2 servants, you can expect that the elapsed time will be
roughly that for the longest multi-step calculation.

• If you have only 2 processors (or run with only one servant), you still can expect to make considerable
time savings. And you can estimate roughly how much by considering how many total passes the
master and servant must each make (once the servant is started).

3. 64-bit Processors, Operating Systems on Windows PCs

Until recently the mainstream desktop PC environment has been a Pentium-compatible 32-bit (IA-32)
processor running Microsoft Windows. Ordinary 32-bit Windows supports up to 4Gb RAM, although
each running program may use at most 2Gb (in practice 1.5Gb) for data.

Intel promoted the Itanium 64-bit (IA64) processor, and Microsoft provided a special version of
Windows (Server 2003 Itanium) to run it. However, the Itanium is internally quite different from the
Pentium and so existing 32-bit programs (compiled for 32-bit Windows) can run only relatively slowly,
using an emulation layer. The difficulty of using older programs has restricted the Itanium to a
shrinking niche market.

Rival firm AMD has produced Opteron and Athlon 64-bit processors which, like the Itanium, can
access much more than 2Gb RAM. The AMD chips, however, are closer to the older Pentium
architecture, and offer a 32-bit mode which runs older 32-bit programs at full speed. AMD calls this
CPU architecture X-86-64 or AMD64.

Intel has rushed to imitate the AMD64 system, which it terms IA32e or EM64T. Both AMD and Intel
chips are available in dual-core versions. In performance, the Intel chips almost match AMD (but they
fry eggs much faster). To software, the AMD64 and EM64T chips appear the same. Their high
backwards compatibility allows AMD64/EM64T chips to run 32-bit Windows very well -- but without
any 64-bit advantages.

Now Microsoft offers "x64" editions of Windows Server 2003 and Windows XP to suit AMD64 or
EM64T chips. Programs compiled especially for x64 Windows can access all available RAM (the 2 Gb
limit is broken). But even older, 32-bit, programs run as fast under x64 as they did in 32-bit Windows.
Indeed x64 Windows is the best way to simultaneously run several 32-bit programs which each use up
to 2Gb of RAM. In total, 16 or 128 Gb of RAM may be used.

In common parlance, 64-bit now refers to AMD64 or EM64T chips and x64 Windows, not to the
Itanium IA64 and its special versions of Windows.

The main benefit of 64-bit technology is the greater RAM access – but it offers other potential
advantages. For example, the speed penalty for using double-precision is reduced (but not removed).
There are more high-speed registers, which a very few especially-tuned programs may use. But in
general we would not expect that a program originally compiled for a 32-bit CPU would run faster
when re-compiled for x64. Indeed, the 64-bit program will require a little more RAM than its 32-bit
counterpart.

4. Intel Fortran Compiler (32-bit and 64-bit) Supported

GEMPACK will support the Intel Fortran compiler from Release 10 (as well as the Lahey compilers
currently supported).

The Intel compiler is of particular interest on 64-bit PCs since it comes in a 64-bit version which can write
code which will only run on a 64-bit processor. This produces executable images which can access more
than the 2GB limit which applies on 32-bit operating systems. Modellers who have large models which are
currently close to the 2GB limit will be free of this limit if they use GEMPACK with the Intel compiler on
a 64-bit PC.

The Intel compiler also comes in a 32-bit version.

 7

4.1 Should I Consider Moving To 64-bit Intel Now?

The following flow chart will help you decide if you should consider moving to the 64-bit Intel
compiler now. If 32-bit is still ok for you, you can continue to use the Lahey compilers supported by
GEMPACK – there is no need to switch to the Intel compiler.

Does program
use more than

1.5Gb data?

64-bit EXE is
needed

64-bit CPU and
64-bit Windows

required

Is program
is slow to run?

32-bit EXE,
one 32-bit CPU,
32-bit Windows
is fine for now

32-bit EXE will
do

Several
processors are

needed.

Does combined
RAM need

exceed 3Gb?

32-bit EXE,
multiple CPUs,
32-bit Windows

NO

NO

YES

YESYES

YES
(probably)

32-bit EXE,
multiple CPUs,
64-bit Windows

64-bit EXE,
single 64-bit
CPU, 64-bit

Windows

NO

Is program
is slow to run?

64-bit CPU and
64-bit Windows

required

64-bit EXE,
2 or more 64-bit

CPUs, 64-bit
Windows

Several
processors are

needed.

NO
(unlikely)

5. Beta Test Version is Available

We are making a beta test version of Release 10 of GEMPACK (this includes the master/servant machinery
described in this paper) available to GEMPACK users who work in an organisation which has a multi-user
Source-Code Version of GEMPACK with expiring annual licences.

If you work in such an organisation and would like to try the master/servant machinery in your work,
please email Ken Pearson <Ken.Pearson@buseco.monash.edu.au>.

	GTAPCoverLinksRemoved.pdf
	Slide Number 1

