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Abstract

Motivated by the current context of high and volatile energy and food prices, we examine
the conditional variance-covariance matrix dynamics and price discovery process character-
ising European vegetable oils. In addition to outcomes differences using daily or monthly
datasets, we find that both the marginal distributions and volatility dependence structures
relate to distinct economic fundamentals. The energy price mainly influences the vegetable
oil trend component, and stock-to-use ratios are crucial for variance-covariance dynamics
once their particular cold filter plugging point is considered. This latter point also reveals
interesting interplays among vegetable oils according to the economic concepts of comple-
mentarity and substitutability.

JEL Classification— Q11, Q14, C32
Keywords— Vegetable oil, Price discovery, Volatility

1 Introduction
The current global context of inflationary pressures and soaring and highly volatile energy
prices, which can partly be explained by the recent coronavirus pandemic and the Russian-
Ukrainian conflict, has reawakened the debate on the food–energy nexus. Although this topic
was extensively studied ten years ago (see Serra and Zilberman (2013) for a review of the
literature), the current market environment is notably different from that prevailing earlier this
century, and this justifies its reconsideration in this article. The reasons behind the emergence
of these changes are threefold. First, biodiesel production, being the most direct transmission
channel of energy price shocks towards food prices, greatly increased in the 2000s, and this was
bolstered by successive government measures for reinforcing local energy-security policy and for
mitigating global warming. In contrast, in the last few years, these public policies on biofuels and
biofuel production have globally stabilised. Second, the financialisation of commodity markets
originating in the early 2000s was at that time raising concerns about the price impact of
speculators (Cheng & Xiong, 2014; Chkili et al., 2014). However, the accompanying significant
increase of traded volumes on futures markets has recently been less pronounced, suggesting
that other fundamental variables should be considered to justify the currently observed price
pressures. Third, recent policy shifts such as trade wars (in particular between US and China),
and more importantly a global pandemic, lead us to presume a change in vegetable oil market
dynamics.

In this article, we thus focus on the European vegetable oil markets with the purpose of
understanding their associated relative price levels and volatilities. These are very important
input parameters for private stakeholders’ investment decisions and hedging strategies, and
they are also crucial for public decision-makers in assessing the impacts of their measures upon
interlinked vegetable oil markets (Serra et al., 2011). This is even more relevant in developing
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economies, where consumers spend over 80% of their income on food while producers strive to
set up risk-management strategies (Prakash et al., 2011).

In addition to revisiting the previous literature against the current backdrop of increasing
prices and volatility, this article makes three significant empirical and methodological contribu-
tions. First, we include in our analysis rapeseed oil, soybean oil, and palm oil, which are the
three main feedstocks used for European biodiesel production (denoted hereafter RSO, PMO,
and SBO, respectively). To do this, we resort to a unique vegetable oil daily price database
and show how different the results are when using daily instead of monthly prices (an approach
applied in previous literature). To the best of our knowledge, no study has purposely focused
on the nexus of the different major vegetable oils and their links with the energy market in the
EU.1 Second, we also contribute to nonlinear price volatility transmission modelling, which is
particularly relevant in commodities markets where price volatility asymmetries are very preva-
lent with stocks. We extend the analytical formula of the volatility impulse response function
proposed by Hafner and Herwartz (2006) in the presence of price volatility asymmetry. Further-
more, we derive the necessary conditions to ensure covariance stationarity, while price volatility
asymmetry and exogenous fundamental variables have been added to the spillover framework
described by Fengler and Herwartz (2018), following Diebold and Yilmaz (2009, 2012). Third,
this addition of a wide range of explanatory variables related to market fundamentals permits
distinguishing between the phenomena of market contagion and market connectiveness. Indeed,
in a multivariate setting, Bekaert et al. (2005) defined the volatility contagion between markets
as being the excess correlation that is not explained by economic fundamentals. Serra and Zil-
berman (2013) likewise defined price volatility as ‘a directionless price variability that cannot
be predicted by market fundamentals’.

In our empirical study, we identify the fundamental variables related specifically to vegetable
oils and biofuel production. Following Casassus et al. (2013), who developed the economic theory
of storage to a multi-commodity setting, we rely on the economic concepts of substitutability
and complementarity, which allow us to interpret the conditional variance–covariance dynamics
of European vegetable oils taking into consideration their respective technical and industrial
specificities. There is a rich economic literature, based on storage theory, telling us how the
inventory levels of a storable commodity impact its associated price and volatility. However,
there are few if any articles regarding inventory cross-impacts among commodities sharing
a substitutability or complementarity relationship. In this article, we relate these economic
concepts to technical industrial specificities, in particular the cold filter plugging point (CFPP),
and to the global agricultural landscape.

The remainder of this paper is organised as follows. Section 2 will present the methodological
aspects, Section 3 is devoted to description of the data and model selection, and Section 4 will
analyse the empirical results. Finally, conclusions are given in Section 5.

1Serra and Zilberman (2013) reviewed 17 articles on price volatility transmission, and only two of them
focused on the EU markets. Thereafter, Abdelradi and Serra (2015) studied the relationship between RSO and
biodiesel in the EU markets and found that they share a common long-run equilibrium that stems from biodiesel
production. Hasanov et al. (2016) complemented this finding by showing that crude oil instability propagates
to both vegetable oil volatilities and prices. Nevertheless, in their study, they considered sunflower oil instead
of PMO. Using the method of Diebold and Yilmaz (2012), Barbaglia et al. (2020) recently found that, even
for non-biofuel crops, there is a bidirectional volatility spillover effect with energy prices. However, neither
RSO nor PMO were included. Finally, Hasanov et al. (2018), who concluded that an asymmetric generalised
autoregressive conditional heteroskedasticity (GARCH) model with structural breaks should be considered for
agricultural markets, only studied univariate time series and considered soybeans instead of SBO.
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2 Methodology
Several articles in the financial econometric literature have included fundamental covariates in
the dynamics of both the conditional mean and variance. The interest in these models comes
from their ability to complement the dynamics of the conditional moments based on their own
past or lagged values with more complex dynamics associated with macroeconomic variables,
which can be either stationary or non-stationary (Francq & Thieu, 2019; Han & Park, 2012).

2.1 Econometric model

For this study of European vegetable oils, we apply an approach using: the vector error cor-
rection model (VECM); the Baba, Engle, Kraft, and Kroner (BEKK) model; the Glosten, Ja-
gannathan, and Runkle (GJR) model; and multivariate generalised autoregressive conditional
heteroskedasticity (MGARCH). This is augmented by exogeneous variables in both the con-
ditional mean and conditional variance (Silvennoinen & Teräsvirta, 2009). We term this the
VECM–BEKK–GJR–MGARCH model, and it is described by

∆Pt = αβτPt−1 +
p∑

i=1
Γi∆Pt−i + CV

t + εt

Σt|t−1 = CG
t C

Gτ
t +Aτεt−1ε

τ
t−1A+Bτ Σt−1|t−2B +Dτξt−1ξ

τ
t−1D


CV

t =
KV∑
k=1

CV
zk
zk,t

CG
t =

KG∑
k=0

CG
zk
zk,t

(1)

where: Σt|t−1 is the variance–covariance matrix of the complex at time t such that Σt|t−1 =
E[εtε

τ
t |Ft−1], with Ft−1 being all the information available on the market at time t−1; α and β

are (K× r) matrices with r being the cointegration rank; zk represents the exogenous variables,
with z0,t = 1 for all t; CV

zk
represents (KV ×1) matrices; and CG

zk
represents (KG ×KG) matrices.

We followed the representation given by Moschini and Myers (2001) to preserve the positive
definiteness of the variance–covariance matrix and to avoid constraining the sign of the effects
of the exogenous variables on price volatility. Furthermore, the last term in the conditional
variance equation (equation (1)), ξt = εt ◦ 1x>0(εt), in which ◦ denotes the Hadamard product,
captures asymmetries in the price volatility dynamics. In stock markets, it is widely known
that asymmetries take place with price decreases, but in commodity markets where storage
is possible, asymmetries are associated with price increases (Ng & Pirrong, 1994; Zhen et al.,
2018).

With regard to the model estimation, we can clearly see that vegetable oil prices are non-
stationary and non-Gaussian time series, especially for daily data frequency2 (see Table A1 of
Appendix A). Assuming a Gaussian distribution thus leads to a consistent quasi-maximum-
likelihood estimator (QMLE) whose limit distribution is Gaussian. It is worth mentioning that
this property holds under particular conditions even though unit-root or near-unit-root covari-
ates are added within the conditional moment dynamics (Han & Park, 2012). This will be
the case when we consider the inventories in level or in difference as covariates. Furthermore,
Hasanov et al. (2018) found no clear-cut dominance for the innovation distribution, although
Gaussian and skewed-Gaussian distributions were among the best for most biofuel-related com-
modities. In this study, we retained an asymmetrical GARCH-based model with a Gaussian
distribution and fundamental covariates both in the conditional variance and mean without

2According to Shapiro–Wilk and Jarque–Bera tests, price levels and differences are non-Gaussian, especially
for daily data, whereas the augmented Dickey–Fuller (ADF), Phillips–Perron (PP), and Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) stationarity tests clearly confirm that these time series are integrated of order 1. We also
found no statistically significant seasonality.
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structural changes so as to simplify multivariate estimations and interpretation of empirical
results. Moreover, we constrained the upper left-hand elements of matrices A, B, and D to
be strictly positive to ensure identification of model parameters (Hafner & Herwartz, 1998).
Additionally, to ensure covariance stationarity, all the moduli of the eigenvalues of the matrix
(A⊗A)τ + (B ⊗B)τ + 1/2(D ⊗D)τ must be less than 1 (as shown in Appendix B).

We used the maximum likelihood two-step method to estimate our model, with the estima-
tion of the conditional mean model followed by the conditional volatility model that we apply
to the residuals.3

In line with the report of Abdelradi and Serra (2015), we encountered convergence is-
sues4 while trying to estimate each model using a standard quasi-Newton method, namely
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. To solve this problem, we chose
an alternative method, which was initially proposed by Demos and Sentana (1998), and this
involves first refining the initial parameter proposals using several estimations based on the
simplex method (Murty, 1983) and then switching back to the BFGS algorithm.5 We thus
obtain the Hessian matrix, which enables the calculation of standard errors for each estimated
parameter, and then we derive the significance of each parameter combination in the conditional
variance equations.

2.2 Price-level analysis

To better understand the causality relationships among vegetable oils, in our empirical study, we
first carry out an analysis of the price discovery process. This analysis determines which, if any,
vegetable oils lead the others, and it was recently applied to agricultural commodities markets
by Adämmer and Bohl (2018) and Vollmer et al. (2020). We use the permanent–transitory (PT)
measure,6 introduced by Schwarz and Szakmary (1994) and formalised by Gonzalo and Granger
(1995), for which the number of common factors driving prices will depend on the cointegration
rank r and the number of cointegrated prices K: K − r. Gonzalo and Granger (1995) showed
that PP

t , the permanent component driving prices in the long run, can be expressed as a
linear combination of the cointegrated prices when respective weights are orthogonal to the
mean reversion coefficient α in equation (1), such that: PP

t = α⊥Pt, and ατ
⊥α = 0.7 PTi,j

measures the contribution of the vegetable oil price i to the common factor j (1 ≤ i ≤ K and
1 ≤ j ≤ K − r), with αi,j

⊥ denoting the element in the i-th row and j-th column of α⊥:

PTi,j = |αi,j
⊥ |∑K

k=1 |αk,j
⊥ |

(2)

This analysis is subsequently complemented with the study of price impulse response func-
tions (IRFs), which tell us how each vegetable oil price will react and absorb an exogenous shock

3The two-step approach is very standard in the literature and leads to negligible differences from a one-step
estimation when assuming a Gaussian distribution (Lütkepohl, 2005).

4We used the TsDyn package of R to estimate our VECM, and then the GARCH instruction of WinRATS
(Estima) to estimate our BEKK–GJR–MGARCH model, which is the most developed and optimized software
package for all GARCH-based models.

5The Berndt–Hall–Hall–Hausman (BHHH) algorithm can be considered when the BFGS method is not con-
verging.

6Vollmer et al. (2020) also used the information share (IS) of Hasbrouck (1995) and the information leadership
share (ILS) of Yan and Zivot (2010) and Putnin, š (2013). However, these price discovery measures require only
one common factor (r = K − 1), and they restrict the form of the cointegrating vector to β = [1K−1, IK−1]τ , in
which 1K−1 is a column vector of 1 and IK−1 is the identity matrix, to obtain the orthogonal vector of β in the
form β⊥ = 1K . These measures are therefore not applicable in our paper.

7We used the orthogonalisation method proposed by Gonzalo and Ng (2001), which consists in taking the
eigenvectors associated with the K − r smallest eigenvalues of αατ .
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over time. Following Lütkepohl (2005), we developed the IRF of a unit shock (standard devi-
ation) on standardised VECM–BEKK–GJR–MGARCH residuals to obtain uncorrelated price
residuals (ζt ∼ N (0, IK)) and to remove the ARCH effects of εt, which significantly improves
the IRF efficiency.

2.3 Variance–covariance analysis

To avoid any hazardous interpretation of the estimated parameters of the multivariate GARCH
models, it is recommended that the conditional variance equation is derived along with the
p-values associated with each explanatory variable (a detailed derivation is provided in Ap-
pendix C). However, the presence of cross-product terms with exogenous variables renders the
analysis of their marginal impact on the vegetable oil variances and covariances difficult. This
is why, following Serra and Gil (2013) and Abdelradi and Serra (2015), we derived the marginal
effects of each exogenous variable as:

∂(Σt|t−1)ij

∂zs,t
=

min(i,j)∑
k=1

(CG
zs

)jk(CG
t )ik + (CG

zs
)ik(CG

t )jk (3)

Furthermore, this marginal contribution is combined with a volatility IRF (VIRF) to fully
capture the dynamics of the vegetable oil price volatility dependence structure. The objective
is first and foremost to quantify the impact of a shock at a given time t on all the conditional
variances and covariances. With this VIRF, we also aim to assess the persistence of a shock; in
other words, we aim to determine how the shock will be absorbed by the different variables over
time. To this end, two methods are considered: the VIRF developed by Hafner and Herwartz
(2006) and the conditional volatility profiles developed by Gallant et al. (1993).

Hafner and Herwartz (2006) define the MGARCH VIRF as the difference between the ex-
pected conditional variance–covariance matrix given an initial state and price shock ζt, and the
expectation given the history:

Vh(ζt,Ft−1) = E[vech(Σt+h|t+h−1)|Ft−1, ζt] − E[vech(Σt+h|t+h−1)|Ft−1] (4)

While the authors provide the formula for the standard MGARCH, we contribute to this lit-
erature by deriving in Appendix D the analytical expression associated with the asymmetric
MGARCH VIRF. To do this, we consider the MGARCH in its vech form, with DK the dupli-
cation matrix of a (K ×K)-symmetric matrix and D+

K its Moore–Penrose inverse. We note the
associated elimination matrix LK to obtain the expression:

V1(ζt,Ft−1) = AvechD+
K(Σ1/2

t|t−1 ⊗ Σ1/2
t|t−1)DK vech(ζtζ

τ
t − IK)

−DvechD+
K

[ [
diag

{
1x>0(Σ1/2

t|t−1ζt)
}

Σ1/2
t|t−1

]
⊗[

diag
{

1x>0(Σ1/2
t|t−1ζt)

}
Σ1/2

t|t−1

] ]
DK vech(ζtζ

τ
t − 1/2IK)

Vh(ζt,Ft−1) = (Avech +Bvech + 1/2Dvech)h−1V1(ζt,Ft−1) for h > 1

(5)

where: 
Avech = D+

K(A⊗A)τDK

Bvech = D+
K(B ⊗B)τDK

Dvech = D+
K(D ⊗D)τDK

(6)

While Hafner and Herwartz (2006) considered a fixed or a random initial shock and state,
historical shocks could also be used, as proposed by Hassouneh et al. (2017). For the purpose of

5



our study, we decided to consider a random shock, with ζt ∼ N (0, IK), and, to avoid arbitrarily
fixing our initial state, we simulate 103 random shocks for each historical state observed in our
data set. We then graphically represent the 5th and 95th percentiles associated with the related
shock impact distributions.

As a complementary analysis, we study the volatility impulse response function following
the conditional volatility profiles method proposed by Gallant et al. (1993) and apply it to the
asymmetric MGARCH model, as detailed in Appendix E. This approach involves measuring
the difference between the variance–covariance matrix forecasts with and without a given shock
δ to the system at time t and averaging it over t such that:

Φ·,h(δ) = 1
T − 1

T∑
t=2

Σ̂δ
t+h|t − Σ̂t+h|t (7)

Finally, we investigate the extent to which the volatility of an asset could spill over into the
volatility or the covariance associated with the other assets. The ‘volatility spillover’ measure
proposed by Diebold and Yilmaz (2009) relies on the forecast error variance decomposition
(FEVD) of a VAR model. Diebold and Yilmaz (2012) developed this concept of directional
spillovers to assess how much the variance of each asset propagates towards the variance of
other assets, and inversely how much they receive from the variances of other assets. To over-
ride the limitations of rolling-window methods, such as their lack of heteroscedasticity, Fengler
and Herwartz (2018) considered time-varying spillovers for the BEKK–MGARCH model with-
out asymmetry. Here, we extend this last approach to the BEKK–GJR–MGARCH model, as
detailed in Appendix F, wherein we also demonstrate the necessary conditions to ensure co-
variance stationarity for BEKK–GJR–MGARCH spillovers. For the one-step-ahead FEVD, the
spectral radius of At = Avech +Bvech +Dvech

t must be strictly less than 1, with:

Dvech
t = D+

K(D ⊗D)τ [diag {1x>0(εt)} ⊗ diag {1x>0(εt)}]DK (8)

We then estimate λ(H)
t,ij , the proportion of the H-step-ahead forecast error variance of variable

i attributable to innovations in variable j, and Ψ̂t+H,h|t is the impact of the h-step-ahead
innovation to the H-step-ahead forecast error, with 0 ≤ h < H, such that:

λ
(H)
t,ij =

H−1∑
h=0

(
[Ψ̂t+H,h|t]ij

)2

H−1∑
h=0

K∗∑
j=1

(
[Ψ̂t+H,h|t]ij

)2
, with Ψ̂t+H,h|t = Θ̂t+H−1,h|tΩ̂

1/2
t+H−h|t (9)

where:
Θ̂t+H−1,0|t = IK∗

Θ̂t+H−1,1|t = Avech + 1x=1(H)Dvech
t + 1x>1(H)1/2Dvech

Θ̂t+H−1,h|t = (Avech +Bvech + 1x=1(H)Dvech
t + 1x>1(H)1/2Dvech)Θ̂t+H−1,h−1|t ,∀h > 1

Ω̂t+H−h|t = LK(Σ1/2
t+H−h|t ⊗ Σ1/2

t+H−h|t)Ω̃(Σ1/2
t+H−h|t ⊗ Σ1/2

t+H−h|t)L
τ
K − vech(Σt+H−h|t) vech(Σt+H−h|t)τ

where Ω̃ is the (K2 × K2)-matrix collecting the fourth-order moments associated with ζt. We
also derive N H

t,i , the net contribution of variable i to H-step-ahead volatility spillovers, which
represents the difference in volatility transmitted to and received from the other variables.
Following Fengler and Herwartz (2018), we further distinguish the spillovers between variances
and covariances. We then define specific spillover indices for covariances and variances (own
or cross); that is, SH,ocov

t (SH,ovar
t ), which represents the spillovers between all covariances

6



(variances), and SH,ccov
t (SH,cvar

t ), which represents the spillovers from covariances to variances
(variances to covariances).

N H
t,i =

K∗∑
j=1;i ̸=j

λ
(H)
t,ji − λ

(H)
t,ij

K∗

SH,ocov
t = ∑

i∈Icov

∑
j∈Icov

i ̸=j

λ
(H)
t,ij

K∗ SH,ovar
t = ∑

i∈Ivar

∑
j∈Ivar

i ̸=j

λ
(H)
t,ij

K∗

SH,ccov
t = ∑

i∈Ivar

∑
j∈Icov

i ̸=j

λ
(H)
t,ij

K∗ SH,cvar
t = ∑

i∈Icov

∑
j∈Ivar

i ̸=j

λ
(H)
t,ij

K∗

where Ivar and Icov respectively embody the sets of variances and covariances.

3 Data description and model selection

3.1 Monthly and daily prices

In this study, we examined the dynamic price-dependence structure among the three major
vegetable oils from January 2009 to December 2020. Sunflower oil (SFO), being the smallest
market in terms of consumption (USDA, 2021) and also being much less used in non-food
applications (Figure G1), has been omitted. Our monthly data were provided by Oilworld, and
we chose the same origin (Netherlands) for the forward contracts to limit price adjustments due
to logistic issues, and we used the free-on-board ex-mill prices.

For daily prices, again, we considered the same origin for the three vegetable oils to avoid
discrepancies due to logistic issues. Furthermore, there is no futures market for RSO, and only
over-the-counter (OTC) contracts are available. For these two reasons, we decided to work
on OTC prices not only for RSO but also for SBO and PMO, although futures contracts are
available for them in Chicago and Malaysia, respectively.8 Reuters daily OTC prices are taken
from brokers’ surveys, but they suffer from structural limitations if the maturity of the contract
is uncertain9 and the price is an average mid-quote provided by several brokers without bid–ask
size information. The data we considered were instead provided by one of the largest biofuel
producers and RSO crushers in Europe. This unique database from January 2014 to December
2020 stands as a robust reference provided that the prices recorded on a daily basis by the
company correspond to traded prices or brokers quotations (Figure G2).

Regarding covariates (Figure G3), we naturally considered the Brent crude oil price as a fossil
energy benchmark, and the three-month Treasury bills rate and its six-month moving variance
following Serra and Gil (2013), who suggest that the moving variance of interest rates could ex-
plain the volatility of corn and ethanol. These are also good indicators of global macroeconomic
conditions. Furthermore, exchange rates can play an important role in triggering global import
or export of oilseeds, and they therefore impact associated price dynamics (Abdelradi & Serra,
2015; Balcombe, 2011; Frank & Garcia, 2010). We thus retained the following foreign exchange
rates: EUR/USD, USD/MYR (in which MYR is the Malaysian ringgit), and EUR/MYR.10

Finally, we added the United States Department of Agriculture (USDA) forecasts of stock-
to-use ratios as they represent the supply and demand tensions for each vegetable oil. We
also retained the forecasts of stock-to-use ratios associated with rapeseed and soybean seed, as
crushing capacities have been continuously in excess since the 2000s. Stock-to-use ratio forecasts

8Both SBO and PMO OTC contracts are denominated in USD, whereas RSO OTC contracts are in EUR.
For the sake of consistency, the RSO contracts have been converted in USD using the prevailing three-month
forward exchange rate.

9For historical data, Reuters only mentions if the price is associated with the first, second, or third maturity,
but no maturity is clearly specified, and this thus leads to misleading price jumps

10EUR/MYR is calculated from EUR/USD and USD/MYR, and we only include two of them when our model
selection pre-processing recommends them all.
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were calculated as ratios between the given commodity forecasted level of global ending stocks
and its related consumption expected by the USDA. In the literature, Serra and Gil (2013)
pointed out that a high ratio reduces corn price volatility, whereas Abdelradi and Serra (2015)
showed that an increase in RSO inventories could lead to reductions in the price volatility of
both RSO and biodiesel. Each exogenous variable is considered both in level and first difference.

3.2 Model selection

We first studied the stationarity of the time series by running the ADF unit-root test and the PP
and KPSS stationarity tests. These confirmed that the log-prices of the three vegetable oils are
I(1)11 (Table A1). Then, to test for cointegration relationships, we retained the BIC to specify
the lag, the deterministic component of the cointegrating space, and the rank of the cointegrating
vector. Table A2 indicates that both daily and monthly prices have a cointegration rank r = 1.
The choice of no deterministic term was stipulated for all samples. We verified these results
with Johansen cointegration tests in Table A3, and we validated our hypothesis at 5% statistical
significance for the monthly sample and 1% significance for the daily sample (Johansen, 1991).
Moreover, to determine which exogenous variables to retain, we considered the standard stepwise
method using the Akaike information criterion (AIC). With this sequential method, we selected
only the covariates for which the likelihood marginal contribution was significant and rejected
the others.12

Regarding the frequency of the data, when we checked the parsimony of the daily and
monthly models,13 the daily model turned out to be parsimonious, whereas for monthly data,
the addition of the conditional variance dynamics did not make a significant contribution. It
indeed appears that more information about the price dynamics of the assets can be extracted
from the daily data set, especially when studying the volatility dependence structure, which
is quite intuitive. Furthermore, unlike some reports in the literature (Balcombe, 2011; Cha
& Bae, 2011; Cooke, 2009; Hassouneh et al., 2017; Qiu et al., 2012; Serra & Gil, 2013), we
found that the USDA’s forecasts of stock-to-use ratios, which represent the tension between
anticipated supply and demand, do not impact the monthly price levels, nor their volatility.
However, they have strong effects on daily price volatility. This confirms the importance of
using high-frequency data to study asset price volatility (Andersen et al., 2003).

4 Analysis of results
First, we will analyse price dynamics and the price discovery process, and then we will consider
the dynamics of price volatility. Thereafter, the effects of covariates will be studied.

4.1 Substitutability and complementarity in EU vegetable oil markets

To fully understand the interactions among vegetable oils resulting from biodiesel production,
the CFPP is a crucial variable to consider. First, it is worth noting that each vegetable oil can
be esterified to produce biodiesel; after esterification, RSO, SBO, and PMO will respectively
become rapeseed methyl ester (RME), soybean methyl ester (SME), and palm methyl ester
(PME). However, each vegetable methyl ester has a specific CFPP: for RME this is −14°C,
for SME it is −2°C, and for PME it is +11°C. Biodiesel producers then have the possibility of

11Lags used for these tests were determined with the Bayesian information criterion (BIC), which is a strongly
consistent criterion.

12Full details about the stepwise log-likelihood results are provided in Appendix A.
13We determined whether the addition of the conditional variance dynamics was statistically relevant using

log-likelihood ratio tests (see the results in Table A5).
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blending these vegetable methyl esters to produce fatty acid methyl ester (FAME) for biodiesel.
The CFPP of this blend will be a weighted average of the constituent vegetable methyl ester
CFPP values.

This technical parameter is extremely important for biodiesel consumption, as it must be
below the ambient temperature where the biodiesel is used. As a consequence, depending on the
season and the location it is consumed, the biodiesels produced in Europe may have different
CFPP values and thus be the result of different blends. For instance, a biodiesel with a CFPP
of 0°C prevails in Europe over the summer (we will refer to this as FAME 0), whereas over cold
periods such as winter in France, FAME −5 is produced. Said differently, the weighted average
CFPP of the resulting vegetable oil blend should be below −5°C. Being significantly colder,
the winters of European Nordic countries require a FAME −10 blend, and this is mainly made
from RME. Producing an out-of-spec biodiesel with too high a CFPP can be very costly for an
energy company, as it entails the loss of contracts and cumbersome inventories.

In this context, being the vegetable oil with the lowest CFPP, RSO is essential in this
industry from maintaining a CFPP below the maximum level initially contracted with a client.
That being said, RSO is also one of the most – if not the most – expensive vegetable oils, which
explains why other vegetable oils may also be considered for biodiesel production.

There is another important point that should be emphasised: both the CFPP and the global
production volumes for each vegetable oil are expected to play key roles in the substitutability
and complementarity among vegetable oils, and they will hence have an impact on the joint
dynamics of the associated market prices. For instance, RSO and SBO are good substitutes;
this is in contrast to PMO, which is penalised by its high CFPP. European countries, being
important producers of low-CFPP rapeseed, generally consider the high-CFPP but cheap PMO
as an interesting complement for biodiesel production. This is confirmed by the fact that RSO
represents 43% of the vegetable oil volume used by European biodiesel producers; PMO accounts
for 29%, while SBO represents only 5% (Table G1).

By way of contrast, the United States and South American countries (in particular Brazil
and Argentina) do not have CFPP constraints. They do, however, have to report the cloud
point (CP) of the produced biodiesel, another low-temperature property; this corresponds to
the temperature at which small crystals will form in the biodiesel. SME and RME have an
almost identical CP, respectively 1°C and 0°C, while the value is 17°C for PME (Moser, 2008).
Moreover, soybean is one of the main crops in these countries, and this explains the large
dominance of SBO (almost 90% of biodiesel is produced from SBO) while RSO and PMO are
mainly considered for economic reasons, especially in the US.

These specificities of the vegetable oil market are captured and quantified by our model. As
shown in Table 1, the cointegration rank being one, two common factors should be carved out
in our price discovery analysis. Interestingly enough, the second principal component shows a
clear dual relationship between the European prices of RSO and PMO, and we could link this
to the European biodiesel market structure we described earlier. Furthermore, the other factor
embodies instead the American market structure, with a predominance of SBO versus the two
substitutable vegetable oils.

Another interesting point to make is the alternating signs displayed in the cointegrating
vector. We indeed observe that RSO and PMO both have a positive sign, which is in contrast
to SBO; this shows the complementarity of RSO and PMO and their substitutability with SBO.
Our results thus demonstrate that vegetable oil market prices are mainly driven by the long-
term blending intentions of biodiesel companies as well as the structural agronomic specificities
associated with the producing regions.
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PT1 PT2

RSO 25% 42%
SBO 55% 0%
PMO 19% 58%

RSO + 1.139∗∗∗PMO = 2.110∗∗∗SBO

Table 1: Price discovery and cointegrating vector
Note: *** indicates statistical significance at the 1% level.

4.2 Covariance contagion and variance spillover

We now investigate how a supply or demand shock on one of the vegetable oils propagates to
another. Although the long-term cointegration relationship turns out, as demonstrated above,
to be the main price-transmission channel, the joint sensitivities of the variances and covariances
of vegetable oils constitute another important vector of connectedness in commodities markets.
Furthermore, the speed with which the shocks can be absorbed is extremely relevant for the
industry to design appropriate hedging solutions.

Figure 1: Daily volatility impulse response function (price shocks).

Regarding the asymmetric effects of price shocks, Figure 1 clearly shows that positive price
shocks increase price volatility twice as much as negative price shocks. Furthermore, this phe-
nomenon is much more pronounced on the RSO market, where daily price shocks take more
than a month to be fully absorbed. One possible explanation for this is that RSO, being the
only vegetable oil among the three without a futures market, is more sensitive to price shocks,
and this tends to amplify its effect on the economy through higher volatility over a longer period
of time. As market operators have no access to a liquid hedging product, they need much more
time to adjust their positions.

Additionally, Figure 2 tends to show that the main vegetable oil used by the European
biofuel industry, RSO, is a recipient of stress in the other vegetable oil markets. We can indeed
notice that PMO and – to a lesser extent – SBO variances spill over into RSO volatility as
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well as all the covariances among these vegetable oils. As such, the trade war between the
United States and China early in 2018 noticeably spread out on the RSO market, creating
tensions on this market, whereas PMO was less impacted (Marchant & Wang, 2018). Once
again, RSO being less liquid serves as an adjustment variable and experiences shocks from the
other vegetable oil markets. The volatility of the European market is thus driven by the US
and Indonesian markets, which are much larger and more liquid.

Another interesting point to make is the significantly stronger spillover effect from variances
towards covariances relative to covariances towards variances, covariances towards covariances,
or variances towards variance spillovers.14 Therefore, a volatility shock (especially to PMO or
SBO) will significantly increase the covariance among vegetable oils, and this will thus amplify
the connectedness of the vegetable oil markets. This will similarly reduce the efficiency of the
hedging strategies of biodiesel producers that are based on vegetable oil exposure diversification.

Regarding the price volatility contagion mechanism, these results demonstrate that the price
volatilities of vegetable oils do not directly impact each other. Tensions in a particular vegetable
oil market will first impact covariances between vegetable oil prices, and only then will this affect
the other vegetable oils’ variances. This connectedness among markets, conditionally upon the
filtration generated by the set of explanatory variables, echoes the results of Bekaert et al.
(2005), as it is not explained by fundamental factors (the fundamental variables are treated as
being fixed in the calculation of spillover indices) but instead by trader activities and potentially
the fact that biodiesel producers cannot hedge their exposure on RSO via futures. The inertia
in factory blending decisions thus entails an unhedgeable risk on RSO, leading to frictions that
are then reflected in the joint dynamics of market price volatilities.

4.3 Energy price shocks and other macroeconomic variables

Beyond a demand or supply shock on one of the vegetable oil markets, other exogenous variables
influence their joint price dynamics and thus the production cost of biofuel. Among these, we
notice that Brent price fluctuations have a significant positive impact on all vegetable oil prices
(see Table 2). Therefore, a rise in the Brent price leads to increases in all vegetable oil prices,
a phenomenon that we observe in the current post-COVID environment. Furthermore, this
result sheds light on the contradictory literature about the relationship between agricultural
and energy prices (Myers et al., 2014; Paris, 2018; Sanders et al., 2014; Serra & Zilberman,
2013). Our unambiguous positive relationship between vegetable oil prices and the Brent price
is certainly due to the fact that we are working directly with the prices of vegetable oils instead
of the prices of vegetable seeds, as has been the approach in many other studies. Likewise, Zhen
et al. (2018) demonstrated that in the Canadian cattle market, volatility transmission does not
pass through more than one level within the supply chain. One should also note that the Brent
sensitivity is slightly stronger for SBO, which is by far the most liquid market and thus may be
more prone to food-versus-energy relative-value trading strategies.

To get a better grasp of this relationships between vegetable oils and the energy market,
we propose to study the impact of a Brent price shock through the IRF. Figure 3 shows that a
Brent price increase will lead to a rise in vegetable oil prices. However, the IRF also informs us
about the persistence of this shock, which is crucial for inflation targeting. Our empirical results
show that a temporary shock in the Brent price is absorbed by the vegetable oil daily prices
in only around six days. This relatively short duration demonstrates the capacity of vegetable

14We note the high volatility and heteroscedasticity of these spillover indices. It is worth mentioning that if
we had used the Diebold and Yilmaz (2012) rolling-window method for the same plot, only representing the
average spillover rate on the considered window instead of the spillover rate at time t, we would have missed this
information.
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(a) Net spillover indexes.

(b) Own/cross (co)variance spillovers.

Figure 2: Net spillover index and own/cross (co)variance spillovers.
Note: For each sample, this figure represents the evolution of the own or cross variance–covariance
spillovers, and the evolution of N H

t,i, the net contribution of each variable. We used H = 5 because with
H > 3, the figures are very similar whatever the H-step ahead used (other figures are available upon
request).

12



oil markets to efficiently revert to equilibrium price following a sudden burst or collapse of the
energy market.

Contrary to these fairly unambiguous relationships between the trend components of veg-
etable oils and Brent, its impact on their stochastic variance and covariances is not as clear-cut.15

As shown in Table 2, the exchange rate fluctuations also have a clear impact on vegetable oil

Figure 3: Price impulse response function after a Brent price shock.

prices. For instance, the EUR/USD exchange rate variations have a positive impact on all veg-
etable oil prices. With regard to RSO, this relationship comes from the fact that the RSO OTC
products considered for this study are initially quoted in EUR and we converted them into USD
for the sake of comparison. As a consequence, when EUR is appreciating against USD, the price
of RSO in USD will increase. Conversely, SBO is initially quoted in USD, so the strong positive
link we observe results from the SBO depreciation in EUR when the EUR/USD exchange rate
is rising. Compared to the other vegetable oils, this depreciation makes RSO more interesting
to purchase for European biofuel producers, which thus entails a stronger demand. The very
same reasoning can be applied to PMO, which is quoted in USD.

In contrast, the USD/MYR exchange rate variations have a negative impact on vegetable
oils, especially on PMO, which is twice as strong as its impact on SBO prices. The PMO futures
market in Malaysia quotes in MYR, and as the largest worldwide market for PMO, it generally
leads the Rotterdam market, where the PMO OTC products are denominated in USD. As such,
if we assume that the PMO Malaysian price remains unchanged while the USD/MYR exchange
rate is rising, the PMO Rotterdam price converted into USD can consequently be expected to
drop. Moreover, the negative effect of the USD/MYR on SBO is interesting as it illustrates
European traders’ decisions to substitute SBO with PMO. They indeed favour PMO over SBO
when the Rotterdam PMO USD-equivalent price decreases due to devaluation of MYR against
USD. As our analysis encompasses the three main vegetable oils used for biofuel production –

15Figure H1 shows that a rise in the Brent price does seem to decrease SBO variance and increase PMO
variance, but only to a very limited extent. The magnitude of this impact is indeed of order 10−7, whereas the
average daily variation of variance is of order 10−5.
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unlike Abdelradi and Serra (2015) who focused on RSO – it sheds light on the substitutability
phenomenon among vegetable oils that is associated with exchange rate fluctuations.

DIFFERENCE
Brent EURUSD USDMYR Ratio SBO Ratio PMO

RSO 1.70E−4∗∗∗ 0.709∗∗∗ −0.014 0.107 −0.006
SBO 2.74E−4∗∗∗ 0.129∗∗∗ −0.042∗∗ 0.014 0.059∗∗

PMO 1.98E−4∗∗∗ 0.195∗∗∗ −0.108∗∗∗ −0.258∗ 0.049

Table 2: VECM significative exogenous variable parameters – daily.
Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

The significance of exchange rates in explaining part of the price volatility in agricultural
commodities has already been demonstrated by Balcombe (2011) and Abdelradi and Serra
(2015). However, their impact on vegetable oil covariances has not yet been demonstrated.
The results displayed in Table 3 contribute to the literature in this respect and show that
depreciation of both the US dollar and the Malaysian ringgit will put pressure on RSO, leading
to it becoming the most expensive oil and thus translating into higher volatility. Substitution
strategies then take place, and these result in a decrease of the covariances between RSO and
PMO when MYR depreciates and between RSO and SBO when the US dollar depreciates.16

4.4 Storage theory and conditional variance

Unlike most of the related literature (Carter et al., 2012; Cooke, 2009; Gilbert, 2010; Hassouneh
et al., 2017; Headey & Fan, 2008; Hochman et al., 2011; Kim & Chavas, 2002; Meyers & Meyer,
2008; Mitchell, 2008; Shively, 1996; Wright, 2011), we found that the anticipated stock-to-use
ratio has no effect on the monthly vegetable oil price, nor on the monthly conditional variances
and covariances, and it only has a limited impact on the daily price momentum. However, we
notice a salient effect of vegetable oils and seed inventories on the conditional variances and
covariances of the vegetable oil daily prices. This validates the well-documented storage theory
in a daily-frequency framework and extends it to the covariances among goods.

Before analysing our results regarding the price momentum, we need to explain the link be-
tween inventories and prices for both substitutable and complementary goods. In the context of
a single commodity market, the economic theory of storage states that the price of a commodity
will be negatively correlated with its own supply; i.e., if the stocks of a commodity decrease,
then the price of that commodity should increase. In a two-commodity setting, Casassus et al.
(2013) define the relationship of two products as complementary if ‘they share a balanced supply
or are complementary in either consumption or production’. For consumption-complementary
goods, this means that for a given increase in demand for one of the products, both products
will be simultaneously consumed, thus leading to price increases for both of them. However, in
the case of substitutable goods, higher demand for one product will be offset by a contraction of
the other product consumption. Thus the first good inventories decrease and its price increases,
while the second good inventories increase and its price decreases.

Knowing this, when we look at Table 2, the ‘Ratio PMO’ associated column shows us
a significant substitution effect between PMO and SBO (a higher PMO stock-to-use ratio,

16While not significant for the trend component, the Treasury bills variance turns out to be of importance as
far as the conditional variance is concerned. Its influence is positive on all the variances as well as the SBO–PMO
covariance (see Table 3); this can be interpreted as a positive influence on vegetable oil volatility from central
bank policy uncertainty, and this is associated with inflation and economic growth forecasts. This phenomenon
has also been pointed out by Serra and Gil (2013) on the US corn market.
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meaning higher PMO supply or lower PMO demand, leads to a higher SBO price). However, the
‘Ratio SBO’ column shows us instead that SBO and PMO turn out to be complementary goods
(a higher SBO stock-to-use ratio leads to a lower PMO price). This presumed contradiction can
be justified by the fact that the SBO inventories depend mainly on the decisions of US biofuel
producers rather than EU biofuel producers, as US biofuel producers use almost five times more
SBO to produce biodiesel than EU producers. As explained in subsection 4.1, the US does not
have a CFPP constraint, and therefore the SBO/PMO complementarity observed in the US
biofuel market, due to economic reasons, impacts PMO prices. Conversely, European biodiesel
producers first favour their own RSO and then substitute between PMO and SBO to reach a
given CFPP, which explains the SBO/PMO substitutability characterising the European biofuel
market.17

LEVELS DIFFERENCES

Brent VM Tbills USDMYR Ratio RSO Ratio SBO Ratio SFO Ratio RS Ratio SB EURUSD EURMYR Ratio SFO
Var RSO −8.49E−09 7.34E−03 1.67E−05 1.50E−04 1.89E−04 −1.46E−04 −2.38E−04 1.24E−04 5.89E−04 1.25E−04 −3.70E−04
Var SBO −4.82E−08 1.88E−03 −1.83E−05 2.57E−04 −1.73E−04 −3.89E−04 1.33E−04 1.44E−04 −1.49E−03 1.42E−04 4.25E−04
Var PMO 4.50E−08 3.24E−03 3.84E−06 4.63E−05 4.29E−04 −1.82E−04 −1.41E−04 6.56E−05 −1.76E−04 4.40E−05 1.85E−04

Cov RSO–SBO −1.82E−08 5.85E−03 5.97E−06 2.17E−04 1.64E−04 −2.59E−04 −1.14E−04 1.46E−04 −1.07E−04 1.36E−04 −5.23E−05
Cov RSO–PMO −7.87E−09 2.36E−03 −1.74E−06 6.36E−05 −9.66E−05 −8.90E−05 −4.69E−05 4.44E−05 −1.31E−05 1.21E−05 −8.56E−05
Cov SBO–PMO 4.28E−10 2.04E−03 −4.01E−06 1.64E−04 1.44E−04 −1.85E−04 2.25E−05 8.22E−05 −1.48E−04 −1.30E−05 1.88E−04

Table 3: Marginal effects
Note: Based on Table C1 we determine on which variances or covariances each exogenous variable combination
has a statistically significant impact. We then qualify as significant first-order exogenous variables those that
have a statistically significant impact via their level, while the significant second-order exogenous variables are
those with a statistically significant impact through their squared value. Table 3 then provides us the marginal
impact of each exogenous variable at the data means over the entire sample studied. Values with a green or a
yellow background indicate significant first- or second-order exogenous variables, respectively.

Regarding the relationship between the price covariance and the stock-to-use ratio, price
changes of commodities sharing a complementary relationship are positively correlated follow-
ing a positive shock to the relative scarcity of one of them, which means that the covariance
between the two commodities increases. Conversely, the prices of products sharing a substitu-
tion relationship are negatively correlated following a positive shock to the relative scarcity of
one of them, which means that the covariance between the two products decreases. The econo-
metric model used in our paper tells us whether the covariances between products are stronger
or weaker when the relative availability of a product is high or low. Moreover, according to
the very rich literature on the economic theory of storage, when forecasted stock-to-use ratios
are increasing, the price volatility of the associated goods should be lower (Abdelradi & Serra,
2015; Balcombe, 2011; Kim & Chavas, 2002; Serra & Gil, 2013; Shively, 1996; Stigler & Prakash,
2011; Williams, Wright, et al., 2005; Wright, 2011). If one product shares a complementary
relationship with another, then an increase in the relative scarcity of the first will lead to an
increase in the volatility of both products, as prices will react in the same way to a change in
the relative scarcity of either of the products. However, if this other product instead shares a
substitution relationship, then an increase in the relative scarcity of the first product will lead
to a decrease of the volatility of the second product, as prices react in the opposite way to a
change in the relative scarcity of one of the products.

From an empirical perspective, it is worth reiterating that European crushing capacities
have always been in excess. Therefore, when a stock of oilseeds is available, an increase in
the crushing throughput entails a higher inventory of the associated vegetable oil. The oilseed
inventories could thus be considered as secondary inventories for the associated vegetable oils.

17Another large consumer of PMO to produce biodiesel is Indonesia, but they do not blend it with other
vegetable oils and thus could not have any marginal effect on the vegetable oil complementarity or substitutability.
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It is therefore appropriate to jointly consider the stock-to-use ratio coefficients associated with
oilseeds and those associated with vegetable oils.

As we analyse our empirical results, we can see that Table 3 verifies the storage theory.
The relative scarcity of rapeseed (measured as the combination of ‘Ratio RS’ and ‘Ratio RSO’)
indeed has a positive impact on the RSO variance. Likewise, the relative scarcity of soybean (a
combination of ‘Ratio SB’ and ‘Ratio SBO’) positively relates to the SBO variance. Moreover,
according to our earlier argument, the combined rapeseed coefficients confirm its substitutabil-
ity relationship with SBO (positive net impact of the rapeseed stock-to-use level on the SBO
variance), and the complementarity relationship with PMO (negative net impact of the rape-
seed stock-to-use level on the PMO variance). In like manner, the combined soybean coefficients
highlight the substitutability relationship with RSO and PMO (positive impact). Interestingly
enough, one can note that the covariances between RSO–SBO and SBO–PMO – i.e., covariances
between vegetable oils that share a substitution relationship – are positively impacted by the
relative availability of RSO and SBO.

Finally, the SFO stock-to-use ratio is statistically significant in level and in difference. It
has a negative impact on the RSO variance, indicating a complementary relationship between
RSO and SFO, and a positive impact on the SBO variance, showing a substitution relationship
between SBO and SFO. The SFO ratio has no overall impact on the PMO variance, and we
also note a negative effect on the RSO–SBO covariance. These relationships are derived from
food uses, as SFO is used almost exclusively for this purpose (Figure G1). Europe has very
inelastic demand, the quality, and label constraints indeed cause food companies to use mostly
non-GM RSO or SFO, and whatever their price, they do not change the vegetable oil used. This
explains the complementary relationship between RSO and SFO: an increase in food demand
will generate an increase in demand for both RSO and SFO. In contrast, Table G1 indicates that
SBO is much less used in Europe for non-biodiesel uses. The substitution relationship between
SBO and SFO is mainly due to the price-oriented import policies of Asian countries, which
import SBO or SFO largely according to their price because they have far fewer constraints
than Europeans. We also note a negative effect on the RSO–SBO covariance.

5 Conclusion
Motivated by the recent evolution of food and energy prices, we used a VECM–BEKK–GJR–
MGARCH model to jointly examine price and volatility dynamics characterising the three main
vegetable oils involved in EU biofuel production. Our analysis further included macroeconomic
factors for each vegetable oil’s conditional mean, variance, and covariances.

We applied our model to monthly and daily prices using a unique data set provided by a
major European crushing company and biodiesel producer. The two sets of results significantly
differ in their economic interpretation and variance dynamics. Unlike most of the literature,
we found that the USDA’s forecasts of stock-to-use ratios, representing the expected tensions
between supply and demand, do not impact monthly prices, nor do they impact their associated
volatility. However, we found that they have significant effects on daily price volatility.

We also contribute to the literature by highlighting and assessing the effects of vegetable oil
substitutability and complementarity on prices. While RSO and SBO are good substitutes, this
is not the case for PMO. In Europe, PMO is complementary to RSO for biodiesel blending. This
stems from its industrial technical parameters, especially the CFPP. This distinction between
substitutability and complementarity is essential and explains the different results and causality
structures we retrieved through market price levels and dynamic analysis of volatilities, for
example the fact that RSO and SBO are the main drivers of vegetable oil prices. We also showed
that, through the Brent price, the energy market has only a positive influence on vegetable oil
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price levels, but it has no influence on their volatility. In the same vein, it is interesting to note
that exchange rates impact both price and volatility dependence structures, and they trigger
substitution strategies among vegetable oils.

We demonstrated the existence of spillover effects on the European vegetable oil market at
the daily frequency. The SBO and PMO variances constitute the major net contributors to these
spillovers, while the RSO–SBO covariance stands as the major net receiver. From a practitioner
point of view, and with regard to value-at-risk modelling, it is worth highlighting that spillover
effects are mainly directed from variances towards covariances; they are also directed to a lesser
extent from covariances towards variances, but also directly between covariances.

Finally, we contribute to the methodological literature by developing an analytical expression
of the MGARCH VIRF with asymmetry, and we derived the necessary conditions to ensure
covariance stationarity for spillovers when adding price volatility asymmetry and exogenous
variables.
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Appendix

A Model selection

A.1 Descriptive statistics and stationarity tests

LEVELS DIFFERENCE
RSO SBO PMO RSO SBO PMO

Monthly

Mean 6.850 6.814 6.626 0.0019 0.0018 0.0037
Std 0.1834 0.1912 0.2313 0.0421 0.0404 0.0643

Shapiro 0.891*** 0.908*** 0.980*** 0.976** 0.985 0.992
Jarque-Bera 19.0*** 14.6*** 3.19 11.8*** 2.69 0.348

ADF −1.89 −1.82 −2.05 −8.33*** −7.29*** −7.77***
PP −1.62 −1.57 −2.06 −8.72*** −8.33*** −8.41***

KPSS 1.70*** 2.24*** 2.15*** 0.164 0.189 0.154

Daily

Mean 6.739 6.708 6.508 4.99E−05 9.59E−05 7.45E−05
Std 0.0763 0.0975 0.1452 0.0122 0.0119 0.0179

Shapiro 0.981*** 0.982*** 0.985*** 0.928*** 0.956*** 0.959***
Jarque−Bera 75.4*** 54.7*** 25.8*** 2042*** 1190*** 612***

ADF −2.19 −1.63 −1.51 −34.5*** −31.6*** −26.6***
PP −2.53 −1.75 −1.72 −51.9*** −45.6*** −53.3***

KPSS 5.32*** 12.5*** 8.52*** 0.163 0.256 0.315

Table A1: Descriptive statistics and unit-root tests
Note: A constant is used as a deterministic component for unit-root tests. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.

Monthly Daily
None Const Trend None Const Trend

r = 0 −1646.5 −1636.2 −1636.6 −31683.4 −31673.7 −31665.2
r = 1 −1654.5 −1649.5 −1651.3 −31708.2 −31703.2 −31703.1
r = 2 −1651.2 −1642.0 −1646.3 −31690.8 −31686.3 −31678.3
r = 3 −1626.8 −1612.5 −1612.2 −31642.9 −31620.5 −31622.0

Table A2: BIC values for different cointegration ranks and deterministic terms

Monthly Daily
Stat p-value Stat p-value

r = 0 30.67*** 0.007 29.90*** 0.009
r = 1 11.78* 0.062 5.21 0.585
r = 2 0.23 0.755 0.08 0.813

Table A3: Johansen tests (no deterministic term)

A.2 Stepwise method

Table A4 shows the detailed results of the stepwise method to determine the optimal exogenous
variables for each model. We first determine the optimal exogenous variables for the conditional
mean, and we subsequently find those associated with the conditional volatility dynamics.

To determine the exogenous variables to add in each conditional mean and variance models,
we consider the AIC criterion. We always select the model with the lowest criterion value:
AIC = 2k − 2LT (θ), with k the number of model parameters to estimate, and LT (θ) the log-
likelihood of our model. From equation (1), we see that if we add an exogenous variable to
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the conditional mean model, we will need to estimate K (= 3) additional parameters, and
if we add an exogenous variable to the conditional variance model, we will need to estimate
K×(K+1)/2 (= 6) additional parameters. It is therefore easy to see that the addition of an
exogenous variable will be relevant if the log-likelihood of the model increases by at least 3
for an exogenous variable in the conditional mean model, and by at least 6 in the conditional
variance model. We could also have used the likelihood ratio statistic to determine whether the
addition of an exogenous variable is relevant, but this would have been more restrictive. Adding
an exogenous variable would have been relevant if the log-likelihood of our model would have
increased by 6.25 (χ2

10%(3)) for the conditional mean model, or by 10.64 (χ2
10%(6) = 10.64) for

the conditional variance model.
The stepwise method consists of independently trying all the exogenous variables one by one

and then selecting the one with the lowest AIC value. We then combine this with the remaining
exogenous variables and select the best marginal contributor. We repeat this operation until
none of the exogenous variables improves our model, i.e., in our study, until none improves the
AIC. Details of the log-likelihood values obtained at each step of the stepwise method are given
in Table A4, and Table A5 summarises the results.

The tables have to be read row by row: for each row, we determine which exogenous variable
is the best – that is to say, the variable that maximises the log-likelihood value when we add it to
the model. Once we determine which exogenous variable is the best and check if it improves the
model, we add it to the model and we can then go on to the next row. We keep iterating until
the addition of any remaining exogenous variable does not improve our model according to the
AIC criterion. The numbers of pre-iterations completed with the simplex algorithm is printed.
In the monthly sample, we used the BHHH algorithm when the BFGS failed to converge, and
‘NA’ indicates that both the BHHH and BFGS algorithms failed to converge.

Table A6 and Table A7 show the estimated parameters for the determined optimal models,
along with their associated statistical significances.
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LEVELS
Brent Tbills Var Tbills EURUSD USDMYR EURMYR Ratio RSO Ratio SBO Ratio SFO Ratio PMO Ratio RS Ratio SB

VECM
Monthly X

Daily

GARCH
Monthly X

Daily X X X X X X X X

DIFFERENCE LOG-LIKELIHOOD
Brent Tbills EURUSD USDMYR EURMYR Ratio RSO Ratio SBO Ratio SFO Ratio PMO Ratio RS Ratio SB Without exog. Optimal models

VECM
Monthly X X X 861.9 893.6

Daily X X X X X 16 008.0 16 183.3

GARCH
Monthly X X 919.7 948.9

Daily X X X 16 482.8 16 691.7

Table A5: Optimal exogenous variables and model log-likelihood values

α =

 0.007
0.083∗∗

0.266∗∗∗

 , β =

 1
−0.381∗∗∗

−0.635∗∗∗

 ,Γ1 =

 0.199 0.095 −0.043
0.103 0.131 0.008

−0.323 0.363 0.224∗∗


A =

 0.747∗∗∗ 0.226 0.781∗∗

−0.661∗∗∗ −0.322 −1.393∗∗∗

0.180 0.230∗∗ 0.562∗∗

 , B =

 0.336 0.180 −0.717∗∗

0.115 −0.150 0.753∗

−0.082 0.046 0.073

 , D =

0.274 −0.141 0.494
0.237 1.143∗∗∗ 0.409
0.000 −0.185 −0.123



CV
LEVELS DIFFERENCE

Tbills Brent EURUSD USDMYR
RSO (P1) 0.064 0.00256∗∗∗ 0.251∗ −0.040
SBO (P2) −0.704 0.00216∗∗∗ 0.271∗∗ −0.093∗

PMO (P3) −2.054∗∗∗ 0.00332∗∗∗ −0.144 −0.200∗∗

CG
LEVELS DIFFERENCE

C0 Tbills EURUSD Ratio PMO
Var RSO 0.025∗∗∗ 0.030 0.213 −0.715∗∗∗

Var SBO 0.013∗∗∗ −0.455 −0.062 0.463∗

Var PMO 0.006 0.043 0.432∗ 0.786
Cov RSO–SBO 0.026∗∗∗ −1.199∗∗∗ 0.290∗ 0.015
Cov RSO–PMO 0.032∗∗∗ −0.501 0.407 0.470
Cov SBO–PMO 0.012 0.193 0.229 0.061

Table A6: Estimated parameters – monthly
Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

A.3 Residuals tests

We can represent the standardised residuals as ζt = Σ−1/2
t|t−1εt. We can also verify the adequacy

of the model by performing multivariate Ljung–Box tests (Ljung & Box, 1978) and Lagrange
multiplier (LM) tests (Tse, 2000). These test whether there is still any serial correlation between
innovation or any ARCH effect – i.e., serial correlation between squared innovations – which
leads to heteroscedasticity. We can apply these tests to the VECM residuals εt and compare the
obtained values with those obtained with tests applied to the standardised residuals ζt. Table A8
indicates perfect removal of both serial correlation and ARCH effects for the standardised
residuals ζt. Figure A1 shows the evolution of the conditional variance and covariance estimated
by our models. There is strong heteroscedasticity, and the PMO variance is higher than the
others in all samples.
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α =

−0.0127∗∗∗

0.0090∗∗

−0.0094∗

 , β =

 1
−2.110∗∗∗

1.139∗∗∗

 ,Γ1 =

−0.262∗∗∗ 0.104∗∗∗ 0.028∗

0.059∗∗ −0.123∗∗∗ 0.050∗∗∗

0.116∗∗∗ 0.162∗∗∗ −0.304∗∗∗


Γ2 =

−0.094∗∗∗ 0.036 0.021
0.046∗ −0.071∗∗∗ 0.051∗∗∗

0.079∗∗ 0.113∗∗∗ −0.143∗∗∗

 ,Γ3 =

−0.032 0.025 0.048∗∗∗

−0.002 −0.088∗∗∗ 0.043∗∗

0.014 0.061 −0.018

 ,Γ4 =

−0.057∗∗ 0.019 0.025
0.009 −0.068∗∗∗ 0.006

−0.008 −0.001 −0.038



A =

 0.323∗∗∗ −0.078∗∗∗ 0.021
−0.153∗∗∗ 0.04 −0.076∗

−0.066∗∗∗ −0.022 −0.03

 , B =

0.808∗∗∗ −0.194∗∗∗ −0.072∗∗∗

−0.51∗∗∗ −0.837∗∗∗ −0.543∗∗∗

0.053∗∗∗ 0.113∗∗ 1.012∗∗∗

 , D =

0.196∗∗∗ 0.112∗∗∗ 0.034
−0.075 −0.152∗ 0.02
−0.002 0.091∗∗ 0.032



CV
DIFFERENCE

Brent EURUSD USDMYR Ratio SBO Ratio PMO
RSO (P1) 1.70E−04∗∗∗ 0.709∗∗∗ −0.014 0.107 −0.0058
SBO (P2) 2.74E−04∗∗∗ 0.129∗∗∗ −0.042∗∗ 0.014 0.0590∗∗

PMO (P3) 1.98E−04∗∗∗ 0.195∗∗∗ −0.108∗∗∗ −0.258∗ 0.0487

CG
LEVELS DIFFERENCE

C0 Brent Var Tbills USDMYR Ratio RSO Ratio SBO Ratio SFO Ratio RS Ratio SB EURUSD EURMYR Ratio SFO
Var RSO −0.020∗∗∗ −1.93E−06 1.666∗∗∗ 0.0038∗∗∗ 0.034∗∗∗ 0.043 −0.033∗∗∗ −0.054∗∗∗ 0.028∗∗∗ 0.134∗∗ 0.028∗∗ −0.084∗∗∗

Var SBO 0.088∗∗∗ −2.43E−05∗∗∗ −1.153∗∗∗ −0.0077∗∗∗ −0.091∗∗∗ −0.451∗∗∗ 0.068∗∗∗ 0.025 −0.043∗∗∗ −0.259∗∗∗ 0.001 −0.153∗∗∗

Var PMO 0.015 4.83E−06 0.074 −0.0013 −0.070∗∗∗ −0.043 0.006 −0.049∗ 0.011 0.163∗ −0.057∗∗ 0.025
Cov RSO–SBO 0.003 −5.71E−06 0.440 −0.0023∗∗ 0.053∗∗∗ 0.017 −0.073∗∗∗ 0.020∗ 0.029∗∗∗ −0.227∗∗∗ 0.024∗ 0.088∗∗

Cov RSO–PMO 0.014 −2.73E−06 0.343 −0.0024∗∗ 0.014 −0.063 −0.026∗∗ 0.002 0.008 −0.064 −0.007 −0.002
Cov SBO–PMO 0.052∗∗∗ −2.63E−05∗∗∗ −1.404∗∗∗ −0.0052∗∗∗ −0.034∗∗ −0.318∗∗∗ 0.075∗∗∗ 0.064∗∗∗ −0.024∗∗∗ 0.082 −0.050∗∗ −0.096∗∗∗

Table A7: Estimated parameters – daily
Note: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Monthly Daily
εt ζt εt ζt

Ljung–Box (5) 52.5 [0.206] 48.0 [0.353] 12.4 [1.000] 32.4 [0.919]
Ljung–Box (8) 82.8 [0.181] 76.2 [0.346] 47.4 [0.989] 63.1 [0.763]
Ljung–Box (10) 98.0 [0.265] 89.2 [0.503] 64.8 [0.979] 79.0 [0.789]
Ljung–Box (12) 115. [0.307] 112. [0.367] 90.8 [0.884] 106. [0.548]
Arch-LM (5) 81.6 [0.001] 38.6 [0.737] 370. [0.000] 53.2 [0.188]
Arch-LM (10) 111. [0.070] 82.3 [0.706] 634. [0.000] 88.0 [0.539]

Table A8: Ljung–Box and ARCH-LM tests with different lags, and their associated p-values

(a) Monthly. (b) Daily.

Figure A1: BEKK–GJR–MGARCH conditional variance.
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B Covariance stationarity
The proof of covariance stationarity is derived from the work of Engle and Kroner (1995) and
Lütkepohl (2005), to which we added both exogenous variables and an asymmetric term.

Using the properties
(A ⊗ B)τ = Aτ ⊗ Bτ

vec(AXB) = (Bτ ⊗ A) vec(X)
vec(A + B) = vec(A) + vec(B)

(10)

we can write our BEKK–MGARCH in the vec form:

Σt|t−1 = CtC
τ
t +Aτεt−1ε

τ
t−1A+Bτ Σt−1|t−2B +Dτξt−1ξ

τ
t−1D

vec(Σt|t−1) = vec(CtC
τ
t +Aτεt−1ε

τ
t−1A+Bτ Σt−1|t−2B +Dτξt−1ξ

τ
t−1D)

= vec(CtC
τ
t ) + vec(Aτεt−1ε

τ
t−1A)

+ vec(Bτ Σt−1|t−2B) + vec(Dτξt−1ξ
τ
t−1D)

= (Ct ⊗ Ct) vec(I) + (A⊗A)τ vec(εt−1ε
τ
t−1)

+ (B ⊗B)τ vec(Σt−1|t−2) + (D ⊗D)τ vec(ξt−1ξ
τ
t−1)

= Cvec
t +Avec vec(εt−1ε

τ
t−1) +Bvec vec(Σt−1|t−2) +Dvec vec(ξt−1ξ

τ
t−1)

(11)

and note: 
Cvec

t = (Ct ⊗ Ct) vec(I)
Avec = (A⊗A)τ

Bvec = (B ⊗B)τ

Dvec = (D ⊗D)τ

(12)

Following Hafner and Herwartz (1998), and thanks to the symmetry of the distribution of
εt, we can write:

E[vec(ξtξ
τ
t )|Ft−1] = E [vec ((εt ◦ 1x>0)(εt ◦ 1x>0)τ ) |Ft−1]

= 1
2E[vec(εtε

τ
t )|Ft−1]

(13)

We can then write the conditional expectations iteratively, knowing that Σt|t−1 = E[εtε
τ
t |Ft−1].

We thus obtain (see proof proposition 2.7 of Engle and Kroner (1995) for details):

vec(Σt|t−2) = Cvec
t|t−2 +AvecE[vec(εt−1ε

τ
t−1)|Ft−2]

+BvecE[vec(Σt−1|t−2)|Ft−2] +DvecE[vec(ξt−1ξ
τ
t−1)|Ft−2]

= Cvec
t|t−2 +Avec vec(Σt−1|t−2)

+Bvec vec(Σt−1|t−2) + 1
2D

vec vec(Σt−1|t−2)

= Cvec
t|t−2 +

[
Avec +Bvec + 1

2D
vec
]

vec(Σt−1|t−2)

(14)
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vec(Σt|t−3) = Cvec
t|t−3 +AvecE[vec(εt−1ε

τ
t−1)|Ft−3]

+Bvec vec(Σt−1|t−3) +DvecE[vec(ξt−1ξ
τ
t−1)|Ft−3]

= Cvec
t|t−3 +AvecE[vec(εt−1ε

τ
t−1)|Ft−3]

+Bvec{Cvec
t−1|t−3 +AvecE[vec(εt−2ε

τ
t−2)|Ft−3]

+Bvec vec(Σt−2|t−3) +DvecE[vec(ξt−2ξ
τ
t−2)|Ft−3]}

+ 1
2D

vecE[vec(εt−1ε
τ
t−1)|Ft−3]

= Cvec
t|t−3 +BvecCvec

t−1|t−3 +AvecE[vec(εt−1ε
τ
t−1)|Ft−3]

+Bvec{Avec vec(Σt−2|t−3)

+Bvec vec(Σt−2|t−3) + 1
2D

vec vec(Σt−2|t−3)}

+ 1
2D

vecE[vec(εt−1ε
τ
t−1)|Ft−3]

= Cvec
t|t−3 +BvecCvec

t−1|t−3 +AvecE[vec(εt−1ε
τ
t−1)|Ft−3]

+Bvec{Avec +Bvec + 1
2D

vec} vec(Σt−2|t−3)

+ 1
2D

vecE[vec(εt−1ε
τ
t−1)|Ft−3]

= Cvec
t|t−3 + {Bvec +Avec + 1

2D
vec}Cvec

t−1|t−3

+Avec{Avec +Bvec + 1
2D

vec} vec(Σt−2|t−3)

+Bvec{Avec +Bvec + 1
2D

vec} vec(Σt−2|t−3)

+ 1
2D

vec{Avec +Bvec + 1
2D

vec} vec(Σt−2|t−3)

= Cvec
t|t−3 + {Bvec +Avec + 1

2D
vec}Cvec

t−1|t−3

+ {Avec +Bvec + 1
2D

vec}2 vec(Σt−2|t−3)

(15)

vec(Σt|t−s) =
s−2∑
k=0

{Avec +Bvec + 1
2D

vec}kCvec
t−k|t−s

+ {Avec +Bvec + 1
2D

vec}s−1 vec(Σt−s+1|t−s)
(16)

Furthermore, provided that:

lims→∞Xs = 0 ⇔ Spectral radius of X is less than 1, (17)

it is necessary and sufficient for the limit lims→∞ vec(Σt|t−s) to both exist and be finite for all

the moduli of the eigenvalues associated with the matrix {Avec +Bvec + 1
2D

vec} to be less than
one. This is therefore the necessary and sufficient condition for MGARCH stationarity.

27



C MGARCH p-value derivation
The derivation of the conditional variance equation leads to a product, or even a sum of products,
of estimated parameters. Therefore, we need to estimate the p-values associated with these
parameter combinations. Let X = (x1, · · · , xN ) be an (N × 1) vector of estimators, with N an
even number. We note that X̂ are the estimated parameters for X. We can then define the
function f as:

f(X) =
N/2∑
i=1

x2(i−1)+1x2i = x1x2 + x3x4 + · · · + xN−1xN (18)

In equation (1), it is easy to see that we can express parameter combinations with this
function f . We can approximate f(X) with a first-order Taylor development around X̂:

f(X) ≈ f(X̂) +
N∑

i=1

∂f(X)
∂xi

∣∣∣
{X̂}

(X − X̂)

≈ f(X̂) −
N∑

i=1

∂f(X)
∂xi

∣∣∣
{X̂}

X̂ +
N∑

i=1

∂f(X)
∂xi

∣∣∣
{X̂}

X

(19)

We can now calculate the variance of this function of estimators, and we note that only the last
element has a variance: the two other elements are fixed numbers.

Var(f(X)) ≈ Var
(

N∑
i=1

∂f(X)
∂xi

∣∣∣
{X̂}

X

)
, with: ∂f(X)

∂xi
=
{
xi−1 if i is even
xi+1 otherwise

(20)

We then obtain the variance of f(X) using the standard variance formula for the sum of N
variables:

Var(f(X)) ≈
N∑

i=1

(
∂f(X)
∂xi

∣∣∣
{X̂}

)2
Var (xi) + 2

∑
1≤i<j≤N

(
∂f(X)
∂xi

∣∣∣
{X̂}

)(
∂f(X)
∂xj

∣∣∣
{X̂}

)
Cov(xi, xj)

(21)
We obtain all Var(xi) and Cov(xi, xj) thanks to the Hessian matrix, and we then calculate the
standard errors associated with each estimated parameter combination of our MGARCH model.
We finally easily obtain the p-values associated with these parameter combinations.

In the following, we detail the parameter combinations for each variable of equation (1),
along with their associated standard errors, for (Σt|t−1)i,j .
• Estimated parameter combinations:

εk,t−1εl,t−1 −→ AkiAlj + 1x̸=0(k − l)AliAkj

(Σt−1|t−2)k,l −→ BkiBlj + 1x ̸=0(k − l)BliBkj

ξk,t−1ξl,t−1 −→ DkiDlj + 1x̸=0(k − l)DliDkj

zl,tzm,t −→
min(i,j)∑

k=1
(CG

zl
)ik(CG

zm
)jk + 1x ̸=0(l −m)(CG

zm
)ik(CG

zl
)jk

(22)
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• Associated standard errors:

εk,t−1εl,t−1 −→ A2
lj Var(Aki) +A2

ki Var(Alj) + 2AljAki Cov(AkiAlj)
+ 1x ̸=0(k − l){A2

kj Var(Ali) +A2
li Var(Akj)

+ 2[AljAkj Cov(AkiAli) +AljAli Cov(AkiAkj)
+AkiAkj Cov(AljAli) +AkiAli Cov(AljAkj) +AkjAli Cov(AliAkj)]}

(Σt−1|t−2)k,l −→ B2
lj Var(Bki) +B2

ki Var(Blj) + 2BljBki Cov(BkiBlj)
+ 1x ̸=0(k − l){B2

kj Var(Bli) +B2
li Var(Bkj)

+ 2[BljBkj Cov(BkiBli) +BljBli Cov(BkiBkj)
+BkiBkj Cov(BljBli) +BkiBli Cov(BljBkj) +BkjBli Cov(BliBkj)]}

ξk,t−1ξl,t−1 −→ D2
lj Var(Dki) +D2

ki Var(Dlj) + 2DljDki Cov(DkiDlj)
+ 1x ̸=0(k − l){D2

kj Var(Dli) +D2
li Var(Dkj)

+ 2[DljDkj Cov(DkiDli) +DljDli Cov(DkiDkj)
+DkiDkj Cov(DljDli) +DkiDli Cov(DljDkj) +DkjDli Cov(DliDkj)]}

z2
l,t −→

min(i,j)∑
k,s=1

Cov
[
(CG

zl
)ik, (CG

zl
)is

]
(CG

zl
)jk(CG

zl
)js

+ Cov
[
(CG

zl
)jk, (CG

zl
)js

]
(CG

zl
)ik(CG

zl
)is + 2 Cov

[
(CG

zl
)ik, (CG

zl
)js

]
(CG

zl
)jk(CG

zl
)is

zl,tzm,t
(l ̸=m,i=j)

−→ 4
i∑

k,s=1
Cov

[
(CG

zl
)ik, (CG

zl
)is

]
(CG

zm
)ik(CG

zm
)is

+ Cov
[
(CG

zm
)ik, (CG

zm
)is

]
(CG

zl
)ik(CG

zl
)is + 2 Cov

[
(CG

zl
)ik, (CG

zm
)is

]
(CG

zm
)ik(CG

zl
)is

zl,tzm,t
(l ̸=m,i ̸=j)

−→
∑

x1,x2∈{i,j}
y1,y2∈{i,j}

x1 ̸=x2,y1 ̸=y2

∑
v1,v2∈{l,m}
w1,w2∈{l,m}
v1 ̸=v2,w1 ̸=w2

min(i,j)∑
k,s=1

{
Cov

[
(CG

zv1
)x1k, (CG

zw1
)y1s

]
(CG

zv2
)x2k(CG

zw2
)y2s

}

(23)
If we focus on variances, that is to say (Σt|t−1)i,j with i = j, the standard error expressions are
greatly simplified:

εk,t−1εl,t−1 −→ (1 + 31x ̸=0(k − l))
[
A2

li Var(Aki) +A2
ki Var(Ali) + 2AliAki Cov(AkiAli)

]
(Σt−1|t−2)k,l −→ (1 + 31x ̸=0(k − l))

[
B2

li Var(Bki) +B2
ki Var(Bli) + 2BliBki Cov(BkiBli)

]
ξk,t−1ξl,t−1 −→ (1 + 31x ̸=0(k − l))

[
D2

li Var(Dki) +D2
ki Var(Dli) + 2DliDki Cov(DkiDli)

]
z2

l,t −→ 4
i∑

k,s=1
Cov

[
(CG

zl
)ik, (CG

zl
)is

]
(CG

zl
)ik(CG

zl
)is

(24)
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(Σt|t−1)11 1 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

1 4.16E−04
z1 7.87E−08 3.72E−12
z2 −6.80E−02∗∗ −6.42E−06 2.78E00∗∗

z3 −1.54E−04∗ −1.46E−08 1.26E−02∗∗∗ 1.43E−05∗

z4 −1.39E−03∗∗ −1.31E−07 1.13E−01∗∗∗ 2.58E−04∗∗∗ 1.16E−03∗∗

z5 −1.75E−03 −1.65E−07 1.43E−01 3.24E−04 2.92E−03 1.83E−03
z6 1.35E−03∗∗ 1.28E−07 −1.10E−01∗∗ −2.50E−04∗∗ −2.26E−03∗∗ −2.84E−03 1.10E−03∗

z7 2.20E−03∗∗∗ 2.08E−07 −1.80E−01∗∗ −4.08E−04∗∗∗ −3.67E−03∗∗ −4.62E−03 3.57E−03∗∗ 2.91E−03
z8 −1.15E−03∗∗∗ −1.08E−07 9.37E−02∗∗∗ 2.13E−04∗∗∗ 1.92E−03∗∗ 2.41E−03 −1.86E−03∗∗∗ −3.03E−03∗ 7.91E−04∗

z9 −5.46E−03∗ −5.16E−07 4.46E−01∗∗ 1.01E−03∗ 9.11E−03∗ 1.15E−02 −8.85E−03∗ −1.44E−02∗ 7.52E−03∗ 1.79E−02
z10 −1.15E−03∗∗ −1.09E−07 9.42E−02∗∗ 2.14E−04∗∗ 1.93E−03∗∗ 2.42E−03 −1.87E−03∗∗ −3.05E−03∗ 1.59E−03∗ 7.56E−03∗∗∗ 8.00E−04
z11 3.43E−03∗∗∗ 3.24E−07 −2.80E−01∗∗∗ −6.37E−04∗∗∗ −5.73E−03∗∗∗ −7.21E−03 5.57E−03∗∗∗ 9.08E−03∗∗∗ −4.73E−03∗∗∗ −2.25E−02∗∗ −4.76E−03∗ 7.08E−03∗∗

(Σt|t−1)22 1 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

1 7.75E−03∗∗∗

z1 −4.31E−06∗∗∗ 6.22E−10∗∗∗

z2 −2.00E−01∗∗∗ 5.10E−05∗∗∗ 1.52E00∗∗

z3 −1.37E−03∗∗∗ 4.00E−07∗∗∗ 1.57E−02∗∗∗ 6.48E−05∗∗∗

z4 −1.56E−02∗∗∗ 3.80E−06∗∗∗ 2.56E−01∗∗∗ 1.15E−03∗∗∗ 1.11E−02∗∗∗

z5 −7.93E−02∗∗∗ 2.17E−05∗∗∗ 1.06E00∗∗∗ 6.87E−03∗∗∗ 8.38E−02∗∗∗ 2.04E−01∗∗∗

z6 1.15E−02∗∗∗ −2.47E−06∗∗ −2.22E−01∗∗∗ −7.08E−04∗∗ −2.02E−02∗∗∗ −6.40E−02∗∗∗ 1.00E−02∗∗∗

z7 4.58E−03 −1.45E−06 −4.07E−02 −4.82E−04 −2.45E−03 −2.21E−02 5.02E−04 1.04E−03
z8 −7.33E−03∗∗∗ 1.75E−06∗∗∗ 1.24E−01∗∗∗ 5.24E−04∗∗ 1.09E−02∗∗∗ 3.96E−02∗∗∗ −1.01E−02∗∗∗ −9.99E−04 2.68E−03∗∗

z9 −4.72E−02∗∗∗ 1.52E−05∗∗∗ 3.99E−01 5.05E−03∗∗∗ 2.29E−02 2.26E−01∗∗ −2.02E−03 −2.22E−02∗ 9.01E−03 1.19E−01∗∗

z10 3.39E−04 −3.23E−07 1.90E−02 −1.28E−04 2.39E−03 −5.16E−05 −3.41E−03 1.02E−03 1.32E−03 −1.15E−02 5.85E−04
z11 −2.64E−02∗∗∗ 6.43E−06∗∗∗ 4.31E−01∗∗∗ 1.95E−03∗∗∗ 3.72E−02∗∗∗ 1.41E−01∗∗∗ −3.38E−02∗∗∗ −4.21E−03 1.83E−02∗∗∗ 3.94E−02 3.97E−03 3.13E−02∗∗∗

(Σt|t−1)33 1 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

1 3.12E−03∗∗∗

z1 −2.66E−06∗∗∗ 7.20E−10∗∗∗

z2 −1.34E−01∗∗∗ 7.26E−05∗∗∗ 2.10E00∗∗

z3 −6.44E−04∗∗∗ 2.71E−07∗∗∗ 1.26E−02∗∗ 3.43E−05∗∗∗

z4 −5.15E−03∗∗∗ 1.01E−06 9.35E−02 4.61E−04∗∗ 6.19E−03∗∗∗

z5 −3.61E−02∗∗∗ 1.66E−05∗∗∗ 8.45E−01∗∗∗ 3.70E−03∗∗∗ 2.56E−02∗∗∗ 1.07E−01∗∗∗

z6 7.25E−03∗∗∗ −3.76E−06∗∗∗ −2.28E−01∗∗∗ −6.64E−04∗∗∗ −6.57E−03∗∗ −4.51E−02∗∗∗ 6.37E−03∗∗∗

z7 5.30E−03∗∗∗ −3.86E−06∗∗∗ −1.86E−01∗∗ −5.46E−04∗∗∗ 2.57E−03 −3.70E−02∗∗∗ 9.02E−03∗∗ 6.53E−03∗∗

z8 −2.01E−03∗ 1.35E−06∗∗∗ 7.58E−02∗∗ 1.86E−04∗ 3.77E−04 1.37E−02∗∗ −3.98E−03∗∗ −4.16E−03∗∗ 7.75E−04∗

z9 1.15E−02 −2.39E−06 −2.51E−01 −9.60E−04 −3.00E−02∗∗ −5.81E−02 1.75E−02 −5.65E−03 −1.57E−03 3.74E−02
z10 −7.10E−03∗∗∗ 2.13E−06 1.28E−01 7.01E−04∗∗ 1.11E−02∗∗∗ 3.77E−02∗∗ −7.85E−03∗ −9.36E−04 1.14E−03 −2.59E−02 5.80E−03∗∗

z11 −9.32E−03∗∗∗ 5.31E−06∗∗∗ 2.73E−01∗∗∗ 9.37E−04∗∗∗ 2.86E−03 5.94E−02∗∗∗ −1.41E−02∗∗∗ −1.49E−02∗∗∗ 5.22E−03∗∗ −7.28E−03 6.83E−03 9.92E−03∗∗

(Σt|t−1)21 1 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

1 −7.02E−05
z1 1.10E−07∗ 1.10E−11
z2 −3.24E−03 −1.04E−05 7.32E−01
z3 6.05E−05 −1.71E−08 −2.22E−03 −8.81E−06∗∗

z4 −9.69E−04 −2.97E−07 1.04E−01∗∗∗ 1.22E−04 1.81E−03∗∗∗

z5 −2.05E−04 −2.78E−07 4.76E−02 −3.44E−05 2.87E−03 7.39E−04
z6 1.38E−03 3.30E−07 −1.37E−01∗∗∗ −2.01E−04∗ −4.26E−03∗∗∗ −3.71E−03 2.43E−03∗∗

z7 −5.94E−04 2.69E−07 9.64E−03 2.01E−04∗∗ −2.19E−03∗∗ −7.32E−05 3.30E−03∗∗ −1.08E−03
z8 −4.96E−04 −2.17E−07 6.08E−02∗∗∗ 4.44E−05 2.49E−03∗∗∗ 1.73E−03 −3.03E−03∗∗∗ −1.00E−03 8.17E−04∗∗∗

z9 5.09E−03∗∗∗ −3.26E−07 −3.19E−01∗ −1.17E−03∗∗∗ −6.06E−04 −7.41E−03 −2.30E−03 1.49E−02∗∗ −2.49E−03 −3.03E−02∗∗

z10 −3.96E−04 −2.08E−07 5.27E−02∗ 2.56E−05 2.33E−03∗∗ 1.52E−03 −2.87E−03∗∗∗ −7.37E−04 1.50E−03∗∗ −3.18E−03 6.83E−04
z11 −2.09E−03∗∗ 3.10E−07 1.10E−01 5.30E−04∗∗∗ −1.47E−03 2.33E−03 3.25E−03 −6.45E−03∗∗∗ 3.93E−05 3.09E−02∗∗∗ 4.64E−04 −7.43E−03∗∗∗

(Σt|t−1)31 1 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

1 −2.91E−04∗

z1 2.83E−08 5.27E−12
z2 1.67E−02 −5.21E−06 5.71E−01
z3 1.04E−04∗∗ −5.63E−09 −2.77E−03 −9.24E−06∗∗

z4 1.99E−04 −1.20E−07 3.51E−02 −3.01E−05 4.78E−04
z5 1.89E−03 3.62E−09 −8.96E−02 −3.41E−04 −1.53E−03 −2.68E−03
z6 5.85E−05 1.41E−07 −5.47E−02∗ −1.75E−05 −1.35E−03∗ 9.58E−04 8.60E−04
z7 −8.14E−04 1.43E−07 −1.48E−02 1.40E−04 −6.81E−04 3.47E−03 1.33E−03 −1.21E−04
z8 2.40E−04 −9.21E−08 2.28E−02 −3.89E−05 6.64E−04 −1.42E−03 −9.92E−04∗ −3.62E−04 2.22E−04
z9 3.22E−03 −2.41E−07 −6.13E−02 −5.70E−04∗ −3.12E−04 −1.11E−02 −1.35E−03 3.77E−03 −7.55E−04 −8.60E−03
z10 5.42E−04 −6.41E−08 −1.70E−03 −9.49E−05 1.64E−04 −2.06E−03 −5.09E−04 4.32E−04 3.05E−05 −2.73E−03∗ −1.93E−04
z11 −1.15E−03 2.34E−07 −3.24E−02 1.97E−04 −1.25E−03 5.17E−03 2.26E−03∗∗ −7.25E−05 −7.24E−04 5.12E−03 5.14E−04 1.81E−04

(Σt|t−1)32 1 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

1 4.62E−03∗∗∗

z1 −3.66E−06∗∗∗ 6.53E−10∗∗∗

z2 −1.76E−01∗∗∗ 6.12E−05∗∗∗ 1.77E00∗∗∗

z3 −8.96E−04∗∗∗ 3.48E−07∗∗∗ 1.49E−02∗∗∗ 4.54E−05∗∗∗

z4 −6.86E−03∗∗∗ 2.97E−06∗∗∗ 1.91E−01∗∗∗ 5.64E−04∗∗ 3.79E−03∗∗

z5 −5.14E−02∗∗∗ 1.99E−05∗∗∗ 9.79E−01∗∗∗ 4.88E−03∗∗∗ 4.10E−02∗∗∗ 1.43E−01∗∗∗

z6 9.03E−03∗∗∗ −3.27E−06∗∗∗ −2.19E−01∗∗∗ −6.91E−04∗∗∗ −1.15E−02∗∗∗ −5.15E−02∗∗∗ 7.03E−03∗∗∗

z7 7.26E−03∗∗∗ −2.29E−06∗∗∗ −1.02E−01∗∗ −6.80E−04∗∗∗ −6.28E−03∗∗∗ −3.83E−02∗∗∗ 5.59E−03∗∗ 1.67E−03
z8 −3.94E−03∗∗∗ 1.59E−06∗∗∗ 1.02E−01∗∗∗ 3.20E−04∗∗∗ 4.49E−03∗∗∗ 2.30E−02∗∗∗ −6.22E−03∗∗∗ −3.15E−03∗ 1.28E−03∗

z9 −9.69E−03 5.80E−06 1.63E−01 1.41E−03 −5.37E−03 5.85E−02 −3.30E−03 −1.64E−02 −8.29E−04 −6.73E−03
z10 −4.05E−03 1.17E−06 6.19E−02 3.39E−04 4.51E−03 2.08E−02 −3.48E−03 −1.29E−03 2.12E−03 1.31E−02 −2.15E−04
z11 −1.52E−02∗∗∗ 6.13E−06∗∗∗ 3.56E−01∗∗∗ 1.32E−03∗∗∗ 1.50E−02∗∗∗ 8.67E−02∗∗∗ −2.02E−02∗∗∗ −1.21E−02∗∗ 8.51E−03∗∗∗ 7.17E−03 6.96E−03 1.46E−02∗∗∗

Table C1: Conditional variance equations, exogenous variables (daily)
Note: z1 = Brent, z2 = VarTbills, z3 = USDMYR, z4 = RSO ratio, z5 = SBO ratio, z6 = SFO ratio,
z7 = RS ratio, z8 = SB ratio, z9 = ∆EURUSD, z10 = ∆EURMYR, z11 = ∆SFO ratio. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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D VIRF of Hafner and Herwartz
Hafner and Herwartz (2006) developed the VIRF to study the impact and the persistence of
a price shock on the volatility dependence structure with the MGARCH model. They defined
the VIRF as the difference between the expected conditional variance–covariance matrix given
an initial shock and state, and the expectation given the history is:

Vh(ζt,Ft−1) = E[vech(Σt+h|t+h−1)|Ft−1, ζt] − E[vech(Σt+h|t+h−1)|Ft−1] (25)

where ζt is the initial shock and Ft−1 is all the information available on the market at time
t − 1. Following Appendix B and knowing that Σt|t−1 is symmetric as a variance–covariance
matrix, we can easily rewrite our BEKK–MGARCH into its vech form, with DK the duplication
matrix, and D+

K its Moore–Penrose inverse:

Avech = D+
KA

vecDK = D+
K(A⊗A)τDK

Bvech = D+
KB

vecDK = D+
K(B ⊗B)τDK

Dvech = D+
KD

vecDK = D+
K(D ⊗D)τDK

vech(Σt|t−1) = D+
K vec(Σt|t−1) = vech(CG

t C
Gτ
t ) +Avech vech(εt−1ε

τ
t−1)

+Bvech vech(Σt−1|t−2) +Dvech vech(ξt−1ξ
τ
t−1)

(26)

Hafner and Herwartz (2006) gave the analytical expression of the VIRF for MGARCH,
but without asymmetry. To our knowledge, no previous study has developed the VIRF with
asymmetry in analytical form. Provided that:

(A ◦ B)τ = Aτ ◦ Bτ

vec(ABC) = (A ⊗ Cτ ) vec(B)
a ◦ b = diag(a)b = diag(b)a (Hadamard product of two vectors)

(27)

where diag is an operator that transforms a K×1 vector into a diagonal (K×K) square matrix,
the diagonal of this matrix being the vector considered. We can then write:

vec(ξtξ
τ
t ) = vec {[εt ◦ 1x>0(εt)] [εt ◦ 1x>0(εt)]τ }

= vec [diag {1x>0(εt)} εtε
τ
t diag {1x>0(εt)}]

= [diag {1x>0(εt)} ⊗ diag {1x>0(εt)}] vec(εtε
τ
t )

(28)

Following Hafner and Herwartz (2006), we need to replace the residuals εt with the stan-
dardised residuals ζt. As (A ⊗ B)(C ⊗ D) = AC ⊗ BD, we can then write:

vec(εtε
τ
t ) = vec(Σ1/2

t|t−1ζtζ
τ
t Σ1/2

t|t−1) =
[
Σ1/2

t|t−1 ⊗ Σ1/2
t|t−1

]
vec(ζtζ

τ
t )

vec(ξtξ
τ
t ) =

[
diag

{
1x>0(Σ1/2

t|t−1ζt)
}

⊗ diag
{

1x>0(Σ1/2
t|t−1ζt)

} ] [
Σ1/2

t|t−1 ⊗ Σ1/2
t|t−1

]
vec(ζtζ

τ
t )

=
[ [

diag
{

1x>0(Σ1/2
t|t−1ζt)

}
Σ1/2

t|t−1

]
⊗
[
diag

{
1x>0(Σ1/2

t|t−1ζt)
}

Σ1/2
t|t−1

] ]
vec(ζtζ

τ
t )

(29)

Following Lütkepohl (2005), we retain Σt+h|t as a convenient estimator for E[εt+hε
τ
t+h|Ft] with

h > 1. Furthermore, knowing that E[ξt+hξ
τ
t+h|Ft] = 1/2E[εt+hε

τ
t+h|Ft] for h > 1 (proof in

Appendix B), and vec(Σt|t−1) = (Σ1/2
t|t−1 ⊗ Σ1/2

t|t−1) vec(IK), we can obtain the VIRF of Hafner
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and Herwartz (2006) with asymmetry:

V1(ζt,Ft−1) = E[vech(Σt+1|t)|Ft−1, ζt] − E[vech(Σt+1|t)|Ft−1]

= Avech
[

vech(εtε
τ
t ) − vech(Σt|t−1)

]
−Dvech

[
vech(ξtξ

τ
t ) − 1/2 vech(Σt|t−1)

]
= AvechD+

K

[
vec(εtε

τ
t ) − vec(Σt|t−1)

]
−DvechD+

K

[
vec(ξtξ

τ
t ) − 1/2 vec(Σt|t−1)

]
= AvechD+

K(Σ1/2
t|t−1 ⊗ Σ1/2

t|t−1) vec(ζtζ
τ
t − IK)

−DvechD+
K

[ [
diag

{
1x>0(Σ1/2

t|t−1ζt)
}

Σ1/2
t|t−1

]
⊗[

diag
{

1x>0(Σ1/2
t|t−1ζt)

}
Σ1/2

t|t−1

] ]
vec(ζtζ

τ
t − 1/2IK)

= AvechD+
K(Σ1/2

t|t−1 ⊗ Σ1/2
t|t−1)DK vech(ζtζ

τ
t − IK)

−DvechD+
K

[ [
diag

{
1x>0(Σ1/2

t|t−1ζt)
}

Σ1/2
t|t−1

]
⊗[

diag
{

1x>0(Σ1/2
t|t−1ζt)

}
Σ1/2

t|t−1

] ]
DK vech(ζtζ

τ
t − 1/2IK) (30)

V2(ζt,Ft−1) = E[vech(Σt+2|t+1)|Ft−1, ζt] − E[vech(Σt+2|t+1)|Ft−1]
= (Avech +Bvech + 1/2Dvech)V1(ζt,Ft−1) (31)

Vh(ζt,Ft−1) = E[vech(Σt+h|t+h−1)|Ft−1, ζt] − E[vech(Σt+h|t+h−1)|Ft−1]
= (Avech +Bvech + 1/2Dvech)h−1V1(ζt,Ft−1) (32)

E Conditional Volatility Profiles
To study the VIRF for an exogenous variable shock, we follow the method proposed by Gallant
et al. (1993) and Lütkepohl (2005), the so-called conditional moment profiles, in which g(·) is a
function of interest and δ expresses a shock hitting the system:

E[g(εt+h)|δ,Ft] − E[g(εt+h)|Ft] (33)

We then define the conditional volatility profiles by taking:

g(εt+h) = [εt+h − E(εt+h|Ft+h−1)][εt+h − E(εt+h|Ft+h−1)]τ (34)

We now need to estimate and compare conditional covariance matrices with or without the
shock to the system:

Σ̂t+h|t = E{[εt+h − E(εt+h|Ft+h−1)][εt+h − E(εt+h|Ft+h−1)]τ |Ft}
Σ̂δ

t+h|t = E{[εt+h − E(εt+h|Ft+h−1)][εt+h − E(εt+h|Ft+h−1)]τ |δ,Ft}
(35)

Knowing that E[ξt+hξ
τ
t+h|Ft] = 1/2E[εt+hε

τ
t+h|Ft] for h > 1 (proof in Appendix B), we can

write: 
Σ̂t+1|t = CG

t+1|tC
Gτ
t+1|t +AτE[εtε

τ
t |Ft]A+Bτ Σt|t−1B

+DτE[ξtξ
τ
t |Ft]D

Σ̂t+h|t = CG
t+h|tC

Gτ
t+h|t +AτE[εt+h−1ε

τ
t+h−1|Ft]A+Bτ Σ̂t+h−1|tB

+ 1/2DτE[εt+h−1ε
τ
t+h−1|Ft]D , for h > 1

(36)
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where CG
t denotes the exogenous variable observed at time t. Moreover, we assume in this

paper that CG
t+h|t = CG

t , as we do not model the exogenous variables and we do not have any
forecasts available for these variables. Although assuming a VAR framework for the exogenous
variable generation process would be possible, we kept the model as simple as possible to better
track the impact of one-time shocks in the exogenous variables at time t.

Let us consider that E[εtε
τ
t |Ft] = ε̂tε̂

τ
t , where ε̂t corresponds to the residuals obtained

through the VECM at time t. Likewise, we can write E[ξtξ
τ
t |Ft] = ξ̂tξ̂

τ
t with ξ̂t = ε̂t ◦ 1x>0(ε̂t).

Following Lütkepohl (2005), we consider Σt+h|t to be a convenient estimator for E[εt+hε
τ
t+h|Ft]

with h > 1. We can then obtain the different conditional moment profiles for each given t and
δ, Φt,h(δ) = Σ̂δ

t+h|t − Σ̂t+h|t, and summarise all this information by averaging over t:

Φ·,h(δ) = 1
T − 1

T∑
t=2

Σ̂δ
t+h|t − Σ̂t+h|t (37)

F Volatility spillover

F.1 VMA representation

Following the definition of Diebold and Yilmaz (2009), we define the variance spillover effects
as the measures of the proportion of system variance associated with asset interrelationships.
To measure this, we have to decompose the forecast error variance associated with the VAR
model. Diebold and Yilmaz (2012) augmented this concept of spillover by considering direc-
tional spillover. This latter enables us to track the proportion of variance that each asset
transfers to the others, and symmetrically the proportion of variance that each asset receives
from the others. Moreover, the authors improved this measurement by considering a generalised
VAR framework (Koop et al., 1996; Pesaran & Shin, 1998), and thus they no longer rely on
Cholesky’s decomposition, which accordingly eliminates the dependence of the results on the
variable ordering. However, provided that the measurement is based on a VAR model, they
only generate static information. Diebold and Yilmaz (2012) used rolling windows to calculate
a time-varying spillover index. Nevertheless, the spillover index thus obtained only represents
the average value over the rolling sample. This is why Fengler and Herwartz (2018), building on
the aforementioned works, proposed a dynamic spillover index based on a BEKK–MGARCH
model. They used the forecast error variance decomposition of the vector moving average
(VMA) representation associated with the squared and vectorised return process. Here, we pro-
pose to complement this approach by adding an asymmetric component and a set of exogenous
variables to the BEKK–MGARCH model.

We first rewrite our BEKK–MGARCH model (equation (1)) in vech form. To this end, we
use the elimination matrix LK and the duplication matrix DK , which, for a matrix X (K ×K)
are defined such that:

vech(X) = LK vec(X)
vec(X) = DK vech(X)
D+

K = LK with D+
K the Moore–Penrose inverse of DK

(38)
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Σt|t−1 = CG
t C

Gτ
t +Aτεt−1ε

τ
t−1A+Bτ Σt−1|t−2B +Dτξt−1ξ

τ
t−1D

vec(Σt|t−1) = vec(CG
t C

Gτ
t ) +Avec vec(εt−1ε

τ
t−1)

+Bvec vec(Σt−1|t−2) +Dvec vec(ξt−1ξ
τ
t−1) (see Appendix B)

vech(Σt|t−1) = vech(CG
t C

Gτ
t ) +D+

KA
vecDK vech(εt−1ε

τ
t−1)

+D+
KB

vecDK vech(Σt−1|t−2)
+D+

KD
vec [diag {1x>0(εt−1)} ⊗ diag {1x>0(εt−1)}]DK vech(εt−1ε

τ
t−1)

= Cvech
t +Avech vech(εt−1ε

τ
t−1)

+Bvech vech(Σt−1|t−2) +Dvech
t−1 vech(εt−1ε

τ
t−1)

(39)

where diag denotes an operator that transforms a K × 1 vector into a diagonal (K ×K) square
matrix, where the diagonal is the vector considered. Regarding the asymmetric component, the
following identities:

(A ◦ B)τ = Aτ ◦ Bτ

vec(ABC) = (A ⊗ Cτ ) vec(B)
a ◦ b = diag(a)b = diag(b)a (Hadamard product of 2 vectors)

(40)

are used to obtain the equality:

vec(ξt−1ξ
τ
t−1) = vec {[εt−1 ◦ 1x>0(εt−1)] [εt−1 ◦ 1x>0(εt−1)]τ }

= vec
[
diag {1x>0(εt−1)} εt−1ε

τ
t−1 diag {1x>0(εt−1)}

]
= [diag {1x>0(εt−1)} ⊗ diag {1x>0(εt−1)}] vec(εt−1ε

τ
t−1)

(41)

Then, following Fengler and Herwartz (2018), we note that ηt = vech(εtε
τ
t ), and we consider ut =

ηt − vech(Σt|t−1), which is a mean zero, serially uncorrelated, but conditionally heteroskedastic
process, with E[utu

τ
t |Ft−1] = Ωt.

For the forthcoming demonstration, we also need to ensure that ρ(At) < 1, where At =
Avech + Bvech + Dvech

t and ρ(X) denotes the spectral radius of a square matrix X. We also
define L as the lag operator, and K∗ = K(K+1)/2. We can then express ηt as:

ηt = Cvech
t +Avechηt−1 +Bvech(ηt−1 − ut−1) +Dvech

t−1 ηt−1 + ut

(IK∗ − At−1L)ηt = Cvech
t + (IK∗ −BvechL)ut

ηt = (IK∗ − At−1L)−1Cvech
t + (IK∗ − At−1L)−1(IK∗ −BvechL)ut

= Φt−1(L)Cvech
t + Φt−1(L)(IK∗ −BvechL)ut

= Φt−1(L)Cvech
t + Θt−1(L)ut

(42)

where (IK∗ − At−1L)−1 exists if and only if ρ(At−1) < 1. We can then define Φt(L) = (IK∗ −
AtL)−1 = ∑

i≥0 Φt,iL
i, with Φt,0 = IK∗ and Φt,i = AtΦt,i−1, ∀i > 0. In the same way, we can

define Θt,0 = IK∗ , Θt,1 = At −B, and Θt,i = AtΘt,i−1, ∀i > 1.
It is worth noting here that E[utu

τ
t |Ft−1] = Ωt is not diagonal if the elements of ut are

simultaneously correlated, which thus impedes us from tracking the impact on the forecast
error variance of a shock in ut. To deal with this issue, Fengler and Herwartz (2018) proposed
to rewrite the expression of ηt as follows:

ηt = Φt−1(L)Cvech
t + Θt−1(L)Ω1/2

t Ω−1/2
t ut = Φt−1(L)Cvech

t + Ψt(L)vt (43)
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where vt = Ω−1/2
t ut and Ψt(L) = Θt−1(L)Ω1/2

t , and so Ψt,i = Θt−1,iΩ
1/2
t−i, ∀i ≥ 0.

We can therefore track for a given time t how unit shocks in the elements of vt will simul-
taneously (for i = 0) and over time (for i > 0) impact the components of ηt = vech(εt−1ε

τ
t−1).

We thus need to calculate E[utu
τ
t |Ft−1] = Ωt to obtain Ψt,i matrices. To do this, Fengler and

Herwartz (2018) provide the following expression:

Ωt = LK(Σ1/2
t|t−1 ⊗ Σ1/2

t|t−1)Ω̃(Σ1/2
t|t−1 ⊗ Σ1/2

t|t−1)Lτ
K − vech(Σt|t−1) vech(Σt|t−1)τ (44)

with Ω̃ a K2 ×K2 collecting the fourth-order moments (kurtosis) of ζt = Σ−1/2
t|t−1εt. Fengler and

Herwartz (2018), based on the results of Lütkepohl (1997), demonstrated that this matrix is
composed of (K ×K) block matrices Ωij , with ω

(ij)
kl denoting the element on the k-th row and

l-th column of the block matrix Ωij such that:

ω
(ii)
ii = κi, ω

(ii)
jj = 1,∀j ̸= i, ω

(ii)
ij = 0,∀i ̸= j

ω
(ij)
ij = 1, ω

(ij)
kl = 0,∀(k, l) ̸= (i, j)

(45)

As we assume a Gaussian distribution in this article, the kurtosis κi is equal to 3 for each asset.

F.2 Forecast error variance decomposition

We can then write the predicted error of ηt+H , with η̂t+H|t = E[ηt+H |Ft], as:

ηt+H − η̂t+H|t =
H−1∑
h=0

Ψt+H,hvt+H−h (46)

where the matrix Ψt+H,h quantifies the impact of the innovation vt+H−h on the H-step-ahead
forecast error. The conditional forecast error variance then follows:

E[(ηt+H − η̂t+H|t)(ηt+H − η̂t+H|t)τ ] =
H−1∑
h=0

Ψ̂t+H,h|tΨ̂τ
t+H,h|t (47)

where Ψ̂t+H,h|t = Θ̂t+H−1,h|tΩ̂
1/2
t+H−h|t, ∀h ∈ J0, H − 1K.

Fengler and Herwartz (2018) proposed an approximation of the matrix Ω̂t+h|t = Ωt+h(Σt+h|t),
so Ω̂t+h|t will only depend on Σ̂t+h|t, the forecast of the BEKK–MGARCH conditional covari-
ance, and these are defined in equation (36):

Σ̂t+1|t = CG
t+1|tC

Gτ
t+1|t +Aτ ε̂tε̂

τ
tA+Bτ Σt|t−1B +Dτ ξ̂tξ̂

τ
t D

Σ̂t+h|t = CG
t+h|tC

Gτ
t+h|t +Aτ Σ̂t+h−1|tA+Bτ Σ̂t+h−1|tB

+ 1/2Dτ Σ̂t+h−1|tD , for h > 1
(48)

We now need to express Θ̂t+H−1,h|t. Replacing Σt+1|t in equation (39) with the expression
of Σ̂t+H|t provided in equation (48), and ηt with the expression of E[ηt+H |Ft] provided in
equation (42), one can note that we thus obtain two different expressions for Θ̂t+H−1,h|t. The
first is for H = 1 and is the one-step-ahead forecast error variance decomposition, and the
second is for H > 1.

For H = 1, the methodology and results are similar to those presented previously, that is:
Dvech

t = D+
KD

vec [diag {1x>0(εt)} ⊗ diag {1x>0(εt)}]DK , At = Avech + Bvech + Dvech
t , and we

need to ensure that ρ(At) < 1.
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However, for H > 1, the asymmetric component Dvech
t becomes Dvech = 1/2D+

KD
vecDK ,

provided that E[ξt+Hξ
τ
t+H |Ft] = 1/2E[εt+Hε

τ
t+H |Ft] (proof in Appendix B). As a consequence,

the matrix Dvech no longer depends on t. Additionally, the condition ρ(At) < 1 then becomes
ρ(A) < 1, in which A = Avech +Bvech +Dvech. Therefore, we have:{

Θ̂t+H−1,0|t = IK∗ , for H > 0{
Θ̂t,1|t = At −Bvech

Θ̂t+H−1,1|t = A −Bvech , for H > 1{
Θ̂t,h|t = AtΘ̂t,h−1|t , ∀h > 1
Θ̂t+H−1,h|t = AΘ̂t+H−1,h−1|t , ∀h > 1 and for H > 1

(49)

It is important to note that, in some instances, for a given t, the condition ρ(At) < 1 may
not be satisfied as the only constraint for the BEKK–GJR–MGARCH estimation is ρ(A) < 1.
In these particular cases, the one-step-ahead forecast error variance decomposition (H = 1) will
not be available.

F.3 Construction of spillover indices

To estimate the different spillover indices proposed by Diebold and Yilmaz (2009), Diebold and
Yilmaz (2012), or Fengler and Herwartz (2018) we define ψ̂(t+H,h|t)

ij as the element on the i-th
row and j-th column of the matrix Ψ̂t+H,h|t, and λ

(H)
t,ij as the proportion of the H-step-ahead

forecast error variance of variable i attributable to innovations in variable j:

λ
(H)
t,ij =

H−1∑
h=0

(
ψ̂

(t+H,h|t)
ij

)2

H−1∑
h=0

K∗∑
j=1

(
ψ̂

(t+H,h|t)
ij

)2
(50)

which means by construction that ∑K∗
j=1 λ

(H)
t,ij = 1, hence ∑K∗

i,j=1 λ
(H)
t,ij = K∗.

We then define the total variance spillover index SH
t , which represents the total proportion

of the H-step-ahead forecast error variance resulting from spillover, such that:

SH
t =

K∗∑
i,j=1;i ̸=j

λ
(H)
t,ij

K∗ (51)

The directional spillovers as defined by Diebold and Yilmaz (2012) are then denoted respec-
tively RH

t,i, which represents the proportion of variance received by the variable i from the other
variables, and T H

t,i is the proportion of variance transmitted by the variable i to the other vari-
ables. It follows that the net contribution of each variable N H

t,i , which represents the difference
between the volatility transmitted to the other variables and those received from them, can be
expressed:

RH
t,i =

K∗∑
j=1;i ̸=j

λ
(H)
t,ij

K∗ T H
t,i =

K∗∑
j=1;i ̸=j

λ
(H)
t,ji

K∗ N H
t,i = T H

t,i − RH
t,i (52)

As suggested by Fengler and Herwartz (2018), it is interesting to further distinguish spillovers
between variances and covariances. To this end, we define RH,cov

t,i as the directional spillovers
received by the variable i from the covariances, while T H,cov

t,i represents the directional spillovers
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transmitted by the variable i to the covariances. Likewise, we define their net contributions
N H,cov

t,i and apply the same methodology to the variances:

RH,cov
t,i =

∑
j∈Icov

i ̸=j

λ
(H)
t,ij

K∗ T H,cov
t,i =

∑
j∈Icov

i ̸=j

λ
(H)
t,ji

K∗ N H,cov
t,i = T H,cov

t,i − RH,cov
t,i

RH,var
t,i =

∑
j∈Ivar

i ̸=j

λ
(H)
t,ij

K∗ T H,var
t,i =

∑
j∈Ivar

i ̸=j

λ
(H)
t,ji

K∗ N H,var
t,i = T H,var

t,i − RH,var
t,i

(53)

Finally, we define specific spillover indices for covariances and variances (own or cross) as
proposed by Fengler and Herwartz (2018), that is SH,ocov

t (SH,ovar
t ) and SH,ccov

t (SH,cvar
t ), which

respectively represent the spillovers between all covariances (variances) and the spillovers from
covariances to variances (from variances to covariances) such that:

SH,ocov
t =

∑
i∈Icov

∑
j∈Icov

i ̸=j

λ
(H)
t,ij

K∗ SH,ovar
t =

∑
i∈Ivar

∑
j∈Ivar

i ̸=j

λ
(H)
t,ij

K∗

SH,ccov
t =

∑
i∈Ivar

∑
j∈Icov

i ̸=j

λ
(H)
t,ij

K∗ SH,cvar
t =

∑
i∈Icov

∑
j∈Ivar

i ̸=j

λ
(H)
t,ij

K∗

(54)

We note that, by construction, SH
t = SH,ocov

t + SH,ovar
t + SH,ccov

t + SH,cvar
t .

G Data

Figure G1: World vegetable oil consumption: food vs non-food uses.
Source: USDA-FAS (2020).
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2020 2019 2018 2017 2016 2015 2014

SBO 10.70 11.27 10.82 9.80 9.21 9.18 8.06
EU 0.87 0.91 0.71 0.68 0.69 0.43 0.49
USA 3.92 3.87 3.67 2.88 2.77 2.23 2.21
Argentina 1.60 2.15 2.43 2.87 2.66 1.81 2.58
Brazil 3.80 3.72 3.45 2.86 2.59 2.67 2.24

PMO 16.85 17.62 14.74 11.65 10.81 8.60 10.21
EU 4.16 4.49 4.24 4.22 3.60 3.33 3.28
USA 0.39 0.30 0.40 0.46 0.62 0.37 0.47
Colombia 0.55 0.58 0.57 0.54 0.51 0.51 0.52
Malaysia 0.80 1.20 1.09 0.72 0.50 0.67 0.60
Indonesia 7.70 7.48 5.37 2.97 3.18 1.22 2.92
Singapore 0.62 0.68 0.57 0.57 0.40 0.42 0.39
Thailand 1.37 1.55 1.32 1.15 1.07 1.10 1.04

RSO 6.15 6.60 6.74 6.84 6.95 6.93 7.12
EU 5.25 5.64 5.78 5.91 5.90 6.25 6.23
USA 0.53 0.56 0.54 0.66 0.51 0.34 0.47

SFO 0.56 0.68 0.54 0.50 0.27 0.14 0.22
EU 0.50 0.63 0.49 0.45 0.23 0.11 0.17

Used Cooking Oil 4.34 5.12 4.44 3.97 3.66 3.03 2.65
EU 2.30 2.80 2.64 2.33 2.05 1.85 0.65
USA 1.17 1.27 1.06 0.98 1.00 0.71 1.60
Biodiesel Output 42.80 45.69 41.73 36.64 34.52 29.64 31.47
EU 13.70 15.08 14.49 14.20 13.08 12.45 12.27
USA 7.30 7.35 7.20 6.15 6.25 4.77 4.80
Argentina 1.60 2.15 2.43 2.87 2.66 1.81 2.58
Brazil 5.20 5.16 4.68 3.75 3.33 3.46 3.00
Indonesia 7.70 7.48 5.37 2.97 3.18 1.22 2.92
EU Non-Biodiesel Uses
RSO 4.05 4.30 4.22 4.11 4.26 4.33 3.96
SBO 1.70 1.70 1.53 1.48 1.49 1.45 1.52
PMO 3.68 4.02 3.89 3.54 3.89 3.76 3.84
SFO 4.96 4.47 4.36 4.12 3.72 3.61 3.65

Table G1: World biodiesel production and feedstocks used (million tonnes).
Note: EU Non-biodiesel uses are derived from the difference between each vegetable oil’s domestic disappearance
and its use for biodiesel production. Source: Oilworld (2020).
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Figure G2: Major vegetable oil prices (daily, USD/T).
Source: Reuters (2021).

(a) Brent Price (USD/T)
Source: Reuters (2021).

(b) Forecasted stock-to-use ratios.
Source: USDA (2021).

(c) Three-month Treasury bill rate.
Source: Federal Reserve (2021).

(d) Exchange rates.
Source: Reuters (2021).

Figure G3: Exogenous variables (daily).
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H Volatility impulse response function

Figure H1: Volatility impulse response function (Brent price shock).
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