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Farm Hetereogeneity and Leveraging Federal Crop Insurance for Conservation
Practice Adoption

Abstract

Current and proposed policies aim to leverage the Federal Crop Insurance Program
(FCIP) for adoption of conservation practices. This study use nationally representative
field and farm-level data to inform the effectiveness of targeting FCIP participants. We
implement an unsupervised machine learning model to assess what set of conservation
practices are most common among farms that use crop insurance. Next, we introduce
a novel approach to use survey data to measure nitrogen (N) balance, a yield-scaled
measure of nitrogen fertilizer’s environmental impact. We then test then whether crop
insurance predicts more optimal N Balance. We find that farms that use crop insurance
may have higher adoption rates for conservation practices that are also generally profit-
maximizing.

1 Introduction

Many theoretical and empirical studies have established a link between agricultural pro-
duction decisions, particularly conservation-focused ones, and use of crop insurance. The
anecdotal perception is generally that crop insurance discourages conversation practices, al-
though some new evidence suggests that farmers may not perceive crop insurance to be
a barrier to conservation practice adoption (Fleckenstein et al., [2020)). These linkages, as
well as the near-universal use of crop insurance for row crops (Roschl 2021)), have led to
increased interest in making the connection more explicit: that is, leveraging the Federal
Crop Insurance Program (FCIP) to support expansion of conservation practices (National
Sustainable Agriculture Coalition) 2021)). The broad goal of the FCIP to promote the eco-
nomic stability of the agricultural economy may be complementary with this broad push
towards conservation incentives and endorsements National Sustainable Agriculture Coali-
tion (2021). However, other policymakers and farm interest groups have raised concerns
about maintaining the integrity of the FCIP as the primary tool used to manage revenue
risk by many operations (Crop Insurance and Reinsurance Bureau, 2022)). The effectiveness
of the FCIP as a tool to leverage conservation practice adoption is central to this emerging
policy debate about the propriety of doing so.

The objective of this study is to provide a framework and empirical evidence for assess-

ing whether farm hetereogenity in production and conservation practices is relevant for the



effectiveness of leveraging the FCIP to increase conservation practice adoption. Generally,
leveraging existing programs rests on (often implicit) assumptions of additionality: that
farms that more intensively use crop insurance are likely to respond to new incentives and
that these farms have not already adopted the conservation or production practice that is
being incentivized. The potential for leveraging programs should be informed by a compre-
hensive understanding of the already extant practices and resulting environmental impacts
of producers that currently use crop insurance programs. It is also important to understand
how the use of these practices changes as the intensity of FCIP use increases.ﬂ In this study,
we analyze the farm-level relationship between crop insurance use and (1) an extensive suite
of conservation practices and (2) a measure of the environmental impact and efficiency of
nitrogen fertilizer application. We use data from the Agricultural Resource Management
Survey (ARMS) Phase II, a nationally representative USDA field-level survey that collects
detailed data on production and conservation practices. We first use an unsupervised ma-
chine learning clustering methodology to assess the degree to which farms that use crop
insurance have a common set of of production and conservation practices that have envi-
ronmental impactsﬂ. Next, we introduce a novel approach that uses these survey data to
estimate nitrogen (N) balance, a yield-scaled measure of that captures two potential adverse
environmental effects of nitrogen fertilizer: excess N use that implies run-off and insufficient
use that implies leeching N from the the soil. We then test whether more intensive crop
insurance use predicts more optimal N balance. We then discuss the implications of both of
these results for targeting farms that use crop insurance, along with future data and research
needs.

Federally supported agriculture safety-net programs, such as the FCIP or ARC/PLC
(Agricultural Risk Coverage/Price Loss Coverage), are designed to trigger payments to pro-
ducers when yields or prices are lower than expected. These programs can influence produc-

tion decisions, as they change the incentives faced by producers and, potentially, introduce

'In the case of crop insurance, while most row acreage is currently covered by some form of crop insurance
(Rosch} [2021)), coverage levels can capture intensity of program use, and producers that select higher coverage
levels may respond differently to new incentives.

2For brevity, this article may use ‘conservation practices’ to refer to the broad set of production and
conservation practices that have explicit environmental impacts



moral hazard, thus affecting production intensity, input use, crop choice, etc. (Just et al.|
. This study builds on and complements a large body of work on the environmental
impact of farm policies in general and crop insurance in particular. Chemical inputs, such
as fertilizer or pesticides, can increase or decrease both farm risk and environmental risk,
with multiple financial and climate interactions that can obfuscate actual impact. Both the

magnitude and the direction of the affect are in question, as the early theoretical literature

has shown. Horowitz and Lichtenberg| (1993)) describe how crop insurance can theoretically

increase chemical use and associated moral hazard. Babcock and Hennessy (1996) come

to the opposite conclusion of Horowitz and Lichtenberg| (1993)), based on their finding that

use of both chemical fertilizers and pesticides should decrease in the presence of insurance

that protects against low yields. In practice, Mieno et al.| (2018)) find that there should be

minimal moral hazard in nitrogen application once the dynamic nature of crop insurance
design is accounted for.
The empirical literature is affected by a lack of access to appropriate farm-level data and

findings on the environmental impact of crop insurance use are generally mixed. Most pre-

vious work has used county-level data (Goodwin and Smith (2003); Goodwin et al.| (2004);

(Claassen et al.| (2011)); [Schoengold et al.| (2014)); [DeLay| (2019); (Ghosh et al.| (2021)); |Con-|

nor et al| (2022); [Lu et al. (2023)). The environmental outcomes these papers examine are

wide-ranging. For example, |Ghosh et al. (2021)) finds no evidence of moral hazard for crop

insurance subsidies and freshwater irrigation withdraws. On the land use change side,
(2019)) finds an additional 1,000 insured acres leads to a 3-acre decline in the Conservation

Reserve Program, while Claassen et al.| (2017)) uses land uses models to show that the poten-

tial impact of crop insurance on crop choice implies small pollution impacts at most. Other

studies have utilized a single year of farm level data (Horowitz and Lichtenberg| (1993); |Smith|

and Goodwin| (1996)); Wu/ (1999); Chang and Mishra| (2012)). These papers typically examine

the static relationship between crop insurance use and outcomes related to chemical input
use and crop mix as it affects chemical input use. Finally, other papers have used simulations

or multiple years of data to approximate the dynamic aspects of this relationship.




et al.| (2012)) analyzed crop insurance contract data and simulated environmental impacts
and found a mixed and generally small relationship. (Weber et al., |2016) used multiple
years of farm survey data and finds no evidence that crop insurance causes an increase in
expenditure on chemical inputs. [Fleckenstein et al.| (2020) used a mixed methods approach
with Midwestern farmers to analyze producer perceptions of the relationship between crop
insurance and conservation practices.

A related area of research that is focused more on examining potential changes to the
FCIP from the supply side considers how environmental information, particularly informa-
tion on soil type and quality, could be incorporated into Federal crop insurance ratings
(Woodard| (2016); [Woodard and Verteramo-Chiu| (2017)); Tsiboe and Tack| (2022))). In addi-
tion, there have been initial steps taken in some areas to connect insurance with conservation
practices or outcomes. Some of these initiatives already in place do not involve formally de-
veloped insurance products. For example, state and national programs have incentivized
cover crop use through crop insurance participation by offering additional premium subsi-
dies (Jordan, 2019; Feldmann et al., 2019)). Other policies can be developed more broadly
for the FCIP under standard development and approval processes, including meeting actu-
arial standardsﬂ The Post-Application Policy Endorsemenlﬂ (PACE) is available to corn
producers practicing split application of nitrogen, which can be both environmentally ben-
eficial and profitable. It may, however, expose producers to risks related to excess moisture
after planting. PACE makes payments when weather conditions prevent the post-planting
application of nitrogen within a specified temporal window (Schnitkey and Sherrick, 2022;
Schnitkey et al., |2022).

This paper makes three major contributions to this diverse literature. First, we highlight
an important area of study: the effectiveness of leveraging existing programs for conser-
vation practice adoption and how it may be influenced by the characteristics and existing
practices of farms that use these programs or use them more intensely. Second, we develop

a new approach to use survey data to estimate N Balance, which is an established measure

3For more information on this process see https://www.rma.usda.gov/en/Federal-Crop-Insurance-Corporation/Prix
4Crop insurance ‘endorsements’ add protection ‘on top of’ or in addition to an existing or underlying crop
insurance policy.



of environmental impact that takes into account production needs as well McLellan et al.,
2018 Third, we apply two sets of statistical techniques to characterize the conservation
practices of farms that have higher crop insurance use. Many government-sponsored con-
servation programs, as well as private efforts, target a specific practice (i.e., cover crops).
Others, such as the Conservation Stewardship Program (CSP), focus on a wider set of farm-
level conservation practices. Existing conservation practices of farms that participate in the
FCIP have important implications for the general effectiveness of incentivizing this group.
While the environmental impact of crop insurance is a continuing debate, current conserva-
tion practice adoption levels informs whether these farms are already using many modern
conservation practices and thus their potential responsiveness to new incentives for increas-
ing these practices or adopting new ones. We thus comprehensively characterize farms by
aggregate practices instead of individual practices; farms may not consistently use all of the
practices deemed environmentally beneficial. Our analysis allows us to draw policy implica-
tions for efforts to improve the sustainability of U.S. crop production through existing risk
management programs.

This study proceeds as follows. First, we describe out data and introduce our two primary
empirical methods (N Balance estimation and CART), as well as our econometric model.

This is followed by a discussion of results and conclusion.

2 Data and Methods

The foundation of our ability to examine a large set of conservation practices of farmers, as
well as their level of crop insurance use, is high-quality farm-level data. Farm-level data is
ideal for research on the environmental impacts of farm policy, as each farm operator makes
decisions about crop insurance, crop acreage, and production expenses and practices indi-
vidually, while environmental externalities are often observed in aggregate. The methods we
use to assess conservation practice adoption and crop insurance were selected and developed

based on their suitability for detailed farm-level data.



2.1 Data

We use the most comprehensive national farm-level data available for the United States: the
ARMS (Agricultural Resource Management Survey) Phase II and Phase 111 data for major
field crops. ARMS is a nationwide, representative farm survey that is conducted annually
by the USDA. Farm or field-level ARMS data is made available to university researchers
through special agreements with the USDA-Economic Research Service (ERS). ARMS Phase
IIT is an annual survey of approximately 20,000 farms that covers production, finances and
farm operator and household characteristics. Through this source, we have information on
crop insurance premiums paid and, for some years, information on actual crop insurance
coverage level and insurance program type (i.e., yield or revenue). We are able to use
a combination of measures of crop insurance participation in our analysis: participation
indicators, expenditure on premiums, actual coverage levels, and product choice. Premiums
paid are a measure of crop insurance expenditure that reflects crop insurance coverage levels,
as well as other factors, such as the value of the crop being insured and historic yields (APH
or average production history). A higher level of crop insurance premiums will generally
correspond to higher coverage levels, or a larger share of production that is protected from
yield or revenue loss. Using these measures, we are able to use the variation in intensity of
crop insurance use, as well as the increasingly ubiquitous decision to use crop insurance or
not, to examine the impact of increasing coverage on production decisions, including various
conservation practices and input uses. Summary statistics for these crop insurance measures,
as well as for field-level yields, are presented below in Table

While Phase III collects only limited production practices data, in some years additional
farms are sampled to take part in the commodity-specific ARMS Phase II survey. A different
subset of commodities is sampled every year. For this study, we have focused on corn,
available for the years 1996-2001, 2005, 2010, and 2016. ARMS Phase II allows researchers
to more systematically consider aggregate environmental impacts of different production
practices. The survey has detailed, field-level data on various production and conservation

practices, as well as expenditure on and quantities of various inputs. Table (1| contains a list



of the practices that are measured with indicator variables in ARMS Phase II and that we
include in our subsequent analysis. Summary statistics for these practices are available in
Appendix AEL table . Table includes similar summary statistics for practices measured
with an indicator variable and specifically related to pest management.

As the summary statistics tables show, adoption rates of these practices remain quite low,
belying the policy need to incentivize adoption through mechanisms such as crop insurance
policy changes or discounts. Low adoption can be explained by a variety of factors, including
a lack of familiarity with the practice, the cost of implementation, and potential losses in
yields. With the data we have, we can only examine the extent to which these practices
constrict yields. First and foremost, the relationship between these field-level practices and
yield is complicated. Yields vary widely based not only on the production practices chosen
but also on location, planting date, and other farmer decisions. While we observe some
of these factors in the ARMS dataset, it is difficult to neatly summarize the yield effect
of a particular practice, especially one measured as as an indicator variable. The primary
extenuating and unobserved factors complicating estimation are soil quality and other field-
level conditions, including weather. Nonetheless, as a simple, first-order measure, we compare
yields across fields that have and no not have these practices. This information is presented
in table[A3] Although yields tend to be higher from fields without many of these practices,
these descriptive statistics do not control for location or other on-farm observable factors.

Chemical inputs, particularly fertilizer, have both strong yield effects as well as the
potential for environmental externalities, especially in terms of water pollution. The Phase
IT survey also elicits detailed information on the use of chemical inputs at the application
level, in addition to the variety of field-level practices described above. For each application of
both fertilizer and pesticide, the survey collects information on the quantity, content, timing,
rate, and method of application. Summary statistics for the quantities that are measured
continuously and included in our analysis, by crop insurance coverage, are in Table 2] These
data can be aggregated up to the field level and connected to the Phase II data in order to

caclulate the amount of nitrogen applied to each field. Then, using provided weights, these

®We intend for Appendix A to be supplemental online material, due to typical journal space restrictions.



measures can be aggregated up further to the operation level and connected to the data on

farm financial characteristics in Phase II1.

2.2 N Balance model

While the relationship between conservation practices and crop insurance can inform efforts
to leverage the FCIP to promote regenerative production, conservation practices are not
necessarily themselves indicators of actual environmental impact. The effect of many of
these practices on both yield and the environment is unclear. Further, we do not observe
the intensive margin of the majority of them. We therefore rely on the input use data de-
scribed above in order to make a more detailed, rigorous analysis of one practice with both a
relatively straightforward relationship with yield and a with clear, quantifiable environmen-
tal impacts. We take advantages of recent advances in the agronomy literature and apply
these methodologies to ARMS Phase II data. Our approach builds on previous work that
used information on nitrogen application rates, timing, methods available in ARMS Phase
IT to analyze trends in nitrogen application in the US (Ribaudo et al. 2011, |2012)). Unlike
this work, our calculations of N balance take into account county-level yield goals and also
consider the possibility of N application that is too low, causing production to leech this
nutrient from the soil.

The importance of nitrogen fertilizer has prompted the development of yield-scaled indi-
cators of reduction in the amount of N lost from agricultural production. One such indicator
is the N balance, defined as the difference between the N added to an agricultural system
as fertilizer and the amount of N absorbed into the crops. Using both data from field-
level studies as well as a simulation model, McLellan et al| (2018)) find that N balance is a
“robust predictor” of the field-level amount of N lost into the environment, and that this
relationship is consistent when aggregated spatially up to the watershed level and tempo-
rally across years. Their model simulations use the Adapt-N program, which is capable
of deconstructing field-level N loss into the different forms of N, gaseous and solid. Using

these breakdowns, the authors are able to conclude that the relationship between N balance



and N loss is consistent for both kinds of major N loss: gaseous losses, such as of nitrous
oxide (N50) and physical leaching of nitrate (NO3 ) and ammonia (N Hjz). This consistent
response across different kinds of N ameliorate concerns about measurement contaminated
by pollution reduction trade-offs, where, for example, practices that reduce one kind of N
loss increase another.

In addition to representing the potential IV lost from agricultural production at the field,
farm, or even watershed level, N balance can be used to set thresholds and aid in pollution
reduction targeting efforts that can be implemented at these levels. Producers, in theory,
could be incentivized to meet these thresholds, which tend to be credible as N balance is
responsive to individual farmer decisions. The concept of the “safe operating space,” devel-
oped by the European Union Nitrogen Expert Panel (EU-NEP), is one such threshold (Panel
. The safe operating space is designed to accommodate both production and environ-
mental goals: it is defined by a minimum acceptable yield level to ensure that production
levels are being maintained and by a range of acceptable N balance levels. N balances that
are too low indicate risk of soil mining (depleting soil nutrients), while NV balance values that
are too high indicate inefficient use of chemical resources and increase the risk for potential

leaching (See Figure |1)).

Figure 1: The safe operating space for a generic operation.



The safe operating space can also represent the early theoretical debate on the relation-
ship between crop insurance and chemical input use. Horowitz and Lichtenberg (1993)) argue
that farmers with crop insurance increase their use of chemical inputs, which implicitly sug-
gests they they are more likely to produce in the region where N use efficiency is too low. On
the other hand, Babcock and Hennessy| (1996) argues that operations with crop insurance
are more likely to reduce their use of chemical inputs; which suggests moving towards the
region of the graph where N use efficiency is too high and insufficient N is being applied.
In this paper, we set out to determine whether use of to crop insurance, or higher crop

insurance coverage levels, relates to these two potential production responses.

2.2.1 CART: Cluster analysis of conservation practices

Given the array of diverse production practices available to us through ARMS Phase II, the
starting point for our analysis on the relationship between crop insurance use, conservation
practices, and N balance is a classification and regression tree (CART) analysis of the
production practices. CART, a data reduction and classification technique, takes the full
data set and splits it into relatively more homogeneous groups. The tolerance for splitting,
and the minimum of the final group size, are set by the researcher, while the CART algorithm
estimates first which variables (which practices, in this case) have the most explanatory and
predictive power for the variation of the outcome in question and then at what level the
variable should be split. The output of the CART analysis is a tree diagram, indicating, in
order of importance, which practices have the most explanatory power.

In this case, CART analysis was used to identify which of the practices x1;, To¢, T3¢... Ty
described above and summarized in tables [I| and [2| had the most power for predicting our
outcomes of interest Y;t with ¢ = 1,2 and in year t. Outcome Yj; was defined to be field-
level crop insurance coverage, an indicator variable for which a value of 1 indicated the
field was covered by crop insurance and 0 indicating it was not. This analysis provides an
understanding of which practices, and combinations of practices, explain most of the variance

in crop insurance participation across the years covered in our survey.
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The second outcome Y5, is an indicator of whether the operation is in the safe operating
space for N usage. As described above, ARMS Phase II data is used to calculate N balance
for the field. This analysis continues the work of |Dalgaard et al. (2014) and Blesh and
Drinkwater| (2013)) of identifying which farm management practices, jointly and individually,
contribute to optimizing N balance. All of the practices x4, Tos, T3;...2,,; used for predicting
FCI coverage are used here, except for quantity of nitrogen applied, which, naturally, has
overwhelming predictive power for N balance.

Next, we connect these two separate analyses with specifications that examine how ex-
tensive and intensive changes in crop insurance are associated with changes in an operation’s
likelihood of being in the safe operating space, as well as the distance an operation is from

the optimal N balance inside that space.

2.2.2 Empirical estimation

In addition to CART analysis, we rely on standard econometric estimation to explain the
likelihood of an operation’s NV balance being in the safe operating space. Here, we use both
an indicator of the safe operating space and the calculated absolute value of the distance from
the operation’s N balance to the optimal N balanceﬁ] We are able to examine the changes in
these outcomes associated with both having crop insurance, and also with increasing coverage
rates. In addition, thanks to data on product type, we are able to examine the change in
N balance across different insurance products, providing additional insight into the kind
of insurance products that are associated with movement towards the optimal N balance.
Crop insurance coverage is measured in three ways: first, an indicator of whether the field
was covered by crop insurance, information solicited from the Phase II survey; second, an
indicator of whether the operation purchased crop insurance, from the Phase III survey;
and finally, if the operation purchased crop insurance, the amount paid by the operator for
the insurance product. Premium paid is an approximation of the coverage level. Our main

results are estimated using Ordinary Least Squares (OLS) and the following specification:

5The optimal N balance is the NV balance that maximizes the Euclidean distance to all boundaries of the
safe operating space.
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Yie = Bo + B1FCLy + BeXie + 56 + 1 + €3 (1)

where Y}, is the difference between the operation i’s N balance and the optimal N balance
in year t; FC'I; is an operation’s crop insurance use, measured either as an indicator variable
or as the premium paid; Xj; is a vector of farm production practices, both indicators and
continuous quantities, as well as select farm characteristics, including operator’s age, acres
operated, and value of production. The estimation also includes state (ss) and year (r;) fixed
effects.

In addition to the main specification above, equation 1 is also estimated as a logit model,
with an indicator for safe operating space as the outcome (see Appendix A, table . The
main specification is also run with the year-by-year impact of crop insurance, in order to
understand how the dynamics of the relationship between FCI and N balance evolve over

time, as follows:

Yie = Bo + 1 X FCI? + B Xt + S5 + € (2)

t = 1996, 2000, 2001, 2005, 2010, 2016

with the variables defined as before, except for F'C'I;, which is defined only as an indicator
of the operation having crop insurance, rather than the continuous measure of coverage. The
final specification uses data on the kind of crop insurance product. Changes in survey design
mean that these questions were only asked of farmers in 2016, and so the data is cross-

sectional rather than time series.

Y2016 = Bo + B1 ¥ FCIlﬁzme + B¢ X 2016 + S5 + € (3)

where the variables are defined as before, and £ indexes the 7 types of FCI insurance
product (including no insurance) that covered field f in 2016. Farmers were also asked

to report their actual coverage level, depending on their product, in 2016. Results of a

12



specification where equation (1) is run with F'C[; equal to actual coverage level appear in

Appendix A, table [A5]

3 Results

3.1 CART: Cluster Analysis

Table 4] shows the results of the CART analysis: the practices with the greatest explanatory
power for participation in crop insurance (1) and production in the NV balance safe operating
space (2) are shown, ranked in order of importance. These results summarize the CART
analysis done over all of the years for which data were available; we also performed year-by-
year CART analysis; those results are largely consistent with the overall analysis]]

The CART results predicting crop insurance coverage at the field level indicate that
farmers whose fields are covered by crop insurance are more likely to undertake activities
that reflect active, engaged management. The non-input practice with the most explanatory
and predictive power, scouting for weeds, is especially indicative of this. Fields that were
scouted for weeds were more likely to also be covered by crop insurance. Operators who
scout for weeds are, at a minimum, being attentive to the overall state of their corn fields.
In addition, they are less likely than the operators who are not scouting to make blanket
applications of pesticides, regardless of their necessity. The other variables with substantial
explanatory power for crop insurance are all chemical inputs. Together, these variables
(scouting for weeds, N pounds per acre, pounds of pesticide per acre, and K pounds per
acre) explain more than 80% of the variation in crop insurance coverage. Although higher
rates of the application of all of these are more likely to be found on fields with crop insurance,
normative statements about whether these rates are “too high” cannot be made using this
CART analysis alone. In the following section, the analysis using N balance outcomes
are better equipped to determine if farmers with crop insurance are using N in a more

environmentally responsible way than their uninsured or less-insured counterparts.

"The overall CART tree outputs are available in our supplemental online materials (Figures . The
year-by-year, along with other sub-sample CART analyses, are available on request.
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The results predicting whether an operation is in the safe operating space for N use
show the importance of other chemical inputs in addition to active management practices.
Operations with higher rates of P usage are more likely to be in the N safe operating space,
but similar analysis of P use is beyond the scope of this study. One limitation of this research
is that we are unable to observe field-level soil characteristics, which could help explain why
operations use one type of fertilizer over another. For example, lime quantity per acre, the
practice with the second most explanatory power in this analysis, typically increases with soil
acidity. However, it has also been shown to increase plant uptake of all three major nutrients
(N, P, K), which could help explain its predictive and explanatory power for the N balance
of operations in our study (West and McBride, 2005). Supporting the idea of active and
engaged management practices leading to more optimal application of N, the practice with
the third most explanatory power in the CART analysis is whether the field had a nitrogen
soil test. Tested fields were more likely to have an N balance in the safe operating space
than those that did not, belying the importance of these tests towards informing application
of fertilizer only when needed to support desired levels of production. Together, these first
three variables have almost 90% of the predictive power for an operation’s N balance safe
operating space.

Jointly, the results of the CART analysis show that production practices are different
for farms that use crop insurance than those that do that. These results suggest that while
farms that use crop insurance may use a higher quantity of inputs, they use these inputs more
efficiently. These findings are consistent with the ‘good management practices’ required for
FCIP participation and are likely to not be independent of a farm’s propensity to respond

to conservation incentives.

3.2 FCI and N balance

The results from our main specification, described in equation (1), are found in table . Here,
the outcome of interest is how far an operation’s N balance is from the optimal N inside

the safe operating space. We find a consistent relationship between nearness to the optimal
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N and FCI coverage, measured three different ways. The strongest measure of field-level
coverage is an indicator variable indicating that the field surveyed in Phase II is itself covered
by crop insurance; this is associated with a decrease in the distance to optimal N of about
32 lbs/acre. The marginal impact of crop insurance on this difference is greater than the
marginal impact of any of the continuously measured input variables.

The relationship is smaller in magnitude but remains consistently statistically significant
when we use operation-level crop insurance coverage, a weaker measure of coverage at the
field level. Operation coverage is associated with an operation being 24 lbs/acre closer to
the optimal N. The final specification uses a continuous measure of coverage with the proxy
of premium paid. An additional dollar in premium paid by the operator for crop insurance
is associated with a 1.25 Ib/acre move towards the optimal N. This intensive measure of
crop insurance coverage exploits more variation across farmers, especially in the later years
represented in our sample. By 2016, the last year for which we have data, crop insurance
coverage for conventional corn was nearly universal. Premiums paid, however, were still
likely to vary greatly across farmers, depending on the particular product purchased, the
coverage level, and the location of the operation.

The growing ubiquity of crop insurance is reflected in our year-by-year results of the
relationship between coverage and distance to the optimal N level, available in table [6]
The magnitude of the relationship declines consistently through the years, especially for
operation-level coverage. In 1996, when crop insurance was much less widely used and
the insurance products and programs differed greatly from their modern implementation,
operation-level coverage was associated with a decreased distance to optimal N of 200 Ib-
s/acre. Two decades later, in 2016, the role of crop insurance in this relationship was half
that, at about 100 lbs/acre. Nonetheless, the relationship is strong: operations with crop
insurance are more likely to be producing corn with their N balance closer to the optimal
N as defined by the N balance and safe operating space. This decline in the strength of
the relationship is less consistent, but still present, for the field-level coverage. Although the

association is significant in 1996, that is no longer the case in 2016. This declining role of
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crop insurance in determining optimal N use could be attributed to the almost universal use
of crop insurance, as well as increasing coverage levels.

Our final set of results estimate equation (3) and use only data from 2016, the most recent
year in our sample. In 2016, farmers who completed the Phase II survey were asked to report
the kind of crop insurance product they used to cover that particular field. The relationship
between each program on distance to ideal N, relative to the omitted category of no insurance,
is consistently negative, with the exception of fields with federal CAT coverage. Catastrophic
crop insurance, commonly referred to as CAT coverage, is considered the “basic level of
coverage” and was initially mandatory for farmers wishing to receive deficiency payments.
Because farmers paid no premium for it, operations covered by it can be thought of as
minimally covered (Glauber| (2013]). As the coverage levels and protections increases, so does
the strength of the relationship with distance to ideal N. Farms with revenue protection, for
example, are 82 lbs/acre closer to the ideal N than are farms with no insurance. Purchase
of the supplemental coverage option (SCO) for revenue insurance reduces the distance to
the ideal N by almost 20 lbs/acre over revenue protection without SCO. These results are
remarkably consistent with the insights of Mieno et al.| (2018), whose numerical simulations
show that once production history (crop insurance design) is accounted for, there is little
moral hazard in nitrogen application, especially at higher coverage levels.

Overall, these results provide strong evidence higher levels of crop insurance coverage or
intensity are associated with a higher likelihood of operators producing in the safe operating
N balance space. Further, this conclusion is supported by the analysis done with the actual
coverage level, reported in Appendix A, table [A5 Especially for the revenue insurance
program, as the coverage level increases, the distance to the safe operating space decreases.
The results using program type and coverage level together point to an explanation that as
farm operators are more protected from financial setbacks caused by loss of crop revenue,
they are more likely to apply their chemical inputs more efficiently. Use of a major chemical
input (V) is not independent of crop insurance use; this relationship may extend to other

practices. For policymakers interested in leveraging the FCIP for conservation practice
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adoption, understanding these existing relationships is an important consideration.

4 Conclusion

This study uses nationally representative field- and farm-level data to implement an un-
supervised machine learning model to assess which set of conservation practices are most
common among farms that use crop insurance. We also introduce a novel approach to use
these data to estimate nitrogen () balance, a yield-scaled measure of whether on-farm
under- or over-use of nitrogen fertilizer has an environmental impact. We then test whether
increased crop insurance use predicts more optimal N balance, in the sense that the nitrogen
used is both sufficient to supply the needs of the crops being grown without excess risk of
running off the soil and entering the waterways. The methods used in this study may be
useful in other studies of conservation practices, particularly those with adverse effects when
under- or over-used, or those that may have deleterious effects on yield. Our results show
that farms that have higher levels crop insurance use have higher adoption rates for some
conservation practices, especially those that are also generally profit-maximizing or that re-
flect more intensive management. Further, higher levels of crop insurance coverage predicts
more optimal N balance. At least to some extent, this could reflect a trade-off between the
self-insuring procedure of over-applying nitrogen fertilizer and the formal insurance.

Our analysis provides strong evidence that the relationship between farmers’ crop insur-
ance use and conservation practices is policy relevant because these decisions, particularly
those around “optimal” chemical input use, are not independent of each other. Nonetheless,
there are limitations to this work that must be acknowledged. Our econometric analysis as-
sesses whether crop insurance predicts or is related to optimal fertilizer application, not the
casual relationship between crop insurance and N balance. While we adapt the concept of N
balance for the ARMS data, thereby developing a new approach to measure environmental
impact using ARMS Phase II, we do not measure any of the other possible environmen-
tal outcomes of interest, such as greenhouse gas emissions, erosion, or, indeed, chemical

run-off directly. We also are not able to observe all of the external factors, agronomic
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or management-related, that may influence optimal production and conservation decisions.
Further, while we use a comprehensive set of self-reported practices that provides detail
beyond that of most available datasets, we do not observe all conservation or production
practices. We also do not make any sort of value judgement between them regarding which
has the most environmental impact.

While the relationships analyzed in this study are policy relevant, continued research
to improve analysis of the causal relationship between conservation practices, conservation
incentives, and Federal programs, including the FCIP, are important to improve policy design
and evaluation. Similar analyses with other agricultural programs that are currently being
leveraged (or those that could one day be used) for conservation adoption would also inform
policy, as would the development of additional methodologies to use survey data to measure
environmental impact in a way that acknowledges the need to maintain production targets.
Our calculations of N balance in a nationally representative and time-variant way may also
be useful in studies of fertilizer trends, environmental impacts, and conservation policy.
Use of data on precision agriculture and soils or other physical measurements, especially
combined with farm-level data, would greatly enhance future research.

Farm heterogeneity is an important consideration for leveraging the FCIP to advance the
adoption of conservation practices. While farms that use crop insurance more intensely may
also use inputs more intensely, we find evidence that they tend use one important input,
nitrogen fertilizer, more efficiently. Farms that use crop insurance are both more likely
to have an optimal N balance and use more management-intensive practices such as crop
scouting, which have the potential to increase yield and decrease negative environmental
externalities. This does not mean that the FCIP is a priori ‘good’ or ‘bad’ for targeting
adoption of conservation practices: such a value judgement would ultimately depend on
policy objectives. For some practices, our analysis indicates that policymakers may want
to consider the additionality of incentives attached to the FCIP. However, our analysis also
suggests that farms that more intensively use crop insurance may be more responsive to

financial incentives, which could accelerate adoption. Generally, a better understanding
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of the characteristics of farms using programs that are being leveraged has the potential to
improve stewardship of public and private resources and support achievement of conservation

objectives while maintaining a stable farm economy.
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Tables

Table 1: Practices observed in ARMS Phase II

Field practices:

Pest control practices:

Pest resistant seed, No till, Terraces, Grassed waterways, Contour
farming, Strip cropping, Underground channels, Drainage channels,
Filter strips, Erosion control plan, Fertilizer & manure mgmt plan,
Manure mgmt plan, Pesticide mgmt plan, Water mgmt plan, Lime
applied, Sulfur applied, Gypsum applied, Micronutrients applied,
Zinc applied, Pre emergence herbicides applied, Fertilizer variable
rate technology, Pesticide variable rate technology, Soil or plant
test, Nitrogen test, Scouted for weeds, Scouted for insects, Scouted
for disease, Kept scouting records, Use N inhibitor, Phosphorus soil
test

Adjust row spacing, Adjust planting dates, Alternate pesticides,
Till/chop/mow, Water management, Clean equipment, Soil analy-
sis, Consider beneficials, Use treated seeds, ID pests in a lab, Apply
beneficial organisms, Pheremone lures, Wireworm traps, Cultivated
field, Times cultivated, Use resistant varieties, Rotate crops, Pest
mgmt training, Restricted use license

Table 2: Input quantities, by field-level crop insurance coverage

N (Ibs/acre)
P (Ibs/acre)
K (Ibs/acre)

n mean sd n mean sd
No FCI FCI

3,757 91.19 67.97 10,244 106.21 67.34 ~ ***
3,757 37.3441.11 10,244 33.4537.81  ***
3,757 47.3555.00 10,244 37.78 52.00  ***

Liquid pesticide (Gal/acre) 3,757 0.42 0.34 10,244 0.38 0.33  ***
Solid pesticide (lbs/acre) 3,757 1.16 2.4010,244 1.59 2.59  ***

Lime (tons/acre)
Sulfur (Ibs/acre)

3,730 1.32 1.2010,126 1.02 1.56  ***
1,813 154 5.89 5,138 244 6.85 ***

Manure (tons/acre) 2,477 192 524 6,276 1.02 3.73  ***

*Hk k% *Indicates significant difference between means at 1%, 5%, and 10%, respectively
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Table 3: Yields and crop insurance

n mean sd
Yield, grain (bu/acre) 19,855  270.65 329.63
Yield, silage (ton/acre) 19,857 1.91 5.49
Premium paid ($) 6,734 $ 9,661.87 $ 30,444.19
Premium paid per acre* 6,734 $ 5.63 $7.73
Acres operated 6,734  1429.04 2075.29
Operation had FCI* 6,734 68.5% 46.5%

Field covered by crop insurance** 14,001 73.2% 44.3%

*From Phase III survey (1996, 2001, 2005, 2010, 2016)
**From Phase 1T survey (1996, 2000, 2001, 2005, 2010, 2016)

Table 4: Summary of CART Results

(1) )
FCI SOS
Solid pesticides (Ibs/acre) P (Ibs/acres)
N (Ibs/acre) Lime (ton/acre)
Scout weeds Nitrogen test
K (Ibs/acre) Resistant seed
Lime K (Ibs/acre)
Grassed waterways Solid pesticides (Ibs/acre)
Resistant seed

Results of CART analysis across all years for each outcome variable

These practices explain over 90% of the variation in the outcome variables
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Table 5: Results: Relationship of FCI participation with distance to ideal N
balance

(1) (2) (3)
Distance to SOS Distance to SOS Distance to SOS
Field covered by FCI S31. 71k
(10.40)
Operation has FCI -23.77F*
(8.829)
Premium paid ($) -1.248*
(0.700)
N (lbs/acre) -0.768%** -0.769%** -0.767HH*
(0.113) (0.112) (0.111)
P (Ibs/acre) -0.178 -0.173 -0.164
(0.107) (0.104) (0.105)
K (Ibs/acre) -0.164** -0.162** -0.164**
(0.0643) (0.0654) (0.0641)
Liquid pesticide (gal/acre) -11.24 -11.18 -13.04
(10.78) (10.62) (10.88)
Solid pesticide (Ibs/acre) -1.064 -1.181 -1.174
(2.342) (2.387) (2.442)
Production practice controls YES YES YES
Year FE YES YES YES
State FE YES YES YES
Constant 267.6%** 285.1F** 279.7F*%
(16.21) (28.14) (28.62)
Observations 6,566 6,567 6,567
R-squared 0.229 0.228 0.227

Standard errors robust to correlation at the state level in parentheses

R pi0.01, ** pj0.05, * p;j0.1
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Table 6: Results: Year-by-year relationship of FCI participation with distance to
ideal N balance

(1) (2)
Distance to SOS Distance to SOS
Field covered by FCI, 1996 -83.15%H*
(17.73)
Field covered by FCI, 2001 -10.61
(13.81)
Field covered by FCI, 2005 -25.65%*
(11.70)
Field covered by FCI, 2010 -28 .57
(12.28)
Field covered by FCI, 2016 -21.74
(13.79)
Operation has FCI, 1996 -200. 1%
(19.81)
Operation has FCI, 2001 -165.7F**
(15.10)
Operation has FCI, 2005 -113.7%%%
(17.13)
Operation has FCI, 2010 -107.5%%*
(12.52)
Operation has FCI, 2016 -102.4%%*
(8.690)
N (lbs/acre) -0.767*H* -0.633%**
(0.114) (0.0867)
P (Ibs/acre) -0.179 -0.104
(0.109) (0.110)
K (Ibs/acre) -0.167** -0.0757
(0.0643) (0.0949)
Liquid pesticide (gal/acre) -5.908 74.23%*%
(11.59) (10.54)
Solid pesticide (Ibs/acre) -1.289 3.116
(2.328) (2.534)
Production practice controls YES YES
Year FE YES YES
State FE YES YES
Constant 234 7HH* 178. 7%
(15.71) (22.83)
Observations 6,566 19,677
R-squared 0.220 0.203

Standard errors robust to correlation at the state level in parentheses
K pi0.01, ** pj0.05, * pj0.1
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Table 7: Results: Relationship of type of insurance product to distance to ideal
N balance

(1)
Distance to SOS
Federal CAT -26.54
(39.03)
Yield protection -T1.59%**
(22.48)
Yield plus SCO -72.29*
(35.04)
Revenue protection -82.23%%*
(13.71)
Revenue plus SCO -101.3%**
(18.52)
Other program -108.4%**
(17.82)
N (Ibs/acre) -0.843%*x*
(0.123)
P (lbs/acre) 0.0663
(0.174)
K (Ibs/acre) -0.308*
(0.152)
Liquid pesticide (gal/acre) -30.12
(19.21)
Solid pesticide (Ibs/acre) -0.535
(2.291)
Production practice controls YES
State FE YES
Constant 407.2%%*
(46.47)
Observations 1,091
R-squared 0.375

Robust standard errors in parentheses

#6% 1510.01, ** pj0.05, * pi0.1
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5 Appendix A: Supplemental Online Appendix

Table Al: Field practices, by field-level crop insurance participation

n mean sd n mean sd

Percent of corn fields with: No FCI FCI

Pest resistant seed 3,756 42.0% 49.4% 10,242 51.4% 50.0% otk
No till 2,325 35.0% 47.7% 6,672 40.6% 49.1% Aotk
Terraces 3,757 82% 27.4% 10,244 13.8% 34.5% otk
Grassed waterways 3,757 22.2% 41.5% 10,244 26.8% 44.3% otk
Contour farming 3,757 12.7% 33.3% 10,244 16.2% 36.9% otk
Strip cropping 3,376 8.6% 28.0% 8,678 5.1% 22.0% otk
Underground channels 3,116 30.6% 46.1% 8,860 35.7% 47.9% otk
Drainage channels 2735 7.3% 26.1% 7294 9.4% 29.2% okx
Filter strips 2,606 5.4% 22.6% 6,369 6.0% 23.8%

Erosion control plan 2985 22.0% 41.5% 7,928 27.7% 44.8% otk
Fertilizer & manure mgmt plan 2,987 11.5% 31.9% 7,935 13.2% 33.9% ok
Manure mgmt plan 2,606 5.4% 22.6% 6,369 5.1% 21.9%

Pesticide mgmt plan 2987 6.3% 24.3% 7,935 10.0% 30.0% okx
Water mgmt plan 2,987 24% 152% 7,935 4.0% 19.5% ook
Lime applied 3,756 64.0% 48.0% 10,240 49.6% 50.0% ok
Sulfur applied 1,518 15.9% 36.6% 4,025 27.0% 44.4% Aotk
Gypsum applied 2987 09% 9.5% 7,933 0.8% 87%
Micronutrients applied 688 0.0% 0.0% 1,621 0.0% 0.0%

Zinc applied 688 9.0% 28.7% 1,621 16.1% 36.8% otk
Pre emergence herbicide applied 3,751 61.6% 48.6% 10,234 63.6% 48.1% ok
Post emergence herbicide applied 3,750 54.6% 49.8% 10,231 67.5% 46.8% otk
Fertilizer v.r.t. 2985 4.2% 20.1% 7,935 11.3% 31.7% otk
Pesticide v.r.t. 2985 1.8% 13.2% 7,935 3.7% 19.0% Aotk
Soil or plan test 3,757 7.2% 25.8% 10,235 12.4% 32.9% ook
Nitrogen test 3,755 17.4% 37.9% 10,241 27.1% 44.5% otk
Scouted for weeds 3,757 67.0% 47.0% 10,238 79.1% 40.6% otk
Scouted for insects 3,757 46.4% 49.9% 10,244 61.7% 48.6% otk
Scouted for disease 3,756 36.3% 48.1% 10,241 45.9% 49.8% otk
Kept scouting records 2985 12.2% 32.7% 7,927 20.0% 40.0% ok
Use N inhibitor 3,757 73.3% 163.5% 10,243 63.0% 146.3% otk
Phosphorus soil test 2986 24.7% 43.1% 7,933 35.9% 48.0% otk

ok 1k *Indicates significant difference between means at 1%, 5%, and 10%, respectively
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Table A2: Pest control practices, by field-level crop insurance participation

n mean sd n mean sd

Pest control measures: No FCI FCI

Adjust row spacing 3,756  6.5% 24.7% 10,243 8.9% 28.5% okok
Adjust planting dates 3,756  6.3% 24.3% 10,242 8.7% 28.1% otk
Alternate pesticides 3,757 15.3% 36.0% 10,244 21.5% 41.1% otk
Till, chop, mow 3,756 31.3% 46.4% 10,242 38.3% 48.6% otk
Water management 3,757 2.9% 16.9% 10,241 3.8% 19.2% otk
Clean equipment 3,756 25.9% 43.8% 10,241 31.5% 46.4% otk
Soil analysis 2202 1.4% 11.8% 5,881 2.9% 16.9% okok
Consider beneficials 3,757 8.4% 27.8% 10,244 10.6% 30.8% ook
Use treated seeds 3,223 21.8% 41.3% 8,828 19.7% 39.8% ok
ID pests in a lad 2,324 2.6% 15.9% 6,670 3.8% 19.2% ook
Apply beneficial organisms 3,224 0.3% 5.3% 8,828 0.3% 5.4%
Pheremone lures 1,792 0.3% 5.3% 5,25 03% 5.2%
Wireworm traps 770 0.1%  3.6% 2,309 04% 6.2%
Cultivated field 3,757 15.5% 36.2% 10,244 16.7% 37.3%

Times cultivated 2,987 0.25 0.58 7,935 0.27 0.57

Use resistant varieties 2,986 31.9% 46.6% 7,933 47.1% 49.9% otk
Rotate crops 2,986 63.1% 48.3% 7,934 76.6% 42.4% otk
Pest mgmt training 3,752 33.1% 172.9% 10,224 46.2% 279.8% ok
Restricted use license 770 69.5% 46.1% 2,309 80.8% 39.4% otk

ook k% *Indicates significant difference between means at 1%, 5%, and 10%, respectively
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Table A3: Yield, by binary field practice

mean

sd

n

Yield for fields
with practice:

Difference

signifi-
cant at:

mean sd n
Practice: Yield for fields

without practice:
Pest resistant seed 378.8 497.7 11250
No till 317.5 435.2 6709
Terraces 326.4 455.7 17601
Grassed waterways 338.5 464.3 15145
Contour farming 325.5 453.6 16926
Strip cropping 344.5 471.8 16928
Underground channels 313.1 443.1 11602
Drainage channels 365.8 490.6 14561
Filter strips 127.5 129.4 10309
Erosion control plan 133.5 130.3 7983
Fertilizer & manure mgmt plan 133.8 125.8 9448
Manure mgmt plan 130.1 132.0 8440
Pesticide mgmt plan 131.7 122.8 9857
Water mgmt plan 131.4 119.0 10445
Lime applied 316.4 4445 9061
Sulfur applied 119.8 110.8 5975
Gypsum applied 131.3 122.3 12811
Micronutrients applied 125.0 125.8 4075
Zinc applied 122.9 1177 3770
Pre emergence herbicide applied  251.0 375.2 6692
Post emergence herbicide applied 340.8 470.3 7621
Fertilizer v.r.t. 364.5 487.2 15531
Pesticide v.r.t. 361.1 482.8 16373
Soil or plan test 245.2 367.0 15567
Nitrogen test 330.3 457.7 15426
Scouted for weeds 291.8 429.5 4596
Scouted for insects 304.6 440.7 8300
Scouted for disease 305.2 437.6 10862
Kept scouting records 352.6 474.8 13765
Phosphorus soil test 127.6 123.3 7266

246.6
197.1
282.7
266.8
298.3
253.9
397.6
361.9
123.1
131.1
126.3

94.4
144.7
174.6
325.8
154.4
126.2
140.0
145.3
357.5
309.6
246.6
231.9
599.3
291.0
330.5
333.6
341.2
383.5

13.7

364.3
266.1
396.9
394.0
425.2
404.6
506.4
479.0

62.8
108.6
118.6
102.6
144.9
232.1
454.0
171.4

68.8

92.3
155.8
479.4
436.1
368.3
322.5
991.3
419.1
455.2
455.6
463.1
202.8
127.7

8602
3727
2254
4710
2929
1001
6250
1365
674
2831
1375
457
966
378
10789
1599
96
299
604
13147
12214
1243
401
4279
4424
15253
11555
8989
3001
3554

Kk
Kk
Kok
Kk
Kk
)k
kkx

Fokok
$ok
Fokok
Fkok
Fokok

)k

K%k
Ko%K
Ko%K
K%k
%k
k%
Ko%K
Ko%K
K%k
K%k
%ok
Ko%K
Fokk

ik 1k *Indicates significant difference between means at 1%, 5%, and 10%, respectively

31



Table A4: Logit: Effect of insurance participation and premium paid on safe

operating space

(1)

(2)

(3)

Safe operating space Safe operating space Safe operating space

Field covered by FCI 0.414%**
(0.0673)
Operation has FCI 0.339%%*
(0.0755)
Premium paid ($) 0.00265
(0.00588)
N (Ibs/acre) 0.031 7%+ 0.0317%%* 0.0318%%*
(0.00315) (0.00315) (0.00315)
P (Ibs/acre) 0.000257 0.000296 0.000214
(0.00196) (0.00195) (0.00198)
K (Ibs/acre) 0.000319 0.000224 0.000158
(0.00104) (0.00104) (0.00106)
Liquid pesticide (gal/acre) 0.211%* 0.209* 0.202%*
(0.121) (0.119) (0.114)
Solid pesticide (Ibs/acre) 0.0185 0.0188 0.0198
(0.0149) (0.0150) (0.0157)
Production practice controls YES YES YES
Year FE YES YES YES
State FE YES YES YES
Constant -6.365%+* -6.327HK* -6.126***
(0.487) (0.487) (0.500)
Observations 6,615 6,616 6,616

Standard errors robust to correlation at the state level in parentheses
X pi0.01, **F pj0.05, * p;j0.1
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Table A5: Results: Effect of coverage level on distance to ideal N balance

(1) (2) (3)

Distance to SOS Distance to SOS Distance to SOS

Yield coverage level -0.00700
(0.00464)
Price coverage level -0.132*
(0.0656)
Revenue coverage level -0.559%***
(0.107)
N (Ibs/acre) -0.81 7 -0.81 2% -0.823%***
(0.122) (0.0984) (0.0935)
P (Ibs/acre) -0.210% -0.0996 -0.0994
(0.120) (0.100) (0.0968)
K (Ibs/acre) -0.164* -0.3417%%* -0.310%***
(0.0871) (0.0999) (0.0863)
Liquid pesticide (gal/acre) -15.72 -33.59°%4* -21.61°%*
(10.42) (10.20) (9.412)
Solid pesticide (Ibs/acre) -3.935 -6.552%4* -4.449%F*
(3.025) (2.000) (1.527)
Production practice controls YES YES YES
State FE YES YES YES
Constant 256. 744 233.3%** 251.9%**
(15.05) (20.94) (18.50)
Observations 3,929 2,299 2,531
R-squared 0.239 0.291 0.296

Standard errors robust to correlation at the state level in parentheses
K pi0.01, ** pj0.05, * p;j0.1
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1CART analysis - Split if (adjusted) P<.05

With variables: resistantseed notill terraces grassedwaterways contour stripgy F  RHR

419 223 .72

+Cultivated field for weed control
1 51 38 1.01
«Completed courses for restricted use certification
297 221 1.01

610 390 .87
+Crop field scouted for insects
1 1004 779 1.06

+Cultivated field for weed control
! 047 820 1.18

Figure A2: CART: 1996
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ed control

Clean equipment to reduce spread of pes
1

A Tons lime applied per acre

0-1

1

Figure A3: CART: 2000
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RT is - Spilit if 'ldjuste ) P=.05
: its

With va seed terra

rrresistantseed

rNitrogen Ibs per acre

! :.TDT'IEG per acre of manure

rrresistantseed

~Crop field scouted for weeds
0
-+Post-emergence weed control herbicide application
1 684 585

Figure A4: CART: 2001

36



CART analysis - Spilit if (adjusted) P<.05

With vanables: resistantseed notill terraces grassedwaterways contour stripcr N

196 86 61
103 51 .69
397 265 .93
+Variable rate technology used for fertilization o
1 59 51 1.21
354 257
287 192

+Post-emergence weed control herbicide application
L 746 628

Figure A5: CART: 2005
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Figure A6: CART: 2010
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